Home | History | Annotate | Line # | Download | only in nfs
nfs_socket.c revision 1.1.1.2
      1 /*
      2  * Copyright (c) 1989, 1991, 1993, 1995
      3  *	The Regents of the University of California.  All rights reserved.
      4  *
      5  * This code is derived from software contributed to Berkeley by
      6  * Rick Macklem at The University of Guelph.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *	This product includes software developed by the University of
     19  *	California, Berkeley and its contributors.
     20  * 4. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)nfs_socket.c	8.5 (Berkeley) 3/30/95
     37  */
     38 
     39 /*
     40  * Socket operations for use by nfs
     41  */
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/proc.h>
     46 #include <sys/mount.h>
     47 #include <sys/kernel.h>
     48 #include <sys/mbuf.h>
     49 #include <sys/vnode.h>
     50 #include <sys/domain.h>
     51 #include <sys/protosw.h>
     52 #include <sys/socket.h>
     53 #include <sys/socketvar.h>
     54 #include <sys/syslog.h>
     55 #include <sys/tprintf.h>
     56 
     57 #include <netinet/in.h>
     58 #include <netinet/tcp.h>
     59 
     60 #include <nfs/rpcv2.h>
     61 #include <nfs/nfsproto.h>
     62 #include <nfs/nfs.h>
     63 #include <nfs/xdr_subs.h>
     64 #include <nfs/nfsm_subs.h>
     65 #include <nfs/nfsmount.h>
     66 #include <nfs/nfsnode.h>
     67 #include <nfs/nfsrtt.h>
     68 #include <nfs/nqnfs.h>
     69 
     70 #define	TRUE	1
     71 #define	FALSE	0
     72 
     73 /*
     74  * Estimate rto for an nfs rpc sent via. an unreliable datagram.
     75  * Use the mean and mean deviation of rtt for the appropriate type of rpc
     76  * for the frequent rpcs and a default for the others.
     77  * The justification for doing "other" this way is that these rpcs
     78  * happen so infrequently that timer est. would probably be stale.
     79  * Also, since many of these rpcs are
     80  * non-idempotent, a conservative timeout is desired.
     81  * getattr, lookup - A+2D
     82  * read, write     - A+4D
     83  * other           - nm_timeo
     84  */
     85 #define	NFS_RTO(n, t) \
     86 	((t) == 0 ? (n)->nm_timeo : \
     87 	 ((t) < 3 ? \
     88 	  (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
     89 	  ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
     90 #define	NFS_SRTT(r)	(r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
     91 #define	NFS_SDRTT(r)	(r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
     92 /*
     93  * External data, mostly RPC constants in XDR form
     94  */
     95 extern u_long rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers, rpc_auth_unix,
     96 	rpc_msgaccepted, rpc_call, rpc_autherr,
     97 	rpc_auth_kerb;
     98 extern u_long nfs_prog, nqnfs_prog;
     99 extern time_t nqnfsstarttime;
    100 extern struct nfsstats nfsstats;
    101 extern int nfsv3_procid[NFS_NPROCS];
    102 extern int nfs_ticks;
    103 
    104 /*
    105  * Defines which timer to use for the procnum.
    106  * 0 - default
    107  * 1 - getattr
    108  * 2 - lookup
    109  * 3 - read
    110  * 4 - write
    111  */
    112 static int proct[NFS_NPROCS] = {
    113 	0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
    114 	0, 0, 0,
    115 };
    116 
    117 /*
    118  * There is a congestion window for outstanding rpcs maintained per mount
    119  * point. The cwnd size is adjusted in roughly the way that:
    120  * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
    121  * SIGCOMM '88". ACM, August 1988.
    122  * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
    123  * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
    124  * of rpcs is in progress.
    125  * (The sent count and cwnd are scaled for integer arith.)
    126  * Variants of "slow start" were tried and were found to be too much of a
    127  * performance hit (ave. rtt 3 times larger),
    128  * I suspect due to the large rtt that nfs rpcs have.
    129  */
    130 #define	NFS_CWNDSCALE	256
    131 #define	NFS_MAXCWND	(NFS_CWNDSCALE * 32)
    132 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
    133 int	nfs_sbwait();
    134 void	nfs_disconnect(), nfs_realign(), nfsrv_wakenfsd(), nfs_sndunlock();
    135 void	nfs_rcvunlock(), nqnfs_serverd(), nqnfs_clientlease();
    136 struct mbuf *nfsm_rpchead();
    137 int nfsrtton = 0;
    138 struct nfsrtt nfsrtt;
    139 
    140 int	nfsrv_null(),
    141 	nfsrv_getattr(),
    142 	nfsrv_setattr(),
    143 	nfsrv_lookup(),
    144 	nfsrv3_access(),
    145 	nfsrv_readlink(),
    146 	nfsrv_read(),
    147 	nfsrv_write(),
    148 	nfsrv_create(),
    149 	nfsrv_mknod(),
    150 	nfsrv_remove(),
    151 	nfsrv_rename(),
    152 	nfsrv_link(),
    153 	nfsrv_symlink(),
    154 	nfsrv_mkdir(),
    155 	nfsrv_rmdir(),
    156 	nfsrv_readdir(),
    157 	nfsrv_readdirplus(),
    158 	nfsrv_statfs(),
    159 	nfsrv_fsinfo(),
    160 	nfsrv_pathconf(),
    161 	nfsrv_commit(),
    162 	nfsrv_noop(),
    163 	nqnfsrv_getlease(),
    164 	nqnfsrv_vacated();
    165 
    166 int (*nfsrv3_procs[NFS_NPROCS])() = {
    167 	nfsrv_null,
    168 	nfsrv_getattr,
    169 	nfsrv_setattr,
    170 	nfsrv_lookup,
    171 	nfsrv3_access,
    172 	nfsrv_readlink,
    173 	nfsrv_read,
    174 	nfsrv_write,
    175 	nfsrv_create,
    176 	nfsrv_mkdir,
    177 	nfsrv_symlink,
    178 	nfsrv_mknod,
    179 	nfsrv_remove,
    180 	nfsrv_rmdir,
    181 	nfsrv_rename,
    182 	nfsrv_link,
    183 	nfsrv_readdir,
    184 	nfsrv_readdirplus,
    185 	nfsrv_statfs,
    186 	nfsrv_fsinfo,
    187 	nfsrv_pathconf,
    188 	nfsrv_commit,
    189 	nqnfsrv_getlease,
    190 	nqnfsrv_vacated,
    191 	nfsrv_noop,
    192 	nfsrv_noop
    193 };
    194 
    195 /*
    196  * Initialize sockets and congestion for a new NFS connection.
    197  * We do not free the sockaddr if error.
    198  */
    199 int
    200 nfs_connect(nmp, rep)
    201 	register struct nfsmount *nmp;
    202 	struct nfsreq *rep;
    203 {
    204 	register struct socket *so;
    205 	int s, error, rcvreserve, sndreserve;
    206 	struct sockaddr *saddr;
    207 	struct sockaddr_in *sin;
    208 	struct mbuf *m;
    209 	u_short tport;
    210 
    211 	nmp->nm_so = (struct socket *)0;
    212 	saddr = mtod(nmp->nm_nam, struct sockaddr *);
    213 	error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
    214 		nmp->nm_soproto);
    215 	if (error)
    216 		goto bad;
    217 	so = nmp->nm_so;
    218 	nmp->nm_soflags = so->so_proto->pr_flags;
    219 
    220 	/*
    221 	 * Some servers require that the client port be a reserved port number.
    222 	 */
    223 	if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
    224 		MGET(m, M_WAIT, MT_SONAME);
    225 		sin = mtod(m, struct sockaddr_in *);
    226 		sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
    227 		sin->sin_family = AF_INET;
    228 		sin->sin_addr.s_addr = INADDR_ANY;
    229 		tport = IPPORT_RESERVED - 1;
    230 		sin->sin_port = htons(tport);
    231 		while ((error = sobind(so, m)) == EADDRINUSE &&
    232 		       --tport > IPPORT_RESERVED / 2)
    233 			sin->sin_port = htons(tport);
    234 		m_freem(m);
    235 		if (error)
    236 			goto bad;
    237 	}
    238 
    239 	/*
    240 	 * Protocols that do not require connections may be optionally left
    241 	 * unconnected for servers that reply from a port other than NFS_PORT.
