nfs_bio.c revision 1.63.2.4 1 /* $NetBSD: nfs_bio.c,v 1.63.2.4 2001/08/24 00:12:55 nathanw Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_bio.c 8.9 (Berkeley) 3/30/95
39 */
40
41 #include "opt_nfs.h"
42 #include "opt_ddb.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/resourcevar.h>
47 #include <sys/signalvar.h>
48 #include <sys/lwp.h>
49 #include <sys/proc.h>
50 #include <sys/buf.h>
51 #include <sys/vnode.h>
52 #include <sys/mount.h>
53 #include <sys/kernel.h>
54 #include <sys/namei.h>
55 #include <sys/dirent.h>
56 #include <sys/malloc.h>
57
58 #include <uvm/uvm_extern.h>
59 #include <uvm/uvm.h>
60
61 #include <nfs/rpcv2.h>
62 #include <nfs/nfsproto.h>
63 #include <nfs/nfs.h>
64 #include <nfs/nfsmount.h>
65 #include <nfs/nqnfs.h>
66 #include <nfs/nfsnode.h>
67 #include <nfs/nfs_var.h>
68
69 extern int nfs_numasync;
70 extern struct nfsstats nfsstats;
71
72 /*
73 * Vnode op for read using bio
74 * Any similarity to readip() is purely coincidental
75 */
76 int
77 nfs_bioread(vp, uio, ioflag, cred, cflag)
78 struct vnode *vp;
79 struct uio *uio;
80 int ioflag, cflag;
81 struct ucred *cred;
82 {
83 struct nfsnode *np = VTONFS(vp);
84 int biosize;
85 struct buf *bp = NULL, *rabp;
86 struct vattr vattr;
87 struct proc *p;
88 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
89 struct nfsdircache *ndp = NULL, *nndp = NULL;
90 caddr_t baddr, ep, edp;
91 int got_buf = 0, error = 0, n = 0, on = 0, en, enn;
92 int enough = 0;
93 struct dirent *dp, *pdp;
94 off_t curoff = 0;
95
96 #ifdef DIAGNOSTIC
97 if (uio->uio_rw != UIO_READ)
98 panic("nfs_read mode");
99 #endif
100 if (uio->uio_resid == 0)
101 return (0);
102 if (vp->v_type != VDIR && uio->uio_offset < 0)
103 return (EINVAL);
104 p = uio->uio_procp;
105 #ifndef NFS_V2_ONLY
106 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
107 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
108 (void)nfs_fsinfo(nmp, vp, cred, p);
109 #endif
110 if (vp->v_type != VDIR &&
111 (uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
112 return (EFBIG);
113 biosize = nmp->nm_rsize;
114
115 /*
116 * For nfs, cache consistency can only be maintained approximately.
117 * Although RFC1094 does not specify the criteria, the following is
118 * believed to be compatible with the reference port.
119 * For nqnfs, full cache consistency is maintained within the loop.
120 * For nfs:
121 * If the file's modify time on the server has changed since the
122 * last read rpc or you have written to the file,
123 * you may have lost data cache consistency with the
124 * server, so flush all of the file's data out of the cache.
125 * Then force a getattr rpc to ensure that you have up to date
126 * attributes.
127 * NB: This implies that cache data can be read when up to
128 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
129 * attributes this could be forced by setting n_attrstamp to 0 before
130 * the VOP_GETATTR() call.
131 */
132
133 if ((nmp->nm_flag & NFSMNT_NQNFS) == 0 && vp->v_type != VLNK) {
134 if (np->n_flag & NMODIFIED) {
135 if (vp->v_type != VREG) {
136 if (vp->v_type != VDIR)
137 panic("nfs: bioread, not dir");
138 nfs_invaldircache(vp, 0);
139 np->n_direofoffset = 0;
140 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
141 if (error)
142 return (error);
143 }
144 np->n_attrstamp = 0;
145 error = VOP_GETATTR(vp, &vattr, cred, p);
146 if (error)
147 return (error);
148 np->n_mtime = vattr.va_mtime.tv_sec;
149 } else {
150 error = VOP_GETATTR(vp, &vattr, cred, p);
151 if (error)
152 return (error);
153 if (np->n_mtime != vattr.va_mtime.tv_sec) {
154 if (vp->v_type == VDIR) {
155 nfs_invaldircache(vp, 0);
156 np->n_direofoffset = 0;
157 }
158 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
159 if (error)
160 return (error);
161 np->n_mtime = vattr.va_mtime.tv_sec;
162 }
163 }
164 }
165
166 /*
167 * update the cached read creds for this node.
168 */
169
170 if (np->n_rcred) {
171 crfree(np->n_rcred);
172 }
173 np->n_rcred = cred;
174 crhold(cred);
175
176 do {
177 #ifndef NFS_V2_ONLY
178 /*
179 * Get a valid lease. If cached data is stale, flush it.
180 */
181 if (nmp->nm_flag & NFSMNT_NQNFS) {
182 if (NQNFS_CKINVALID(vp, np, ND_READ)) {
183 do {
184 error = nqnfs_getlease(vp, ND_READ, cred, p);
185 } while (error == NQNFS_EXPIRED);
186 if (error)
187 return (error);
188 if (np->n_lrev != np->n_brev ||
189 (np->n_flag & NQNFSNONCACHE) ||
190 ((np->n_flag & NMODIFIED) && vp->v_type == VDIR)) {
191 if (vp->v_type == VDIR) {
192 nfs_invaldircache(vp, 0);
193 np->n_direofoffset = 0;
194 }
195 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
196 if (error)
197 return (error);
198 np->n_brev = np->n_lrev;
199 }
200 } else if (vp->v_type == VDIR && (np->n_flag & NMODIFIED)) {
201 nfs_invaldircache(vp, 0);
202 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
203 np->n_direofoffset = 0;
204 if (error)
205 return (error);
206 }
207 }
208 #endif
209 /*
210 * Don't cache symlinks.
