nfs_bio.c revision 1.185.6.1 1 /* $NetBSD: nfs_bio.c,v 1.185.6.1 2011/06/23 14:20:27 cherry Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.185.6.1 2011/06/23 14:20:27 cherry Exp $");
39
40 #ifdef _KERNEL_OPT
41 #include "opt_nfs.h"
42 #include "opt_ddb.h"
43 #endif
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/resourcevar.h>
48 #include <sys/signalvar.h>
49 #include <sys/proc.h>
50 #include <sys/buf.h>
51 #include <sys/vnode.h>
52 #include <sys/mount.h>
53 #include <sys/kernel.h>
54 #include <sys/namei.h>
55 #include <sys/dirent.h>
56 #include <sys/kauth.h>
57
58 #include <uvm/uvm_extern.h>
59 #include <uvm/uvm.h>
60
61 #include <nfs/rpcv2.h>
62 #include <nfs/nfsproto.h>
63 #include <nfs/nfs.h>
64 #include <nfs/nfsmount.h>
65 #include <nfs/nfsnode.h>
66 #include <nfs/nfs_var.h>
67
68 extern int nfs_numasync;
69 extern int nfs_commitsize;
70 extern struct nfsstats nfsstats;
71
72 static int nfs_doio_read(struct buf *, struct uio *);
73 static int nfs_doio_write(struct buf *, struct uio *);
74 static int nfs_doio_phys(struct buf *, struct uio *);
75
76 /*
77 * Vnode op for read using bio
78 * Any similarity to readip() is purely coincidental
79 */
80 int
81 nfs_bioread(struct vnode *vp, struct uio *uio, int ioflag,
82 kauth_cred_t cred, int cflag)
83 {
84 struct nfsnode *np = VTONFS(vp);
85 struct buf *bp = NULL, *rabp;
86 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
87 struct nfsdircache *ndp = NULL, *nndp = NULL;
88 void *baddr;
89 int got_buf = 0, error = 0, n = 0, on = 0, en, enn;
90 int enough = 0;
91 struct dirent *dp, *pdp, *edp, *ep;
92 off_t curoff = 0;
93 int advice;
94 struct lwp *l = curlwp;
95
96 #ifdef DIAGNOSTIC
97 if (uio->uio_rw != UIO_READ)
98 panic("nfs_read mode");
99 #endif
100 if (uio->uio_resid == 0)
101 return (0);
102 if (vp->v_type != VDIR && uio->uio_offset < 0)
103 return (EINVAL);
104 #ifndef NFS_V2_ONLY
105 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
106 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
107 (void)nfs_fsinfo(nmp, vp, cred, l);
108 #endif
109 if (vp->v_type != VDIR &&
110 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
111 return (EFBIG);
112
113 /*
114 * For nfs, cache consistency can only be maintained approximately.
115 * Although RFC1094 does not specify the criteria, the following is
116 * believed to be compatible with the reference port.
117 *
118 * If the file's modify time on the server has changed since the
119 * last read rpc or you have written to the file,
120 * you may have lost data cache consistency with the
121 * server, so flush all of the file's data out of the cache.
122 * Then force a getattr rpc to ensure that you have up to date
123 * attributes.
124 * NB: This implies that cache data can be read when up to
125 * nfs_attrtimeo seconds out of date. If you find that you need current
126 * attributes this could be forced by setting n_attrstamp to 0 before
127 * the VOP_GETATTR() call.
128 */
129
130 if (vp->v_type != VLNK) {
131 error = nfs_flushstalebuf(vp, cred, l,
132 NFS_FLUSHSTALEBUF_MYWRITE);
133 if (error)
134 return error;
135 }
136
137 do {
138 /*
139 * Don't cache symlinks.
140 */
141 if ((vp->v_vflag & VV_ROOT) && vp->v_type == VLNK) {
142 return (nfs_readlinkrpc(vp, uio, cred));
143 }
144 baddr = (void *)0;
145 switch (vp->v_type) {
146 case VREG:
147 nfsstats.biocache_reads++;
148
149 advice = IO_ADV_DECODE(ioflag);
150 error = 0;
151 while (uio->uio_resid > 0) {
152 vsize_t bytelen;
153
154 nfs_delayedtruncate(vp);
155 if (np->n_size <= uio->uio_offset) {
156 break;
157 }
158 bytelen =
159 MIN(np->n_size - uio->uio_offset, uio->uio_resid);
160 error = ubc_uiomove(&vp->v_uobj, uio, bytelen, advice,
161 UBC_READ | UBC_PARTIALOK | UBC_UNMAP_FLAG(vp));
162 if (error) {
163 /*
164 * XXXkludge
165 * the file has been truncated on the server.
166 * there isn't much we can do.
167 */
168 if (uio->uio_offset >= np->n_size) {
169 /* end of file */
170 error = 0;
171 } else {
172 break;
173 }
174 }
175 }
176 break;
177
178 case VLNK:
179 nfsstats.biocache_readlinks++;
180 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, l);
181 if (!bp)
182 return (EINTR);
183 if ((bp->b_oflags & BO_DONE) == 0) {
184 bp->b_flags |= B_READ;
185 error = nfs_doio(bp);
186 if (error) {
187 brelse(bp, 0);
188 return (error);
189 }
190 }
191 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
192 got_buf = 1;
193 on = 0;
194 break;
195 case VDIR:
196 diragain:
197 nfsstats.biocache_readdirs++;
198 ndp = nfs_searchdircache(vp, uio->uio_offset,
199 (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0);
200 if (!ndp) {
201 /*
202 * We've been handed a cookie that is not
203 * in the cache. If we're not translating
204 * 32 <-> 64, it may be a value that was
205 * flushed out of the cache because it grew
206 * too big. Let the server judge if it's
207 * valid or not. In the translation case,
208 * we have no way of validating this value,
209 * so punt.
