nfs_bio.c revision 1.63.2.15 1 /* $NetBSD: nfs_bio.c,v 1.63.2.15 2002/07/12 01:40:35 nathanw Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: nfs_bio.c,v 1.63.2.15 2002/07/12 01:40:35 nathanw Exp $");
43
44 #include "opt_nfs.h"
45 #include "opt_ddb.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/resourcevar.h>
50 #include <sys/signalvar.h>
51 #include <sys/proc.h>
52 #include <sys/buf.h>
53 #include <sys/vnode.h>
54 #include <sys/mount.h>
55 #include <sys/kernel.h>
56 #include <sys/namei.h>
57 #include <sys/dirent.h>
58 #include <sys/malloc.h>
59
60 #include <uvm/uvm_extern.h>
61 #include <uvm/uvm.h>
62
63 #include <nfs/rpcv2.h>
64 #include <nfs/nfsproto.h>
65 #include <nfs/nfs.h>
66 #include <nfs/nfsmount.h>
67 #include <nfs/nqnfs.h>
68 #include <nfs/nfsnode.h>
69 #include <nfs/nfs_var.h>
70
71 extern int nfs_numasync;
72 extern int nfs_commitsize;
73 extern struct nfsstats nfsstats;
74
75 /*
76 * Vnode op for read using bio
77 * Any similarity to readip() is purely coincidental
78 */
79 int
80 nfs_bioread(vp, uio, ioflag, cred, cflag)
81 struct vnode *vp;
82 struct uio *uio;
83 int ioflag, cflag;
84 struct ucred *cred;
85 {
86 struct nfsnode *np = VTONFS(vp);
87 struct buf *bp = NULL, *rabp;
88 struct vattr vattr;
89 struct proc *p;
90 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
91 struct nfsdircache *ndp = NULL, *nndp = NULL;
92 caddr_t baddr, ep, edp;
93 int got_buf = 0, error = 0, n = 0, on = 0, en, enn;
94 int enough = 0;
95 struct dirent *dp, *pdp;
96 off_t curoff = 0;
97
98 #ifdef DIAGNOSTIC
99 if (uio->uio_rw != UIO_READ)
100 panic("nfs_read mode");
101 #endif
102 if (uio->uio_resid == 0)
103 return (0);
104 if (vp->v_type != VDIR && uio->uio_offset < 0)
105 return (EINVAL);
106 p = uio->uio_procp;
107 #ifndef NFS_V2_ONLY
108 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
109 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
110 (void)nfs_fsinfo(nmp, vp, cred, p);
111 #endif
112 if (vp->v_type != VDIR &&
113 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
114 return (EFBIG);
115
116 /*
117 * For nfs, cache consistency can only be maintained approximately.
118 * Although RFC1094 does not specify the criteria, the following is
119 * believed to be compatible with the reference port.
120 * For nqnfs, full cache consistency is maintained within the loop.
121 * For nfs:
122 * If the file's modify time on the server has changed since the
123 * last read rpc or you have written to the file,
124 * you may have lost data cache consistency with the
125 * server, so flush all of the file's data out of the cache.
126 * Then force a getattr rpc to ensure that you have up to date
127 * attributes.
128 * NB: This implies that cache data can be read when up to
129 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
130 * attributes this could be forced by setting n_attrstamp to 0 before
131 * the VOP_GETATTR() call.
132 */
133
134 if ((nmp->nm_flag & NFSMNT_NQNFS) == 0 && vp->v_type != VLNK) {
135 if (np->n_flag & NMODIFIED) {
136 if (vp->v_type != VREG) {
137 if (vp->v_type != VDIR)
138 panic("nfs: bioread, not dir");
139 nfs_invaldircache(vp, 0);
140 np->n_direofoffset = 0;
141 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
142 if (error)
143 return (error);
144 }
145 np->n_attrstamp = 0;
146 error = VOP_GETATTR(vp, &vattr, cred, p);
147 if (error)
148 return (error);
149 np->n_mtime = vattr.va_mtime.tv_sec;
150 } else {
151 error = VOP_GETATTR(vp, &vattr, cred, p);
152 if (error)
153 return (error);
154 if (np->n_mtime != vattr.va_mtime.tv_sec) {
155 if (vp->v_type == VDIR) {
156 nfs_invaldircache(vp, 0);
157 np->n_direofoffset = 0;
158 }
159 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
160 if (error)
161 return (error);
162 np->n_mtime = vattr.va_mtime.tv_sec;
163 }
164 }
165 }
166
167 /*
168 * update the cached read creds for this node.
169 */
170
171 if (np->n_rcred) {
172 crfree(np->n_rcred);
173 }
174 np->n_rcred = cred;
175 crhold(cred);
176
177 do {
178 #ifndef NFS_V2_ONLY
179 /*
180 * Get a valid lease. If cached data is stale, flush it.