211 */
212 if (np->n_flag & NQNFSNONCACHE
213 || ((vp->v_flag & VROOT) && vp->v_type == VLNK)) {
214 switch (vp->v_type) {
215 case VREG:
216 return (nfs_readrpc(vp, uio));
217 case VLNK:
218 return (nfs_readlinkrpc(vp, uio, cred));
219 case VDIR:
220 break;
221 default:
222 printf(" NQNFSNONCACHE: type %x unexpected\n",
223 vp->v_type);
224 };
225 }
226 baddr = (caddr_t)0;
227 switch (vp->v_type) {
228 case VREG:
229 nfsstats.biocache_reads++;
230
231 error = 0;
232 if (uio->uio_offset >= np->n_size) {
233 break;
234 }
235 while (uio->uio_resid > 0) {
236 void *win;
237 vsize_t bytelen = MIN(np->n_size - uio->uio_offset,
238 uio->uio_resid);
239
240 if (bytelen == 0)
241 break;
242 win = ubc_alloc(&vp->v_uvm.u_obj, uio->uio_offset,
243 &bytelen, UBC_READ);
244 error = uiomove(win, bytelen, uio);
245 ubc_release(win, 0);
246 if (error) {
247 break;
248 }
249 }
250 n = 0;
251 break;
252
253 case VLNK:
254 nfsstats.biocache_readlinks++;
255 bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, p);
256 if (!bp)
257 return (EINTR);
258 if ((bp->b_flags & B_DONE) == 0) {
259 bp->b_flags |= B_READ;
260 error = nfs_doio(bp, p);
261 if (error) {
262 brelse(bp);
263 return (error);
264 }
265 }
266 n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
267 got_buf = 1;
268 on = 0;
269 break;
270 case VDIR:
271 diragain:
272 nfsstats.biocache_readdirs++;
273 ndp = nfs_searchdircache(vp, uio->uio_offset,
274 (nmp->nm_flag & NFSMNT_XLATECOOKIE), 0);
275 if (!ndp) {
276 /*
277 * We've been handed a cookie that is not
278 * in the cache. If we're not translating
279 * 32 <-> 64, it may be a value that was
280 * flushed out of the cache because it grew
281 * too big. Let the server judge if it's
282 * valid or not. In the translation case,
283 * we have no way of validating this value,
284 * so punt.
285 */
286 if (nmp->nm_flag & NFSMNT_XLATECOOKIE)
287 return (EINVAL);
288 ndp = nfs_enterdircache(vp, uio->uio_offset,
289 uio->uio_offset, 0, 0);
290 }
291
292 if (uio->uio_offset != 0 &&
293 ndp->dc_cookie == np->n_direofoffset) {
294 nfsstats.direofcache_hits++;
295 return (0);
296 }
297
298 bp = nfs_getcacheblk(vp, ndp->dc_blkno, NFS_DIRBLKSIZ, p);
299 if (!bp)
300 return (EINTR);
301 if ((bp->b_flags & B_DONE) == 0) {
302 bp->b_flags |= B_READ;
303 bp->b_dcookie = ndp->dc_blkcookie;
304 error = nfs_doio(bp, p);
305 if (error) {
306 /*
307 * Yuck! The directory has been modified on the
308 * server. Punt and let the userland code
309 * deal with it.
310 */
311 brelse(bp);
312 if (error == NFSERR_BAD_COOKIE) {
313 nfs_invaldircache(vp, 0);
314 nfs_vinvalbuf(vp, 0, cred, p, 1);
315 error = EINVAL;
316 }
317 return (error);
318 }
319 }
320
321 /*
322 * Just return if we hit EOF right away with this
323 * block. Always check here, because direofoffset
324 * may have been set by an nfsiod since the last
325 * check.
326 */
327 if (np->n_direofoffset != 0 &&
328 ndp->dc_blkcookie == np->n_direofoffset) {
329 brelse(bp);
330 return (0);
331 }
332
333 /*
334 * Find the entry we were looking for in the block.
335 */
336
337 en = ndp->dc_entry;
338
339 pdp = dp = (struct dirent *)bp->b_data;
340 edp = bp->b_data + bp->b_bcount - bp->b_resid;
341 enn = 0;
342 while (enn < en && (caddr_t)dp < edp) {
343 pdp = dp;
344 dp = (struct dirent *)((caddr_t)dp + dp->d_reclen);
345 enn++;
346 }
347
348 /*
349 * If the entry number was bigger than the number of
350 * entries in the block, or the cookie of the previous
351 * entry doesn't match, the directory cache is
352 * stale. Flush it and try again (i.e. go to
353 * the server).
354 */
355 if ((caddr_t)dp >= edp || (caddr_t)dp + dp->d_reclen > edp ||
356 (en > 0 && NFS_GETCOOKIE(pdp) != ndp->dc_cookie)) {
357 #ifdef DEBUG
358 printf("invalid cache: %p %p %p off %lx %lx\n",
359 pdp, dp, edp,
360 (unsigned long)uio->uio_offset,
361 (unsigned long)NFS_GETCOOKIE(pdp));
362 #endif
363 brelse(bp);
364 nfs_invaldircache(vp, 0);
365 nfs_vinvalbuf(vp, 0, cred, p, 0);
366 goto diragain;
367 }
368
369 on = (caddr_t)dp - bp->b_data;
370
371 /*
372 * Cache all entries that may be exported to the
373 * user, as they may be thrown back at us. The
374 * NFSBIO_CACHECOOKIES flag indicates that all
375 * entries are being 'exported', so cache them all.
376 */
377
378 if (en == 0 && pdp == dp) {
379 dp = (struct dirent *)
380 ((caddr_t)dp + dp->d_reclen);
381 enn++;
382 }
383
384 if (uio->uio_resid < (bp->b_bcount - bp->b_resid - on)) {
385 n = uio->uio_resid;
386 enough = 1;
387 } else
388 n = bp->b_bcount - bp->b_resid - on;
389
390 ep = bp->b_data + on + n;
391
392 /*
393 * Find last complete entry to copy, caching entries
394 * (if requested) as we go.
395 */
396
397 while ((caddr_t)dp < ep && (caddr_t)dp + dp->d_reclen <= ep) {
398 if (cflag & NFSBIO_CACHECOOKIES) {
399 nndp = nfs_enterdircache(vp, NFS_GETCOOKIE(pdp),
400 ndp->dc_blkcookie, enn, bp->b_lblkno);
401 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
402 NFS_STASHCOOKIE32(pdp,
403 nndp->dc_cookie32);
404 }
405 }
406 pdp = dp;
407 dp = (struct dirent *)((caddr_t)dp + dp->d_reclen);
408 enn++;
409 }
410
411 /*
412 * If the last requested entry was not the last in the
413 * buffer (happens if NFS_DIRFRAGSIZ < NFS_DIRBLKSIZ),
414 * cache the cookie of the last requested one, and
415 * set of the offset to it.
416 */
417
418 if ((on + n) < bp->b_bcount - bp->b_resid) {
419 curoff = NFS_GETCOOKIE(pdp);
420 nndp = nfs_enterdircache(vp, curoff, ndp->dc_blkcookie,
421 enn, bp->b_lblkno);
422 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
423 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
424 curoff = nndp->dc_cookie32;
425 }
426 } else
427 curoff = bp->b_dcookie;
428
429 /*
430 * Always cache the entry for the next block,
431 * so that readaheads can use it.
432 */
433 nndp = nfs_enterdircache(vp, bp->b_dcookie, bp->b_dcookie, 0,0);
434 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
435 if (curoff == bp->b_dcookie) {
436 NFS_STASHCOOKIE32(pdp, nndp->dc_cookie32);
437 curoff = nndp->dc_cookie32;
438 }
439 }
440
441 n = ((caddr_t)pdp + pdp->d_reclen) - (bp->b_data + on);
442
443 /*
444 * If not eof and read aheads are enabled, start one.
445 * (You need the current block first, so that you have the
446 * directory offset cookie of the next block.)