210 */
211 if (nmp->nm_flag & NFSMNT_XLATECOOKIE)
212 return (EINVAL);
213 ndp = nfs_enterdircache(vp, uio->uio_offset,
214 uio->uio_offset, 0, 0);
215 }
216
217 if (NFS_EOFVALID(np) &&
218 ndp->dc_cookie == np->n_direofoffset) {
219 nfs_putdircache(np, ndp);
220 nfsstats.direofcache_hits++;
221 return (0);
222 }
223
224 bp = nfs_getcacheblk(vp, NFSDC_BLKNO(ndp), NFS_DIRBLKSIZ, l);
225 if (!bp)
226 return (EINTR);
227 if ((bp->b_oflags & BO_DONE) == 0) {
228 bp->b_flags |= B_READ;
229 bp->b_dcookie = ndp->dc_blkcookie;
230 error = nfs_doio(bp);
231 if (error) {
232 /*
233 * Yuck! The directory has been modified on the
234 * server. Punt and let the userland code
235 * deal with it.
236 */
237 nfs_putdircache(np, ndp);
238 brelse(bp, 0);
239 /*
240 * nfs_request maps NFSERR_BAD_COOKIE to EINVAL.
241 */
242 if (error == EINVAL) { /* NFSERR_BAD_COOKIE */
243 nfs_invaldircache(vp, 0);
244 nfs_vinvalbuf(vp, 0, cred, l, 1);
245 }
246 return (error);
247 }
248 }
249
250 /*
251 * Just return if we hit EOF right away with this
252 * block. Always check here, because direofoffset
253 * may have been set by an nfsiod since the last
254 * check.
255 *
256 * also, empty block implies EOF.
257 */
258
259 if (bp->b_bcount == bp->b_resid ||
260 (NFS_EOFVALID(np) &&
261 ndp->dc_blkcookie == np->n_direofoffset)) {
262 KASSERT(bp->b_bcount != bp->b_resid ||
263 ndp->dc_blkcookie == bp->b_dcookie);
264 nfs_putdircache(np, ndp);
265 brelse(bp, BC_NOCACHE);
266 return 0;
267 }
268
269 /*
270 * Find the entry we were looking for in the block.
271 */
272
273 en = ndp->dc_entry;
274
275 pdp = dp = (struct dirent *)bp->b_data;
276 edp = (struct dirent *)(void *)((char *)bp->b_data + bp->b_bcount -
277 bp->b_resid);
278 enn = 0;
279 while (enn < en && dp < edp) {
280 pdp = dp;
281 dp = _DIRENT_NEXT(dp);
282 enn++;
283 }
284
285 /*
286 * If the entry number was bigger than the number of
287 * entries in the block, or the cookie of the previous
288 * entry doesn't match, the directory cache is
289 * stale. Flush it and try again (i.e. go to
290 * the server).
291 */
292 if (dp >= edp || (struct dirent *)_DIRENT_NEXT(dp) > edp ||
293 (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) {
294 #ifdef DEBUG
295 printf("invalid cache: %p %p %p off %jx %jx\n",
296 pdp, dp, edp,
297 (uintmax_t)uio->uio_offset,
298 (uintmax_t)NFS_GETCOOKIE(pdp));
299 #endif
300 nfs_putdircache(np, ndp);
301 brelse(bp, 0);
302 nfs_invaldircache(vp, 0);
303 nfs_vinvalbuf(vp, 0, cred, l, 0);
304 goto diragain;
305 }
306
307 on = (char *)dp - (char *)bp->b_data;
308
309 /*
310 * Cache all entries that may be exported to the
311 * user, as they may be thrown back at us. The
312 * NFSBIO_CACHECOOKIES flag indicates that all
313 * entries are being 'exported', so cache them all.
314 */
315
316 if (en == 0 && pdp == dp) {
317 dp = _DIRENT_NEXT(dp);
318 enn++;
319 }
320
321 if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) {
322 n = uio->uio_resid;
323 enough = 1;
324 } else
325 n = bp->b_bcount - bp->b_resid - on;
326
327 ep = (struct dirent *)(void *)((char *)bp->b_data + on + n);
328
329 /*
330 * Find last complete entry to copy, caching entries
331 * (if requested) as we go.
332 */
333
334 while (dp < ep && (struct dirent *)_DIRENT_NEXT(dp) <= ep) {
335 if (cflag & NFSBIO_CACHECOOKIES) {
336 nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp),
337 ndp->dc_blkcookie, enn, bp->b_lblkno);
338 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
339 NFS_STASHCOOKIE32(pdp,
340 nndp->dc_cookie32);
341 }
342 nfs_putdircache(np, nndp);
343 }
344 pdp = dp;
345 dp = _DIRENT_NEXT(dp);
346 enn++;
347 }
348 nfs_putdircache(np, ndp);
349
350 /*
351 * If the last requested entry was not the last in the
352 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ),
353 * cache the cookie of the last requested one, and
354 * set of the offset to it.
355 */
356
357 if ((on + n) < bp->b_bcount - bp->b_resid) {
358 curoff = NFS_GETCOOKIE(pdp);
359 nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie,
360 enn, bp->b_lblkno);
361 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
362 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
363 curoff = nndp->dc_cookie32;
364 }
365 nfs_putdircache(np, nndp);
366 } else
367 curoff = bp->b_dcookie;
368
369 /*
370 * Always cache the entry for the next block,
371 * so that readaheads can use it.