    242 	 */
    243 	if (nmp->nm_flag & NFSMNT_NOCONN) {
    244 		if (nmp->nm_soflags & PR_CONNREQUIRED) {
    245 			error = ENOTCONN;
    246 			goto bad;
    247 		}
    248 	} else {
    249 		error = soconnect(so, nmp->nm_nam);
    250 		if (error)
    251 			goto bad;
    252 
    253 		/*
    254 		 * Wait for the connection to complete. Cribbed from the
    255 		 * connect system call but with the wait timing out so
    256 		 * that interruptible mounts don't hang here for a long time.
    257 		 */
    258 		s = splnet();
    259 		while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
    260 			(void) tsleep((caddr_t)&so->so_timeo, PSOCK,
    261 				"nfscon", 2 * hz);
    262 			if ((so->so_state & SS_ISCONNECTING) &&
    263 			    so->so_error == 0 && rep &&
    264 			    (error = nfs_sigintr(nmp, rep, rep->r_procp))) {
    265 				so->so_state &= ~SS_ISCONNECTING;
    266 				splx(s);
    267 				goto bad;
    268 			}
    269 		}
    270 		if (so->so_error) {
    271 			error = so->so_error;
    272 			so->so_error = 0;
    273 			splx(s);
    274 			goto bad;
    275 		}
    276 		splx(s);
    277 	}
    278 	if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
    279 		so->so_rcv.sb_timeo = (5 * hz);
    280 		so->so_snd.sb_timeo = (5 * hz);
    281 	} else {
    282 		so->so_rcv.sb_timeo = 0;
    283 		so->so_snd.sb_timeo = 0;
    284 	}
    285 	if (nmp->nm_sotype == SOCK_DGRAM) {
    286 		sndreserve = nmp->nm_wsize + NFS_MAXPKTHDR;
    287 		rcvreserve = nmp->nm_rsize + NFS_MAXPKTHDR;
    288 	} else if (nmp->nm_sotype == SOCK_SEQPACKET) {
    289 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
    290 		rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR) * 2;
    291 	} else {
    292 		if (nmp->nm_sotype != SOCK_STREAM)
    293 			panic("nfscon sotype");
    294 		if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    295 			MGET(m, M_WAIT, MT_SOOPTS);
    296 			*mtod(m, int *) = 1;
    297 			m->m_len = sizeof(int);
    298 			sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
    299 		}
    300 		if (so->so_proto->pr_protocol == IPPROTO_TCP) {
    301 			MGET(m, M_WAIT, MT_SOOPTS);
    302 			*mtod(m, int *) = 1;
    303 			m->m_len = sizeof(int);
    304 			sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
    305 		}
    306 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR + sizeof (u_long))
    307 				* 2;
    308 		rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR + sizeof (u_long))
    309 				* 2;
    310 	}
    311 	error = soreserve(so, sndreserve, rcvreserve);
    312 	if (error)
    313 		goto bad;
    314 	so->so_rcv.sb_flags |= SB_NOINTR;
    315 	so->so_snd.sb_flags |= SB_NOINTR;
    316 
    317 	/* Initialize other non-zero congestion variables */
    318 	nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
    319 		nmp->nm_srtt[4] = (NFS_TIMEO << 3);
    320 	nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
    321 		nmp->nm_sdrtt[3] = nmp->nm_sdrtt[4] = 0;
    322 	nmp->nm_cwnd = NFS_MAXCWND / 2;	    /* Initial send window */
    323 	nmp->nm_sent = 0;
    324 	nmp->nm_timeouts = 0;
    325 	return (0);
    326 
    327 bad:
    328 	nfs_disconnect(nmp);
    329 	return (error);
    330 }
    331 
    332 /*
    333  * Reconnect routine:
    334  * Called when a connection is broken on a reliable protocol.
    335  * - clean up the old socket
    336  * - nfs_connect() again
    337  * - set R_MUSTRESEND for all outstanding requests on mount point
    338  * If this fails the mount point is DEAD!
    339  * nb: Must be called with the nfs_sndlock() set on the mount point.
    340  */
    341 int
    342 nfs_reconnect(rep)
    343 	register struct nfsreq *rep;
    344 {
    345 	register struct nfsreq *rp;
    346 	register struct nfsmount *nmp = rep->r_nmp;
    347 	int error;
    348 
    349 	nfs_disconnect(nmp);
    350 	while ((error = nfs_connect(nmp, rep))) {
    351 		if (error == EINTR || error == ERESTART)
    352 			return (EINTR);
    353 		(void) tsleep((caddr_t)&lbolt, PSOCK, "nfscon", 0);
    354 	}
    355 
    356 	/*
    357 	 * Loop through outstanding request list and fix up all requests
    358 	 * on old socket.
    359 	 */
    360 	for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) {
    361 		if (rp->r_nmp == nmp)
    362 			rp->r_flags |= R_MUSTRESEND;
    363 	}
    364 	return (0);
    365 }
    366 
    367 /*
    368  * NFS disconnect. Clean up and unlink.
    369  */
    370 void
    371 nfs_disconnect(nmp)
    372 	register struct nfsmount *nmp;
    373 {
    374 	register struct socket *so;
    375 
    376 	if (nmp->nm_so) {
    377 		so = nmp->nm_so;
    378 		nmp->nm_so = (struct socket *)0;
    379 		soshutdown(so, 2);
    380 		soclose(so);
    381 	}
    382 }
    383 
    384 /*
    385  * This is the nfs send routine. For connection based socket types, it
    386  * must be called with an nfs_sndlock() on the socket.
    387  * "rep == NULL" indicates that it has been called from a server.
    388  * For the client side:
    389  * - return EINTR if the RPC is terminated, 0 otherwise
    390  * - set R_MUSTRESEND if the send fails for any reason
    391  * - do any cleanup required by recoverable socket errors (???)
    392  * For the server side:
    393  * - return EINTR or ERESTART if interrupted by a signal
    394  * - return EPIPE if a connection is lost for connection based sockets (TCP...)
    395  * - do any cleanup required by recoverable socket errors (???)
    396  */
    397 int
    398 nfs_send(so, nam, top, rep)
    399 	register struct socket *so;
    400 	struct mbuf *nam;
    401 	register struct mbuf *top;
    402 	struct nfsreq *rep;
    403 {
    404 	struct mbuf *sendnam;
    405 	int error, soflags, flags;
    406 
    407 	if (rep) {
    408 		if (rep->r_flags & R_SOFTTERM) {
    409 			m_freem(top);
    410 			return (EINTR);
    411 		}
    412 		if ((so = rep->r_nmp->nm_so) == NULL) {
    413 			rep->r_flags |= R_MUSTRESEND;
    414 			m_freem(top);
    415 			return (0);
    416 		}
    417 		rep->r_flags &= ~R_MUSTRESEND;
    418 		soflags = rep->r_nmp->nm_soflags;
    419 	} else
    420 		soflags = so->so_proto->pr_flags;
    421 	if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
    422 		sendnam = (struct mbuf *)0;
    423 	else
    424 		sendnam = nam;
    425 	if (so->so_type == SOCK_SEQPACKET)
    426 		flags = MSG_EOR;
    427 	else
    428 		flags = 0;
    429 
    430 	error = sosend(so, sendnam, (struct uio *)0, top,
    431 		(struct mbuf *)0, flags);
    432 	if (error) {
    433 		if (rep) {
    434 			log(LOG_INFO, "nfs send error %d for server %s\n",error,
    435 			    rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
    436 			/*
    437 			 * Deal with errors for the client side.
    438 			 */
    439 			if (rep->r_flags & R_SOFTTERM)
    440 				error = EINTR;
    441 			else
    442 				rep->r_flags |= R_MUSTRESEND;
    443 		} else
    444 			log(LOG_INFO, "nfsd send error %d\n", error);
    445 
    446 		/*
    447 		 * Handle any recoverable (soft) socket errors here. (???)
    448 		 */
    449 		if (error != EINTR && error != ERESTART &&
    450 			error != EWOULDBLOCK && error != EPIPE)
    451 			error = 0;
    452 	}
    453 	return (error);
    454 }
    455 
    456 /*
    457  * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
    458  * done by soreceive(), but for SOCK_STREAM we must deal with the Record
    459  * Mark and consolidate the data into a new mbuf list.
    460  * nb: Sometimes TCP passes the data up to soreceive() in long lists of
    461  *     small mbufs.