447 */
448 if (nfs_numasync > 0 && nmp->nm_readahead > 0 &&
449 np->n_direofoffset == 0 && !(np->n_flag & NQNFSNONCACHE)) {
450 rabp = nfs_getcacheblk(vp, nndp->dc_blkno,
451 NFS_DIRBLKSIZ, p);
452 if (rabp) {
453 if ((rabp->b_flags & (B_DONE | B_DELWRI)) == 0) {
454 rabp->b_dcookie = nndp->dc_cookie;
455 rabp->b_flags |= (B_READ | B_ASYNC);
456 if (nfs_asyncio(rabp)) {
457 rabp->b_flags |= B_INVAL;
458 brelse(rabp);
459 }
460 } else
461 brelse(rabp);
462 }
463 }
464 got_buf = 1;
465 break;
466 default:
467 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
468 break;
469 }
470
471 if (n > 0) {
472 if (!baddr)
473 baddr = bp->b_data;
474 error = uiomove(baddr + on, (int)n, uio);
475 }
476 switch (vp->v_type) {
477 case VREG:
478 break;
479 case VLNK:
480 n = 0;
481 break;
482 case VDIR:
483 if (np->n_flag & NQNFSNONCACHE)
484 bp->b_flags |= B_INVAL;
485 uio->uio_offset = curoff;
486 if (enough)
487 n = 0;
488 break;
489 default:
490 printf(" nfsbioread: type %x unexpected\n",vp->v_type);
491 }
492 if (got_buf)
493 brelse(bp);
494 } while (error == 0 && uio->uio_resid > 0 && n > 0);
495 return (error);
496 }
497
498 /*
499 * Vnode op for write using bio
500 */
501 int
502 nfs_write(v)
503 void *v;
504 {
505 struct vop_write_args /* {
506 struct vnode *a_vp;
507 struct uio *a_uio;
508 int a_ioflag;
509 struct ucred *a_cred;
510 } */ *ap = v;
511 struct uio *uio = ap->a_uio;
512 struct proc *p = uio->uio_procp;
513 struct vnode *vp = ap->a_vp;
514 struct nfsnode *np = VTONFS(vp);
515 struct ucred *cred = ap->a_cred;
516 int ioflag = ap->a_ioflag;
517 struct vattr vattr;
518 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
519 int error = 0, iomode, must_commit;
520 int rv;
521
522 #ifdef DIAGNOSTIC
523 if (uio->uio_rw != UIO_WRITE)
524 panic("nfs_write mode");
525 if (uio->uio_segflg == UIO_USERSPACE &&
526 uio->uio_procp != curproc->l_proc)
527 panic("nfs_write proc");
528 #endif
529 if (vp->v_type != VREG)
530 return (EIO);
531 if (np->n_flag & NWRITEERR) {
532 np->n_flag &= ~NWRITEERR;
533 return (np->n_error);
534 }
535 #ifndef NFS_V2_ONLY
536 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
537 !(nmp->nm_iflag & NFSMNT_GOTFSINFO))
538 (void)nfs_fsinfo(nmp, vp, cred, p);
539 #endif
540 if (ioflag & (IO_APPEND | IO_SYNC)) {
541 if (np->n_flag & NMODIFIED) {
542 np->n_attrstamp = 0;
543 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
544 if (error)
545 return (error);
546 }
547 if (ioflag & IO_APPEND) {
548 np->n_attrstamp = 0;
549 error = VOP_GETATTR(vp, &vattr, cred, p);
550 if (error)
551 return (error);
552 uio->uio_offset = np->n_size;
553 }
554 }
555 if (uio->uio_offset < 0)
556 return (EINVAL);
557 if ((uio->uio_offset + uio->uio_resid) > nmp->nm_maxfilesize)
558 return (EFBIG);
559 if (uio->uio_resid == 0)
560 return (0);
561 /*
562 * Maybe this should be above the vnode op call, but so long as
563 * file servers have no limits, i don't think it matters
564 */
565 if (p && uio->uio_offset + uio->uio_resid >
566 p->p_rlimit[RLIMIT_FSIZE].rlim_cur) {
567 psignal(p, SIGXFSZ);
568 return (EFBIG);
569 }
570
571 /*
572 * update the cached write creds for this node.
573 */
574
575 if (np->n_wcred) {
576 crfree(np->n_wcred);
577 }
578 np->n_wcred = cred;
579 crhold(cred);
580
581 if ((np->n_flag & NQNFSNONCACHE) && uio->uio_iovcnt == 1) {
582 iomode = NFSV3WRITE_FILESYNC;
583 error = nfs_writerpc(vp, uio, &iomode, &must_commit);
584 if (must_commit)
585 nfs_clearcommit(vp->v_mount);
586 return (error);
587 }
588
589 do {
590 void *win;
591 voff_t oldoff = uio->uio_offset;
592 vsize_t bytelen = uio->uio_resid;
593
594 #ifndef NFS_V2_ONLY
595 /*
596 * Check for a valid write lease.
597 */
598 if ((nmp->nm_flag & NFSMNT_NQNFS) &&
599 NQNFS_CKINVALID(vp, np, ND_WRITE)) {
600 do {
601 error = nqnfs_getlease(vp, ND_WRITE, cred, p);
602 } while (error == NQNFS_EXPIRED);
603 if (error)
604 return (error);
605 if (np->n_lrev != np->n_brev ||
606 (np->n_flag & NQNFSNONCACHE)) {
607 error = nfs_vinvalbuf(vp, V_SAVE, cred, p, 1);
608 if (error)
609 return (error);
610 np->n_brev = np->n_lrev;
611 }
612 }
613 #endif
614 nfsstats.biocache_writes++;
615
616 np->n_flag |= NMODIFIED;
617 if (np->n_size < uio->uio_offset + bytelen) {
618 np->n_size = uio->uio_offset + bytelen;
619 uvm_vnp_setsize(vp, np->n_size);
620 }
621 win = ubc_alloc(&vp->v_uvm.u_obj, uio->uio_offset, &bytelen,
622 UBC_WRITE);
623 error = uiomove(win, bytelen, uio);
624 ubc_release(win, 0);
625 rv = 1;
626 if ((np->n_flag & NQNFSNONCACHE) || (ioflag & IO_SYNC)) {
627 simple_lock(&vp->v_uvm.u_obj.vmobjlock);
628 rv = vp->v_uvm.u_obj.pgops->pgo_flush(
629 &vp->v_uvm.u_obj,
630 oldoff & ~(nmp->nm_wsize - 1),
631 uio->uio_offset & ~(nmp->nm_wsize - 1),
632 PGO_CLEANIT|PGO_SYNCIO);
633 simple_unlock(&vp->v_uvm.u_obj.vmobjlock);
634 } else if ((oldoff & ~(nmp->nm_wsize - 1)) !=
635 (uio->uio_offset & ~(nmp->nm_wsize - 1))) {
636 simple_lock(&vp->v_uvm.u_obj.vmobjlock);
637 rv = vp->v_uvm.u_obj.pgops->pgo_flush(
638 &vp->v_uvm.u_obj,
639 oldoff & ~(nmp->nm_wsize - 1),
640 uio->uio_offset & ~(nmp->nm_wsize - 1),
641 PGO_CLEANIT|PGO_WEAK);
642 simple_unlock(&vp->v_uvm.u_obj.vmobjlock);
643 }
644 if (!rv) {
645 error = EIO;
646 }
647 if (error) {
648 break;
649 }
650 } while (uio->uio_resid > 0);
651 return error;
652 }
653
654 /*
655 * Get an nfs cache block.