372 */
373 nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0);
374 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
375 if (curoff == bp->b_dcookie) {
376 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
377 curoff = nndp->dc_cookie32;
378 }
379 }
380
381 n = (char *)_DIRENT_NEXT(pdp) - ((char *)bp->b_data + on);
382
383 /*
384 * If not eof and read aheads are enabled, start one.
385 * (You need the current block first, so that you have the
386 * directory offset cookie of the next block.)
387 */
388 if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
389 !NFS_EOFVALID(np)) {
390 rabp = nfs_getcacheblk(vp, NFSDC_BLKNO(nndp),
391 NFS_DIRBLKSIZ, l);
392 if (rabp) {
393 if ((rabp->b_oflags & (BO_DONE | BO_DELWRI)) == 0) {
394 rabp->b_dcookie = nndp->dc_cookie;
395 rabp->b_flags |= (B_READ | B_ASYNC);
396 if (nfs_asyncio(rabp)) {
397 brelse(rabp, BC_INVAL);
398 }
399 } else
400 brelse(rabp, 0);
401 }
402 }
403 nfs_putdircache(np, nndp);
404 got_buf = 1;
405 break;
406 default:
407 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
408 break;
409 }
410
411 if (n > 0) {
412 if (!baddr)
413 baddr = bp->b_data;
414 error = uiomove((char *)baddr + on, (int)n, uio);
415 }
416 switch (vp->v_type) {
417 case VREG:
418 break;
419 case VLNK:
420 n = 0;
421 break;
422 case VDIR:
423 uio->uio_offset = curoff;
424 if (enough)
425 n = 0;
426 break;
427 default:
428 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
429 }
430 if (got_buf)
431 brelse(bp, 0);
432 } while (error == 0 && uio->uio_resid > 0 && n > 0);
433 return (error);
434 }
435
436 /*
437 * Vnode op for write using bio
438 */
439 int
440 nfs_write(void *v)
441 {
442 struct vop_write_args /* {
443 struct vnode *a_vp;
444 struct uio *a_uio;
445 int a_ioflag;
446 kauth_cred_t a_cred;
447 } */ *ap = v;
448 struct uio *uio = ap->a_uio;
449 struct lwp *l = curlwp;
450 struct vnode *vp = ap->a_vp;
451 struct nfsnode *np = VTONFS(vp);
452 kauth_cred_t cred = ap->a_cred;
453 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
454 voff_t oldoff, origoff;
455 vsize_t bytelen;
456 int error = 0;
457 int ioflag = ap->a_ioflag;
458 int extended = 0, wrotedata = 0;
459
460 #ifdef DIAGNOSTIC
461 if (uio->uio_rw != UIO_WRITE)
462 panic("nfs_write mode");
463 #endif
464 if (vp->v_type != VREG)
465 return (EIO);
466 if (np->n_flag & NWRITEERR) {
467 np->n_flag &= ~NWRITEERR;
468 return (np->n_error);
469 }
470 #ifndef NFS_V2_ONLY
471 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
472 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
473 (void)nfs_fsinfo(nmp, vp, cred, l);
474 #endif
475 if (ioflag & IO_APPEND) {
476 NFS_INVALIDATE_ATTRCACHE(np);
477 error = nfs_flushstalebuf(vp, cred, l,
478 NFS_FLUSHSTALEBUF_MYWRITE);
479 if (error)
480 return (error);
481 uio->uio_offset = np->n_size;
482
483 /*
484 * This is already checked above VOP_WRITE, but recheck
485 * the append case here to make sure our idea of the
486 * file size is as fresh as possible.
487 */
488 if (uio->uio_offset + uio->uio_resid >
489 l->l_proc->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
490 mutex_enter(proc_lock);
491 psignal(l->l_proc, SIGXFSZ);
492 mutex_exit(proc_lock);
493 return (EFBIG);
494 }
495 }
496 if (uio->uio_offset < 0)
497 return (EINVAL);
498 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
499 return (EFBIG);
500 if (uio->uio_resid == 0)
501 return (0);
502
503 origoff = uio->uio_offset;
504 do {
505 bool overwrite; /* if we are overwriting whole pages */
506 u_quad_t oldsize;
507 oldoff = uio->uio_offset;
508 bytelen = uio->uio_resid;
509
510 nfsstats.biocache_writes++;
511
512 oldsize = np->n_size;
513 np->n_flag |= NMODIFIED;
514 if (np->n_size < uio->uio_offset + bytelen) {
515 np->n_size = uio->uio_offset + bytelen;
516 }
517 overwrite = false;
518 if ((uio->uio_offset & PAGE_MASK) == 0) {
519 if ((vp->v_vflag & VV_MAPPED) == 0 &&
520 bytelen > PAGE_SIZE) {
521 bytelen = trunc_page(bytelen);
522 overwrite = true;
523 } else if ((bytelen & PAGE_MASK) == 0 &&
524 uio->uio_offset >= vp->v_size) {
525 overwrite = true;
526 }
527 }
528 if (vp->v_size < uio->uio_offset + bytelen) {
529 uvm_vnp_setwritesize(vp, uio->uio_offset + bytelen);
530 }
531 error = ubc_uiomove(&vp->v_uobj, uio, bytelen,
532 UVM_ADV_RANDOM, UBC_WRITE | UBC_PARTIALOK |
533 (overwrite ? UBC_FAULTBUSY : 0) |
534 UBC_UNMAP_FLAG(vp));
535 if (error) {
536 uvm_vnp_setwritesize(vp, vp->v_size);
537 if (overwrite && np->n_size != oldsize) {
538 /*
539 * backout size and free pages past eof.