    462  * For SOCK_STREAM we must be very careful to read an entire record once
    463  * we have read any of it, even if the system call has been interrupted.
    464  */
    465 int
    466 nfs_receive(rep, aname, mp)
    467 	register struct nfsreq *rep;
    468 	struct mbuf **aname;
    469 	struct mbuf **mp;
    470 {
    471 	register struct socket *so;
    472 	struct uio auio;
    473 	struct iovec aio;
    474 	register struct mbuf *m;
    475 	struct mbuf *control;
    476 	u_long len;
    477 	struct mbuf **getnam;
    478 	int error, sotype, rcvflg;
    479 	struct proc *p = curproc;	/* XXX */
    480 
    481 	/*
    482 	 * Set up arguments for soreceive()
    483 	 */
    484 	*mp = (struct mbuf *)0;
    485 	*aname = (struct mbuf *)0;
    486 	sotype = rep->r_nmp->nm_sotype;
    487 
    488 	/*
    489 	 * For reliable protocols, lock against other senders/receivers
    490 	 * in case a reconnect is necessary.
    491 	 * For SOCK_STREAM, first get the Record Mark to find out how much
    492 	 * more there is to get.
    493 	 * We must lock the socket against other receivers
    494 	 * until we have an entire rpc request/reply.
    495 	 */
    496 	if (sotype != SOCK_DGRAM) {
    497 		error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
    498 		if (error)
    499 			return (error);
    500 tryagain:
    501 		/*
    502 		 * Check for fatal errors and resending request.
    503 		 */
    504 		/*
    505 		 * Ugh: If a reconnect attempt just happened, nm_so
    506 		 * would have changed. NULL indicates a failed
    507 		 * attempt that has essentially shut down this
    508 		 * mount point.
    509 		 */
    510 		if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
    511 			nfs_sndunlock(&rep->r_nmp->nm_flag);
    512 			return (EINTR);
    513 		}
    514 		so = rep->r_nmp->nm_so;
    515 		if (!so) {
    516 			error = nfs_reconnect(rep);
    517 			if (error) {
    518 				nfs_sndunlock(&rep->r_nmp->nm_flag);
    519 				return (error);
    520 			}
    521 			goto tryagain;
    522 		}
    523 		while (rep->r_flags & R_MUSTRESEND) {
    524 			m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
    525 			nfsstats.rpcretries++;
    526 			error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
    527 			if (error) {
    528 				if (error == EINTR || error == ERESTART ||
    529 				    (error = nfs_reconnect(rep))) {
    530 					nfs_sndunlock(&rep->r_nmp->nm_flag);
    531 					return (error);
    532 				}
    533 				goto tryagain;
    534 			}
    535 		}
    536 		nfs_sndunlock(&rep->r_nmp->nm_flag);
    537 		if (sotype == SOCK_STREAM) {
    538 			aio.iov_base = (caddr_t) &len;
    539 			aio.iov_len = sizeof(u_long);
    540 			auio.uio_iov = &aio;
    541 			auio.uio_iovcnt = 1;
    542 			auio.uio_segflg = UIO_SYSSPACE;
    543 			auio.uio_rw = UIO_READ;
    544 			auio.uio_offset = 0;
    545 			auio.uio_resid = sizeof(u_long);
    546 			auio.uio_procp = p;
    547 			do {
    548 			   rcvflg = MSG_WAITALL;
    549 			   error = soreceive(so, (struct mbuf **)0, &auio,
    550 				(struct mbuf **)0, (struct mbuf **)0, &rcvflg);
    551 			   if (error == EWOULDBLOCK && rep) {
    552 				if (rep->r_flags & R_SOFTTERM)
    553 					return (EINTR);
    554 			   }
    555 			} while (error == EWOULDBLOCK);
    556 			if (!error && auio.uio_resid > 0) {
    557 			    log(LOG_INFO,
    558 				 "short receive (%d/%d) from nfs server %s\n",
    559 				 sizeof(u_long) - auio.uio_resid,
    560 				 sizeof(u_long),
    561 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
    562 			    error = EPIPE;
    563 			}
    564 			if (error)
    565 				goto errout;
    566 			len = ntohl(len) & ~0x80000000;
    567 			/*
    568 			 * This is SERIOUS! We are out of sync with the sender
    569 			 * and forcing a disconnect/reconnect is all I can do.
    570 			 */
    571 			if (len > NFS_MAXPACKET) {
    572 			    log(LOG_ERR, "%s (%d) from nfs server %s\n",
    573 				"impossible packet length",
    574 				len,
    575 				rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
    576 			    error = EFBIG;
    577 			    goto errout;
    578 			}
    579 			auio.uio_resid = len;
    580 			do {
    581 			    rcvflg = MSG_WAITALL;
    582 			    error =  soreceive(so, (struct mbuf **)0,
    583 				&auio, mp, (struct mbuf **)0, &rcvflg);
    584 			} while (error == EWOULDBLOCK || error == EINTR ||
    585 				 error == ERESTART);
    586 			if (!error && auio.uio_resid > 0) {
    587 			    log(LOG_INFO,
    588 				"short receive (%d/%d) from nfs server %s\n",
    589 				len - auio.uio_resid, len,
    590 				rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
    591 			    error = EPIPE;
    592 			}
    593 		} else {
    594 			/*
    595 			 * NB: Since uio_resid is big, MSG_WAITALL is ignored
    596 			 * and soreceive() will return when it has either a
    597 			 * control msg or a data msg.
    598 			 * We have no use for control msg., but must grab them
    599 			 * and then throw them away so we know what is going
    600 			 * on.
    601 			 */
    602 			auio.uio_resid = len = 100000000; /* Anything Big */
    603 			auio.uio_procp = p;
    604 			do {
    605 			    rcvflg = 0;
    606 			    error =  soreceive(so, (struct mbuf **)0,
    607 				&auio, mp, &control, &rcvflg);
    608 			    if (control)
    609 				m_freem(control);
    610 			    if (error == EWOULDBLOCK && rep) {
    611 				if (rep->r_flags & R_SOFTTERM)
    612 					return (EINTR);
    613 			    }
    614 			} while (error == EWOULDBLOCK ||
    615 				 (!error && *mp == NULL && control));
    616 			if ((rcvflg & MSG_EOR) == 0)
    617 				printf("Egad!!\n");
    618 			if (!error && *mp == NULL)
    619 				error = EPIPE;
    620 			len -= auio.uio_resid;
    621 		}
    622 errout:
    623 		if (error && error != EINTR && error != ERESTART) {
    624 			m_freem(*mp);
    625 			*mp = (struct mbuf *)0;
    626 			if (error != EPIPE)
    627 				log(LOG_INFO,
    628 				    "receive error %d from nfs server %s\n",
    629 				    error,
    630 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
    631 			error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
    632 			if (!error)
    633 				error = nfs_reconnect(rep);
    634 			if (!error)
    635 				goto tryagain;
    636 		}
    637 	} else {
    638 		if ((so = rep->r_nmp->nm_so) == NULL)
    639 			return (EACCES);
    640 		if (so->so_state & SS_ISCONNECTED)
    641 			getnam = (struct mbuf **)0;
    642 		else
    643 			getnam = aname;
    644 		auio.uio_resid = len = 1000000;
    645 		auio.uio_procp = p;
    646 		do {
    647 			rcvflg = 0;
    648 			error =  soreceive(so, getnam, &auio, mp,
    649 				(struct mbuf **)0, &rcvflg);
    650 			if (error == EWOULDBLOCK &&
    651 			    (rep->r_flags & R_SOFTTERM))
    652 				return (EINTR);
    653 		} while (error == EWOULDBLOCK);
    654 		len -= auio.uio_resid;
    655 	}
    656 	if (error) {
    657 		m_freem(*mp);
    658 		*mp = (struct mbuf *)0;
    659 	}
    660 	/*
    661 	 * Search for any mbufs that are not a multiple of 4 bytes long
    662 	 * or with m_data not longword aligned.
    663 	 * These could cause pointer alignment problems, so copy them to
    664 	 * well aligned mbufs.
    665 	 */
    666 	nfs_realign(*mp, 5 * NFSX_UNSIGNED);
    667 	return (error);
    668 }
    669 
    670 /*
    671  * Implement receipt of reply on a socket.
    672  * We must search through the list of received datagrams matching them
    673  * with outstanding requests using the xid, until ours is found.