181 */
182 if (nmp->nm_flag & NFSMNT_NQNFS) {
183 if (NQNFS_CKINVALID(vp, np, ND_READ)) {
184 do {
185 error = nqnfs_getlease(vp, ND_READ, cred, p);
186 } while (error == NQNFS_EXPIRED);
187 if (error)
188 return (error);
189 if (np->n_lrev != np->n_brev ||
190 (np->n_flag & NQNFSNONCACHE) ||
191 ((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) {
192 if (vp->v_type == VDIR) {
193 nfs_invaldircache(vp, 0);
194 np->n_direofoffset = 0;
195 }
196 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
197 if (error)
198 return (error);
199 np->n_brev = np->n_lrev;
200 }
201 } else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) {
202 nfs_invaldircache(vp, 0);
203 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
204 np->n_direofoffset = 0;
205 if (error)
206 return (error);
207 }
208 }
209 #endif
210 /*
211 * Don't cache symlinks.
212 */
213 if (np->n_flag & NQNFSNONCACHE
214 || ((vp->v_flag & VROOT) && vp->v_type == VLNK)) {
215 switch (vp->v_type) {
216 case VREG:
217 return (nfs_readrpc(vp, uio));
218 case VLNK:
219 return (nfs_readlinkrpc(vp, uio, cred));
220 case VDIR:
221 break;
222 default:
223 printf(" NQNFSNONCACHE: type %x unexpected\n",
224 vp->v_type);
225 };
226 }
227 baddr = (caddr_t)0;
228 switch (vp->v_type) {
229 case VREG:
230 nfsstats.biocache_reads++;
231
232 error = 0;
233 if (uio->uio_offset >= np->n_size) {
234 break;
235 }
236 while (uio->uio_resid > 0) {
237 void *win;
238 vsize_t bytelen = MIN(np->n_size - uio->uio_offset,
239 uio->uio_resid);
240
241 if (bytelen == 0)
242 break;
243 win = ubc_alloc(&vp->v_uobj, uio->uio_offset,
244 &bytelen, UBC_READ);
245 error = uiomove(win, bytelen, uio);
246 ubc_release(win, 0);
247 if (error) {
248 break;
249 }
250 }
251 n = 0;
252 break;
253
254 case VLNK:
255 nfsstats.biocache_readlinks++;
256 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, p);
257 if (!bp)
258 return (EINTR);
259 if ((bp->b_flags & B_DONE) == 0) {
260 bp->b_flags |= B_READ;
261 error = nfs_doio(bp, p);
262 if (error) {
263 brelse(bp);
264 return (error);
265 }
266 }
267 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
268 got_buf = 1;
269 on = 0;
270 break;
271 case VDIR:
272 diragain:
273 nfsstats.biocache_readdirs++;
274 ndp = nfs_searchdircache(vp, uio->uio_offset,
275 (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0);
276 if (!ndp) {
277 /*
278 * We've been handed a cookie that is not
279 * in the cache. If we're not translating
280 * 32 <-> 64, it may be a value that was
281 * flushed out of the cache because it grew
282 * too big. Let the server judge if it's
283 * valid or not. In the translation case,
284 * we have no way of validating this value,
285 * so punt.
286 */
287 if (nmp->nm_flag & NFSMNT_XLATECOOKIE)
288 return (EINVAL);
289 ndp = nfs_enterdircache(vp, uio->uio_offset,
290 uio->uio_offset, 0, 0);
291 }
292
293 if (uio->uio_offset != 0 &&
294 ndp->dc_cookie == np->n_direofoffset) {
295 nfsstats.direofcache_hits++;
296 return (0);
297 }
298
299 bp = nfs_getcacheblk(vp, ndp->dc_blkno, NFS_DIRBLKSIZ, p);
300 if (!bp)
301 return (EINTR);
302 if ((bp->b_flags & B_DONE) == 0) {
303 bp->b_flags |= B_READ;
304 bp->b_dcookie = ndp->dc_blkcookie;
305 error = nfs_doio(bp, p);
306 if (error) {
307 /*
308 * Yuck! The directory has been modified on the
309 * server. Punt and let the userland code
310 * deal with it.
311 */
312 brelse(bp);
313 if (error == NFSERR_BAD_COOKIE) {
314 nfs_invaldircache(vp, 0);
315 nfs_vinvalbuf(vp, 0, cred, p, 1);
316 error = EINVAL;
317 }
318 return (error);
319 }
320 }
321
322 /*
323 * Just return if we hit EOF right away with this
324 * block. Always check here, because direofoffset
325 * may have been set by an nfsiod since the last
326 * check.
327 */
328 if (np->n_direofoffset != 0 &&
329 ndp->dc_blkcookie == np->n_direofoffset) {
330 brelse(bp);
331 return (0);
332 }
333
334 /*
335 * Find the entry we were looking for in the block.
