nfs_socket.c revision 1.1.1.2 1 /*
2 * Copyright (c) 1989, 1991, 1993, 1995
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
37 */
38
39 /*
40 * Socket operations for use by nfs
41 */
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/mount.h>
47 #include <sys/kernel.h>
48 #include <sys/mbuf.h>
49 #include <sys/vnode.h>
50 #include <sys/domain.h>
51 #include <sys/protosw.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/syslog.h>
55 #include <sys/tprintf.h>
56
57 #include <netinet/in.h>
58 #include <netinet/tcp.h>
59
60 #include <nfs/rpcv2.h>
61 #include <nfs/nfsproto.h>
62 #include <nfs/nfs.h>
63 #include <nfs/xdr_subs.h>
64 #include <nfs/nfsm_subs.h>
65 #include <nfs/nfsmount.h>
66 #include <nfs/nfsnode.h>
67 #include <nfs/nfsrtt.h>
68 #include <nfs/nqnfs.h>
69
70 #define TRUE 1
71 #define FALSE 0
72
73 /*
74 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
75 * Use the mean and mean deviation of rtt for the appropriate type of rpc
76 * for the frequent rpcs and a default for the others.
77 * The justification for doing "other" this way is that these rpcs
78 * happen so infrequently that timer est. would probably be stale.
79 * Also, since many of these rpcs are
80 * non-idempotent, a conservative timeout is desired.
81 * getattr, lookup - A+2D
82 * read, write - A+4D
83 * other - nm_timeo
84 */
85 #define NFS_RTO(n, t) \
86 ((t) == 0 ? (n)->nm_timeo : \
87 ((t) < 3 ? \
88 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
89 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
90 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
91 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
92 /*
93 * External data, mostly RPC constants in XDR form
94 */
95 extern u_long rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, rpc_auth_unix,
96 rpc_msgaccepted, rpc_call, rpc_autherr,
97 rpc_auth_kerb;
98 extern u_long nfs_prog, nqnfs_prog;
99 extern time_t nqnfsstarttime;
100 extern struct nfsstats nfsstats;
101 extern int nfsv3_procid[NFS_NPROCS];
102 extern int nfs_ticks;
103
104 /*
105 * Defines which timer to use for the procnum.
106 * 0 - default
107 * 1 - getattr
108 * 2 - lookup
109 * 3 - read
110 * 4 - write
111 */
112 static int proct[NFS_NPROCS] = {
113 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
114 0, 0, 0,
115 };
116
117 /*
118 * There is a congestion window for outstanding rpcs maintained per mount
119 * point. The cwnd size is adjusted in roughly the way that:
120 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
121 * SIGCOMM '88". ACM, August 1988.
122 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
123 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
124 * of rpcs is in progress.
125 * (The sent count and cwnd are scaled for integer arith.)
126 * Variants of "slow start" were tried and were found to be too much of a
127 * performance hit (ave. rtt 3 times larger),
128 * I suspect due to the large rtt that nfs rpcs have.
129 */
130 #define NFS_CWNDSCALE 256
131 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
132 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
133 int nfs_sbwait();
134 void nfs_disconnect(), nfs_realign(), nfsrv_wakenfsd(), nfs_sndunlock();
135 void nfs_rcvunlock(), nqnfs_serverd(), nqnfs_clientlease();
136 struct mbuf *nfsm_rpchead();
137 int nfsrtton = 0;
138 struct nfsrtt nfsrtt;
139
140 int nfsrv_null(),
141 nfsrv_getattr(),
142 nfsrv_setattr(),
143 nfsrv_lookup(),
144 nfsrv3_access(),
145 nfsrv_readlink(),
146 nfsrv_read(),
147 nfsrv_write(),
148 nfsrv_create(),
149 nfsrv_mknod(),
150 nfsrv_remove(),
151 nfsrv_rename(),
152 nfsrv_link(),
153 nfsrv_symlink(),
154 nfsrv_mkdir(),
155 nfsrv_rmdir(),
156 nfsrv_readdir(),
157 nfsrv_readdirplus(),
158 nfsrv_statfs(),
159 nfsrv_fsinfo(),
160 nfsrv_pathconf(),
161 nfsrv_commit(),
162 nfsrv_noop(),
163 nqnfsrv_getlease(),
164 nqnfsrv_vacated();
165
166 int (*nfsrv3_procs[NFS_NPROCS])() = {
167 nfsrv_null,
168 nfsrv_getattr,
169 nfsrv_setattr,
170 nfsrv_lookup,
171 nfsrv3_access,
172 nfsrv_readlink,
173 nfsrv_read,
174 nfsrv_write,
175 nfsrv_create,
176 nfsrv_mkdir,
177 nfsrv_symlink,
178 nfsrv_mknod,
179 nfsrv_remove,
180 nfsrv_rmdir,
181 nfsrv_rename,
182 nfsrv_link,
183 nfsrv_readdir,
184 nfsrv_readdirplus,
185 nfsrv_statfs,
186 nfsrv_fsinfo,
187 nfsrv_pathconf,
188 nfsrv_commit,
189 nqnfsrv_getlease,
190 nqnfsrv_vacated,
191 nfsrv_noop,
192 nfsrv_noop
193 };
194
195 /*
196 * Initialize sockets and congestion for a new NFS connection.
197 * We do not free the sockaddr if error.
198 */
199 int
200 nfs_connect(nmp, rep)
201 register struct nfsmount *nmp;
202 struct nfsreq *rep;
203 {
204 register struct socket *so;
205 int s, error, rcvreserve, sndreserve;
206 struct sockaddr *saddr;
207 struct sockaddr_in *sin;
208 struct mbuf *m;
209 u_short tport;
210
211 nmp->nm_so = (struct socket *)0;
212 saddr = mtod(nmp->nm_nam, struct sockaddr *);
213 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
214 nmp->nm_soproto);
215 if (error)
216 goto bad;
217 so = nmp->nm_so;
218 nmp->nm_soflags = so->so_proto->pr_flags;
219
220 /*
221 * Some servers require that the client port be a reserved port number.
222 */
223 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
224 MGET(m, M_WAIT, MT_SONAME);
225 sin = mtod(m, struct sockaddr_in *);
226 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
227 sin->sin_family = AF_INET;
228 sin->sin_addr.s_addr = INADDR_ANY;
229 tport = IPPORT_RESERVED - 1;
230 sin->sin_port = htons(tport);
231 while ((error = sobind(so, m)) == EADDRINUSE &&
232 --tport > IPPORT_RESERVED / 2)
233 sin->sin_port = htons(tport);
234 m_freem(m);
235 if (error)
236 goto bad;
237 }
238
239 /*
240 * Protocols that do not require connections may be optionally left
241 * unconnected for servers that reply from a port other than NFS_PORT.
242 */
243 if (nmp->nm_flag & NFSMNT_NOCONN) {
244 if (nmp->nm_soflags & PR_CONNREQUIRED) {
245 error = ENOTCONN;
246 goto bad;
247 }
248 } else {
249 error = soconnect(so, nmp->nm_nam);
250 if (error)
251 goto bad;
252
253 /*
254 * Wait for the connection to complete. Cribbed from the
255 * connect system call but with the wait timing out so
256 * that interruptible mounts don't hang here for a long time.
257 */
258 s = splnet();
259 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
260 (void) tsleep((caddr_t)&so->so_timeo, PSOCK,
261 "nfscon", 2 * hz);
262 if ((so->so_state & SS_ISCONNECTING) &&
263 so->so_error == 0 && rep &&
264 (error = nfs_sigintr(nmp, rep, rep->r_procp))) {
265 so->so_state &= ~SS_ISCONNECTING;
266 splx(s);
267 goto bad;
268 }
269 }
270 if (so->so_error) {
271 error = so->so_error;
272 so->so_error = 0;
273 splx(s);
274 goto bad;
275 }
276 splx(s);
277 }
278 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
279 so->so_rcv.sb_timeo = (5 * hz);
280 so->so_snd.sb_timeo = (5 * hz);
281 } else {
282 so->so_rcv.sb_timeo = 0;
283 so->so_snd.sb_timeo = 0;
284 }
285 if (nmp->nm_sotype == SOCK_DGRAM) {
286 sndreserve = nmp->nm_wsize + NFS_MAXPKTHDR;
287 rcvreserve = nmp->nm_rsize + NFS_MAXPKTHDR;
288 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
289 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
290 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR) * 2;
291 } else {
292 if (nmp->nm_sotype != SOCK_STREAM)
293 panic("nfscon sotype");
294 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
295 MGET(m, M_WAIT, MT_SOOPTS);
296 *mtod(m, int *) = 1;
297 m->m_len = sizeof(int);
298 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
299 }
300 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
301 MGET(m, M_WAIT, MT_SOOPTS);
302 *mtod(m, int *) = 1;
303 m->m_len = sizeof(int);
304 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
305 }
306 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + sizeof (u_long))
307 * 2;
308 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + sizeof (u_long))
309 * 2;
310 }
311 error = soreserve(so, sndreserve, rcvreserve);
312 if (error)
313 goto bad;
314 so->so_rcv.sb_flags |= SB_NOINTR;
315 so->so_snd.sb_flags |= SB_NOINTR;
316
317 /* Initialize other non-zero congestion variables */
318 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
319 nmp->nm_srtt[4] = (NFS_TIMEO << 3);
320 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
321 nmp->nm_sdrtt[3] = nmp->nm_sdrtt[4] = 0;
322 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
323 nmp->nm_sent = 0;
324 nmp->nm_timeouts = 0;
325 return (0);
326
327 bad:
328 nfs_disconnect(nmp);
329 return (error);
330 }
331
332 /*
333 * Reconnect routine:
334 * Called when a connection is broken on a reliable protocol.