    674  */
    675 /* ARGSUSED */
    676 int
    677 nfs_reply(myrep)
    678 	struct nfsreq *myrep;
    679 {
    680 	register struct nfsreq *rep;
    681 	register struct nfsmount *nmp = myrep->r_nmp;
    682 	register long t1;
    683 	struct mbuf *mrep, *nam, *md;
    684 	u_long rxid, *tl;
    685 	caddr_t dpos, cp2;
    686 	int error;
    687 
    688 	/*
    689 	 * Loop around until we get our own reply
    690 	 */
    691 	for (;;) {
    692 		/*
    693 		 * Lock against other receivers so that I don't get stuck in
    694 		 * sbwait() after someone else has received my reply for me.
    695 		 * Also necessary for connection based protocols to avoid
    696 		 * race conditions during a reconnect.
    697 		 */
    698 		error = nfs_rcvlock(myrep);
    699 		if (error)
    700 			return (error);
    701 		/* Already received, bye bye */
    702 		if (myrep->r_mrep != NULL) {
    703 			nfs_rcvunlock(&nmp->nm_flag);
    704 			return (0);
    705 		}
    706 		/*
    707 		 * Get the next Rpc reply off the socket
    708 		 */
    709 		error = nfs_receive(myrep, &nam, &mrep);
    710 		nfs_rcvunlock(&nmp->nm_flag);
    711 		if (error) {
    712 
    713 			/*
    714 			 * Ignore routing errors on connectionless protocols??
    715 			 */
    716 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
    717 				nmp->nm_so->so_error = 0;
    718 				if (myrep->r_flags & R_GETONEREP)
    719 					return (0);
    720 				continue;
    721 			}
    722 			return (error);
    723 		}
    724 		if (nam)
    725 			m_freem(nam);
    726 
    727 		/*
    728 		 * Get the xid and check that it is an rpc reply
    729 		 */
    730 		md = mrep;
    731 		dpos = mtod(md, caddr_t);
    732 		nfsm_dissect(tl, u_long *, 2*NFSX_UNSIGNED);
    733 		rxid = *tl++;
    734 		if (*tl != rpc_reply) {
    735 			if (nmp->nm_flag & NFSMNT_NQNFS) {
    736 				if (nqnfs_callback(nmp, mrep, md, dpos))
    737 					nfsstats.rpcinvalid++;
    738 			} else {
    739 				nfsstats.rpcinvalid++;
    740 				m_freem(mrep);
    741 			}
    742 nfsmout:
    743 			if (myrep->r_flags & R_GETONEREP)
    744 				return (0);
    745 			continue;
    746 		}
    747 
    748 		/*
    749 		 * Loop through the request list to match up the reply
    750 		 * Iff no match, just drop the datagram
    751 		 */
    752 		for (rep = nfs_reqq.tqh_first; rep != 0;
    753 		    rep = rep->r_chain.tqe_next) {
    754 			if (rep->r_mrep == NULL && rxid == rep->r_xid) {
    755 				/* Found it.. */
    756 				rep->r_mrep = mrep;
    757 				rep->r_md = md;
    758 				rep->r_dpos = dpos;
    759 				if (nfsrtton) {
    760 					struct rttl *rt;
    761 
    762 					rt = &nfsrtt.rttl[nfsrtt.pos];
    763 					rt->proc = rep->r_procnum;
    764 					rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
    765 					rt->sent = nmp->nm_sent;
    766 					rt->cwnd = nmp->nm_cwnd;
    767 					rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
    768 					rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
    769 					rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
    770 					rt->tstamp = time;
    771 					if (rep->r_flags & R_TIMING)
    772 						rt->rtt = rep->r_rtt;
    773 					else
    774 						rt->rtt = 1000000;
    775 					nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
    776 				}
    777 				/*
    778 				 * Update congestion window.
    779 				 * Do the additive increase of
    780 				 * one rpc/rtt.
    781 				 */
    782 				if (nmp->nm_cwnd <= nmp->nm_sent) {
    783 					nmp->nm_cwnd +=
    784 					   (NFS_CWNDSCALE * NFS_CWNDSCALE +
    785 					   (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
    786 					if (nmp->nm_cwnd > NFS_MAXCWND)
    787 						nmp->nm_cwnd = NFS_MAXCWND;
    788 				}
    789 				rep->r_flags &= ~R_SENT;
    790 				nmp->nm_sent -= NFS_CWNDSCALE;
    791 				/*
    792 				 * Update rtt using a gain of 0.125 on the mean
    793 				 * and a gain of 0.25 on the deviation.
    794 				 */
    795 				if (rep->r_flags & R_TIMING) {
    796 					/*
    797 					 * Since the timer resolution of
    798 					 * NFS_HZ is so course, it can often
    799 					 * result in r_rtt == 0. Since
    800 					 * r_rtt == N means that the actual
    801 					 * rtt is between N+dt and N+2-dt ticks,
    802 					 * add 1.
    803 					 */
    804 					t1 = rep->r_rtt + 1;
    805 					t1 -= (NFS_SRTT(rep) >> 3);
    806 					NFS_SRTT(rep) += t1;
    807 					if (t1 < 0)
    808 						t1 = -t1;
    809 					t1 -= (NFS_SDRTT(rep) >> 2);
    810 					NFS_SDRTT(rep) += t1;
    811 				}
    812 				nmp->nm_timeouts = 0;
    813 				break;
    814 			}
    815 		}
    816 		/*
    817 		 * If not matched to a request, drop it.
    818 		 * If it's mine, get out.
    819 		 */
    820 		if (rep == 0) {
    821 			nfsstats.rpcunexpected++;
    822 			m_freem(mrep);
    823 		} else if (rep == myrep) {
    824 			if (rep->r_mrep == NULL)
    825 				panic("nfsreply nil");
    826 			return (0);
    827 		}
    828 		if (myrep->r_flags & R_GETONEREP)
    829 			return (0);
    830 	}
    831 }
    832 
    833 /*
    834  * nfs_request - goes something like this
    835  *	- fill in request struct
    836  *	- links it into list
    837  *	- calls nfs_send() for first transmit
    838  *	- calls nfs_receive() to get reply
    839  *	- break down rpc header and return with nfs reply pointed to
    840  *	  by mrep or error
    841  * nb: always frees up mreq mbuf list
    842  */
    843 int
    844 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp)
    845 	struct vnode *vp;
    846 	struct mbuf *mrest;
    847 	int procnum;
    848 	struct proc *procp;
    849 	struct ucred *cred;
    850 	struct mbuf **mrp;
    851 	struct mbuf **mdp;
    852 	caddr_t *dposp;
    853 {
    854 	register struct mbuf *m, *mrep;
    855 	register struct nfsreq *rep;
    856 	register u_long *tl;
    857 	register int i;
    858 	struct nfsmount *nmp;
    859 	struct mbuf *md, *mheadend;
    860 	struct nfsnode *np;
    861 	char nickv[RPCX_NICKVERF];
    862 	time_t reqtime, waituntil;
    863 	caddr_t dpos, cp2;
    864 	int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type;
    865 	int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
    866 	int verf_len, verf_type;
    867 	u_long xid;
    868 	u_quad_t frev;
    869 	char *auth_str, *verf_str;
    870 	NFSKERBKEY_T key;		/* save session key */
    871 
    872 	nmp = VFSTONFS(vp->v_mount);
    873 	MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
    874 	rep->r_nmp = nmp;
    875 	rep->r_vp = vp;
    876 	rep->r_procp = procp;
    877 	rep->r_procnum = procnum;
    878 	i = 0;
    879 	m = mrest;
    880 	while (m) {
    881 		i += m->m_len;
    882 		m = m->m_next;
    883 	}
    884 	mrest_len = i;
    885 
    886 	/*
    887 	 * Get the RPC header with authorization.
    888 	 */
    889 kerbauth:
    890 	verf_str = auth_str = (char *)0;
    891 	if (nmp->nm_flag & NFSMNT_KERB) {
    892 		verf_str = nickv;
    893 		verf_len = sizeof (nickv);
    894 		auth_type = RPCAUTH_KERB4;
    895 		bzero((caddr_t)key, sizeof (key));
    896 		if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
    897 			&auth_len, verf_str, verf_len)) {
    898 			error = nfs_getauth(nmp, rep, cred, &auth_str,
    899 				&auth_len, verf_str, &verf_len, key);
    900 			if (error) {
    901 				free((caddr_t)rep, M_NFSREQ);
    902 				m_freem(mrest);
    903 				return (error);
    904 			}
    905 		}
    906 	} else {
    907 		auth_type = RPCAUTH_UNIX;
    908 		if (cred->cr_ngroups < 1)
    909 			panic("nfsreq nogrps");
    910 		auth_len = ((((cred->cr_ngroups - 1) > nmp->nm_numgrps) ?