656 * Allocate a new one if the block isn't currently in the cache
657 * and return the block marked busy. If the calling process is
658 * interrupted by a signal for an interruptible mount point, return
659 * NULL.
660 */
661 struct buf *
662 nfs_getcacheblk(vp, bn, size, p)
663 struct vnode *vp;
664 daddr_t bn;
665 int size;
666 struct proc *p;
667 {
668 struct buf *bp;
669 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
670
671 if (nmp->nm_flag & NFSMNT_INT) {
672 bp = getblk(vp, bn, size, PCATCH, 0);
673 while (bp == NULL) {
674 if (nfs_sigintr(nmp, NULL, p))
675 return (NULL);
676 bp = getblk(vp, bn, size, 0, 2 * hz);
677 }
678 } else
679 bp = getblk(vp, bn, size, 0, 0);
680 return (bp);
681 }
682
683 /*
684 * Flush and invalidate all dirty buffers. If another process is already
685 * doing the flush, just wait for completion.
686 */
687 int
688 nfs_vinvalbuf(vp, flags, cred, p, intrflg)
689 struct vnode *vp;
690 int flags;
691 struct ucred *cred;
692 struct proc *p;
693 int intrflg;
694 {
695 struct nfsnode *np = VTONFS(vp);
696 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
697 int error = 0, slpflag, slptimeo;
698
699 if ((nmp->nm_flag & NFSMNT_INT) == 0)
700 intrflg = 0;
701 if (intrflg) {
702 slpflag = PCATCH;
703 slptimeo = 2 * hz;
704 } else {
705 slpflag = 0;
706 slptimeo = 0;
707 }
708 /*
709 * First wait for any other process doing a flush to complete.
710 */
711 while (np->n_flag & NFLUSHINPROG) {
712 np->n_flag |= NFLUSHWANT;
713 error = tsleep((caddr_t)&np->n_flag, PRIBIO + 2, "nfsvinval",
714 slptimeo);
715 if (error && intrflg && nfs_sigintr(nmp, NULL, p))
716 return (EINTR);
717 }
718
719 /*
720 * Now, flush as required.
721 */
722 np->n_flag |= NFLUSHINPROG;
723 error = vinvalbuf(vp, flags, cred, p, slpflag, 0);
724 while (error) {
725 if (intrflg && nfs_sigintr(nmp, NULL, p)) {
726 np->n_flag &= ~NFLUSHINPROG;
727 if (np->n_flag & NFLUSHWANT) {
728 np->n_flag &= ~NFLUSHWANT;
729 wakeup((caddr_t)&np->n_flag);
730 }
731 return (EINTR);
732 }
733 error = vinvalbuf(vp, flags, cred, p, 0, slptimeo);
734 }
735 np->n_flag &= ~(NMODIFIED | NFLUSHINPROG);
736 if (np->n_flag & NFLUSHWANT) {
737 np->n_flag &= ~NFLUSHWANT;
738 wakeup((caddr_t)&np->n_flag);
739 }
740 return (0);
741 }
742
743 /*
744 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
745 * This is mainly to avoid queueing async I/O requests when the nfsiods
746 * are all hung on a dead server.
747 */
748 int
749 nfs_asyncio(bp)
750 struct buf *bp;
751 {
752 int i;
753 struct nfsmount *nmp;
754 int gotiod, slpflag = 0, slptimeo = 0, error;
755
756 if (nfs_numasync == 0)
757 return (EIO);
758
759
760 nmp = VFSTONFS(bp->b_vp->v_mount);
761 again:
762 if (nmp->nm_flag & NFSMNT_INT)
763 slpflag = PCATCH;
764 gotiod = FALSE;
765
766 /*
767 * Find a free iod to process this request.
768 */
769
770 for (i = 0; i < NFS_MAXASYNCDAEMON; i++)
771 if (nfs_iodwant[i]) {
772 /*
773 * Found one, so wake it up and tell it which
774 * mount to process.
775 */
776 nfs_iodwant[i] = NULL;
777 nfs_iodmount[i] = nmp;
778 nmp->nm_bufqiods++;
779 wakeup((caddr_t)&nfs_iodwant[i]);
780 gotiod = TRUE;
781 break;
782 }
783 /*
784 * If none are free, we may already have an iod working on this mount
785 * point. If so, it will process our request.
786 */
787 if (!gotiod && nmp->nm_bufqiods > 0)
788 gotiod = TRUE;
789
790 /*
791 * If we have an iod which can process the request, then queue
792 * the buffer.
793 */
794 if (gotiod) {
795 /*
796 * Ensure that the queue never grows too large.
797 */
798 while (nmp->nm_bufqlen >= 2*nfs_numasync) {
799 nmp->nm_bufqwant = TRUE;
800 error = tsleep(&nmp->nm_bufq, slpflag | PRIBIO,
801 "nfsaio", slptimeo);
802 if (error) {
803 if (nfs_sigintr(nmp, NULL, bp->b_proc))
804 return (EINTR);
805 if (slpflag == PCATCH) {
806 slpflag = 0;
807 slptimeo = 2 * hz;
808 }
809 }
810 /*
811 * We might have lost our iod while sleeping,
812 * so check and loop if nescessary.
813 */
814 if (nmp->nm_bufqiods == 0)
815 goto again;
816 }
817 TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
818 nmp->nm_bufqlen++;
819 return (0);
820 }
821
822 /*
823 * All the iods are busy on other mounts, so return EIO to
824 * force the caller to process the i/o synchronously.
825 */
826 return (EIO);
827 }
828
829 /*
830 * Do an I/O operation to/from a cache block. This may be called
831 * synchronously or from an nfsiod.
832 */
833 int
834 nfs_doio(bp, p)
835 struct buf *bp;
836 struct proc *p;
837 {
838 struct uio *uiop;
839 struct vnode *vp;
840 struct nfsnode *np;
841 struct nfsmount *nmp;
842 int error = 0, diff, len, iomode, must_commit = 0;
843 struct uio uio;
844 struct iovec io;
845
846 vp = bp->b_vp;
847 np = VTONFS(vp);
848 nmp = VFSTONFS(vp->v_mount);
849 uiop = &uio;
850 uiop->uio_iov = &io;
851 uiop->uio_iovcnt = 1;
852 uiop->uio_segflg = UIO_SYSSPACE;
853 uiop->uio_procp = p;
854
855 /*
856 * Historically, paging was done with physio, but no more...