540 */
541 np->n_size = oldsize;
542 mutex_enter(vp->v_interlock);
543 (void)VOP_PUTPAGES(vp, round_page(vp->v_size),
544 0, PGO_SYNCIO | PGO_FREE);
545 }
546 break;
547 }
548 wrotedata = 1;
549
550 /*
551 * update UVM's notion of the size now that we've
552 * copied the data into the vnode's pages.
553 */
554
555 if (vp->v_size < uio->uio_offset) {
556 uvm_vnp_setsize(vp, uio->uio_offset);
557 extended = 1;
558 }
559
560 if ((oldoff & ~(nmp->nm_wsize - 1)) !=
561 (uio->uio_offset & ~(nmp->nm_wsize - 1))) {
562 mutex_enter(vp->v_interlock);
563 error = VOP_PUTPAGES(vp,
564 trunc_page(oldoff & ~(nmp->nm_wsize - 1)),
565 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
566 ~(nmp->nm_wsize - 1)), PGO_CLEANIT);
567 }
568 } while (uio->uio_resid > 0);
569 if (wrotedata)
570 VN_KNOTE(vp, NOTE_WRITE | (extended ? NOTE_EXTEND : 0));
571 if (error == 0 && (ioflag & IO_SYNC) != 0) {
572 mutex_enter(vp->v_interlock);
573 error = VOP_PUTPAGES(vp,
574 trunc_page(origoff & ~(nmp->nm_wsize - 1)),
575 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
576 ~(nmp->nm_wsize - 1)),
577 PGO_CLEANIT | PGO_SYNCIO);
578 }
579 return error;
580 }
581
582 /*
583 * Get an nfs cache block.
584 * Allocate a new one if the block isn't currently in the cache
585 * and return the block marked busy. If the calling process is
586 * interrupted by a signal for an interruptible mount point, return
587 * NULL.
588 */
589 struct buf *
590 nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct lwp *l)
591 {
592 struct buf *bp;
593 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
594
595 if (nmp->nm_flag & NFSMNT_INT) {
596 bp = getblk(vp, bn, size, PCATCH, 0);
597 while (bp == NULL) {
598 if (nfs_sigintr(nmp, NULL, l))
599 return (NULL);
600 bp = getblk(vp, bn, size, 0, 2 * hz);
601 }
602 } else
603 bp = getblk(vp, bn, size, 0, 0);
604 return (bp);
605 }
606
607 /*
608 * Flush and invalidate all dirty buffers. If another process is already
609 * doing the flush, just wait for completion.
610 */
611 int
612 nfs_vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred,
613 struct lwp *l, int intrflg)
614 {
615 struct nfsnode *np = VTONFS(vp);
616 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
617 int error = 0, slptimeo;
618 bool catch;
619
620 if ((nmp->nm_flag & NFSMNT_INT) == 0)
621 intrflg = 0;
622 if (intrflg) {
623 catch = true;
624 slptimeo = 2 * hz;
625 } else {
626 catch = false;
627 slptimeo = 0;
628 }
629 /*
630 * First wait for any other process doing a flush to complete.
631 */
632 mutex_enter(vp->v_interlock);
633 while (np->n_flag & NFLUSHINPROG) {
634 np->n_flag |= NFLUSHWANT;
635 error = mtsleep(&np->n_flag, PRIBIO + 2, "nfsvinval",
636 slptimeo, vp->v_interlock);
637 if (error && intrflg && nfs_sigintr(nmp, NULL, l)) {
638 mutex_exit(vp->v_interlock);
639 return EINTR;
640 }
641 }
642
643 /*
644 * Now, flush as required.
645 */
646 np->n_flag |= NFLUSHINPROG;
647 mutex_exit(vp->v_interlock);
648 error = vinvalbuf(vp, flags, cred, l, catch, 0);
649 while (error) {
650 if (intrflg && nfs_sigintr(nmp, NULL, l)) {
651 error = EINTR;
652 break;
653 }
654 error = vinvalbuf(vp, flags, cred, l, 0, slptimeo);
655 }
656 mutex_enter(vp->v_interlock);
657 if (error == 0)
658 np->n_flag &= ~NMODIFIED;
659 np->n_flag &= ~NFLUSHINPROG;
660 if (np->n_flag & NFLUSHWANT) {
661 np->n_flag &= ~NFLUSHWANT;
662 wakeup(&np->n_flag);
663 }
664 mutex_exit(vp->v_interlock);
665 return error;
666 }
667
668 /*
669 * nfs_flushstalebuf: flush cache if it's stale.
670 *
671 * => caller shouldn't own any pages or buffers which belong to the vnode.
672 */
673
674 int
675 nfs_flushstalebuf(struct vnode *vp, kauth_cred_t cred, struct lwp *l,
676 int flags)
677 {
678 struct nfsnode *np = VTONFS(vp);
679 struct vattr vattr;
680 int error;
681
682 if (np->n_flag & NMODIFIED) {
683 if ((flags & NFS_FLUSHSTALEBUF_MYWRITE) == 0
684 || vp->v_type != VREG) {
685 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
686 if (error)
687 return error;
688 if (vp->v_type == VDIR) {
689 nfs_invaldircache(vp, 0);
690 }
691 } else {
692 /*
693 * XXX assuming writes are ours.