    911 			nmp->nm_numgrps : (cred->cr_ngroups - 1)) << 2) +
    912 			5 * NFSX_UNSIGNED;
    913 	}
    914 	m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
    915 	     auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
    916 	if (auth_str)
    917 		free(auth_str, M_TEMP);
    918 
    919 	/*
    920 	 * For stream protocols, insert a Sun RPC Record Mark.
    921 	 */
    922 	if (nmp->nm_sotype == SOCK_STREAM) {
    923 		M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
    924 		*mtod(m, u_long *) = htonl(0x80000000 |
    925 			 (m->m_pkthdr.len - NFSX_UNSIGNED));
    926 	}
    927 	rep->r_mreq = m;
    928 	rep->r_xid = xid;
    929 tryagain:
    930 	if (nmp->nm_flag & NFSMNT_SOFT)
    931 		rep->r_retry = nmp->nm_retry;
    932 	else
    933 		rep->r_retry = NFS_MAXREXMIT + 1;	/* past clip limit */
    934 	rep->r_rtt = rep->r_rexmit = 0;
    935 	if (proct[procnum] > 0)
    936 		rep->r_flags = R_TIMING;
    937 	else
    938 		rep->r_flags = 0;
    939 	rep->r_mrep = NULL;
    940 
    941 	/*
    942 	 * Do the client side RPC.
    943 	 */
    944 	nfsstats.rpcrequests++;
    945 	/*
    946 	 * Chain request into list of outstanding requests. Be sure
    947 	 * to put it LAST so timer finds oldest requests first.
    948 	 */
    949 	s = splsoftclock();
    950 	TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
    951 
    952 	/* Get send time for nqnfs */
    953 	reqtime = time.tv_sec;
    954 
    955 	/*
    956 	 * If backing off another request or avoiding congestion, don't
    957 	 * send this one now but let timer do it. If not timing a request,
    958 	 * do it now.
    959 	 */
    960 	if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
    961 		(nmp->nm_flag & NFSMNT_DUMBTIMR) ||
    962 		nmp->nm_sent < nmp->nm_cwnd)) {
    963 		splx(s);
    964 		if (nmp->nm_soflags & PR_CONNREQUIRED)
    965 			error = nfs_sndlock(&nmp->nm_flag, rep);
    966 		if (!error) {
    967 			m = m_copym(m, 0, M_COPYALL, M_WAIT);
    968 			error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
    969 			if (nmp->nm_soflags & PR_CONNREQUIRED)
    970 				nfs_sndunlock(&nmp->nm_flag);
    971 		}
    972 		if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
    973 			nmp->nm_sent += NFS_CWNDSCALE;
    974 			rep->r_flags |= R_SENT;
    975 		}
    976 	} else {
    977 		splx(s);
    978 		rep->r_rtt = -1;
    979 	}
    980 
    981 	/*
    982 	 * Wait for the reply from our send or the timer's.
    983 	 */
    984 	if (!error || error == EPIPE)
    985 		error = nfs_reply(rep);
    986 
    987 	/*
    988 	 * RPC done, unlink the request.
    989 	 */
    990 	s = splsoftclock();
    991 	TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
    992 	splx(s);
    993 
    994 	/*
    995 	 * Decrement the outstanding request count.
    996 	 */
    997 	if (rep->r_flags & R_SENT) {
    998 		rep->r_flags &= ~R_SENT;	/* paranoia */
    999 		nmp->nm_sent -= NFS_CWNDSCALE;
   1000 	}
   1001 
   1002 	/*
   1003 	 * If there was a successful reply and a tprintf msg.
   1004 	 * tprintf a response.
   1005 	 */
   1006 	if (!error && (rep->r_flags & R_TPRINTFMSG))
   1007 		nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
   1008 		    "is alive again");
   1009 	mrep = rep->r_mrep;
   1010 	md = rep->r_md;
   1011 	dpos = rep->r_dpos;
   1012 	if (error) {
   1013 		m_freem(rep->r_mreq);
   1014 		free((caddr_t)rep, M_NFSREQ);
   1015 		return (error);
   1016 	}
   1017 
   1018 	/*
   1019 	 * break down the rpc header and check if ok
   1020 	 */
   1021 	nfsm_dissect(tl, u_long *, 3 * NFSX_UNSIGNED);
   1022 	if (*tl++ == rpc_msgdenied) {
   1023 		if (*tl == rpc_mismatch)
   1024 			error = EOPNOTSUPP;
   1025 		else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
   1026 			if (!failed_auth) {
   1027 				failed_auth++;
   1028 				mheadend->m_next = (struct mbuf *)0;
   1029 				m_freem(mrep);
   1030 				m_freem(rep->r_mreq);
   1031 				goto kerbauth;
   1032 			} else
   1033 				error = EAUTH;
   1034 		} else
   1035 			error = EACCES;
   1036 		m_freem(mrep);
   1037 		m_freem(rep->r_mreq);
   1038 		free((caddr_t)rep, M_NFSREQ);
   1039 		return (error);
   1040 	}
   1041 
   1042 	/*
   1043 	 * Grab any Kerberos verifier, otherwise just throw it away.
   1044 	 */
   1045 	verf_type = fxdr_unsigned(int, *tl++);
   1046 	i = fxdr_unsigned(int, *tl);
   1047 	if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
   1048 		error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
   1049 		if (error)
   1050 			goto nfsmout;
   1051 	} else if (i > 0)
   1052 		nfsm_adv(nfsm_rndup(i));
   1053 	nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
   1054 	/* 0 == ok */
   1055 	if (*tl == 0) {
   1056 		nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
   1057 		if (*tl != 0) {
   1058 			error = fxdr_unsigned(int, *tl);
   1059 			if ((nmp->nm_flag & NFSMNT_NFSV3) &&
   1060 				error == NFSERR_TRYLATER) {
   1061 				m_freem(mrep);
   1062 				error = 0;
   1063 				waituntil = time.tv_sec + trylater_delay;
   1064 				while (time.tv_sec < waituntil)
   1065 					(void) tsleep((caddr_t)&lbolt,
   1066 						PSOCK, "nqnfstry", 0);
   1067 				trylater_delay *= nfs_backoff[trylater_cnt];
   1068 				if (trylater_cnt < 7)
   1069 					trylater_cnt++;
   1070 				goto tryagain;
   1071 			}
   1072 
   1073 			/*
   1074 			 * If the File Handle was stale, invalidate the
   1075 			 * lookup cache, just in case.
   1076 			 */
   1077 			if (error == ESTALE)
   1078 				cache_purge(vp);
   1079 			if (nmp->nm_flag & NFSMNT_NFSV3) {
   1080 				*mrp = mrep;
   1081 				*mdp = md;
   1082 				*dposp = dpos;
   1083 				error |= NFSERR_RETERR;
   1084 			} else
   1085 				m_freem(mrep);
   1086 			m_freem(rep->r_mreq);
   1087 			free((caddr_t)rep, M_NFSREQ);
   1088 			return (error);
   1089 		}
   1090 
   1091 		/*
   1092 		 * For nqnfs, get any lease in reply
   1093 		 */
   1094 		if (nmp->nm_flag & NFSMNT_NQNFS) {
   1095 			nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
   1096 			if (*tl) {
   1097 				np = VTONFS(vp);
   1098 				nqlflag = fxdr_unsigned(int, *tl);
   1099 				nfsm_dissect(tl, u_long *, 4*NFSX_UNSIGNED);
   1100 				cachable = fxdr_unsigned(int, *tl++);
   1101 				reqtime += fxdr_unsigned(int, *tl++);
   1102 				if (reqtime > time.tv_sec) {
   1103 				    fxdr_hyper(tl, &frev);
   1104 				    nqnfs_clientlease(nmp, np, nqlflag,
   1105 					cachable, reqtime, frev);
   1106 				}
   1107 			}
   1108 		}
   1109 		*mrp = mrep;
   1110 		*mdp = md;
   1111 		*dposp = dpos;
   1112 		m_freem(rep->r_mreq);
   1113 		FREE((caddr_t)rep, M_NFSREQ);
   1114 		return (0);
   1115 	}
   1116 	m_freem(mrep);
   1117 	error = EPROTONOSUPPORT;
   1118 nfsmout:
   1119 	m_freem(rep->r_mreq);
   1120 	free((caddr_t)rep, M_NFSREQ);
   1121 	return (error);
   1122 }
   1123 
   1124 /*
   1125  * Generate the rpc reply header
   1126  * siz arg. is used to decide if adding a cluster is worthwhile
   1127  */
   1128 int
   1129 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
   1130 	int siz;
   1131 	struct nfsrv_descript *nd;
   1132 	struct nfssvc_sock *slp;
   1133 	int err;
   1134 	int cache;
   1135 	u_quad_t *frev;
   1136 	struct mbuf **mrq;
   1137 	struct mbuf **mbp;
   1138 	caddr_t *bposp;
   1139 {
   1140 	register u_long *tl;
   1141 	register struct mbuf *mreq;
   1142 	caddr_t bpos;
   1143 	struct mbuf *mb, *mb2;
   1144 
   1145 	MGETHDR(mreq, M_WAIT, MT_DATA);
   1146 	mb = mreq;
   1147 	/*
   1148 	 * If this is a big reply, use a cluster else
   1149 	 * try and leave leading space for the lower level headers.