335 * - clean up the old socket
336 * - nfs_connect() again
337 * - set R_MUSTRESEND for all outstanding requests on mount point
338 * If this fails the mount point is DEAD!
339 * nb: Must be called with the nfs_sndlock() set on the mount point.
340 */
341 int
342 nfs_reconnect(rep)
343 register struct nfsreq *rep;
344 {
345 register struct nfsreq *rp;
346 register struct nfsmount *nmp = rep->r_nmp;
347 int error;
348
349 nfs_disconnect(nmp);
350 while ((error = nfs_connect(nmp, rep))) {
351 if (error == EINTR || error == ERESTART)
352 return (EINTR);
353 (void) tsleep((caddr_t)&lbolt, PSOCK, "nfscon", 0);
354 }
355
356 /*
357 * Loop through outstanding request list and fix up all requests
358 * on old socket.
359 */
360 for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) {
361 if (rp->r_nmp == nmp)
362 rp->r_flags |= R_MUSTRESEND;
363 }
364 return (0);
365 }
366
367 /*
368 * NFS disconnect. Clean up and unlink.
369 */
370 void
371 nfs_disconnect(nmp)
372 register struct nfsmount *nmp;
373 {
374 register struct socket *so;
375
376 if (nmp->nm_so) {
377 so = nmp->nm_so;
378 nmp->nm_so = (struct socket *)0;
379 soshutdown(so, 2);
380 soclose(so);
381 }
382 }
383
384 /*
385 * This is the nfs send routine. For connection based socket types, it
386 * must be called with an nfs_sndlock() on the socket.
387 * "rep == NULL" indicates that it has been called from a server.
388 * For the client side:
389 * - return EINTR if the RPC is terminated, 0 otherwise
390 * - set R_MUSTRESEND if the send fails for any reason
391 * - do any cleanup required by recoverable socket errors (???)
392 * For the server side:
393 * - return EINTR or ERESTART if interrupted by a signal
394 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
395 * - do any cleanup required by recoverable socket errors (???)
396 */
397 int
398 nfs_send(so, nam, top, rep)
399 register struct socket *so;
400 struct mbuf *nam;
401 register struct mbuf *top;
402 struct nfsreq *rep;
403 {
404 struct mbuf *sendnam;
405 int error, soflags, flags;
406
407 if (rep) {
408 if (rep->r_flags & R_SOFTTERM) {
409 m_freem(top);
410 return (EINTR);
411 }
412 if ((so = rep->r_nmp->nm_so) == NULL) {
413 rep->r_flags |= R_MUSTRESEND;
414 m_freem(top);
415 return (0);
416 }
417 rep->r_flags &= ~R_MUSTRESEND;
418 soflags = rep->r_nmp->nm_soflags;
419 } else
420 soflags = so->so_proto->pr_flags;
421 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
422 sendnam = (struct mbuf *)0;
423 else
424 sendnam = nam;
425 if (so->so_type == SOCK_SEQPACKET)
426 flags = MSG_EOR;
427 else
428 flags = 0;
429
430 error = sosend(so, sendnam, (struct uio *)0, top,
431 (struct mbuf *)0, flags);
432 if (error) {
433 if (rep) {
434 log(LOG_INFO, "nfs send error %d for server %s\n",error,
435 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
436 /*
437 * Deal with errors for the client side.
438 */
439 if (rep->r_flags & R_SOFTTERM)
440 error = EINTR;
441 else
442 rep->r_flags |= R_MUSTRESEND;
443 } else
444 log(LOG_INFO, "nfsd send error %d\n", error);
445
446 /*
447 * Handle any recoverable (soft) socket errors here. (???)
448 */
449 if (error != EINTR && error != ERESTART &&
450 error != EWOULDBLOCK && error != EPIPE)
451 error = 0;
452 }
453 return (error);
454 }
455
456 /*
457 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
458 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
459 * Mark and consolidate the data into a new mbuf list.
460 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
461 * small mbufs.
462 * For SOCK_STREAM we must be very careful to read an entire record once
463 * we have read any of it, even if the system call has been interrupted.
464 */
465 int
466 nfs_receive(rep, aname, mp)
467 register struct nfsreq *rep;
468 struct mbuf **aname;
469 struct mbuf **mp;
470 {
471 register struct socket *so;
472 struct uio auio;
473 struct iovec aio;
474 register struct mbuf *m;
475 struct mbuf *control;
476 u_long len;
477 struct mbuf **getnam;
478 int error, sotype, rcvflg;
479 struct proc *p = curproc; /* XXX */
480
481 /*
482 * Set up arguments for soreceive()
483 */
484 *mp = (struct mbuf *)0;
485 *aname = (struct mbuf *)0;
486 sotype = rep->r_nmp->nm_sotype;
487
488 /*
489 * For reliable protocols, lock against other senders/receivers
490 * in case a reconnect is necessary.
491 * For SOCK_STREAM, first get the Record Mark to find out how much
492 * more there is to get.
493 * We must lock the socket against other receivers
494 * until we have an entire rpc request/reply.
495 */
496 if (sotype != SOCK_DGRAM) {
497 error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
498 if (error)
499 return (error);
500 tryagain:
501 /*
502 * Check for fatal errors and resending request.
503 */
504 /*
505 * Ugh: If a reconnect attempt just happened, nm_so
506 * would have changed. NULL indicates a failed
507 * attempt that has essentially shut down this
508 * mount point.
509 */
510 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
511 nfs_sndunlock(&rep->r_nmp->nm_flag);
512 return (EINTR);
513 }
514 so = rep->r_nmp->nm_so;
515 if (!so) {
516 error = nfs_reconnect(rep);
517 if (error) {
518 nfs_sndunlock(&rep->r_nmp->nm_flag);
519 return (error);
520 }
521 goto tryagain;
522 }
523 while (rep->r_flags & R_MUSTRESEND) {
524 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
525 nfsstats.rpcretries++;
526 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
527 if (error) {
528 if (error == EINTR || error == ERESTART ||
529 (error = nfs_reconnect(rep))) {
530 nfs_sndunlock(&rep->r_nmp->nm_flag);
531 return (error);
532 }
533 goto tryagain;
534 }
535 }
536 nfs_sndunlock(&rep->r_nmp->nm_flag);
537 if (sotype == SOCK_STREAM) {
538 aio.iov_base = (caddr_t) &len;
539 aio.iov_len = sizeof(u_long);
540 auio.uio_iov = &aio;
541 auio.uio_iovcnt = 1;
542 auio.uio_segflg = UIO_SYSSPACE;
543 auio.uio_rw = UIO_READ;
544 auio.uio_offset = 0;
545 auio.uio_resid = sizeof(u_long);
546 auio.uio_procp = p;
547 do {
548 rcvflg = MSG_WAITALL;
549 error = soreceive(so, (struct mbuf **)0, &auio,
550 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
551 if (error == EWOULDBLOCK && rep) {
552 if (rep->r_flags & R_SOFTTERM)
553 return (EINTR);
554 }
555 } while (error == EWOULDBLOCK);
556 if (!error && auio.uio_resid > 0) {
557 log(LOG_INFO,
558 "short receive (%d/%d) from nfs server %s\n",
559 sizeof(u_long) - auio.uio_resid,
560 sizeof(u_long),
561 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
562 error = EPIPE;
563 }
564 if (error)
565 goto errout;
566 len = ntohl(len) & ~0x80000000;
567 /*
568 * This is SERIOUS! We are out of sync with the sender
569 * and forcing a disconnect/reconnect is all I can do.
570 */
571 if (len > NFS_MAXPACKET) {
572 log(LOG_ERR, "%s (%d) from nfs server %s\n",
573 "impossible packet length",
574 len,
575 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
576 error = EFBIG;
577 goto errout;
578 }
579 auio.uio_resid = len;
580 do {
581 rcvflg = MSG_WAITALL;
582 error = soreceive(so, (struct mbuf **)0,
583 &auio, mp, (struct mbuf **)0, &rcvflg);
584 } while (error == EWOULDBLOCK || error == EINTR ||
585 error == ERESTART);
586 if (!error && auio.uio_resid > 0) {
587 log(LOG_INFO,
588 "short receive (%d/%d) from nfs server %s\n",
589 len - auio.uio_resid, len,
590 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
591 error = EPIPE;
592 }
593 } else {
594 /*
595 * NB: Since uio_resid is big, MSG_WAITALL is ignored
596 * and soreceive() will return when it has either a
597 * control msg or a data msg.