336 */
337
338 en = ndp->dc_entry;
339
340 pdp = dp = (struct dirent *)bp->b_data;
341 edp = bp->b_data + bp->b_bcount - bp->b_resid;
342 enn = 0;
343 while (enn < en && (caddr_t)dp < edp) {
344 pdp = dp;
345 dp = (struct dirent *)((caddr_t)dp + dp->d_reclen);
346 enn++;
347 }
348
349 /*
350 * If the entry number was bigger than the number of
351 * entries in the block, or the cookie of the previous
352 * entry doesn't match, the directory cache is
353 * stale. Flush it and try again (i.e. go to
354 * the server).
355 */
356 if ((caddr_t)dp >= edp || (caddr_t)dp + dp->d_reclen > edp ||
357 (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) {
358 #ifdef DEBUG
359 printf("invalid cache: %p %p %p off %lx %lx\n",
360 pdp, dp, edp,
361 (unsigned long)uio->uio_offset,
362 (unsigned long)NFS_GETCOOKIE(pdp));
363 #endif
364 brelse(bp);
365 nfs_invaldircache(vp, 0);
366 nfs_vinvalbuf(vp, 0, cred, p, 0);
367 goto diragain;
368 }
369
370 on = (caddr_t)dp - bp->b_data;
371
372 /*
373 * Cache all entries that may be exported to the
374 * user, as they may be thrown back at us. The
375 * NFSBIO_CACHECOOKIES flag indicates that all
376 * entries are being 'exported', so cache them all.
377 */
378
379 if (en == 0 && pdp == dp) {
380 dp = (struct dirent *)
381 ((caddr_t)dp + dp->d_reclen);
382 enn++;
383 }
384
385 if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) {
386 n = uio->uio_resid;
387 enough = 1;
388 } else
389 n = bp->b_bcount - bp->b_resid - on;
390
391 ep = bp->b_data + on + n;
392
393 /*
394 * Find last complete entry to copy, caching entries
395 * (if requested) as we go.
396 */
397
398 while ((caddr_t)dp < ep && (caddr_t)dp + dp->d_reclen <= ep) {
399 if (cflag & NFSBIO_CACHECOOKIES) {
400 nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp),
401 ndp->dc_blkcookie, enn, bp->b_lblkno);
402 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
403 NFS_STASHCOOKIE32(pdp,
404 nndp->dc_cookie32);
405 }
406 }
407 pdp = dp;
408 dp = (struct dirent *)((caddr_t)dp + dp->d_reclen);
409 enn++;
410 }
411
412 /*
413 * If the last requested entry was not the last in the
414 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ),
415 * cache the cookie of the last requested one, and
416 * set of the offset to it.
417 */
418
419 if ((on + n) < bp->b_bcount - bp->b_resid) {
420 curoff = NFS_GETCOOKIE(pdp);
421 nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie,
422 enn, bp->b_lblkno);
423 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
424 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
425 curoff = nndp->dc_cookie32;
426 }
427 } else
428 curoff = bp->b_dcookie;
429
430 /*
431 * Always cache the entry for the next block,
432 * so that readaheads can use it.
433 */
434 nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0);
435 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
436 if (curoff == bp->b_dcookie) {
437 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
438 curoff = nndp->dc_cookie32;
439 }
440 }
441
442 n = ((caddr_t)pdp + pdp->d_reclen) - (bp->b_data + on);
443
444 /*
445 * If not eof and read aheads are enabled, start one.
446 * (You need the current block first, so that you have the
447 * directory offset cookie of the next block.)
448 */
449 if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
450 np->n_direofoffset == 0 && !(np->n_flag & NQNFSNONCACHE)) {
451 rabp = nfs_getcacheblk(vp, nndp->dc_blkno,
452 NFS_DIRBLKSIZ, p);
453 if (rabp) {
454 if ((rabp->b_flags & (B_DONE | B_DELWRI)) == 0) {
455 rabp->b_dcookie = nndp->dc_cookie;
456 rabp->b_flags |= (B_READ | B_ASYNC);
457 if (nfs_asyncio(rabp)) {
458 rabp->b_flags |= B_INVAL;
459 brelse(rabp);
460 }
461 } else
462 brelse(rabp);
463 }
464 }
465 got_buf = 1;
466 break;
467 default:
468 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
469 break;
470 }
471
472 if (n > 0) {
473 if (!baddr)
474 baddr = bp->b_data;
475 error = uiomove(baddr + on, (int)n, uio);
476 }
477 switch (vp->v_type) {
478 case VREG:
479 break;
480 case VLNK:
481 n = 0;
482 break;
483 case VDIR:
484 if (np->n_flag & NQNFSNONCACHE)
485 bp->b_flags |= B_INVAL;
486 uio->uio_offset = curoff;
487 if (enough)
488 n = 0;
489 break;
490 default:
491 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
492 }
493 if (got_buf)
494 brelse(bp);
495 } while (error == 0 && uio->uio_resid > 0 && n > 0);
496 return (error);
497 }
498
499 /*
500 * Vnode op for write using bio
501 */
502 int
503 nfs_write(v)