   1150 	 */
   1151 	siz += RPC_REPLYSIZ;
   1152 	if (siz >= MINCLSIZE) {
   1153 		MCLGET(mreq, M_WAIT);
   1154 	} else
   1155 		mreq->m_data += max_hdr;
   1156 	tl = mtod(mreq, u_long *);
   1157 	mreq->m_len = 6 * NFSX_UNSIGNED;
   1158 	bpos = ((caddr_t)tl) + mreq->m_len;
   1159 	*tl++ = txdr_unsigned(nd->nd_retxid);
   1160 	*tl++ = rpc_reply;
   1161 	if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
   1162 		*tl++ = rpc_msgdenied;
   1163 		if (err & NFSERR_AUTHERR) {
   1164 			*tl++ = rpc_autherr;
   1165 			*tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
   1166 			mreq->m_len -= NFSX_UNSIGNED;
   1167 			bpos -= NFSX_UNSIGNED;
   1168 		} else {
   1169 			*tl++ = rpc_mismatch;
   1170 			*tl++ = txdr_unsigned(RPC_VER2);
   1171 			*tl = txdr_unsigned(RPC_VER2);
   1172 		}
   1173 	} else {
   1174 		*tl++ = rpc_msgaccepted;
   1175 
   1176 		/*
   1177 		 * For Kerberos authentication, we must send the nickname
   1178 		 * verifier back, otherwise just RPCAUTH_NULL.
   1179 		 */
   1180 		if (nd->nd_flag & ND_KERBFULL) {
   1181 		    register struct nfsuid *nuidp;
   1182 		    struct timeval ktvin, ktvout;
   1183 		    NFSKERBKEYSCHED_T keys;	/* stores key schedule */
   1184 
   1185 		    for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
   1186 			nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
   1187 			if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
   1188 			    (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
   1189 			     &nuidp->nu_haddr, nd->nd_nam2)))
   1190 			    break;
   1191 		    }
   1192 		    if (nuidp) {
   1193 			ktvin.tv_sec =
   1194 			    txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
   1195 			ktvin.tv_usec =
   1196 			    txdr_unsigned(nuidp->nu_timestamp.tv_usec);
   1197 
   1198 			/*
   1199 			 * Encrypt the timestamp in ecb mode using the
   1200 			 * session key.
   1201 			 */
   1202 #ifdef NFSKERB
   1203 			XXX
   1204 #endif
   1205 
   1206 			*tl++ = rpc_auth_kerb;
   1207 			*tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
   1208 			*tl = ktvout.tv_sec;
   1209 			nfsm_build(tl, u_long *, 3 * NFSX_UNSIGNED);
   1210 			*tl++ = ktvout.tv_usec;
   1211 			*tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
   1212 		    } else {
   1213 			*tl++ = 0;
   1214 			*tl++ = 0;
   1215 		    }
   1216 		} else {
   1217 			*tl++ = 0;
   1218 			*tl++ = 0;
   1219 		}
   1220 		switch (err) {
   1221 		case EPROGUNAVAIL:
   1222 			*tl = txdr_unsigned(RPC_PROGUNAVAIL);
   1223 			break;
   1224 		case EPROGMISMATCH:
   1225 			*tl = txdr_unsigned(RPC_PROGMISMATCH);
   1226 			nfsm_build(tl, u_long *, 2 * NFSX_UNSIGNED);
   1227 			if (nd->nd_flag & ND_NQNFS) {
   1228 				*tl++ = txdr_unsigned(3);
   1229 				*tl = txdr_unsigned(3);
   1230 			} else {
   1231 				*tl++ = txdr_unsigned(2);
   1232 				*tl = txdr_unsigned(3);
   1233 			}
   1234 			break;
   1235 		case EPROCUNAVAIL:
   1236 			*tl = txdr_unsigned(RPC_PROCUNAVAIL);
   1237 			break;
   1238 		case EBADRPC:
   1239 			*tl = txdr_unsigned(RPC_GARBAGE);
   1240 			break;
   1241 		default:
   1242 			*tl = 0;
   1243 			if (err != NFSERR_RETVOID) {
   1244 				nfsm_build(tl, u_long *, NFSX_UNSIGNED);
   1245 				if (err)
   1246 				    *tl = txdr_unsigned(nfsrv_errmap(nd, err));
   1247 				else
   1248 				    *tl = 0;
   1249 			}
   1250 			break;
   1251 		};
   1252 	}
   1253 
   1254 	/*
   1255 	 * For nqnfs, piggyback lease as requested.
   1256 	 */
   1257 	if ((nd->nd_flag & ND_NQNFS) && err == 0) {
   1258 		if (nd->nd_flag & ND_LEASE) {
   1259 			nfsm_build(tl, u_long *, 5 * NFSX_UNSIGNED);
   1260 			*tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE);
   1261 			*tl++ = txdr_unsigned(cache);
   1262 			*tl++ = txdr_unsigned(nd->nd_duration);
   1263 			txdr_hyper(frev, tl);
   1264 		} else {
   1265 			nfsm_build(tl, u_long *, NFSX_UNSIGNED);
   1266 			*tl = 0;
   1267 		}
   1268 	}
   1269 	*mrq = mreq;
   1270 	*mbp = mb;
   1271 	*bposp = bpos;
   1272 	if (err != 0 && err != NFSERR_RETVOID)
   1273 		nfsstats.srvrpc_errs++;
   1274 	return (0);
   1275 }
   1276 
   1277 /*
   1278  * Nfs timer routine
   1279  * Scan the nfsreq list and retranmit any requests that have timed out
   1280  * To avoid retransmission attempts on STREAM sockets (in the future) make
   1281  * sure to set the r_retry field to 0 (implies nm_retry == 0).
   1282  */
   1283 void
   1284 nfs_timer(arg)
   1285 	void *arg;	/* never used */
   1286 {
   1287 	register struct nfsreq *rep;
   1288 	register struct mbuf *m;
   1289 	register struct socket *so;
   1290 	register struct nfsmount *nmp;
   1291 	register int timeo;
   1292 	register struct nfssvc_sock *slp;
   1293 	static long lasttime = 0;
   1294 	int s, error;
   1295 	u_quad_t cur_usec;
   1296 
   1297 	s = splnet();
   1298 	for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) {
   1299 		nmp = rep->r_nmp;
   1300 		if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
   1301 			continue;
   1302 		if (nfs_sigintr(nmp, rep, rep->r_procp)) {
   1303 			rep->r_flags |= R_SOFTTERM;
   1304 			continue;
   1305 		}
   1306 		if (rep->r_rtt >= 0) {
   1307 			rep->r_rtt++;
   1308 			if (nmp->nm_flag & NFSMNT_DUMBTIMR)
   1309 				timeo = nmp->nm_timeo;
   1310 			else
   1311 				timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
   1312 			if (nmp->nm_timeouts > 0)
   1313 				timeo *= nfs_backoff[nmp->nm_timeouts - 1];
   1314 			if (rep->r_rtt <= timeo)
   1315 				continue;
   1316 			if (nmp->nm_timeouts < 8)
   1317 				nmp->nm_timeouts++;
   1318 		}
   1319 		/*
   1320 		 * Check for server not responding
   1321 		 */
   1322 		if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
   1323 		     rep->r_rexmit > nmp->nm_deadthresh) {
   1324 			nfs_msg(rep->r_procp,
   1325 			    nmp->nm_mountp->mnt_stat.f_mntfromname,
   1326 			    "not responding");
   1327 			rep->r_flags |= R_TPRINTFMSG;
   1328 		}
   1329 		if (rep->r_rexmit >= rep->r_retry) {	/* too many */
   1330 			nfsstats.rpctimeouts++;
   1331 			rep->r_flags |= R_SOFTTERM;
   1332 			continue;
   1333 		}
   1334 		if (nmp->nm_sotype != SOCK_DGRAM) {
   1335 			if (++rep->r_rexmit > NFS_MAXREXMIT)
   1336 				rep->r_rexmit = NFS_MAXREXMIT;
   1337 			continue;
   1338 		}
   1339 		if ((so = nmp->nm_so) == NULL)
   1340 			continue;
   1341 
   1342 		/*
   1343 		 * If there is enough space and the window allows..