598 * We have no use for control msg., but must grab them
599 * and then throw them away so we know what is going
600 * on.
601 */
602 auio.uio_resid = len = 100000000; /* Anything Big */
603 auio.uio_procp = p;
604 do {
605 rcvflg = 0;
606 error = soreceive(so, (struct mbuf **)0,
607 &auio, mp, &control, &rcvflg);
608 if (control)
609 m_freem(control);
610 if (error == EWOULDBLOCK && rep) {
611 if (rep->r_flags & R_SOFTTERM)
612 return (EINTR);
613 }
614 } while (error == EWOULDBLOCK ||
615 (!error && *mp == NULL && control));
616 if ((rcvflg & MSG_EOR) == 0)
617 printf("Egad!!\n");
618 if (!error && *mp == NULL)
619 error = EPIPE;
620 len -= auio.uio_resid;
621 }
622 errout:
623 if (error && error != EINTR && error != ERESTART) {
624 m_freem(*mp);
625 *mp = (struct mbuf *)0;
626 if (error != EPIPE)
627 log(LOG_INFO,
628 "receive error %d from nfs server %s\n",
629 error,
630 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
631 error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
632 if (!error)
633 error = nfs_reconnect(rep);
634 if (!error)
635 goto tryagain;
636 }
637 } else {
638 if ((so = rep->r_nmp->nm_so) == NULL)
639 return (EACCES);
640 if (so->so_state & SS_ISCONNECTED)
641 getnam = (struct mbuf **)0;
642 else
643 getnam = aname;
644 auio.uio_resid = len = 1000000;
645 auio.uio_procp = p;
646 do {
647 rcvflg = 0;
648 error = soreceive(so, getnam, &auio, mp,
649 (struct mbuf **)0, &rcvflg);
650 if (error == EWOULDBLOCK &&
651 (rep->r_flags & R_SOFTTERM))
652 return (EINTR);
653 } while (error == EWOULDBLOCK);
654 len -= auio.uio_resid;
655 }
656 if (error) {
657 m_freem(*mp);
658 *mp = (struct mbuf *)0;
659 }
660 /*
661 * Search for any mbufs that are not a multiple of 4 bytes long
662 * or with m_data not longword aligned.
663 * These could cause pointer alignment problems, so copy them to
664 * well aligned mbufs.
665 */
666 nfs_realign(*mp, 5 * NFSX_UNSIGNED);
667 return (error);
668 }
669
670 /*
671 * Implement receipt of reply on a socket.
672 * We must search through the list of received datagrams matching them
673 * with outstanding requests using the xid, until ours is found.
674 */
675 /* ARGSUSED */
676 int
677 nfs_reply(myrep)
678 struct nfsreq *myrep;
679 {
680 register struct nfsreq *rep;
681 register struct nfsmount *nmp = myrep->r_nmp;
682 register long t1;
683 struct mbuf *mrep, *nam, *md;
684 u_long rxid, *tl;
685 caddr_t dpos, cp2;
686 int error;
687
688 /*
689 * Loop around until we get our own reply
690 */
691 for (;;) {
692 /*
693 * Lock against other receivers so that I don't get stuck in
694 * sbwait() after someone else has received my reply for me.
695 * Also necessary for connection based protocols to avoid
696 * race conditions during a reconnect.
697 */
698 error = nfs_rcvlock(myrep);
699 if (error)
700 return (error);
701 /* Already received, bye bye */
702 if (myrep->r_mrep != NULL) {
703 nfs_rcvunlock(&nmp->nm_flag);
704 return (0);
705 }
706 /*
707 * Get the next Rpc reply off the socket
708 */
709 error = nfs_receive(myrep, &nam, &mrep);
710 nfs_rcvunlock(&nmp->nm_flag);
711 if (error) {
712
713 /*
714 * Ignore routing errors on connectionless protocols??
715 */
716 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
717 nmp->nm_so->so_error = 0;
718 if (myrep->r_flags & R_GETONEREP)
719 return (0);
720 continue;
721 }
722 return (error);
723 }
724 if (nam)
725 m_freem(nam);
726
727 /*
728 * Get the xid and check that it is an rpc reply
729 */
730 md = mrep;
731 dpos = mtod(md, caddr_t);
732 nfsm_dissect(tl, u_long *, 2*NFSX_UNSIGNED);
733 rxid = *tl++;
734 if (*tl != rpc_reply) {
735 if (nmp->nm_flag & NFSMNT_NQNFS) {
736 if (nqnfs_callback(nmp, mrep, md, dpos))
737 nfsstats.rpcinvalid++;
738 } else {
739 nfsstats.rpcinvalid++;
740 m_freem(mrep);
741 }
742 nfsmout:
743 if (myrep->r_flags & R_GETONEREP)
744 return (0);
745 continue;
746 }
747
748 /*
749 * Loop through the request list to match up the reply
750 * Iff no match, just drop the datagram
751 */
752 for (rep = nfs_reqq.tqh_first; rep != 0;
753 rep = rep->r_chain.tqe_next) {
754 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
755 /* Found it.. */
756 rep->r_mrep = mrep;
757 rep->r_md = md;
758 rep->r_dpos = dpos;
759 if (nfsrtton) {
760 struct rttl *rt;
761
762 rt = &nfsrtt.rttl[nfsrtt.pos];
763 rt->proc = rep->r_procnum;
764 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
765 rt->sent = nmp->nm_sent;
766 rt->cwnd = nmp->nm_cwnd;
767 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
768 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
769 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
770 rt->tstamp = time;
771 if (rep->r_flags & R_TIMING)
772 rt->rtt = rep->r_rtt;
773 else
774 rt->rtt = 1000000;
775 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
776 }
777 /*
778 * Update congestion window.
779 * Do the additive increase of
780 * one rpc/rtt.
781 */
782 if (nmp->nm_cwnd <= nmp->nm_sent) {
783 nmp->nm_cwnd +=
784 (NFS_CWNDSCALE * NFS_CWNDSCALE +
785 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
786 if (nmp->nm_cwnd > NFS_MAXCWND)
787 nmp->nm_cwnd = NFS_MAXCWND;
788 }
789 rep->r_flags &= ~R_SENT;
790 nmp->nm_sent -= NFS_CWNDSCALE;
791 /*
792 * Update rtt using a gain of 0.125 on the mean
793 * and a gain of 0.25 on the deviation.
794 */
795 if (rep->r_flags & R_TIMING) {
796 /*
797 * Since the timer resolution of
798 * NFS_HZ is so course, it can often
799 * result in r_rtt == 0. Since
800 * r_rtt == N means that the actual
801 * rtt is between N+dt and N+2-dt ticks,
802 * add 1.
803 */
804 t1 = rep->r_rtt + 1;
805 t1 -= (NFS_SRTT(rep) >> 3);
806 NFS_SRTT(rep) += t1;
807 if (t1 < 0)
808 t1 = -t1;
809 t1 -= (NFS_SDRTT(rep) >> 2);
810 NFS_SDRTT(rep) += t1;
811 }
812 nmp->nm_timeouts = 0;
813 break;
814 }
815 }
816 /*
817 * If not matched to a request, drop it.
818 * If it's mine, get out.
819 */
820 if (rep == 0) {
821 nfsstats.rpcunexpected++;
822 m_freem(mrep);
823 } else if (rep == myrep) {
824 if (rep->r_mrep == NULL)
825 panic("nfsreply nil");
826 return (0);
827 }
828 if (myrep->r_flags & R_GETONEREP)
829 return (0);
830 }
831 }
832
833 /*
834 * nfs_request - goes something like this
835 * - fill in request struct
836 * - links it into list
837 * - calls nfs_send() for first transmit
838 * - calls nfs_receive() to get reply
839 * - break down rpc header and return with nfs reply pointed to
840 * by mrep or error
841 * nb: always frees up mreq mbuf list
842 */
843 int
844 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp)
845 struct vnode *vp;
846 struct mbuf *mrest;
847 int procnum;
848 struct proc *procp;
849 struct ucred *cred;
850 struct mbuf **mrp;
851 struct mbuf **mdp;
852 caddr_t *dposp;
853 {
854 register struct mbuf *m, *mrep;
855 register struct nfsreq *rep;
856 register u_long *tl;
857 register int i;
858 struct nfsmount *nmp;
859 struct mbuf *md, *mheadend;
860 struct nfsnode *np;
861 char nickv[RPCX_NICKVERF];
862 time_t reqtime, waituntil;
863 caddr_t dpos, cp2;
864 int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type;
865 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
866 int verf_len, verf_type;
867 u_long xid;
868 u_quad_t frev;
869 char *auth_str, *verf_str;
870 NFSKERBKEY_T key; /* save session key */
871
872 nmp = VFSTONFS(vp->v_mount);
873 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
874 rep->r_nmp = nmp;
875 rep->r_vp = vp;
876 rep->r_procp = procp;
877 rep->r_procnum = procnum;
878 i = 0;
879 m = mrest;
880 while (m) {
881 i += m->m_len;
882 m = m->m_next;
883 }
884 mrest_len = i;
885
886 /*
887 * Get the RPC header with authorization.