694 */
695 }
696 NFS_INVALIDATE_ATTRCACHE(np);
697 error = VOP_GETATTR(vp, &vattr, cred);
698 if (error)
699 return error;
700 np->n_mtime = vattr.va_mtime;
701 } else {
702 error = VOP_GETATTR(vp, &vattr, cred);
703 if (error)
704 return error;
705 if (timespeccmp(&np->n_mtime, &vattr.va_mtime, !=)) {
706 if (vp->v_type == VDIR) {
707 nfs_invaldircache(vp, 0);
708 }
709 error = nfs_vinvalbuf(vp, V_SAVE, cred, l, 1);
710 if (error)
711 return error;
712 np->n_mtime = vattr.va_mtime;
713 }
714 }
715
716 return error;
717 }
718
719 /*
720 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
721 * This is mainly to avoid queueing async I/O requests when the nfsiods
722 * are all hung on a dead server.
723 */
724
725 int
726 nfs_asyncio(struct buf *bp)
727 {
728 struct nfs_iod *iod;
729 struct nfsmount *nmp;
730 int slptimeo = 0, error;
731 bool catch = false;
732
733 if (nfs_numasync == 0)
734 return (EIO);
735
736 nmp = VFSTONFS(bp->b_vp->v_mount);
737 again:
738 if (nmp->nm_flag & NFSMNT_INT)
739 catch = true;
740
741 /*
742 * Find a free iod to process this request.
743 */
744
745 mutex_enter(&nfs_iodlist_lock);
746 iod = LIST_FIRST(&nfs_iodlist_idle);
747 if (iod) {
748 /*
749 * Found one, so wake it up and tell it which
750 * mount to process.
751 */
752 LIST_REMOVE(iod, nid_idle);
753 mutex_enter(&iod->nid_lock);
754 mutex_exit(&nfs_iodlist_lock);
755 KASSERT(iod->nid_mount == NULL);
756 iod->nid_mount = nmp;
757 cv_signal(&iod->nid_cv);
758 mutex_enter(&nmp->nm_lock);
759 mutex_exit(&iod->nid_lock);
760 nmp->nm_bufqiods++;
761 if (nmp->nm_bufqlen < 2 * nmp->nm_bufqiods) {
762 cv_broadcast(&nmp->nm_aiocv);
763 }
764 } else {
765 mutex_exit(&nfs_iodlist_lock);
766 mutex_enter(&nmp->nm_lock);
767 }
768
769 KASSERT(mutex_owned(&nmp->nm_lock));
770
771 /*
772 * If we have an iod which can process the request, then queue
773 * the buffer. However, even if we have an iod, do not initiate
774 * queue cleaning if curproc is the pageout daemon. if the NFS mount
775 * is via local loopback, we may put curproc (pagedaemon) to sleep
776 * waiting for the writes to complete. But the server (ourself)
777 * may block the write, waiting for its (ie., our) pagedaemon
778 * to produce clean pages to handle the write: deadlock.
779 * XXX: start non-loopback mounts straight away? If "lots free",
780 * let pagedaemon start loopback writes anyway?
781 */
782 if (nmp->nm_bufqiods > 0) {
783
784 /*
785 * Ensure that the queue never grows too large.
786 */
787 if (curlwp == uvm.pagedaemon_lwp) {
788 /* Enque for later, to avoid free-page deadlock */
789 } else while (nmp->nm_bufqlen >= 2 * nmp->nm_bufqiods) {
790 if (catch) {
791 error = cv_timedwait_sig(&nmp->nm_aiocv,
792 &nmp->nm_lock, slptimeo);
793 } else {
794 error = cv_timedwait(&nmp->nm_aiocv,
795 &nmp->nm_lock, slptimeo);
796 }
797 if (error) {
798 if (nfs_sigintr(nmp, NULL, curlwp)) {
799 mutex_exit(&nmp->nm_lock);
800 return (EINTR);
801 }
802 if (catch) {
803 catch = false;
804 slptimeo = 2 * hz;
805 }
806 }
807
808 /*
809 * We might have lost our iod while sleeping,
810 * so check and loop if necessary.
811 */
812
813 if (nmp->nm_bufqiods == 0) {
814 mutex_exit(&nmp->nm_lock);
815 goto again;
816 }
817 }
818 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
819 nmp->nm_bufqlen++;
820 mutex_exit(&nmp->nm_lock);
821 return (0);
822 }
823 mutex_exit(&nmp->nm_lock);
824
825 /*
826 * All the iods are busy on other mounts, so return EIO to
827 * force the caller to process the i/o synchronously.
828 */
829
830 return (EIO);
831 }
832
833 /*
834 * nfs_doio for read.
835 */
836 static int
837 nfs_doio_read(struct buf *bp, struct uio *uiop)
838 {
839 struct vnode *vp = bp->b_vp;
840 struct nfsnode *np = VTONFS(vp);
841 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
842 int error = 0;
843
844 uiop->uio_rw = UIO_READ;
845 switch (vp->v_type) {
846 case VREG:
847 nfsstats.read_bios++;
848 error = nfs_readrpc(vp, uiop);
849 if (!error && uiop->uio_resid) {
850 int diff, len;
851
852 /*
853 * If uio_resid > 0, there is a hole in the file and
854 * no writes after the hole have been pushed to
855 * the server yet or the file has been truncated
856 * on the server.
857 * Just zero fill the rest of the valid area.