504 void *v;
505 {
506 struct vop_write_args /* {
507 struct vnode *a_vp;
508 struct uio *a_uio;
509 int a_ioflag;
510 struct ucred *a_cred;
511 } */ *ap = v;
512 struct uio *uio = ap->a_uio;
513 struct proc *p = uio->uio_procp;
514 struct vnode *vp = ap->a_vp;
515 struct nfsnode *np = VTONFS(vp);
516 struct ucred *cred = ap->a_cred;
517 int ioflag = ap->a_ioflag;
518 struct vattr vattr;
519 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
520 void *win;
521 voff_t oldoff, origoff;
522 vsize_t bytelen;
523 int error = 0, iomode, must_commit;
524
525 #ifdef DIAGNOSTIC
526 if (uio->uio_rw != UIO_WRITE)
527 panic("nfs_write mode");
528 if (uio->uio_segflg == UIO_USERSPACE &&
529 uio->uio_procp != curproc)
530 panic("nfs_write proc");
531 #endif
532 if (vp->v_type != VREG)
533 return (EIO);
534 if (np->n_flag & NWRITEERR) {
535 np->n_flag &= ~NWRITEERR;
536 return (np->n_error);
537 }
538 #ifndef NFS_V2_ONLY
539 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
540 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
541 (void)nfs_fsinfo(nmp, vp, cred, p);
542 #endif
543 if (ioflag & (IO_APPEND | IO_SYNC)) {
544 if (np->n_flag & NMODIFIED) {
545 np->n_attrstamp = 0;
546 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
547 if (error)
548 return (error);
549 }
550 if (ioflag & IO_APPEND) {
551 np->n_attrstamp = 0;
552 error = VOP_GETATTR(vp, &vattr, cred, p);
553 if (error)
554 return (error);
555 uio->uio_offset = np->n_size;
556 }
557 }
558 if (uio->uio_offset < 0)
559 return (EINVAL);
560 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
561 return (EFBIG);
562 if (uio->uio_resid == 0)
563 return (0);
564 /*
565 * Maybe this should be above the vnode op call, but so long as
566 * file servers have no limits, i don't think it matters
567 */
568 if (p && uio->uio_offset + uio->uio_resid >
569 p->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
570 psignal(p, SIGXFSZ);
571 return (EFBIG);
572 }
573
574 /*
575 * update the cached write creds for this node.
576 */
577
578 if (np->n_wcred) {
579 crfree(np->n_wcred);
580 }
581 np->n_wcred = cred;
582 crhold(cred);
583
584 if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) {
585 iomode = NFSV3WRITE_FILESYNC;
586 error = nfs_writerpc(vp, uio, &iomode, &must_commit);
587 if (must_commit)
588 nfs_clearcommit(vp->v_mount);
589 return (error);
590 }
591
592 origoff = uio->uio_offset;
593 do {
594 oldoff = uio->uio_offset;
595 bytelen = uio->uio_resid;
596
597 #ifndef NFS_V2_ONLY
598 /*
599 * Check for a valid write lease.
600 */
601 if ((nmp->nm_flag & NFSMNT_NQNFS) &&
602 NQNFS_CKINVALID(vp, np, ND_WRITE)) {
603 do {
604 error = nqnfs_getlease(vp, ND_WRITE, cred, p);
605 } while (error == NQNFS_EXPIRED);
606 if (error)
607 return (error);
608 if (np->n_lrev != np->n_brev ||
609 (np->n_flag & NQNFSNONCACHE)) {
610 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
611 if (error)
612 return (error);
613 np->n_brev = np->n_lrev;
614 }
615 }
616 #endif
617 nfsstats.biocache_writes++;
618
619 np->n_flag |= NMODIFIED;
620 if (np->n_size < uio->uio_offset + bytelen) {
621 np->n_size = uio->uio_offset + bytelen;
622 }
623 if ((uio->uio_offset & PAGE_MASK) == 0 &&
624 (bytelen & PAGE_MASK) == 0 &&
625 uio->uio_offset >= vp->v_size) {
626 win = ubc_alloc(&vp->v_uobj, uio->uio_offset, &bytelen,
627 UBC_WRITE | UBC_FAULTBUSY);
628 } else {
629 win = ubc_alloc(&vp->v_uobj, uio->uio_offset, &bytelen,
630 UBC_WRITE);
631 }
632 error = uiomove(win, bytelen, uio);
633 ubc_release(win, 0);
634 if (error) {
635 break;
636 }
637
638 /*
639 * update UVM's notion of the size now that we've
640 * copied the data into the vnode's pages.
641 */
642
643 if (vp->v_size < uio->uio_offset) {
644 uvm_vnp_setsize(vp, uio->uio_offset);
645 }
646
647 if ((oldoff & ~(nmp->nm_wsize - 1)) !=
648 (uio->uio_offset & ~(nmp->nm_wsize - 1))) {
649 simple_lock(&vp->v_interlock);
650 error = VOP_PUTPAGES(vp,
651 trunc_page(oldoff & ~(nmp->nm_wsize - 1)),
652 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
653 ~(nmp->nm_wsize - 1)), PGO_CLEANIT);
654 }
655 } while (uio->uio_resid > 0);
656 if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) {
657 simple_lock(&vp->v_interlock);
658 error = VOP_PUTPAGES(vp,
659 trunc_page(origoff & ~(nmp->nm_wsize - 1)),
660 round_page((uio->uio_offset + nmp->nm_wsize - 1) &
661 ~(nmp->nm_wsize - 1)),
662 PGO_CLEANIT | PGO_SYNCIO);
663 }
664 return error;
665 }
666
667 /*
668 * Get an nfs cache block.