857 */
858 if (bp->b_flags & B_PHYS) {
859 /*
860 * ...though reading /dev/drum still gets us here.
861 */
862 io.iov_len = uiop->uio_resid = bp->b_bcount;
863 /* mapping was done by vmapbuf() */
864 io.iov_base = bp->b_data;
865 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
866 if (bp->b_flags & B_READ) {
867 uiop->uio_rw = UIO_READ;
868 nfsstats.read_physios++;
869 error = nfs_readrpc(vp, uiop);
870 } else {
871 iomode = NFSV3WRITE_DATASYNC;
872 uiop->uio_rw = UIO_WRITE;
873 nfsstats.write_physios++;
874 error = nfs_writerpc(vp, uiop, &iomode, &must_commit);
875 }
876 if (error) {
877 bp->b_flags |= B_ERROR;
878 bp->b_error = error;
879 }
880 } else if (bp->b_flags & B_READ) {
881 io.iov_len = uiop->uio_resid = bp->b_bcount;
882 io.iov_base = bp->b_data;
883 uiop->uio_rw = UIO_READ;
884 switch (vp->v_type) {
885 case VREG:
886 uiop->uio_offset = ((off_t)bp->b_blkno) << DEV_BSHIFT;
887 nfsstats.read_bios++;
888 error = nfs_readrpc(vp, uiop);
889 if (!error && uiop->uio_resid) {
890
891 /*
892 * If len > 0, there is a hole in the file and
893 * no writes after the hole have been pushed to
894 * the server yet.
895 * Just zero fill the rest of the valid area.
896 */
897
898 diff = bp->b_bcount - uiop->uio_resid;
899 len = np->n_size - ((((off_t)bp->b_blkno) << DEV_BSHIFT)
900 + diff);
901 if (len > 0) {
902 len = MIN(len, uiop->uio_resid);
903 memset((char *)bp->b_data + diff, 0, len);
904 }
905 }
906 if (p && (vp->v_flag & VTEXT) &&
907 (((nmp->nm_flag & NFSMNT_NQNFS) &&
908 NQNFS_CKINVALID(vp, np, ND_READ) &&
909 np->n_lrev != np->n_brev) ||
910 (!(nmp->nm_flag & NFSMNT_NQNFS) &&
911 np->n_mtime != np->n_vattr->va_mtime.tv_sec))) {
912 uprintf("Process killed due to "
913 "text file modification\n");
914 psignal(p, SIGKILL);
915 #if 0 /* XXX NJWLWP */
916 p->p_holdcnt++;
917 #endif
918 }
919 break;
920 case VLNK:
921 uiop->uio_offset = (off_t)0;
922 nfsstats.readlink_bios++;
923 error = nfs_readlinkrpc(vp, uiop, curproc->l_proc->p_ucred);
924 break;
925 case VDIR:
926 nfsstats.readdir_bios++;
927 uiop->uio_offset = bp->b_dcookie;
928 if (nmp->nm_flag & NFSMNT_RDIRPLUS) {
929 error = nfs_readdirplusrpc(vp, uiop, curproc->l_proc->p_ucred);
930 if (error == NFSERR_NOTSUPP)
931 nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
932 }
933 if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
934 error = nfs_readdirrpc(vp, uiop, curproc->l_proc->p_ucred);
935 if (!error) {
936 bp->b_dcookie = uiop->uio_offset;
937 }
938 break;
939 default:
940 printf("nfs_doio: type %x unexpected\n",vp->v_type);
941 break;
942 }
943 if (error) {
944 bp->b_flags |= B_ERROR;
945 bp->b_error = error;
946 }
947 } else {
948 /*
949 * If B_NEEDCOMMIT is set, a commit rpc may do the trick. If not
950 * an actual write will have to be scheduled.
951 */
952
953 io.iov_base = bp->b_data;
954 io.iov_len = uiop->uio_resid = bp->b_bcount;
955 uiop->uio_offset = (((off_t)bp->b_blkno) << DEV_BSHIFT);
956 uiop->uio_rw = UIO_WRITE;
957 nfsstats.write_bios++;
958 iomode = NFSV3WRITE_UNSTABLE;
959 error = nfs_writerpc(vp, uiop, &iomode, &must_commit);
960 }
961 bp->b_resid = uiop->uio_resid;
962 if (must_commit)
963 nfs_clearcommit(vp->v_mount);
964 biodone(bp);
965 return (error);
966 }
967
968 /*
969 * Vnode op for VM getpages.
970 */
971 int
972 nfs_getpages(v)
973 void *v;
974 {
975 struct vop_getpages_args /* {
976 struct vnode *a_vp;
977 voff_t a_offset;
978 struct vm_page **a_m;
979 int *a_count;
980 int a_centeridx;
981 vm_prot_t a_access_type;
982 int a_advice;
983 int a_flags;
984 } */ *ap = v;
985
986 off_t eof, offset, origoffset, startoffset, endoffset;
987 int s, i, error, npages, orignpages, npgs, ridx, pidx, pcount;
988 vaddr_t kva;
989 struct buf *bp, *mbp;
990 struct vnode *vp = ap->a_vp;
991 struct nfsnode *np = VTONFS(vp);
992 struct uvm_object *uobj = &vp->v_uvm.u_obj;
993 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
994 size_t bytes, iobytes, tailbytes, totalbytes, skipbytes;
995 int flags = ap->a_flags;
996 int bsize;
997 struct vm_page *pgs[16]; /* XXXUBC 16 */
998 boolean_t v3 = NFS_ISV3(vp);
999 boolean_t async = (flags & PGO_SYNCIO) == 0;
1000 boolean_t write = (ap->a_access_type & VM_PROT_WRITE) != 0;
1001
1002 UVMHIST_FUNC("nfs_getpages"); UVMHIST_CALLED(ubchist);
1003 UVMHIST_LOG(ubchist, "vp %p off 0x%x count %d", vp, (int)ap->a_offset,
1004 *ap->a_count,0);
1005
1006 #ifdef DIAGNOSTIC
1007 if (ap->a_centeridx < 0 || ap->a_centeridx >= *ap->a_count) {
1008 panic("nfs_getpages: centeridx %d out of range",
1009 ap->a_centeridx);
1010 }
1011 #endif
1012
1013 error = 0;
1014 origoffset = ap->a_offset;
1015 eof = vp->v_uvm.u_size;
1016 if (origoffset >= eof) {
1017 if ((flags & PGO_LOCKED) == 0) {
1018 simple_unlock(&uobj->vmobjlock);
1019 }
1020 UVMHIST_LOG(ubchist, "off 0x%x past EOF 0x%x",
1021 (int)origoffset, (int)eof,0,0);
1022 return EINVAL;
1023 }
1024
1025 if (flags & PGO_LOCKED) {
1026 uvn_findpages(uobj, origoffset, ap->a_count, ap->a_m,