   1344 		 *	Resend it
   1345 		 * Set r_rtt to -1 in case we fail to send it now.
   1346 		 */
   1347 		rep->r_rtt = -1;
   1348 		if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
   1349 		   ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
   1350 		    (rep->r_flags & R_SENT) ||
   1351 		    nmp->nm_sent < nmp->nm_cwnd) &&
   1352 		   (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
   1353 			if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
   1354 			    error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
   1355 			    (struct mbuf *)0, (struct mbuf *)0);
   1356 			else
   1357 			    error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
   1358 			    nmp->nm_nam, (struct mbuf *)0);
   1359 			if (error) {
   1360 				if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
   1361 					so->so_error = 0;
   1362 			} else {
   1363 				/*
   1364 				 * Iff first send, start timing
   1365 				 * else turn timing off, backoff timer
   1366 				 * and divide congestion window by 2.
   1367 				 */
   1368 				if (rep->r_flags & R_SENT) {
   1369 					rep->r_flags &= ~R_TIMING;
   1370 					if (++rep->r_rexmit > NFS_MAXREXMIT)
   1371 						rep->r_rexmit = NFS_MAXREXMIT;
   1372 					nmp->nm_cwnd >>= 1;
   1373 					if (nmp->nm_cwnd < NFS_CWNDSCALE)
   1374 						nmp->nm_cwnd = NFS_CWNDSCALE;
   1375 					nfsstats.rpcretries++;
   1376 				} else {
   1377 					rep->r_flags |= R_SENT;
   1378 					nmp->nm_sent += NFS_CWNDSCALE;
   1379 				}
   1380 				rep->r_rtt = 0;
   1381 			}
   1382 		}
   1383 	}
   1384 
   1385 	/*
   1386 	 * Call the nqnfs server timer once a second to handle leases.
   1387 	 */
   1388 	if (lasttime != time.tv_sec) {
   1389 		lasttime = time.tv_sec;
   1390 		nqnfs_serverd();
   1391 	}
   1392 
   1393 	/*
   1394 	 * Scan the write gathering queues for writes that need to be
   1395 	 * completed now.
   1396 	 */
   1397 	cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec;
   1398 	for (slp = nfssvc_sockhead.tqh_first; slp != 0;
   1399 	    slp = slp->ns_chain.tqe_next) {
   1400 	    if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
   1401 		nfsrv_wakenfsd(slp);
   1402 	}
   1403 	splx(s);
   1404 	timeout(nfs_timer, (void *)0, nfs_ticks);
   1405 }
   1406 
   1407 /*
   1408  * Test for a termination condition pending on the process.
   1409  * This is used for NFSMNT_INT mounts.
   1410  */
   1411 int
   1412 nfs_sigintr(nmp, rep, p)
   1413 	struct nfsmount *nmp;
   1414 	struct nfsreq *rep;
   1415 	register struct proc *p;
   1416 {
   1417 
   1418 	if (rep && (rep->r_flags & R_SOFTTERM))
   1419 		return (EINTR);
   1420 	if (!(nmp->nm_flag & NFSMNT_INT))
   1421 		return (0);
   1422 	if (p && p->p_siglist &&
   1423 	    (((p->p_siglist & ~p->p_sigmask) & ~p->p_sigignore) &
   1424 	    NFSINT_SIGMASK))
   1425 		return (EINTR);
   1426 	return (0);
   1427 }
   1428 
   1429 /*
   1430  * Lock a socket against others.
   1431  * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
   1432  * and also to avoid race conditions between the processes with nfs requests
   1433  * in progress when a reconnect is necessary.
   1434  */
   1435 int
   1436 nfs_sndlock(flagp, rep)
   1437 	register int *flagp;
   1438 	struct nfsreq *rep;
   1439 {
   1440 	struct proc *p;
   1441 	int slpflag = 0, slptimeo = 0;
   1442 
   1443 	if (rep) {
   1444 		p = rep->r_procp;
   1445 		if (rep->r_nmp->nm_flag & NFSMNT_INT)
   1446 			slpflag = PCATCH;
   1447 	} else
   1448 		p = (struct proc *)0;
   1449 	while (*flagp & NFSMNT_SNDLOCK) {
   1450 		if (nfs_sigintr(rep->r_nmp, rep, p))
   1451 			return (EINTR);
   1452 		*flagp |= NFSMNT_WANTSND;
   1453 		(void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck",
   1454 			slptimeo);
   1455 		if (slpflag == PCATCH) {
   1456 			slpflag = 0;
   1457 			slptimeo = 2 * hz;
   1458 		}
   1459 	}
   1460 	*flagp |= NFSMNT_SNDLOCK;
   1461 	return (0);
   1462 }
   1463 
   1464 /*
   1465  * Unlock the stream socket for others.
   1466  */
   1467 void
   1468 nfs_sndunlock(flagp)
   1469 	register int *flagp;
   1470 {
   1471 
   1472 	if ((*flagp & NFSMNT_SNDLOCK) == 0)
   1473 		panic("nfs sndunlock");
   1474 	*flagp &= ~NFSMNT_SNDLOCK;
   1475 	if (*flagp & NFSMNT_WANTSND) {
   1476 		*flagp &= ~NFSMNT_WANTSND;
   1477 		wakeup((caddr_t)flagp);
   1478 	}
   1479 }
   1480 
   1481 int
   1482 nfs_rcvlock(rep)
   1483 	register struct nfsreq *rep;
   1484 {
   1485 	register int *flagp = &rep->r_nmp->nm_flag;
   1486 	int slpflag, slptimeo = 0;
   1487 
   1488 	if (*flagp & NFSMNT_INT)
   1489 		slpflag = PCATCH;
   1490 	else
   1491 		slpflag = 0;
   1492 	while (*flagp & NFSMNT_RCVLOCK) {
   1493 		if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
   1494 			return (EINTR);
   1495 		*flagp |= NFSMNT_WANTRCV;
   1496 		(void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk",
   1497 			slptimeo);
   1498 		if (slpflag == PCATCH) {
   1499 			slpflag = 0;
   1500 			slptimeo = 2 * hz;
   1501 		}
   1502 	}
   1503 	*flagp |= NFSMNT_RCVLOCK;
   1504 	return (0);
   1505 }
   1506 
   1507 /*
   1508  * Unlock the stream socket for others.
   1509  */
   1510 void
   1511 nfs_rcvunlock(flagp)
   1512 	register int *flagp;
   1513 {
   1514 
   1515 	if ((*flagp & NFSMNT_RCVLOCK) == 0)
   1516 		panic("nfs rcvunlock");
   1517 	*flagp &= ~NFSMNT_RCVLOCK;
   1518 	if (*flagp & NFSMNT_WANTRCV) {
   1519 		*flagp &= ~NFSMNT_WANTRCV;
   1520 		wakeup((caddr_t)flagp);
   1521 	}
   1522 }
   1523 
   1524 /*
   1525  * Check for badly aligned mbuf data areas and
   1526  * realign data in an mbuf list by copying the data areas up, as required.