669 * Allocate a new one if the block isn't currently in the cache
670 * and return the block marked busy. If the calling process is
671 * interrupted by a signal for an interruptible mount point, return
672 * NULL.
673 */
674 struct buf *
675 nfs_getcacheblk(vp, bn, size, p)
676 struct vnode *vp;
677 daddr_t bn;
678 int size;
679 struct proc *p;
680 {
681 struct buf *bp;
682 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
683
684 if (nmp->nm_flag & NFSMNT_INT) {
685 bp = getblk(vp, bn, size, PCATCH, 0);
686 while (bp == NULL) {
687 if (nfs_sigintr(nmp, NULL, p))
688 return (NULL);
689 bp = getblk(vp, bn, size, 0, 2 * hz);
690 }
691 } else
692 bp = getblk(vp, bn, size, 0, 0);
693 return (bp);
694 }
695
696 /*
697 * Flush and invalidate all dirty buffers. If another process is already
698 * doing the flush, just wait for completion.
699 */
700 int
701 nfs_vinvalbuf(vp, flags, cred, p, intrflg)
702 struct vnode *vp;
703 int flags;
704 struct ucred *cred;
705 struct proc *p;
706 int intrflg;
707 {
708 struct nfsnode *np = VTONFS(vp);
709 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
710 int error = 0, slpflag, slptimeo;
711
712 if ((nmp->nm_flag & NFSMNT_INT) == 0)
713 intrflg = 0;
714 if (intrflg) {
715 slpflag = PCATCH;
716 slptimeo = 2 * hz;
717 } else {
718 slpflag = 0;
719 slptimeo = 0;
720 }
721 /*
722 * First wait for any other process doing a flush to complete.
723 */
724 while (np->n_flag & NFLUSHINPROG) {
725 np->n_flag |= NFLUSHWANT;
726 error = tsleep((caddr_t)&np->n_flag, PRIBIO + 2, "nfsvinval",
727 slptimeo);
728 if (error && intrflg && nfs_sigintr(nmp, NULL, p))
729 return (EINTR);
730 }
731
732 /*
733 * Now, flush as required.
734 */
735 np->n_flag |= NFLUSHINPROG;
736 error = vinvalbuf(vp, flags, cred, p, slpflag, 0);
737 while (error) {
738 if (intrflg && nfs_sigintr(nmp, NULL, p)) {
739 np->n_flag &= ~NFLUSHINPROG;
740 if (np->n_flag & NFLUSHWANT) {
741 np->n_flag &= ~NFLUSHWANT;
742 wakeup((caddr_t)&np->n_flag);
743 }
744 return (EINTR);
745 }
746 error = vinvalbuf(vp, flags, cred, p, 0, slptimeo);
747 }
748 np->n_flag &= ~(NMODIFIED | NFLUSHINPROG);
749 if (np->n_flag & NFLUSHWANT) {
750 np->n_flag &= ~NFLUSHWANT;
751 wakeup((caddr_t)&np->n_flag);
752 }
753 return (0);
754 }
755
756 /*
757 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
758 * This is mainly to avoid queueing async I/O requests when the nfsiods
759 * are all hung on a dead server.
760 */
761
762 int
763 nfs_asyncio(bp)
764 struct buf *bp;
765 {
766 int i;
767 struct nfsmount *nmp;
768 int gotiod, slpflag = 0, slptimeo = 0, error;
769
770 if (nfs_numasync == 0)
771 return (EIO);
772
773 nmp = VFSTONFS(bp->b_vp->v_mount);
774 again:
775 if (nmp->nm_flag & NFSMNT_INT)
776 slpflag = PCATCH;
777 gotiod = FALSE;
778
779 /*
780 * Find a free iod to process this request.
781 */
782
783 for (i = 0; i < NFS_MAXASYNCDAEMON; i++)
784 if (nfs_iodwant[i]) {
785 /*
786 * Found one, so wake it up and tell it which
787 * mount to process.
788 */
789 nfs_iodwant[i] = NULL;
790 nfs_iodmount[i] = nmp;
791 nmp->nm_bufqiods++;
792 wakeup((caddr_t)&nfs_iodwant[i]);
793 gotiod = TRUE;
794 break;
795 }
796
797 /*
798 * If none are free, we may already have an iod working on this mount
799 * point. If so, it will process our request.
800 */
801
802 if (!gotiod && nmp->nm_bufqiods > 0)
803 gotiod = TRUE;
804
805 /*
806 * If we have an iod which can process the request, then queue
807 * the buffer.