1027 UFP_NOWAIT|UFP_NOALLOC);
1028 return 0;
1029 }
1030
1031 /* vnode is VOP_LOCKed, uobj is locked */
1032
1033 if (write && (vp->v_flag & VONWORKLST) == 0) {
1034 vn_syncer_add_to_worklist(vp, filedelay);
1035 }
1036
1037 bsize = nmp->nm_rsize;
1038 orignpages = MIN(*ap->a_count,
1039 round_page(eof - origoffset) >> PAGE_SHIFT);
1040 npages = orignpages;
1041 startoffset = origoffset & ~(bsize - 1);
1042 endoffset = round_page((origoffset + (npages << PAGE_SHIFT)
1043 + bsize - 1) & ~(bsize - 1));
1044 endoffset = MIN(endoffset, round_page(eof));
1045 ridx = (origoffset - startoffset) >> PAGE_SHIFT;
1046
1047 if (!async && !write) {
1048 int rapages = MAX(PAGE_SIZE, nmp->nm_rsize) >> PAGE_SHIFT;
1049
1050 (void) VOP_GETPAGES(vp, endoffset, NULL, &rapages, 0,
1051 VM_PROT_READ, 0, 0);
1052 simple_lock(&uobj->vmobjlock);
1053 }
1054
1055 UVMHIST_LOG(ubchist, "npages %d offset 0x%x", npages,
1056 (int)origoffset, 0,0);
1057 memset(pgs, 0, sizeof(pgs));
1058 uvn_findpages(uobj, origoffset, &npages, &pgs[ridx], UFP_ALL);
1059
1060 if (flags & PGO_OVERWRITE) {
1061 UVMHIST_LOG(ubchist, "PGO_OVERWRITE",0,0,0,0);
1062
1063 /* XXXUBC for now, zero the page if we allocated it */
1064 for (i = 0; i < npages; i++) {
1065 struct vm_page *pg = pgs[ridx + i];
1066
1067 if (pg->flags & PG_FAKE) {
1068 uvm_pagezero(pg);
1069 pg->flags &= ~(PG_FAKE);
1070 }
1071 }
1072 npages += ridx;
1073 if (v3) {
1074 simple_unlock(&uobj->vmobjlock);
1075 goto uncommit;
1076 }
1077 goto out;
1078 }
1079
1080 /*
1081 * if the pages are already resident, just return them.
1082 */
1083
1084 for (i = 0; i < npages; i++) {
1085 struct vm_page *pg = pgs[ridx + i];
1086
1087 if ((pg->flags & PG_FAKE) != 0 ||
1088 ((ap->a_access_type & VM_PROT_WRITE) &&
1089 (pg->flags & PG_RDONLY))) {
1090 break;
1091 }
1092 }
1093 if (i == npages) {
1094 UVMHIST_LOG(ubchist, "returning cached pages", 0,0,0,0);
1095 npages += ridx;
1096 goto out;
1097 }
1098
1099 /*
1100 * the page wasn't resident and we're not overwriting,
1101 * so we're going to have to do some i/o.
1102 * find any additional pages needed to cover the expanded range.
1103 */
1104
1105 if (startoffset != origoffset ||
1106 startoffset + (npages << PAGE_SHIFT) != endoffset) {
1107
1108 /*
1109 * XXXUBC we need to avoid deadlocks caused by locking
1110 * additional pages at lower offsets than pages we
1111 * already have locked. for now, unlock them all and
1112 * start over.
1113 */
1114
1115 for (i = 0; i < npages; i++) {
1116 struct vm_page *pg = pgs[ridx + i];
1117
1118 if (pg->flags & PG_FAKE) {
1119 pg->flags |= PG_RELEASED;
1120 }
1121 }
1122 uvm_page_unbusy(&pgs[ridx], npages);
1123 memset(pgs, 0, sizeof(pgs));
1124
1125 UVMHIST_LOG(ubchist, "reset npages start 0x%x end 0x%x",
1126 startoffset, endoffset, 0,0);
1127 npages = (endoffset - startoffset) >> PAGE_SHIFT;
1128 npgs = npages;
1129 uvn_findpages(uobj, startoffset, &npgs, pgs, UFP_ALL);
1130 }
1131 simple_unlock(&uobj->vmobjlock);
1132
1133 /*
1134 * update the cached read creds for this node.
1135 */
1136
1137 if (np->n_rcred) {
1138 crfree(np->n_rcred);
1139 }
1140 np->n_rcred = curproc->l_proc->p_ucred;
1141 crhold(np->n_rcred);
1142
1143 /*
1144 * read the desired page(s).
1145 */
1146
1147 totalbytes = npages << PAGE_SHIFT;
1148 bytes = MIN(totalbytes, vp->v_uvm.u_size - startoffset);
1149 tailbytes = totalbytes - bytes;
1150 skipbytes = 0;
1151
1152 kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WAITOK |
1153 UVMPAGER_MAPIN_READ);
1154
1155 s = splbio();
1156 mbp = pool_get(&bufpool, PR_WAITOK);
1157 splx(s);
1158 mbp->b_bufsize = totalbytes;
1159 mbp->b_data = (void *)kva;
1160 mbp->b_resid = mbp->b_bcount = bytes;
1161 mbp->b_flags = B_BUSY|B_READ| (async ? B_CALL|B_ASYNC : 0);
1162 mbp->b_iodone = uvm_aio_biodone;
1163 mbp->b_vp = vp;
1164 mbp->b_proc = NULL; /* XXXUBC */
1165 LIST_INIT(&mbp->b_dep);
1166
1167 /*
1168 * if EOF is in the middle of the last page, zero the part past EOF.
1169 */
1170
1171 if (tailbytes > 0 && (pgs[bytes >> PAGE_SHIFT]->flags & PG_FAKE)) {
1172 memset((char *)kva + bytes, 0, tailbytes);
1173 }
1174
1175 /*
1176 * now loop over the pages, reading as needed.
1177 */
1178
1179 bp = NULL;
1180 for (offset = startoffset;
1181 bytes > 0;
1182 offset += iobytes, bytes -= iobytes) {
1183
1184 /*
1185 * skip pages which don't need to be read.
1186 */
1187
1188 pidx = (offset - startoffset) >> PAGE_SHIFT;
1189 UVMHIST_LOG(ubchist, "pidx %d offset 0x%x startoffset 0x%x",
1190 pidx, (int)offset, (int)startoffset,0);
1191 while ((pgs[pidx]->flags & PG_FAKE) == 0) {
1192 size_t b;
1193
1194 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
1195 b = MIN(PAGE_SIZE, bytes);
1196 offset += b;
1197 bytes -= b;
1198 skipbytes += b;
1199 pidx++;
1200 UVMHIST_LOG(ubchist, "skipping, new offset 0x%x",
1201 (int)offset, 0,0,0);
1202 if (bytes == 0) {
1203 goto loopdone;
1204 }
1205 }
1206
1207 /*
1208 * see how many pages can be read with this i/o.