858 */
859
860 KASSERT(vp->v_size >=
861 uiop->uio_offset + uiop->uio_resid);
862 diff = bp->b_bcount - uiop->uio_resid;
863 len = uiop->uio_resid;
864 memset((char *)bp->b_data + diff, 0, len);
865 uiop->uio_resid = 0;
866 }
867 #if 0
868 if (uiop->uio_lwp && (vp->v_iflag & VI_TEXT) &&
869 timespeccmp(&np->n_mtime, &np->n_vattr->va_mtime, !=)) {
870 mutex_enter(proc_lock);
871 killproc(uiop->uio_lwp->l_proc, "process text file was modified");
872 mutex_exit(proc_lock);
873 #if 0 /* XXX NJWLWP */
874 uiop->uio_lwp->l_proc->p_holdcnt++;
875 #endif
876 }
877 #endif
878 break;
879 case VLNK:
880 KASSERT(uiop->uio_offset == (off_t)0);
881 nfsstats.readlink_bios++;
882 error = nfs_readlinkrpc(vp, uiop, np->n_rcred);
883 break;
884 case VDIR:
885 nfsstats.readdir_bios++;
886 uiop->uio_offset = bp->b_dcookie;
887 #ifndef NFS_V2_ONLY
888 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
889 error = nfs_readdirplusrpc(vp, uiop,
890 curlwp->l_cred);
891 /*
892 * nfs_request maps NFSERR_NOTSUPP to ENOTSUP.
893 */
894 if (error == ENOTSUP)
895 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
896 }
897 #else
898 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
899 #endif
900 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
901 error = nfs_readdirrpc(vp, uiop,
902 curlwp->l_cred);
903 if (!error) {
904 bp->b_dcookie = uiop->uio_offset;
905 }
906 break;
907 default:
908 printf("nfs_doio: type %x unexpected\n", vp->v_type);
909 break;
910 }
911 bp->b_error = error;
912 return error;
913 }
914
915 /*
916 * nfs_doio for write.
917 */
918 static int
919 nfs_doio_write(struct buf *bp, struct uio *uiop)
920 {
921 struct vnode *vp = bp->b_vp;
922 struct nfsnode *np = VTONFS(vp);
923 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
924 int iomode;
925 bool stalewriteverf = false;
926 int i, npages = (bp->b_bcount + PAGE_SIZE - 1) >> PAGE_SHIFT;
927 struct vm_page **pgs, *spgs[UBC_MAX_PAGES];
928 #ifndef NFS_V2_ONLY
929 bool needcommit = true; /* need only COMMIT RPC */
930 #else
931 bool needcommit = false; /* need only COMMIT RPC */
932 #endif
933 bool pageprotected;
934 struct uvm_object *uobj = &vp->v_uobj;
935 int error;
936 off_t off, cnt;
937
938 if (npages < __arraycount(spgs))
939 pgs = spgs;
940 else {
941 if ((pgs = kmem_alloc(sizeof(*pgs) * npages, KM_NOSLEEP)) ==
942 NULL)
943 return ENOMEM;
944 }
945
946 if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) {
947 iomode = NFSV3WRITE_UNSTABLE;
948 } else {
949 iomode = NFSV3WRITE_FILESYNC;
950 }
951
952 #ifndef NFS_V2_ONLY
953 again:
954 #endif
955 rw_enter(&nmp->nm_writeverflock, RW_READER);
956
957 for (i = 0; i < npages; i++) {
958 pgs[i] = uvm_pageratop((vaddr_t)bp->b_data + (i << PAGE_SHIFT));
959 if (pgs[i]->uobject == uobj &&
960 pgs[i]->offset == uiop->uio_offset + (i << PAGE_SHIFT)) {
961 KASSERT(pgs[i]->flags & PG_BUSY);
962 /*
963 * this page belongs to our object.
964 */
965 mutex_enter(uobj->vmobjlock);
966 /*
967 * write out the page stably if it's about to
968 * be released because we can't resend it
969 * on the server crash.
970 *
971 * XXX assuming PG_RELEASE|PG_PAGEOUT won't be
972 * changed until unbusy the page.
973 */
974 if (pgs[i]->flags & (PG_RELEASED|PG_PAGEOUT))
975 iomode = NFSV3WRITE_FILESYNC;
976 /*
977 * if we met a page which hasn't been sent yet,
978 * we need do WRITE RPC.
979 */
980 if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0)
981 needcommit = false;
982 mutex_exit(uobj->vmobjlock);
983 } else {
984 iomode = NFSV3WRITE_FILESYNC;
985 needcommit = false;
986 }
987 }
988 if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) {
989 mutex_enter(uobj->vmobjlock);
990 for (i = 0; i < npages; i++) {
991 pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY;
992 pmap_page_protect(pgs[i], VM_PROT_READ);
993 }
994 mutex_exit(uobj->vmobjlock);
995 pageprotected = true; /* pages can't be modified during i/o. */
996 } else
997 pageprotected = false;
998
999 /*
1000 * Send the data to the server if necessary,
1001 * otherwise just send a commit rpc.
1002 */
1003 #ifndef NFS_V2_ONLY
1004 if (needcommit) {
1005
1006 /*
1007 * If the buffer is in the range that we already committed,
1008 * there's nothing to do.
1009 *
1010 * If it's in the range that we need to commit, push the
1011 * whole range at once, otherwise only push the buffer.
1012 * In both these cases, acquire the commit lock to avoid
1013 * other processes modifying the range.