808 */
809
810 if (gotiod) {
811
812 /*
813 * Ensure that the queue never grows too large.
814 */
815
816 while (nmp->nm_bufqlen >= 2*nfs_numasync) {
817 nmp->nm_bufqwant = TRUE;
818 error = tsleep(&nmp->nm_bufq, slpflag | PRIBIO,
819 "nfsaio", slptimeo);
820 if (error) {
821 if (nfs_sigintr(nmp, NULL, curproc))
822 return (EINTR);
823 if (slpflag == PCATCH) {
824 slpflag = 0;
825 slptimeo = 2 * hz;
826 }
827 }
828
829 /*
830 * We might have lost our iod while sleeping,
831 * so check and loop if nescessary.
832 */
833
834 if (nmp->nm_bufqiods == 0)
835 goto again;
836 }
837 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
838 nmp->nm_bufqlen++;
839 return (0);
840 }
841
842 /*
843 * All the iods are busy on other mounts, so return EIO to
844 * force the caller to process the i/o synchronously.
845 */
846
847 return (EIO);
848 }
849
850 /*
851 * Do an I/O operation to/from a cache block. This may be called
852 * synchronously or from an nfsiod.
853 */
854 int
855 nfs_doio(bp, p)
856 struct buf *bp;
857 struct proc *p;
858 {
859 struct uio *uiop;
860 struct vnode *vp;
861 struct nfsnode *np;
862 struct nfsmount *nmp;
863 int error = 0, diff, len, iomode, must_commit = 0;
864 int pushedrange;
865 struct uio uio;
866 struct iovec io;
867 off_t off, cnt;
868 struct uvm_object *uobj;
869 UVMHIST_FUNC("nfs_doio"); UVMHIST_CALLED(ubchist);
870
871 vp = bp->b_vp;
872 uobj = &vp->v_uobj;
873 np = VTONFS(vp);
874 nmp = VFSTONFS(vp->v_mount);
875 uiop = &uio;
876 uiop->uio_iov = &io;
877 uiop->uio_iovcnt = 1;
878 uiop->uio_segflg = UIO_SYSSPACE;
879 uiop->uio_procp = p;
880
881 /*
882 * Historically, paging was done with physio, but no more...
883 */
884 if (bp->b_flags & B_PHYS) {
885 /*
886 * ...though reading /dev/drum still gets us here.
887 */
888 io.iov_len = uiop->uio_resid = bp->b_bcount;
889 /* mapping was done by vmapbuf() */
890 io.iov_base = bp->b_data;
891 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
892 if (bp->b_flags & B_READ) {
893 uiop->uio_rw = UIO_READ;
894 nfsstats.read_physios++;
895 error = nfs_readrpc(vp, uiop);
896 } else {
897 iomode = NFSV3WRITE_DATASYNC;
898 uiop->uio_rw = UIO_WRITE;
899 nfsstats.write_physios++;
900 error = nfs_writerpc(vp, uiop, &iomode, &must_commit);
901 }
902 if (error) {
903 bp->b_flags |= B_ERROR;
904 bp->b_error = error;
905 }
906 } else if (bp->b_flags & B_READ) {
907 io.iov_len = uiop->uio_resid = bp->b_bcount;
908 io.iov_base = bp->b_data;
909 uiop->uio_rw = UIO_READ;
910 switch (vp->v_type) {
911 case VREG:
912 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
913 nfsstats.read_bios++;
914 error = nfs_readrpc(vp, uiop);
915 if (!error && uiop->uio_resid) {
916
917 /*
918 * If len > 0, there is a hole in the file and
919 * no writes after the hole have been pushed to
920 * the server yet.
921 * Just zero fill the rest of the valid area.