888 */
889 kerbauth:
890 verf_str = auth_str = (char *)0;
891 if (nmp->nm_flag & NFSMNT_KERB) {
892 verf_str = nickv;
893 verf_len = sizeof (nickv);
894 auth_type = RPCAUTH_KERB4;
895 bzero((caddr_t)key, sizeof (key));
896 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
897 &auth_len, verf_str, verf_len)) {
898 error = nfs_getauth(nmp, rep, cred, &auth_str,
899 &auth_len, verf_str, &verf_len, key);
900 if (error) {
901 free((caddr_t)rep, M_NFSREQ);
902 m_freem(mrest);
903 return (error);
904 }
905 }
906 } else {
907 auth_type = RPCAUTH_UNIX;
908 if (cred->cr_ngroups < 1)
909 panic("nfsreq nogrps");
910 auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
911 nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
912 5 * NFSX_UNSIGNED;
913 }
914 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
915 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
916 if (auth_str)
917 free(auth_str, M_TEMP);
918
919 /*
920 * For stream protocols, insert a Sun RPC Record Mark.
921 */
922 if (nmp->nm_sotype == SOCK_STREAM) {
923 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
924 *mtod(m, u_long *) = htonl(0x80000000 |
925 (m->m_pkthdr.len - NFSX_UNSIGNED));
926 }
927 rep->r_mreq = m;
928 rep->r_xid = xid;
929 tryagain:
930 if (nmp->nm_flag & NFSMNT_SOFT)
931 rep->r_retry = nmp->nm_retry;
932 else
933 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
934 rep->r_rtt = rep->r_rexmit = 0;
935 if (proct[procnum] > 0)
936 rep->r_flags = R_TIMING;
937 else
938 rep->r_flags = 0;
939 rep->r_mrep = NULL;
940
941 /*
942 * Do the client side RPC.
943 */
944 nfsstats.rpcrequests++;
945 /*
946 * Chain request into list of outstanding requests. Be sure
947 * to put it LAST so timer finds oldest requests first.
948 */
949 s = splsoftclock();
950 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
951
952 /* Get send time for nqnfs */
953 reqtime = time.tv_sec;
954
955 /*
956 * If backing off another request or avoiding congestion, don't
957 * send this one now but let timer do it. If not timing a request,
958 * do it now.
959 */
960 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
961 (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
962 nmp->nm_sent < nmp->nm_cwnd)) {
963 splx(s);
964 if (nmp->nm_soflags & PR_CONNREQUIRED)
965 error = nfs_sndlock(&nmp->nm_flag, rep);
966 if (!error) {
967 m = m_copym(m, 0, M_COPYALL, M_WAIT);
968 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
969 if (nmp->nm_soflags & PR_CONNREQUIRED)
970 nfs_sndunlock(&nmp->nm_flag);
971 }
972 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
973 nmp->nm_sent += NFS_CWNDSCALE;
974 rep->r_flags |= R_SENT;
975 }
976 } else {
977 splx(s);
978 rep->r_rtt = -1;
979 }
980
981 /*
982 * Wait for the reply from our send or the timer's.
983 */
984 if (!error || error == EPIPE)
985 error = nfs_reply(rep);
986
987 /*
988 * RPC done, unlink the request.
989 */
990 s = splsoftclock();
991 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
992 splx(s);
993
994 /*
995 * Decrement the outstanding request count.
996 */
997 if (rep->r_flags & R_SENT) {
998 rep->r_flags &= ~R_SENT; /* paranoia */
999 nmp->nm_sent -= NFS_CWNDSCALE;
1000 }
1001
1002 /*
1003 * If there was a successful reply and a tprintf msg.
1004 * tprintf a response.
1005 */
1006 if (!error && (rep->r_flags & R_TPRINTFMSG))
1007 nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
1008 "is alive again");
1009 mrep = rep->r_mrep;
1010 md = rep->r_md;
1011 dpos = rep->r_dpos;
1012 if (error) {
1013 m_freem(rep->r_mreq);
1014 free((caddr_t)rep, M_NFSREQ);
1015 return (error);
1016 }
1017
1018 /*
1019 * break down the rpc header and check if ok
1020 */
1021 nfsm_dissect(tl, u_long *, 3 * NFSX_UNSIGNED);
1022 if (*tl++ == rpc_msgdenied) {
1023 if (*tl == rpc_mismatch)
1024 error = EOPNOTSUPP;
1025 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
1026 if (!failed_auth) {
1027 failed_auth++;
1028 mheadend->m_next = (struct mbuf *)0;
1029 m_freem(mrep);
1030 m_freem(rep->r_mreq);
1031 goto kerbauth;
1032 } else
1033 error = EAUTH;
1034 } else
1035 error = EACCES;
1036 m_freem(mrep);
1037 m_freem(rep->r_mreq);
1038 free((caddr_t)rep, M_NFSREQ);
1039 return (error);
1040 }
1041
1042 /*
1043 * Grab any Kerberos verifier, otherwise just throw it away.
1044 */
1045 verf_type = fxdr_unsigned(int, *tl++);
1046 i = fxdr_unsigned(int, *tl);
1047 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1048 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1049 if (error)
1050 goto nfsmout;
1051 } else if (i > 0)
1052 nfsm_adv(nfsm_rndup(i));
1053 nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
1054 /* 0 == ok */
1055 if (*tl == 0) {
1056 nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
1057 if (*tl != 0) {
1058 error = fxdr_unsigned(int, *tl);
1059 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1060 error == NFSERR_TRYLATER) {
1061 m_freem(mrep);
1062 error = 0;
1063 waituntil = time.tv_sec + trylater_delay;
1064 while (time.tv_sec < waituntil)
1065 (void) tsleep((caddr_t)&lbolt,
1066 PSOCK, "nqnfstry", 0);
1067 trylater_delay *= nfs_backoff[trylater_cnt];
1068 if (trylater_cnt < 7)
1069 trylater_cnt++;
1070 goto tryagain;
1071 }
1072
1073 /*
1074 * If the File Handle was stale, invalidate the
1075 * lookup cache, just in case.
1076 */
1077 if (error == ESTALE)
1078 cache_purge(vp);
1079 if (nmp->nm_flag & NFSMNT_NFSV3) {
1080 *mrp = mrep;
1081 *mdp = md;
1082 *dposp = dpos;
1083 error |= NFSERR_RETERR;
1084 } else
1085 m_freem(mrep);
1086 m_freem(rep->r_mreq);
1087 free((caddr_t)rep, M_NFSREQ);
1088 return (error);
1089 }
1090
1091 /*
1092 * For nqnfs, get any lease in reply
1093 */
1094 if (nmp->nm_flag & NFSMNT_NQNFS) {
1095 nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
1096 if (*tl) {
1097 np = VTONFS(vp);
1098 nqlflag = fxdr_unsigned(int, *tl);
1099 nfsm_dissect(tl, u_long *, 4*NFSX_UNSIGNED);
1100 cachable = fxdr_unsigned(int, *tl++);
1101 reqtime += fxdr_unsigned(int, *tl++);
1102 if (reqtime > time.tv_sec) {
1103 fxdr_hyper(tl, &frev);
1104 nqnfs_clientlease(nmp, np, nqlflag,
1105 cachable, reqtime, frev);
1106 }
1107 }
1108 }
1109 *mrp = mrep;
1110 *mdp = md;
1111 *dposp = dpos;
1112 m_freem(rep->r_mreq);
1113 FREE((caddr_t)rep, M_NFSREQ);
1114 return (0);
1115 }
1116 m_freem(mrep);
1117 error = EPROTONOSUPPORT;
1118 nfsmout:
1119 m_freem(rep->r_mreq);
1120 free((caddr_t)rep, M_NFSREQ);
1121 return (error);
1122 }
1123
1124 /*
1125 * Generate the rpc reply header
1126 * siz arg. is used to decide if adding a cluster is worthwhile
1127 */
1128 int
1129 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1130 int siz;
1131 struct nfsrv_descript *nd;
1132 struct nfssvc_sock *slp;
1133 int err;
1134 int cache;
1135 u_quad_t *frev;
1136 struct mbuf **mrq;
1137 struct mbuf **mbp;
1138 caddr_t *bposp;
1139 {
1140 register u_long *tl;
1141 register struct mbuf *mreq;
1142 caddr_t bpos;
1143 struct mbuf *mb, *mb2;
1144
1145 MGETHDR(mreq, M_WAIT, MT_DATA);
1146 mb = mreq;
1147 /*
1148 * If this is a big reply, use a cluster else
1149 * try and leave leading space for the lower level headers.