1014 */
1015
1016 off = uiop->uio_offset;
1017 cnt = bp->b_bcount;
1018 mutex_enter(&np->n_commitlock);
1019 if (!nfs_in_committed_range(vp, off, bp->b_bcount)) {
1020 bool pushedrange;
1021 if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) {
1022 pushedrange = true;
1023 off = np->n_pushlo;
1024 cnt = np->n_pushhi - np->n_pushlo;
1025 } else {
1026 pushedrange = false;
1027 }
1028 error = nfs_commit(vp, off, cnt, curlwp);
1029 if (error == 0) {
1030 if (pushedrange) {
1031 nfs_merge_commit_ranges(vp);
1032 } else {
1033 nfs_add_committed_range(vp, off, cnt);
1034 }
1035 }
1036 } else {
1037 error = 0;
1038 }
1039 mutex_exit(&np->n_commitlock);
1040 rw_exit(&nmp->nm_writeverflock);
1041 if (!error) {
1042 /*
1043 * pages are now on stable storage.
1044 */
1045 uiop->uio_resid = 0;
1046 mutex_enter(uobj->vmobjlock);
1047 for (i = 0; i < npages; i++) {
1048 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1049 }
1050 mutex_exit(uobj->vmobjlock);
1051 goto out;
1052 } else if (error == NFSERR_STALEWRITEVERF) {
1053 nfs_clearcommit(vp->v_mount);
1054 goto again;
1055 }
1056 if (error) {
1057 bp->b_error = np->n_error = error;
1058 np->n_flag |= NWRITEERR;
1059 }
1060 goto out;
1061 }
1062 #endif
1063 off = uiop->uio_offset;
1064 cnt = bp->b_bcount;
1065 uiop->uio_rw = UIO_WRITE;
1066 nfsstats.write_bios++;
1067 error = nfs_writerpc(vp, uiop, &iomode, pageprotected, &stalewriteverf);
1068 #ifndef NFS_V2_ONLY
1069 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1070 /*
1071 * we need to commit pages later.
1072 */
1073 mutex_enter(&np->n_commitlock);
1074 nfs_add_tobecommitted_range(vp, off, cnt);
1075 /*
1076 * if there can be too many uncommitted pages, commit them now.
1077 */
1078 if (np->n_pushhi - np->n_pushlo > nfs_commitsize) {
1079 off = np->n_pushlo;
1080 cnt = nfs_commitsize >> 1;
1081 error = nfs_commit(vp, off, cnt, curlwp);
1082 if (!error) {
1083 nfs_add_committed_range(vp, off, cnt);
1084 nfs_del_tobecommitted_range(vp, off, cnt);
1085 }
1086 if (error == NFSERR_STALEWRITEVERF) {
1087 stalewriteverf = true;
1088 error = 0; /* it isn't a real error */
1089 }
1090 } else {
1091 /*
1092 * re-dirty pages so that they will be passed
1093 * to us later again.
1094 */
1095 mutex_enter(uobj->vmobjlock);
1096 for (i = 0; i < npages; i++) {
1097 pgs[i]->flags &= ~PG_CLEAN;
1098 }
1099 mutex_exit(uobj->vmobjlock);
1100 }
1101 mutex_exit(&np->n_commitlock);
1102 } else
1103 #endif
1104 if (!error) {
1105 /*
1106 * pages are now on stable storage.
1107 */
1108 mutex_enter(&np->n_commitlock);
1109 nfs_del_committed_range(vp, off, cnt);
1110 mutex_exit(&np->n_commitlock);
1111 mutex_enter(uobj->vmobjlock);
1112 for (i = 0; i < npages; i++) {
1113 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1114 }
1115 mutex_exit(uobj->vmobjlock);
1116 } else {
1117 /*
1118 * we got an error.
1119 */
1120 bp->b_error = np->n_error = error;
1121 np->n_flag |= NWRITEERR;
1122 }
1123
1124 rw_exit(&nmp->nm_writeverflock);
1125
1126
1127 if (stalewriteverf) {
1128 nfs_clearcommit(vp->v_mount);
1129 }
1130 #ifndef NFS_V2_ONLY
1131 out:
1132 #endif
1133 if (pgs != spgs)
1134 kmem_free(pgs, sizeof(*pgs) * npages);
1135 return error;
1136 }
1137
1138 /*
1139 * nfs_doio for B_PHYS.
1140 */
1141 static int
1142 nfs_doio_phys(struct buf *bp, struct uio *uiop)
1143 {
1144 struct vnode *vp = bp->b_vp;
1145 int error;
1146
1147 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
1148 if (bp->b_flags & B_READ) {
1149 uiop->uio_rw = UIO_READ;
1150 nfsstats.read_physios++;
1151 error = nfs_readrpc(vp, uiop);
1152 } else {
1153 int iomode = NFSV3WRITE_DATASYNC;
1154 bool stalewriteverf;
1155 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1156
1157 uiop->uio_rw = UIO_WRITE;
1158 nfsstats.write_physios++;
1159 rw_enter(&nmp->nm_writeverflock, RW_READER);
1160 error = nfs_writerpc(vp, uiop, &iomode, false, &stalewriteverf);
1161 rw_exit(&nmp->nm_writeverflock);
1162 if (stalewriteverf) {
1163 nfs_clearcommit(bp->b_vp->v_mount);
1164 }
1165 }
1166 bp->b_error = error;
1167 return error;
1168 }
1169
1170 /*
1171 * Do an I/O operation to/from a cache block. This may be called
1172 * synchronously or from an nfsiod.