922 */
923
924 diff = bp->b_bcount - uiop->uio_resid;
925 len = np->n_size - ((((off_t)bp->b_blkno) << DEV_BSHIFT)
926 + diff);
927 if (len > 0) {
928 len = MIN(len, uiop->uio_resid);
929 memset((char *)bp->b_data + diff, 0, len);
930 }
931 }
932 if (p && (vp->v_flag & VTEXT) &&
933 (((nmp->nm_flag & NFSMNT_NQNFS) &&
934 NQNFS_CKINVALID(vp, np, ND_READ) &&
935 np->n_lrev != np->n_brev) ||
936 (!(nmp->nm_flag & NFSMNT_NQNFS) &&
937 np->n_mtime != np->n_vattr->va_mtime.tv_sec))) {
938 uprintf("Process killed due to "
939 "text file modification\n");
940 psignal(p, SIGKILL);
941 #if 0 /* XXX NJWLWP */
942 p->p_holdcnt++;
943 #endif
944 }
945 break;
946 case VLNK:
947 uiop->uio_offset = (off_t)0;
948 nfsstats.readlink_bios++;
949 error = nfs_readlinkrpc(vp, uiop, curproc->p_ucred);
950 break;
951 case VDIR:
952 nfsstats.readdir_bios++;
953 uiop->uio_offset = bp->b_dcookie;
954 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
955 error = nfs_readdirplusrpc(vp, uiop, curproc->p_ucred);
956 if (error == NFSERR_NOTSUPP)
957 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
958 }
959 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
960 error = nfs_readdirrpc(vp, uiop, curproc->p_ucred);
961 if (!error) {
962 bp->b_dcookie = uiop->uio_offset;
963 }
964 break;
965 default:
966 printf("nfs_doio: type %x unexpected\n",vp->v_type);
967 break;
968 }
969 if (error) {
970 bp->b_flags |= B_ERROR;
971 bp->b_error = error;
972 }
973 } else {
974 int i, npages = bp->b_bufsize >> PAGE_SHIFT;
975 struct vm_page *pgs[npages];
976 boolean_t needcommit = TRUE;
977
978 if ((bp->b_flags & B_ASYNC) != 0 && NFS_ISV3(vp)) {
979 iomode = NFSV3WRITE_UNSTABLE;
980 } else {
981 iomode = NFSV3WRITE_FILESYNC;
982 }
983
984 for (i = 0; i < npages; i++) {
985 pgs[i] = uvm_pageratop((vaddr_t)bp->b_data +
986 (i << PAGE_SHIFT));
987 if ((pgs[i]->flags & PG_NEEDCOMMIT) == 0) {
988 needcommit = FALSE;
989 }
990 }
991 if (!needcommit && iomode == NFSV3WRITE_UNSTABLE) {
992 for (i = 0; i < npages; i++) {
993 pgs[i]->flags |= PG_NEEDCOMMIT | PG_RDONLY;
994 pmap_page_protect(pgs[i], VM_PROT_READ);
995 }
996 }
997
998 uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT);
999 off = uiop->uio_offset;
1000 cnt = bp->b_bcount;
1001
1002 /*
1003 * Send the data to the server if necessary,
1004 * otherwise just send a commit rpc.
1005 */
1006
1007 if (needcommit) {
1008
1009 /*
1010 * If the buffer is in the range that we already committed,
1011 * there's nothing to do.
1012 *
1013 * If it's in the range that we need to commit, push the
1014 * whole range at once, otherwise only push the buffer.
1015 * In both these cases, acquire the commit lock to avoid
1016 * other processes modifying the range.
1017 */
1018
1019 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1020 if (!nfs_in_committed_range(vp, off, bp->b_bcount)) {
1021 if (nfs_in_tobecommitted_range(vp, off, bp->b_bcount)) {
1022 pushedrange = 1;
1023 off = np->n_pushlo;
1024 cnt = np->n_pushhi - np->n_pushlo;
1025 } else {
1026 pushedrange = 0;
1027 }
1028 error = nfs_commit(vp, off, cnt, curproc);
1029 if (error == 0) {
1030 if (pushedrange) {
1031 nfs_merge_commit_ranges(vp);
1032 } else {
1033 nfs_add_committed_range(vp, off, cnt);
1034 }
1035 }
1036 }
1037 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1038 if (!error) {
1039 bp->b_resid = 0;
1040 simple_lock(&uobj->vmobjlock);
1041 for (i = 0; i < npages; i++) {
1042 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1043 }
1044 simple_unlock(&uobj->vmobjlock);
1045 biodone(bp);
1046 return (0);
1047 } else if (error == NFSERR_STALEWRITEVERF) {
1048 nfs_clearcommit(bp->b_vp->v_mount);
1049 }
1050 }
1051 io.iov_base = bp->b_data;
1052 io.iov_len = uiop->uio_resid = bp->b_bcount;
1053 uiop->uio_rw = UIO_WRITE;
1054 nfsstats.write_bios++;
1055 error = nfs_writerpc(vp, uiop, &iomode, &must_commit);
1056 if (!error && iomode == NFSV3WRITE_UNSTABLE) {
1057 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1058 nfs_add_tobecommitted_range(vp, off, cnt);
1059 simple_lock(&uobj->vmobjlock);
1060 for (i = 0; i < npages; i++) {
1061 pgs[i]->flags &= ~PG_CLEAN;
1062 }
1063 simple_unlock(&uobj->vmobjlock);
1064 if (np->n_pushhi - np->n_pushlo > nfs_commitsize) {
1065 off = np->n_pushlo;
1066 cnt = nfs_commitsize >> 1;
1067 error = nfs_commit(vp, off, cnt, curproc);
1068 if (!error) {
1069 nfs_add_committed_range(vp, off, cnt);
1070 nfs_del_tobecommitted_range(vp, off, cnt);
1071 }
1072 }
1073 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1074 } else if (!error && needcommit) {
1075 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1076 nfs_del_committed_range(vp, off, cnt);
1077 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1078 simple_lock(&uobj->vmobjlock);
1079 for (i = 0; i < npages; i++) {
1080 pgs[i]->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1081 }
1082 simple_unlock(&uobj->vmobjlock);
1083 }
1084 }
1085 bp->b_resid = uiop->uio_resid;
1086 if (must_commit || (error == NFSERR_STALEWRITEVERF)) {
1087 nfs_clearcommit(vp->v_mount);
1088 }
1089 biodone(bp);
1090 return (error);
1091 }
1092
1093 /*
1094 * Vnode op for VM getpages.