1150 */
1151 siz += RPC_REPLYSIZ;
1152 if (siz >= MINCLSIZE) {
1153 MCLGET(mreq, M_WAIT);
1154 } else
1155 mreq->m_data += max_hdr;
1156 tl = mtod(mreq, u_long *);
1157 mreq->m_len = 6 * NFSX_UNSIGNED;
1158 bpos = ((caddr_t)tl) + mreq->m_len;
1159 *tl++ = txdr_unsigned(nd->nd_retxid);
1160 *tl++ = rpc_reply;
1161 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1162 *tl++ = rpc_msgdenied;
1163 if (err & NFSERR_AUTHERR) {
1164 *tl++ = rpc_autherr;
1165 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1166 mreq->m_len -= NFSX_UNSIGNED;
1167 bpos -= NFSX_UNSIGNED;
1168 } else {
1169 *tl++ = rpc_mismatch;
1170 *tl++ = txdr_unsigned(RPC_VER2);
1171 *tl = txdr_unsigned(RPC_VER2);
1172 }
1173 } else {
1174 *tl++ = rpc_msgaccepted;
1175
1176 /*
1177 * For Kerberos authentication, we must send the nickname
1178 * verifier back, otherwise just RPCAUTH_NULL.
1179 */
1180 if (nd->nd_flag & ND_KERBFULL) {
1181 register struct nfsuid *nuidp;
1182 struct timeval ktvin, ktvout;
1183 NFSKERBKEYSCHED_T keys; /* stores key schedule */
1184
1185 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1186 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1187 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1188 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1189 &nuidp->nu_haddr, nd->nd_nam2)))
1190 break;
1191 }
1192 if (nuidp) {
1193 ktvin.tv_sec =
1194 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1195 ktvin.tv_usec =
1196 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1197
1198 /*
1199 * Encrypt the timestamp in ecb mode using the
1200 * session key.
1201 */
1202 #ifdef NFSKERB
1203 XXX
1204 #endif
1205
1206 *tl++ = rpc_auth_kerb;
1207 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1208 *tl = ktvout.tv_sec;
1209 nfsm_build(tl, u_long *, 3 * NFSX_UNSIGNED);
1210 *tl++ = ktvout.tv_usec;
1211 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1212 } else {
1213 *tl++ = 0;
1214 *tl++ = 0;
1215 }
1216 } else {
1217 *tl++ = 0;
1218 *tl++ = 0;
1219 }
1220 switch (err) {
1221 case EPROGUNAVAIL:
1222 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1223 break;
1224 case EPROGMISMATCH:
1225 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1226 nfsm_build(tl, u_long *, 2 * NFSX_UNSIGNED);
1227 if (nd->nd_flag & ND_NQNFS) {
1228 *tl++ = txdr_unsigned(3);
1229 *tl = txdr_unsigned(3);
1230 } else {
1231 *tl++ = txdr_unsigned(2);
1232 *tl = txdr_unsigned(3);
1233 }
1234 break;
1235 case EPROCUNAVAIL:
1236 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1237 break;
1238 case EBADRPC:
1239 *tl = txdr_unsigned(RPC_GARBAGE);
1240 break;
1241 default:
1242 *tl = 0;
1243 if (err != NFSERR_RETVOID) {
1244 nfsm_build(tl, u_long *, NFSX_UNSIGNED);
1245 if (err)
1246 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1247 else
1248 *tl = 0;
1249 }
1250 break;
1251 };
1252 }
1253
1254 /*
1255 * For nqnfs, piggyback lease as requested.
1256 */
1257 if ((nd->nd_flag & ND_NQNFS) && err == 0) {
1258 if (nd->nd_flag & ND_LEASE) {
1259 nfsm_build(tl, u_long *, 5 * NFSX_UNSIGNED);
1260 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE);
1261 *tl++ = txdr_unsigned(cache);
1262 *tl++ = txdr_unsigned(nd->nd_duration);
1263 txdr_hyper(frev, tl);
1264 } else {
1265 nfsm_build(tl, u_long *, NFSX_UNSIGNED);
1266 *tl = 0;
1267 }
1268 }
1269 *mrq = mreq;
1270 *mbp = mb;
1271 *bposp = bpos;
1272 if (err != 0 && err != NFSERR_RETVOID)
1273 nfsstats.srvrpc_errs++;
1274 return (0);
1275 }
1276
1277 /*
1278 * Nfs timer routine
1279 * Scan the nfsreq list and retranmit any requests that have timed out
1280 * To avoid retransmission attempts on STREAM sockets (in the future) make
1281 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1282 */
1283 void
1284 nfs_timer(arg)
1285 void *arg; /* never used */
1286 {
1287 register struct nfsreq *rep;
1288 register struct mbuf *m;
1289 register struct socket *so;
1290 register struct nfsmount *nmp;
1291 register int timeo;
1292 register struct nfssvc_sock *slp;
1293 static long lasttime = 0;
1294 int s, error;
1295 u_quad_t cur_usec;
1296
1297 s = splnet();
1298 for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) {
1299 nmp = rep->r_nmp;
1300 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1301 continue;
1302 if (nfs_sigintr(nmp, rep, rep->r_procp)) {
1303 rep->r_flags |= R_SOFTTERM;
1304 continue;
1305 }
1306 if (rep->r_rtt >= 0) {
1307 rep->r_rtt++;
1308 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1309 timeo = nmp->nm_timeo;
1310 else
1311 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1312 if (nmp->nm_timeouts > 0)
1313 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1314 if (rep->r_rtt <= timeo)
1315 continue;
1316 if (nmp->nm_timeouts < 8)
1317 nmp->nm_timeouts++;
1318 }
1319 /*
1320 * Check for server not responding
1321 */
1322 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1323 rep->r_rexmit > nmp->nm_deadthresh) {
1324 nfs_msg(rep->r_procp,
1325 nmp->nm_mountp->mnt_stat.f_mntfromname,
1326 "not responding");
1327 rep->r_flags |= R_TPRINTFMSG;
1328 }
1329 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1330 nfsstats.rpctimeouts++;
1331 rep->r_flags |= R_SOFTTERM;
1332 continue;
1333 }
1334 if (nmp->nm_sotype != SOCK_DGRAM) {
1335 if (++rep->r_rexmit > NFS_MAXREXMIT)
1336 rep->r_rexmit = NFS_MAXREXMIT;
1337 continue;
1338 }
1339 if ((so = nmp->nm_so) == NULL)
1340 continue;
1341
1342 /*
1343 * If there is enough space and the window allows..
1344 * Resend it
1345 * Set r_rtt to -1 in case we fail to send it now.
1346 */
1347 rep->r_rtt = -1;
1348 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1349 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1350 (rep->r_flags & R_SENT) ||
1351 nmp->nm_sent < nmp->nm_cwnd) &&
1352 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1353 if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1354 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1355 (struct mbuf *)0, (struct mbuf *)0);
1356 else
1357 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1358 nmp->nm_nam, (struct mbuf *)0);
1359 if (error) {
1360 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1361 so->so_error = 0;
1362 } else {
1363 /*
1364 * Iff first send, start timing
1365 * else turn timing off, backoff timer
1366 * and divide congestion window by 2.
1367 */
1368 if (rep->r_flags & R_SENT) {
1369 rep->r_flags &= ~R_TIMING;
1370 if (++rep->r_rexmit > NFS_MAXREXMIT)
1371 rep->r_rexmit = NFS_MAXREXMIT;
1372 nmp->nm_cwnd >>= 1;
1373 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1374 nmp->nm_cwnd = NFS_CWNDSCALE;
1375 nfsstats.rpcretries++;
1376 } else {
1377 rep->r_flags |= R_SENT;
1378 nmp->nm_sent += NFS_CWNDSCALE;
1379 }
1380 rep->r_rtt = 0;
1381 }
1382 }
1383 }
1384
1385 /*
1386 * Call the nqnfs server timer once a second to handle leases.
1387 */
1388 if (lasttime != time.tv_sec) {
1389 lasttime = time.tv_sec;
1390 nqnfs_serverd();
1391 }
1392
1393 /*
1394 * Scan the write gathering queues for writes that need to be
1395 * completed now.
1396 */
1397 cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec;
1398 for (slp = nfssvc_sockhead.tqh_first; slp != 0;
1399 slp = slp->ns_chain.tqe_next) {
1400 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
1401 nfsrv_wakenfsd(slp);
1402 }
1403 splx(s);
1404 timeout(nfs_timer, (void *)0, nfs_ticks);
1405 }
1406
1407 /*
1408 * Test for a termination condition pending on the process.
1409 * This is used for NFSMNT_INT mounts.