1173 */
1174 int
1175 nfs_doio(struct buf *bp)
1176 {
1177 int error;
1178 struct uio uio;
1179 struct uio *uiop = &uio;
1180 struct iovec io;
1181 UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist);
1182
1183 uiop->uio_iov = &io;
1184 uiop->uio_iovcnt = 1;
1185 uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT);
1186 UIO_SETUP_SYSSPACE(uiop);
1187 io.iov_base = bp->b_data;
1188 io.iov_len = uiop->uio_resid = bp->b_bcount;
1189
1190 /*
1191 * Historically, paging was done with physio, but no more...
1192 */
1193 if (bp->b_flags & B_PHYS) {
1194 /*
1195 * ...though reading /dev/drum still gets us here.
1196 */
1197 error = nfs_doio_phys(bp, uiop);
1198 } else if (bp->b_flags & B_READ) {
1199 error = nfs_doio_read(bp, uiop);
1200 } else {
1201 error = nfs_doio_write(bp, uiop);
1202 }
1203 bp->b_resid = uiop->uio_resid;
1204 biodone(bp);
1205 return (error);
1206 }
1207
1208 /*
1209 * Vnode op for VM getpages.
1210 */
1211
1212 int
1213 nfs_getpages(void *v)
1214 {
1215 struct vop_getpages_args /* {
1216 struct vnode *a_vp;
1217 voff_t a_offset;
1218 struct vm_page **a_m;
1219 int *a_count;
1220 int a_centeridx;
1221 vm_prot_t a_access_type;
1222 int a_advice;
1223 int a_flags;
1224 } */ *ap = v;
1225
1226 struct vnode *vp = ap->a_vp;
1227 struct uvm_object *uobj = &vp->v_uobj;
1228 struct nfsnode *np = VTONFS(vp);
1229 const int npages = *ap->a_count;
1230 struct vm_page *pg, **pgs, **opgs, *spgs[UBC_MAX_PAGES];
1231 off_t origoffset, len;
1232 int i, error;
1233 bool v3 = NFS_ISV3(vp);
1234 bool write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1235 bool locked = (ap->a_flags & PGO_LOCKED) != 0;
1236
1237 /*
1238 * If we are not locked we are not really using opgs,
1239 * so just initialize it
1240 */
1241 if (!locked || npages < __arraycount(spgs))
1242 opgs = spgs;
1243 else {
1244 if ((opgs = kmem_alloc(npages * sizeof(*opgs), KM_NOSLEEP)) ==
1245 NULL)
1246 return ENOMEM;
1247 }
1248
1249 /*
1250 * call the genfs code to get the pages. `pgs' may be NULL
1251 * when doing read-ahead.
1252 */
1253 pgs = ap->a_m;
1254 if (write && locked && v3) {
1255 KASSERT(pgs != NULL);
1256 #ifdef DEBUG
1257
1258 /*
1259 * If PGO_LOCKED is set, real pages shouldn't exists
1260 * in the array.
1261 */
1262
1263 for (i = 0; i < npages; i++)
1264 KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE);
1265 #endif
1266 memcpy(opgs, pgs, npages * sizeof(struct vm_pages *));
1267 }
1268 error = genfs_getpages(v);
1269 if (error)
1270 goto out;
1271
1272 /*
1273 * for read faults where the nfs node is not yet marked NMODIFIED,
1274 * set PG_RDONLY on the pages so that we come back here if someone
1275 * tries to modify later via the mapping that will be entered for
1276 * this fault.
1277 */
1278
1279 if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) {
1280 if (!locked) {
1281 mutex_enter(uobj->vmobjlock);
1282 }
1283 for (i = 0; i < npages; i++) {
1284 pg = pgs[i];
1285 if (pg == NULL || pg == PGO_DONTCARE) {
1286 continue;
1287 }
1288 pg->flags |= PG_RDONLY;
1289 }
1290 if (!locked) {
1291 mutex_exit(uobj->vmobjlock);
1292 }
1293 }
1294 if (!write)
1295 goto out;
1296
1297 /*
1298 * this is a write fault, update the commit info.
1299 */
1300
1301 origoffset = ap->a_offset;
1302 len = npages << PAGE_SHIFT;
1303
1304 if (v3) {
1305 if (!locked) {
1306 mutex_enter(&np->n_commitlock);
1307 } else {
1308 if (!mutex_tryenter(&np->n_commitlock)) {
1309
1310 /*
1311 * Since PGO_LOCKED is set, we need to unbusy
1312 * all pages fetched by genfs_getpages() above,
1313 * tell the caller that there are no pages
1314 * available and put back original pgs array.
1315 */
1316
1317 mutex_enter(&uvm_pageqlock);
1318 uvm_page_unbusy(pgs, npages);
1319 mutex_exit(&uvm_pageqlock);
1320 *ap->a_count = 0;
1321 memcpy(pgs, opgs,
1322 npages * sizeof(struct vm_pages *));
1323 error = EBUSY;
1324 goto out;
1325 }
1326 }
1327 nfs_del_committed_range(vp, origoffset, len);
1328 nfs_del_tobecommitted_range(vp, origoffset, len);
1329 }
1330 np->n_flag |= NMODIFIED;
1331 if (!locked) {
1332 mutex_enter(uobj->vmobjlock);
1333 }
1334 for (i = 0; i < npages; i++) {
1335 pg = pgs[i];
1336 if (pg == NULL || pg == PGO_DONTCARE) {
1337 continue;
1338 }
1339 pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1340 }
1341 if (!locked) {
1342 mutex_exit(uobj->vmobjlock);
1343 }
1344 if (v3) {
1345 mutex_exit(&np->n_commitlock);
1346 }
1347 out:
1348 if (opgs != spgs)
1349 kmem_free(opgs, sizeof(*opgs) * npages);
1350 return error;
1351 }
1352