1095 */
1096
1097 int
1098 nfs_getpages(v)
1099 void *v;
1100 {
1101 struct vop_getpages_args /* {
1102 struct vnode *a_vp;
1103 voff_t a_offset;
1104 struct vm_page **a_m;
1105 int *a_count;
1106 int a_centeridx;
1107 vm_prot_t a_access_type;
1108 int a_advice;
1109 int a_flags;
1110 } */ *ap = v;
1111
1112 struct vnode *vp = ap->a_vp;
1113 struct uvm_object *uobj = &vp->v_uobj;
1114 struct nfsnode *np = VTONFS(vp);
1115 const int npages = *ap->a_count;
1116 struct vm_page *pg, **pgs, *opgs[npages];
1117 off_t origoffset, len;
1118 int i, error;
1119 boolean_t v3 = NFS_ISV3(vp);
1120 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1121 boolean_t locked = (ap->a_flags & PGO_LOCKED) != 0;
1122
1123 /*
1124 * update the cached read creds for this node.
1125 */
1126
1127 if (np->n_rcred) {
1128 crfree(np->n_rcred);
1129 }
1130 np->n_rcred = curproc->p_ucred;
1131 crhold(np->n_rcred);
1132
1133 /*
1134 * call the genfs code to get the pages. `pgs' may be NULL
1135 * when doing read-ahead.
1136 */
1137
1138 pgs = ap->a_m;
1139 if (write && locked && v3) {
1140 KASSERT(pgs != NULL);
1141 #ifdef DEBUG
1142
1143 /*
1144 * If PGO_LOCKED is set, real pages shouldn't exists
1145 * in the array.
1146 */
1147
1148 for (i = 0; i < npages; i++)
1149 KDASSERT(pgs[i] == NULL || pgs[i] == PGO_DONTCARE);
1150 #endif
1151 memcpy(opgs, pgs, npages * sizeof(struct vm_pages *));
1152 }
1153 error = genfs_getpages(v);
1154 if (error) {
1155 return (error);
1156 }
1157
1158 /*
1159 * for read faults where the nfs node is not yet marked NMODIFIED,
1160 * set PG_RDONLY on the pages so that we come back here if someone
1161 * tries to modify later via the mapping that will be entered for
1162 * this fault.
1163 */
1164
1165 if (!write && (np->n_flag & NMODIFIED) == 0 && pgs != NULL) {
1166 if (!locked) {
1167 simple_lock(&uobj->vmobjlock);
1168 }
1169 for (i = 0; i < npages; i++) {
1170 pg = pgs[i];
1171 if (pg == NULL || pg == PGO_DONTCARE) {
1172 continue;
1173 }
1174 pg->flags |= PG_RDONLY;
1175 }
1176 if (!locked) {
1177 simple_unlock(&uobj->vmobjlock);
1178 }
1179 }
1180 if (!write) {
1181 return (0);
1182 }
1183
1184 /*
1185 * this is a write fault, update the commit info.
1186 */
1187
1188 origoffset = ap->a_offset;
1189 len = npages << PAGE_SHIFT;
1190
1191 if (v3) {
1192 error = lockmgr(&np->n_commitlock,
1193 LK_EXCLUSIVE | (locked ? LK_NOWAIT : 0), NULL);
1194 if (error) {
1195 KASSERT(locked != 0);
1196
1197 /*
1198 * Since PGO_LOCKED is set, we need to unbusy
1199 * all pages fetched by genfs_getpages() above,
1200 * tell the caller that there are no pages
1201 * available and put back original pgs array.
1202 */
1203
1204 uvm_lock_pageq();
1205 uvm_page_unbusy(pgs, npages);
1206 uvm_unlock_pageq();
1207 *ap->a_count = 0;
1208 memcpy(pgs, opgs,
1209 npages * sizeof(struct vm_pages *));
1210 return (error);
1211 }
1212 nfs_del_committed_range(vp, origoffset, len);
1213 nfs_del_tobecommitted_range(vp, origoffset, len);
1214 }
1215 np->n_flag |= NMODIFIED;
1216 if (!locked) {
1217 simple_lock(&uobj->vmobjlock);
1218 }
1219 for (i = 0; i < npages; i++) {
1220 pg = pgs[i];
1221 if (pg == NULL || pg == PGO_DONTCARE) {
1222 continue;
1223 }
1224 pg->flags &= ~(PG_NEEDCOMMIT | PG_RDONLY);
1225 }
1226 if (!locked) {
1227 simple_unlock(&uobj->vmobjlock);
1228 }
1229 if (v3) {
1230 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1231 }
1232 return (0);
1233 }
1234