1410 */
1411 int
1412 nfs_sigintr(nmp, rep, p)
1413 struct nfsmount *nmp;
1414 struct nfsreq *rep;
1415 register struct proc *p;
1416 {
1417
1418 if (rep && (rep->r_flags & R_SOFTTERM))
1419 return (EINTR);
1420 if (!(nmp->nm_flag & NFSMNT_INT))
1421 return (0);
1422 if (p && p->p_siglist &&
1423 (((p->p_siglist & ~p->p_sigmask) & ~p->p_sigignore) &
1424 NFSINT_SIGMASK))
1425 return (EINTR);
1426 return (0);
1427 }
1428
1429 /*
1430 * Lock a socket against others.
1431 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1432 * and also to avoid race conditions between the processes with nfs requests
1433 * in progress when a reconnect is necessary.
1434 */
1435 int
1436 nfs_sndlock(flagp, rep)
1437 register int *flagp;
1438 struct nfsreq *rep;
1439 {
1440 struct proc *p;
1441 int slpflag = 0, slptimeo = 0;
1442
1443 if (rep) {
1444 p = rep->r_procp;
1445 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1446 slpflag = PCATCH;
1447 } else
1448 p = (struct proc *)0;
1449 while (*flagp & NFSMNT_SNDLOCK) {
1450 if (nfs_sigintr(rep->r_nmp, rep, p))
1451 return (EINTR);
1452 *flagp |= NFSMNT_WANTSND;
1453 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck",
1454 slptimeo);
1455 if (slpflag == PCATCH) {
1456 slpflag = 0;
1457 slptimeo = 2 * hz;
1458 }
1459 }
1460 *flagp |= NFSMNT_SNDLOCK;
1461 return (0);
1462 }
1463
1464 /*
1465 * Unlock the stream socket for others.
1466 */
1467 void
1468 nfs_sndunlock(flagp)
1469 register int *flagp;
1470 {
1471
1472 if ((*flagp & NFSMNT_SNDLOCK) == 0)
1473 panic("nfs sndunlock");
1474 *flagp &= ~NFSMNT_SNDLOCK;
1475 if (*flagp & NFSMNT_WANTSND) {
1476 *flagp &= ~NFSMNT_WANTSND;
1477 wakeup((caddr_t)flagp);
1478 }
1479 }
1480
1481 int
1482 nfs_rcvlock(rep)
1483 register struct nfsreq *rep;
1484 {
1485 register int *flagp = &rep->r_nmp->nm_flag;
1486 int slpflag, slptimeo = 0;
1487
1488 if (*flagp & NFSMNT_INT)
1489 slpflag = PCATCH;
1490 else
1491 slpflag = 0;
1492 while (*flagp & NFSMNT_RCVLOCK) {
1493 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
1494 return (EINTR);
1495 *flagp |= NFSMNT_WANTRCV;
1496 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk",
1497 slptimeo);
1498 if (slpflag == PCATCH) {
1499 slpflag = 0;
1500 slptimeo = 2 * hz;
1501 }
1502 }
1503 *flagp |= NFSMNT_RCVLOCK;
1504 return (0);
1505 }
1506
1507 /*
1508 * Unlock the stream socket for others.
1509 */
1510 void
1511 nfs_rcvunlock(flagp)
1512 register int *flagp;
1513 {
1514
1515 if ((*flagp & NFSMNT_RCVLOCK) == 0)
1516 panic("nfs rcvunlock");
1517 *flagp &= ~NFSMNT_RCVLOCK;
1518 if (*flagp & NFSMNT_WANTRCV) {
1519 *flagp &= ~NFSMNT_WANTRCV;
1520 wakeup((caddr_t)flagp);
1521 }
1522 }
1523
1524 /*
1525 * Check for badly aligned mbuf data areas and
1526 * realign data in an mbuf list by copying the data areas up, as required.
1527 */
1528 void
1529 nfs_realign(m, hsiz)
1530 register struct mbuf *m;
1531 int hsiz;
1532 {
1533 register struct mbuf *m2;
1534 register int siz, mlen, olen;
1535 register caddr_t tcp, fcp;
1536 struct mbuf *mnew;
1537
1538 while (m) {
1539 /*
1540 * This never happens for UDP, rarely happens for TCP
1541 * but frequently happens for iso transport.
1542 */
1543 if ((m->m_len & 0x3) || (mtod(m, int) & 0x3)) {
1544 olen = m->m_len;
1545 fcp = mtod(m, caddr_t);
1546 if ((int)fcp & 0x3) {
1547 m->m_flags &= ~M_PKTHDR;
1548 if (m->m_flags & M_EXT)
1549 m->m_data = m->m_ext.ext_buf +
1550 ((m->m_ext.ext_size - olen) & ~0x3);
1551 else
1552 m->m_data = m->m_dat;
1553 }
1554 m->m_len = 0;
1555 tcp = mtod(m, caddr_t);
1556 mnew = m;
1557 m2 = m->m_next;
1558
1559 /*
1560 * If possible, only put the first invariant part
1561 * of the RPC header in the first mbuf.
1562 */
1563 mlen = M_TRAILINGSPACE(m);
1564 if (olen <= hsiz && mlen > hsiz)
1565 mlen = hsiz;
1566
1567 /*
1568 * Loop through the mbuf list consolidating data.
1569 */
1570 while (m) {
1571 while (olen > 0) {
1572 if (mlen == 0) {
1573 m2->m_flags &= ~M_PKTHDR;
1574 if (m2->m_flags & M_EXT)
1575 m2->m_data = m2->m_ext.ext_buf;
1576 else
1577 m2->m_data = m2->m_dat;
1578 m2->m_len = 0;
1579 mlen = M_TRAILINGSPACE(m2);
1580 tcp = mtod(m2, caddr_t);
1581 mnew = m2;
1582 m2 = m2->m_next;
1583 }
1584 siz = min(mlen, olen);
1585 if (tcp != fcp)
1586 bcopy(fcp, tcp, siz);
1587 mnew->m_len += siz;
1588 mlen -= siz;
1589 olen -= siz;
1590 tcp += siz;
1591 fcp += siz;
1592 }
1593 m = m->m_next;
1594 if (m) {
1595 olen = m->m_len;
1596 fcp = mtod(m, caddr_t);
1597 }
1598 }
1599
1600 /*
1601 * Finally, set m_len == 0 for any trailing mbufs that have
1602 * been copied out of.
1603 */
1604 while (m2) {
1605 m2->m_len = 0;
1606 m2 = m2->m_next;
1607 }
1608 return;
1609 }
1610 m = m->m_next;
1611 }
1612 }
1613
1614 /*
1615 * Socket upcall routine for the nfsd sockets.
1616 * The caddr_t arg is a pointer to the "struct nfssvc_sock".
1617 * Essentially do as much as possible non-blocking, else punt and it will
1618 * be called with M_WAIT from an nfsd.
1619 */
1620 void
1621 nfsrv_rcv(so, arg, waitflag)
1622 struct socket *so;
1623 caddr_t arg;
1624 int waitflag;
1625 {
1626 register struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
1627 register struct mbuf *m;
1628 struct mbuf *mp, *nam;
1629 struct uio auio;
1630 int flags, error;
1631
1632 if ((slp->ns_flag & SLP_VALID) == 0)
1633 return;
1634 #ifdef notdef
1635 /*
1636 * Define this to test for nfsds handling this under heavy load.
1637 */
1638 if (waitflag == M_DONTWAIT) {
1639 slp->ns_flag |= SLP_NEEDQ; goto dorecs;
1640 }
1641 #endif
1642 auio.uio_procp = NULL;
1643 if (so->so_type == SOCK_STREAM) {
1644 /*
1645 * If there are already records on the queue, defer soreceive()
1646 * to an nfsd so that there is feedback to the TCP layer that
1647 * the nfs servers are heavily loaded.
1648 */
1649 if (slp->ns_rec && waitflag == M_DONTWAIT) {
1650 slp->ns_flag |= SLP_NEEDQ;
1651 goto dorecs;
1652 }
1653
1654 /*
1655 * Do soreceive().
1656 */
1657 auio.uio_resid = 1000000000;
1658 flags = MSG_DONTWAIT;
1659 error = soreceive(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
1660 if (error || mp == (struct mbuf *)0) {
1661 if (error == EWOULDBLOCK)
1662 slp->ns_flag |= SLP_NEEDQ;
1663 else
1664 slp->ns_flag |= SLP_DISCONN;
1665 goto dorecs;
1666 }
1667 m = mp;
1668 if (slp->ns_rawend) {
1669 slp->ns_rawend->m_next = m;
1670 slp->ns_cc += 1000000000 - auio.uio_resid;
1671 } else {
1672 slp->ns_raw = m;
1673 slp->ns_cc = 1000000000 - auio.uio_resid;
1674 }
1675 while (m->m_next)
1676 m = m->m_next;
1677 slp->ns_rawend = m;
1678
1679 /*
1680 * Now try and parse record(s) out of the raw stream data.