1209 * reduce the i/o size if necessary.
1210 */
1211
1212 iobytes = bytes;
1213 if (offset + iobytes > round_page(offset)) {
1214 pcount = 1;
1215 while (pidx + pcount < npages &&
1216 pgs[pidx + pcount]->flags & PG_FAKE) {
1217 pcount++;
1218 }
1219 iobytes = MIN(iobytes, (pcount << PAGE_SHIFT) -
1220 (offset - trunc_page(offset)));
1221 }
1222 iobytes = MIN(iobytes, nmp->nm_rsize);
1223
1224 /*
1225 * allocate a sub-buf for this piece of the i/o
1226 * (or just use mbp if there's only 1 piece),
1227 * and start it going.
1228 */
1229
1230 if (offset == startoffset && iobytes == bytes) {
1231 bp = mbp;
1232 } else {
1233 s = splbio();
1234 bp = pool_get(&bufpool, PR_WAITOK);
1235 splx(s);
1236 bp->b_data = (char *)kva + offset - startoffset;
1237 bp->b_resid = bp->b_bcount = iobytes;
1238 bp->b_flags = B_BUSY|B_READ|B_CALL|B_ASYNC;
1239 bp->b_iodone = uvm_aio_biodone1;
1240 bp->b_vp = vp;
1241 bp->b_proc = NULL; /* XXXUBC */
1242 LIST_INIT(&bp->b_dep);
1243 }
1244 bp->b_private = mbp;
1245 bp->b_lblkno = bp->b_blkno = offset >> DEV_BSHIFT;
1246
1247 UVMHIST_LOG(ubchist, "bp %p offset 0x%x bcount 0x%x blkno 0x%x",
1248 bp, offset, iobytes, bp->b_blkno);
1249
1250 VOP_STRATEGY(bp);
1251 }
1252
1253 loopdone:
1254 if (skipbytes) {
1255 s = splbio();
1256 mbp->b_resid -= skipbytes;
1257 if (mbp->b_resid == 0) {
1258 biodone(mbp);
1259 }
1260 splx(s);
1261 }
1262 if (async) {
1263 UVMHIST_LOG(ubchist, "returning 0 (async)",0,0,0,0);
1264 return 0;
1265 }
1266 if (bp != NULL) {
1267 error = biowait(mbp);
1268 }
1269 s = splbio();
1270 pool_put(&bufpool, mbp);
1271 splx(s);
1272 uvm_pagermapout(kva, npages);
1273
1274 if (write && v3) {
1275 uncommit:
1276 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1277 nfs_del_committed_range(vp, origoffset, npages);
1278 nfs_del_tobecommitted_range(vp, origoffset, npages);
1279 simple_lock(&uobj->vmobjlock);
1280 for (i = 0; i < npages; i++) {
1281 if (pgs[i] == NULL) {
1282 continue;
1283 }
1284 pgs[i]->flags &= ~(PG_NEEDCOMMIT|PG_RDONLY);
1285 }
1286 simple_unlock(&uobj->vmobjlock);
1287 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1288 }
1289
1290 simple_lock(&uobj->vmobjlock);
1291
1292 out:
1293 if (error) {
1294 uvm_lock_pageq();
1295 for (i = 0; i < npages; i++) {
1296 if (pgs[i] == NULL) {
1297 continue;
1298 }
1299 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
1300 pgs[i], pgs[i]->flags, 0,0);
1301 if (pgs[i]->flags & PG_WANTED) {
1302 wakeup(pgs[i]);
1303 }
1304 if (pgs[i]->flags & PG_RELEASED) {
1305 uvm_unlock_pageq();
1306 (uobj->pgops->pgo_releasepg)(pgs[i], NULL);
1307 uvm_lock_pageq();
1308 continue;
1309 }
1310 if (pgs[i]->flags & PG_FAKE) {
1311 uvm_pagefree(pgs[i]);
1312 continue;
1313 }
1314 uvm_pageactivate(pgs[i]);
1315 pgs[i]->flags &= ~(PG_WANTED|PG_BUSY);
1316 UVM_PAGE_OWN(pgs[i], NULL);
1317 }
1318 uvm_unlock_pageq();
1319 simple_unlock(&uobj->vmobjlock);
1320 UVMHIST_LOG(ubchist, "returning error %d", error,0,0,0);
1321 return error;
1322 }
1323
1324 UVMHIST_LOG(ubchist, "ridx %d count %d", ridx, npages, 0,0);
1325 uvm_lock_pageq();
1326 for (i = 0; i < npages; i++) {
1327 if (pgs[i] == NULL) {
1328 continue;
1329 }
1330 UVMHIST_LOG(ubchist, "examining pg %p flags 0x%x",
1331 pgs[i], pgs[i]->flags, 0,0);
1332 if (pgs[i]->flags & PG_FAKE) {
1333 UVMHIST_LOG(ubchist, "unfaking pg %p offset 0x%x",
1334 pgs[i], (int)pgs[i]->offset,0,0);
1335 pgs[i]->flags &= ~(PG_FAKE);
1336 pmap_clear_modify(pgs[i]);
1337 pmap_clear_reference(pgs[i]);
1338 }
1339 if (i < ridx || i >= ridx + orignpages || async) {
1340 UVMHIST_LOG(ubchist, "unbusy pg %p offset 0x%x",
1341 pgs[i], (int)pgs[i]->offset,0,0);
1342 if (pgs[i]->flags & PG_WANTED) {
1343 wakeup(pgs[i]);
1344 }
1345 if (pgs[i]->flags & PG_RELEASED) {
1346 uvm_unlock_pageq();
1347 (uobj->pgops->pgo_releasepg)(pgs[i], NULL);
1348 uvm_lock_pageq();
1349 continue;
1350 }
1351 uvm_pageactivate(pgs[i]);
1352 pgs[i]->flags &= ~(PG_WANTED|PG_BUSY);
1353 UVM_PAGE_OWN(pgs[i], NULL);
1354 }
1355 }
1356 uvm_unlock_pageq();
1357 simple_unlock(&uobj->vmobjlock);
1358 if (ap->a_m != NULL) {
1359 memcpy(ap->a_m, &pgs[ridx],
1360 *ap->a_count * sizeof(struct vm_page *));
1361 }
1362 return 0;
1363 }
1364
1365 /*
1366 * Vnode op for VM putpages.