1681 */
1682 error = nfsrv_getstream(slp, waitflag);
1683 if (error) {
1684 if (error == EPERM)
1685 slp->ns_flag |= SLP_DISCONN;
1686 else
1687 slp->ns_flag |= SLP_NEEDQ;
1688 }
1689 } else {
1690 do {
1691 auio.uio_resid = 1000000000;
1692 flags = MSG_DONTWAIT;
1693 error = soreceive(so, &nam, &auio, &mp,
1694 (struct mbuf **)0, &flags);
1695 if (mp) {
1696 nfs_realign(mp, 10 * NFSX_UNSIGNED);
1697 if (nam) {
1698 m = nam;
1699 m->m_next = mp;
1700 } else
1701 m = mp;
1702 if (slp->ns_recend)
1703 slp->ns_recend->m_nextpkt = m;
1704 else
1705 slp->ns_rec = m;
1706 slp->ns_recend = m;
1707 m->m_nextpkt = (struct mbuf *)0;
1708 }
1709 if (error) {
1710 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
1711 && error != EWOULDBLOCK) {
1712 slp->ns_flag |= SLP_DISCONN;
1713 goto dorecs;
1714 }
1715 }
1716 } while (mp);
1717 }
1718
1719 /*
1720 * Now try and process the request records, non-blocking.
1721 */
1722 dorecs:
1723 if (waitflag == M_DONTWAIT &&
1724 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
1725 nfsrv_wakenfsd(slp);
1726 }
1727
1728 /*
1729 * Try and extract an RPC request from the mbuf data list received on a
1730 * stream socket. The "waitflag" argument indicates whether or not it
1731 * can sleep.
1732 */
1733 int
1734 nfsrv_getstream(slp, waitflag)
1735 register struct nfssvc_sock *slp;
1736 int waitflag;
1737 {
1738 register struct mbuf *m, **mpp;
1739 register char *cp1, *cp2;
1740 register int len;
1741 struct mbuf *om, *m2, *recm = 0;
1742 u_long recmark;
1743
1744 if (slp->ns_flag & SLP_GETSTREAM)
1745 panic("nfs getstream");
1746 slp->ns_flag |= SLP_GETSTREAM;
1747 for (;;) {
1748 if (slp->ns_reclen == 0) {
1749 if (slp->ns_cc < NFSX_UNSIGNED) {
1750 slp->ns_flag &= ~SLP_GETSTREAM;
1751 return (0);
1752 }
1753 m = slp->ns_raw;
1754 if (m->m_len >= NFSX_UNSIGNED) {
1755 bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
1756 m->m_data += NFSX_UNSIGNED;
1757 m->m_len -= NFSX_UNSIGNED;
1758 } else {
1759 cp1 = (caddr_t)&recmark;
1760 cp2 = mtod(m, caddr_t);
1761 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
1762 while (m->m_len == 0) {
1763 m = m->m_next;
1764 cp2 = mtod(m, caddr_t);
1765 }
1766 *cp1++ = *cp2++;
1767 m->m_data++;
1768 m->m_len--;
1769 }
1770 }
1771 slp->ns_cc -= NFSX_UNSIGNED;
1772 recmark = ntohl(recmark);
1773 slp->ns_reclen = recmark & ~0x80000000;
1774 if (recmark & 0x80000000)
1775 slp->ns_flag |= SLP_LASTFRAG;
1776 else
1777 slp->ns_flag &= ~SLP_LASTFRAG;
1778 if (slp->ns_reclen < NFS_MINPACKET || slp->ns_reclen > NFS_MAXPACKET) {
1779 slp->ns_flag &= ~SLP_GETSTREAM;
1780 return (EPERM);
1781 }
1782 }
1783
1784 /*
1785 * Now get the record part.
1786 */
1787 if (slp->ns_cc == slp->ns_reclen) {
1788 recm = slp->ns_raw;
1789 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
1790 slp->ns_cc = slp->ns_reclen = 0;
1791 } else if (slp->ns_cc > slp->ns_reclen) {
1792 len = 0;
1793 m = slp->ns_raw;
1794 om = (struct mbuf *)0;
1795 while (len < slp->ns_reclen) {
1796 if ((len + m->m_len) > slp->ns_reclen) {
1797 m2 = m_copym(m, 0, slp->ns_reclen - len,
1798 waitflag);
1799 if (m2) {
1800 if (om) {
1801 om->m_next = m2;
1802 recm = slp->ns_raw;
1803 } else
1804 recm = m2;
1805 m->m_data += slp->ns_reclen - len;
1806 m->m_len -= slp->ns_reclen - len;
1807 len = slp->ns_reclen;
1808 } else {
1809 slp->ns_flag &= ~SLP_GETSTREAM;
1810 return (EWOULDBLOCK);
1811 }
1812 } else if ((len + m->m_len) == slp->ns_reclen) {
1813 om = m;
1814 len += m->m_len;
1815 m = m->m_next;
1816 recm = slp->ns_raw;
1817 om->m_next = (struct mbuf *)0;
1818 } else {
1819 om = m;
1820 len += m->m_len;
1821 m = m->m_next;
1822 }
1823 }
1824 slp->ns_raw = m;
1825 slp->ns_cc -= len;
1826 slp->ns_reclen = 0;
1827 } else {
1828 slp->ns_flag &= ~SLP_GETSTREAM;
1829 return (0);
1830 }
1831
1832 /*
1833 * Accumulate the fragments into a record.
1834 */
1835 mpp = &slp->ns_frag;
1836 while (*mpp)
1837 mpp = &((*mpp)->m_next);
1838 *mpp = recm;
1839 if (slp->ns_flag & SLP_LASTFRAG) {
1840 nfs_realign(slp->ns_frag, 10 * NFSX_UNSIGNED);
1841 if (slp->ns_recend)
1842 slp->ns_recend->m_nextpkt = slp->ns_frag;
1843 else
1844 slp->ns_rec = slp->ns_frag;
1845 slp->ns_recend = slp->ns_frag;
1846 slp->ns_frag = (struct mbuf *)0;
1847 }
1848 }
1849 }
1850
1851 /*
1852 * Parse an RPC header.
1853 */
1854 int
1855 nfsrv_dorec(slp, nfsd, ndp)
1856 register struct nfssvc_sock *slp;
1857 struct nfsd *nfsd;
1858 struct nfsrv_descript **ndp;
1859 {
1860 register struct mbuf *m, *nam;
1861 register struct nfsrv_descript *nd;
1862 int error;
1863
1864 *ndp = NULL;
1865 if ((slp->ns_flag & SLP_VALID) == 0 ||
1866 (m = slp->ns_rec) == (struct mbuf *)0)
1867 return (ENOBUFS);
1868 slp->ns_rec = m->m_nextpkt;
1869 if (slp->ns_rec)
1870 m->m_nextpkt = (struct mbuf *)0;
1871 else
1872 slp->ns_recend = (struct mbuf *)0;
1873 if (m->m_type == MT_SONAME) {
1874 nam = m;
1875 m = m->m_next;
1876 nam->m_next = NULL;
1877 } else
1878 nam = NULL;
1879 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
1880 M_NFSRVDESC, M_WAITOK);
1881 nd->nd_md = nd->nd_mrep = m;
1882 nd->nd_nam2 = nam;
1883 nd->nd_dpos = mtod(m, caddr_t);
1884 error = nfs_getreq(nd, nfsd, TRUE);
1885 if (error) {
1886 m_freem(nam);
1887 free((caddr_t)nd, M_NFSRVDESC);
1888 return (error);
1889 }
1890 *ndp = nd;
1891 nfsd->nfsd_nd = nd;
1892 return (0);
1893 }
1894
1895 /*
1896 * Parse an RPC request
1897 * - verify it
1898 * - fill in the cred struct.
1899 */
1900 int
1901 nfs_getreq(nd, nfsd, has_header)
1902 register struct nfsrv_descript *nd;
1903 struct nfsd *nfsd;
1904 int has_header;
1905 {
1906 register int len, i;
1907 register u_long *tl;
1908 register long t1;
1909 struct uio uio;
1910 struct iovec iov;
1911 caddr_t dpos, cp2, cp;
1912 u_long nfsvers, auth_type;
1913 uid_t nickuid;
1914 int error = 0, nqnfs = 0, ticklen;
1915 struct mbuf *mrep, *md;
1916 register struct nfsuid *nuidp;
1917 struct timeval tvin, tvout;
1918 NFSKERBKEYSCHED_T keys; /* stores key schedule */
1919
1920 mrep = nd->nd_mrep;
1921 md = nd->nd_md;
1922 dpos = nd->nd_dpos;
1923 if (has_header) {
1924 nfsm_dissect(tl, u_long *, 10 * NFSX_UNSIGNED);
1925 nd->nd_retxid = fxdr_unsigned(u_long, *tl++);
1926 if (*tl++ != rpc_call) {
1927 m_freem(mrep);
1928 return (EBADRPC);
1929 }
1930 } else
1931 nfsm_dissect(tl, u_long *, 8 * NFSX_UNSIGNED);
1932 nd->nd_repstat = 0;
1933 nd->nd_flag = 0;
1934 if (*tl++ != rpc_vers) {
1935 nd->nd_repstat = ERPCMISMATCH;
1936 nd->nd_procnum = NFSPROC_NOOP;
1937 return (0);
1938 }
1939 if (*tl != nfs_prog) {
1940 if (*tl == nqnfs_prog)
1941 nqnfs++;
1942 else {
1943 nd->nd_repstat = EPROGUNAVAIL;
1944 nd->nd_procnum = NFSPROC_NOOP;
1945 return (0);
1946 }
1947 }
1948 tl++;
1949 nfsvers = fxdr_unsigned(u_long, *tl++);
1950 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) ||
1951 (nfsvers != NQNFS_VER3 && nqnfs)) {
1952 nd->nd_repstat = EPROGMISMATCH;
1953 nd->nd_procnum = NFSPROC_NOOP;
1954 return (0);
1955 }
1956 if (nqnfs)
1957 nd->nd_flag = (ND_NFSV3 | ND_NQNFS);
1958 else if (nfsvers == NFS_VER3)
1959 nd->nd_flag = ND_NFSV3;
1960 nd->nd_procnum = fxdr_unsigned(u_long, *tl++);
1961 if (nd->nd_procnum == NFSPROC_NULL)
1962 return (0);
1963 if (nd->nd_procnum >= NFS_NPROCS ||
1964 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
1965 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1966 nd->nd_repstat = EPROCUNAVAIL;
1967 nd->nd_procnum = NFSPROC_NOOP;
1968 return (0);
1969 }
1970 if ((nd->nd_flag & ND_NFSV3) == 0)
1971 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1972 auth_type = *tl++;
1973 len = fxdr_unsigned(int, *tl++);
1974 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1975 m_freem(mrep);
1976 return (EBADRPC);
1977 }
1978
1979 nd->nd_flag &= ~ND_KERBAUTH;
1980 /*
1981 * Handle auth_unix or auth_kerb.
1982 */
1983 if (auth_type == rpc_auth_unix) {
1984 len = fxdr_unsigned(int, *++tl);
1985 if (len < 0 || len > NFS_MAXNAMLEN) {
1986 m_freem(mrep);
1987 return (EBADRPC);
1988 }
1989 nfsm_adv(nfsm_rndup(len));
1990 nfsm_dissect(tl, u_long *, 3 * NFSX_UNSIGNED);
1991 bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
1992 nd->nd_cr.cr_ref = 1;
1993 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
1994 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
1995 len = fxdr_unsigned(int, *tl);
1996 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
1997 m_freem(mrep);
1998 return (EBADRPC);
1999 }
2000 nfsm_dissect(tl, u_long *, (len + 2) * NFSX_UNSIGNED);
2001 for (i = 1; i <= len; i++)
2002 if (i < NGROUPS)
2003 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
2004 else
2005 tl++;
2006 nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
2007 if (nd->nd_cr.cr_ngroups > 1)
2008 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
2009 len = fxdr_unsigned(int, *++tl);
2010 if (len < 0 || len > RPCAUTH_MAXSIZ) {
2011 m_freem(mrep);
2012 return (EBADRPC);
2013 }
2014 if (len > 0)
2015 nfsm_adv(nfsm_rndup(len));
2016 } else if (auth_type == rpc_auth_kerb) {
2017 switch (fxdr_unsigned(int, *tl++)) {
2018 case RPCAKN_FULLNAME:
2019 ticklen = fxdr_unsigned(int, *tl);
2020 *((u_long *)nfsd->nfsd_authstr) = *tl;
2021 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
2022 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
2023 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
2024 m_freem(mrep);
2025 return (EBADRPC);
2026 }
2027 uio.uio_offset = 0;
2028 uio.uio_iov = &iov;
2029 uio.uio_iovcnt = 1;
2030 uio.uio_segflg = UIO_SYSSPACE;
2031 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
2032 iov.iov_len = RPCAUTH_MAXSIZ - 4;
2033 nfsm_mtouio(&uio, uio.uio_resid);
2034 nfsm_dissect(tl, u_long *, 2 * NFSX_UNSIGNED);
2035 if (*tl++ != rpc_auth_kerb ||
2036 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
2037 printf("Bad kerb verifier\n");
2038 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2039 nd->nd_procnum = NFSPROC_NOOP;
2040 return (0);
2041 }
2042 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
2043 tl = (u_long *)cp;
2044 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
2045 printf("Not fullname kerb verifier\n");
2046 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2047 nd->nd_procnum = NFSPROC_NOOP;
2048 return (0);
2049 }
2050 cp += NFSX_UNSIGNED;
2051 bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
2052 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
2053 nd->nd_flag |= ND_KERBFULL;
2054 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
2055 break;
2056 case RPCAKN_NICKNAME:
2057 if (len != 2 * NFSX_UNSIGNED) {
2058 printf("Kerb nickname short\n");
2059 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
2060 nd->nd_procnum = NFSPROC_NOOP;
2061 return (0);
2062 }
2063 nickuid = fxdr_unsigned(uid_t, *tl);
2064 nfsm_dissect(tl, u_long *, 2 * NFSX_UNSIGNED);
2065 if (*tl++ != rpc_auth_kerb ||
2066 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
2067 printf("Kerb nick verifier bad\n");
2068 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2069 nd->nd_procnum = NFSPROC_NOOP;
2070 return (0);
2071 }
2072 nfsm_dissect(tl, u_long *, 3 * NFSX_UNSIGNED);
2073 tvin.tv_sec = *tl++;
2074 tvin.tv_usec = *tl;
2075
2076 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
2077 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
2078 if (nuidp->nu_cr.cr_uid == nickuid &&
2079 (!nd->nd_nam2 ||
2080 netaddr_match(NU_NETFAM(nuidp),
2081 &nuidp->nu_haddr, nd->nd_nam2)))
2082 break;
2083 }
2084 if (!nuidp) {
2085 nd->nd_repstat =
2086 (NFSERR_AUTHERR|AUTH_REJECTCRED);
2087 nd->nd_procnum = NFSPROC_NOOP;
2088 return (0);
2089 }
2090
2091 /*
2092 * Now, decrypt the timestamp using the session key
2093 * and validate it.
2094 */
2095 #ifdef NFSKERB
2096 XXX
2097 #endif
2098
2099 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
2100 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
2101 if (nuidp->nu_expire < time.tv_sec ||
2102 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
2103 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
2104 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
2105 nuidp->nu_expire = 0;
2106 nd->nd_repstat =
2107 (NFSERR_AUTHERR|AUTH_REJECTVERF);
2108 nd->nd_procnum = NFSPROC_NOOP;
2109 return (0);
2110 }
2111 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
2112 nd->nd_flag |= ND_KERBNICK;
2113 };
2114 } else {
2115 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
2116 nd->nd_procnum = NFSPROC_NOOP;
2117 return (0);
2118 }
2119
2120 /*
2121 * For nqnfs, get piggybacked lease request.
2122 */
2123 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
2124 nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
2125 nd->nd_flag |= fxdr_unsigned(int, *tl);
2126 if (nd->nd_flag & ND_LEASE) {
2127 nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
2128 nd->nd_duration = fxdr_unsigned(int, *tl);
2129 } else
2130 nd->nd_duration = NQ_MINLEASE;
2131 } else
2132 nd->nd_duration = NQ_MINLEASE;
2133 nd->nd_md = md;
2134 nd->nd_dpos = dpos;
2135 return (0);
2136 nfsmout:
2137 return (error);
2138 }
2139
2140 /*
2141 * Search for a sleeping nfsd and wake it up.
2142 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2143 * running nfsds will go look for the work in the nfssvc_sock list.
2144 */
2145 void
2146 nfsrv_wakenfsd(slp)
2147 struct nfssvc_sock *slp;
2148 {
2149 register struct nfsd *nd;
2150
2151 if ((slp->ns_flag & SLP_VALID) == 0)
2152 return;
2153 for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) {
2154 if (nd->nfsd_flag & NFSD_WAITING) {
2155 nd->nfsd_flag &= ~NFSD_WAITING;
2156 if (nd->nfsd_slp)
2157 panic("nfsd wakeup");
2158 slp->ns_sref++;
2159 nd->nfsd_slp = slp;
2160 wakeup((caddr_t)nd);
2161 return;
2162 }
2163 }
2164 slp->ns_flag |= SLP_DOREC;
2165 nfsd_head_flag |= NFSD_CHECKSLP;
2166 }
2167
2168 int
2169 nfs_msg(p, server, msg)
2170 struct proc *p;
2171 char *server, *msg;
2172 {
2173 tpr_t tpr;
2174
2175 if (p)
2176 tpr = tprintf_open(p);
2177 else
2178 tpr = NULL;
2179 tprintf(tpr, "nfs server %s: %s\n", server, msg);
2180 tprintf_close(tpr);
2181 return (0);
2182 }
2183