1367 */
1368 int
1369 nfs_putpages(v)
1370 void *v;
1371 {
1372 struct vop_putpages_args /* {
1373 struct vnode *a_vp;
1374 struct vm_page **a_m;
1375 int a_count;
1376 int a_flags;
1377 int *a_rtvals;
1378 } */ *ap = v;
1379
1380 struct vnode *vp = ap->a_vp;
1381 struct nfsnode *np = VTONFS(vp);
1382 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1383 struct buf *bp, *mbp;
1384 struct vm_page **pgs = ap->a_m;
1385 int flags = ap->a_flags;
1386 int npages = ap->a_count;
1387 int s, error, i;
1388 size_t bytes, iobytes, skipbytes;
1389 vaddr_t kva;
1390 off_t offset, origoffset, commitoff;
1391 uint32_t commitbytes;
1392 boolean_t v3 = NFS_ISV3(vp);
1393 boolean_t async = (flags & PGO_SYNCIO) == 0;
1394 boolean_t weak = (flags & PGO_WEAK) && v3;
1395 UVMHIST_FUNC("nfs_putpages"); UVMHIST_CALLED(ubchist);
1396
1397 UVMHIST_LOG(ubchist, "vp %p pgp %p count %d",
1398 vp, ap->a_m, ap->a_count,0);
1399
1400 simple_unlock(&vp->v_uvm.u_obj.vmobjlock);
1401
1402 error = 0;
1403 origoffset = pgs[0]->offset;
1404 bytes = MIN(ap->a_count << PAGE_SHIFT, vp->v_uvm.u_size - origoffset);
1405 skipbytes = 0;
1406
1407 /*
1408 * if the range has been committed already, mark the pages thus.
1409 * if the range just needs to be committed, we're done
1410 * if it's a weak putpage, otherwise commit the range.
1411 */
1412
1413 if (v3) {
1414 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1415 if (nfs_in_committed_range(vp, origoffset, bytes)) {
1416 goto committed;
1417 }
1418 if (nfs_in_tobecommitted_range(vp, origoffset, bytes)) {
1419 if (weak) {
1420 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1421 return 0;
1422 } else {
1423 commitoff = np->n_pushlo;
1424 commitbytes = (uint32_t)(np->n_pushhi -
1425 np->n_pushlo);
1426 goto commit;
1427 }
1428 }
1429 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1430 }
1431
1432 /*
1433 * otherwise write or commit all the pages.
1434 */
1435
1436 kva = uvm_pagermapin(pgs, ap->a_count, UVMPAGER_MAPIN_WAITOK|
1437 UVMPAGER_MAPIN_WRITE);
1438
1439 s = splbio();
1440 vp->v_numoutput += 2;
1441 mbp = pool_get(&bufpool, PR_WAITOK);
1442 UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
1443 vp, mbp, vp->v_numoutput, bytes);
1444 splx(s);
1445 mbp->b_bufsize = npages << PAGE_SHIFT;
1446 mbp->b_data = (void *)kva;
1447 mbp->b_resid = mbp->b_bcount = bytes;
1448 mbp->b_flags = B_BUSY|B_WRITE|B_AGE |
1449 (async ? B_CALL|B_ASYNC : 0) |
1450 (curproc == uvm.pagedaemon_proc ? B_PDAEMON : 0);
1451 mbp->b_iodone = uvm_aio_biodone;
1452 mbp->b_vp = vp;
1453 mbp->b_proc = NULL; /* XXXUBC */
1454 LIST_INIT(&mbp->b_dep);
1455
1456 for (offset = origoffset;
1457 bytes > 0;
1458 offset += iobytes, bytes -= iobytes) {
1459 iobytes = MIN(nmp->nm_wsize, bytes);
1460
1461 /*
1462 * skip writing any pages which only need a commit.
1463 */
1464
1465 if ((pgs[(offset - origoffset) >> PAGE_SHIFT]->flags &
1466 PG_NEEDCOMMIT) != 0) {
1467 KASSERT((offset & (PAGE_SIZE - 1)) == 0);
1468 iobytes = MIN(PAGE_SIZE, bytes);
1469 skipbytes += iobytes;
1470 continue;
1471 }
1472
1473 /* if it's really one i/o, don't make a second buf */
1474 if (offset == origoffset && iobytes == bytes) {
1475 bp = mbp;
1476 } else {
1477 s = splbio();
1478 vp->v_numoutput++;
1479 bp = pool_get(&bufpool, PR_WAITOK);
1480 UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
1481 vp, bp, vp->v_numoutput, 0);
1482 splx(s);
1483 bp->b_data = (char *)kva + (offset - origoffset);
1484 bp->b_resid = bp->b_bcount = iobytes;
1485 bp->b_flags = B_BUSY|B_WRITE|B_CALL|B_ASYNC;
1486 bp->b_iodone = uvm_aio_biodone1;
1487 bp->b_vp = vp;
1488 bp->b_proc = NULL; /* XXXUBC */
1489 LIST_INIT(&bp->b_dep);
1490 }
1491 bp->b_private = mbp;
1492 bp->b_lblkno = bp->b_blkno = (daddr_t)(offset >> DEV_BSHIFT);
1493 UVMHIST_LOG(ubchist, "bp %p numout %d",
1494 bp, vp->v_numoutput,0,0);
1495 VOP_STRATEGY(bp);
1496 }
1497 if (skipbytes) {
1498 UVMHIST_LOG(ubchist, "skipbytes %d", bytes, 0,0,0);
1499 s = splbio();
1500 mbp->b_resid -= skipbytes;
1501 if (mbp->b_resid == 0) {
1502 biodone(mbp);
1503 }
1504 splx(s);
1505 }
1506 if (async) {
1507 return 0;
1508 }
1509 if (bp != NULL) {
1510 error = biowait(mbp);
1511 }
1512
1513 s = splbio();
1514 vwakeup(mbp);
1515 pool_put(&bufpool, mbp);
1516 splx(s);
1517
1518 uvm_pagermapout(kva, ap->a_count);
1519 if (error || !v3) {
1520 UVMHIST_LOG(ubchist, "returning error %d", error, 0,0,0);
1521 return error;
1522 }
1523
1524 /*
1525 * for a weak put, mark the range as "to be committed"
1526 * and mark the pages read-only so that we will be notified
1527 * to remove the pages from the "to be committed" range
1528 * if they are made dirty again.
1529 * for a strong put, commit the pages and remove them from the
1530 * "to be committed" range. also, mark them as writable
1531 * and not cleanable with just a commit.
1532 */
1533
1534 lockmgr(&np->n_commitlock, LK_EXCLUSIVE, NULL);
1535 if (weak) {
1536 nfs_add_tobecommitted_range(vp, origoffset,
1537 npages << PAGE_SHIFT);
1538 for (i = 0; i < npages; i++) {
1539 pgs[i]->flags |= PG_NEEDCOMMIT|PG_RDONLY;
1540 }
1541 } else {
1542 commitoff = origoffset;
1543 commitbytes = npages << PAGE_SHIFT;
1544 commit:
1545 error = nfs_commit(vp, commitoff, commitbytes, curproc->l_proc);
1546 nfs_del_tobecommitted_range(vp, commitoff, commitbytes);
1547 committed:
1548 for (i = 0; i < npages; i++) {
1549 pgs[i]->flags &= ~(PG_NEEDCOMMIT|PG_RDONLY);
1550 }
1551 }
1552 lockmgr(&np->n_commitlock, LK_RELEASE, NULL);
1553 return error;
1554 }
1555