   1527  */
   1528 void
   1529 nfs_realign(m, hsiz)
   1530 	register struct mbuf *m;
   1531 	int hsiz;
   1532 {
   1533 	register struct mbuf *m2;
   1534 	register int siz, mlen, olen;
   1535 	register caddr_t tcp, fcp;
   1536 	struct mbuf *mnew;
   1537 
   1538 	while (m) {
   1539 	    /*
   1540 	     * This never happens for UDP, rarely happens for TCP
   1541 	     * but frequently happens for iso transport.
   1542 	     */
   1543 	    if ((m->m_len & 0x3) || (mtod(m, int) & 0x3)) {
   1544 		olen = m->m_len;
   1545 		fcp = mtod(m, caddr_t);
   1546 		if ((int)fcp & 0x3) {
   1547 			m->m_flags &= ~M_PKTHDR;
   1548 			if (m->m_flags & M_EXT)
   1549 				m->m_data = m->m_ext.ext_buf +
   1550 					((m->m_ext.ext_size - olen) & ~0x3);
   1551 			else
   1552 				m->m_data = m->m_dat;
   1553 		}
   1554 		m->m_len = 0;
   1555 		tcp = mtod(m, caddr_t);
   1556 		mnew = m;
   1557 		m2 = m->m_next;
   1558 
   1559 		/*
   1560 		 * If possible, only put the first invariant part
   1561 		 * of the RPC header in the first mbuf.
   1562 		 */
   1563 		mlen = M_TRAILINGSPACE(m);
   1564 		if (olen <= hsiz && mlen > hsiz)
   1565 			mlen = hsiz;
   1566 
   1567 		/*
   1568 		 * Loop through the mbuf list consolidating data.
   1569 		 */
   1570 		while (m) {
   1571 			while (olen > 0) {
   1572 				if (mlen == 0) {
   1573 					m2->m_flags &= ~M_PKTHDR;
   1574 					if (m2->m_flags & M_EXT)
   1575 						m2->m_data = m2->m_ext.ext_buf;
   1576 					else
   1577 						m2->m_data = m2->m_dat;
   1578 					m2->m_len = 0;
   1579 					mlen = M_TRAILINGSPACE(m2);
   1580 					tcp = mtod(m2, caddr_t);
   1581 					mnew = m2;
   1582 					m2 = m2->m_next;
   1583 				}
   1584 				siz = min(mlen, olen);
   1585 				if (tcp != fcp)
   1586 					bcopy(fcp, tcp, siz);
   1587 				mnew->m_len += siz;
   1588 				mlen -= siz;
   1589 				olen -= siz;
   1590 				tcp += siz;
   1591 				fcp += siz;
   1592 			}
   1593 			m = m->m_next;
   1594 			if (m) {
   1595 				olen = m->m_len;
   1596 				fcp = mtod(m, caddr_t);
   1597 			}
   1598 		}
   1599 
   1600 		/*
   1601 		 * Finally, set m_len == 0 for any trailing mbufs that have
   1602 		 * been copied out of.
   1603 		 */
   1604 		while (m2) {
   1605 			m2->m_len = 0;
   1606 			m2 = m2->m_next;
   1607 		}
   1608 		return;
   1609 	    }
   1610 	    m = m->m_next;
   1611 	}
   1612 }
   1613 
   1614 /*
   1615  * Socket upcall routine for the nfsd sockets.
   1616  * The caddr_t arg is a pointer to the "struct nfssvc_sock".
   1617  * Essentially do as much as possible non-blocking, else punt and it will
   1618  * be called with M_WAIT from an nfsd.
   1619  */
   1620 void
   1621 nfsrv_rcv(so, arg, waitflag)
   1622 	struct socket *so;
   1623 	caddr_t arg;
   1624 	int waitflag;
   1625 {
   1626 	register struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
   1627 	register struct mbuf *m;
   1628 	struct mbuf *mp, *nam;
   1629 	struct uio auio;
   1630 	int flags, error;
   1631 
   1632 	if ((slp->ns_flag & SLP_VALID) == 0)
   1633 		return;
   1634 #ifdef notdef
   1635 	/*
   1636 	 * Define this to test for nfsds handling this under heavy load.
   1637 	 */
   1638 	if (waitflag == M_DONTWAIT) {
   1639 		slp->ns_flag |= SLP_NEEDQ; goto dorecs;
   1640 	}
   1641 #endif
   1642 	auio.uio_procp = NULL;
   1643 	if (so->so_type == SOCK_STREAM) {
   1644 		/*
   1645 		 * If there are already records on the queue, defer soreceive()
   1646 		 * to an nfsd so that there is feedback to the TCP layer that
   1647 		 * the nfs servers are heavily loaded.
   1648 		 */
   1649 		if (slp->ns_rec && waitflag == M_DONTWAIT) {
   1650 			slp->ns_flag |= SLP_NEEDQ;
   1651 			goto dorecs;
   1652 		}
   1653 
   1654 		/*
   1655 		 * Do soreceive().
   1656 		 */
   1657 		auio.uio_resid = 1000000000;
   1658 		flags = MSG_DONTWAIT;
   1659 		error = soreceive(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
   1660 		if (error || mp == (struct mbuf *)0) {
   1661 			if (error == EWOULDBLOCK)
   1662 				slp->ns_flag |= SLP_NEEDQ;
   1663 			else
   1664 				slp->ns_flag |= SLP_DISCONN;
   1665 			goto dorecs;
   1666 		}
   1667 		m = mp;
   1668 		if (slp->ns_rawend) {
   1669 			slp->ns_rawend->m_next = m;
   1670 			slp->ns_cc += 1000000000 - auio.uio_resid;
   1671 		} else {
   1672 			slp->ns_raw = m;
   1673 			slp->ns_cc = 1000000000 - auio.uio_resid;
   1674 		}
   1675 		while (m->m_next)
   1676 			m = m->m_next;
   1677 		slp->ns_rawend = m;
   1678 
   1679 		/*
   1680 		 * Now try and parse record(s) out of the raw stream data.
   1681 		 */
   1682 		error = nfsrv_getstream(slp, waitflag);
   1683 		if (error) {
   1684 			if (error == EPERM)
   1685 				slp->ns_flag |= SLP_DISCONN;
   1686 			else
   1687 				slp->ns_flag |= SLP_NEEDQ;
   1688 		}
   1689 	} else {
   1690 		do {
   1691 			auio.uio_resid = 1000000000;
   1692 			flags = MSG_DONTWAIT;
   1693 			error = soreceive(so, &nam, &auio, &mp,
   1694 						(struct mbuf **)0, &flags);
   1695 			if (mp) {
   1696 				nfs_realign(mp, 10 * NFSX_UNSIGNED);
   1697 				if (nam) {
   1698 					m = nam;
   1699 					m->m_next = mp;
   1700 				} else
   1701 					m = mp;
   1702 				if (slp->ns_recend)
   1703 					slp->ns_recend->m_nextpkt = m;
   1704 				else
   1705 					slp->ns_rec = m;
   1706 				slp->ns_recend = m;
   1707 				m->m_nextpkt = (struct mbuf *)0;
   1708 			}
   1709 			if (error) {
   1710 				if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
   1711 					&& error != EWOULDBLOCK) {
   1712 					slp->ns_flag |= SLP_DISCONN;
   1713 					goto dorecs;
   1714 				}
   1715 			}
   1716 		} while (mp);
   1717 	}
   1718 
   1719 	/*
   1720 	 * Now try and process the request records, non-blocking.
   1721 	 */
   1722 dorecs:
   1723 	if (waitflag == M_DONTWAIT &&
   1724 		(slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
   1725 		nfsrv_wakenfsd(slp);
   1726 }
   1727 
   1728 /*
   1729  * Try and extract an RPC request from the mbuf data list received on a
   1730  * stream socket. The "waitflag" argument indicates whether or not it
   1731  * can sleep.
   1732  */
   1733 int
   1734 nfsrv_getstream(slp, waitflag)
   1735 	register struct nfssvc_sock *slp;
   1736 	int waitflag;
   1737 {
   1738 	register struct mbuf *m, **mpp;
   1739 	register char *cp1, *cp2;
   1740 	register int len;
   1741 	struct mbuf *om, *m2, *recm = 0;
   1742 	u_long recmark;
   1743 
   1744 	if (slp->ns_flag & SLP_GETSTREAM)
   1745 		panic("nfs getstream");
   1746 	slp->ns_flag |= SLP_GETSTREAM;
   1747 	for (;;) {
   1748 	    if (slp->ns_reclen == 0) {
   1749 		if (slp->ns_cc < NFSX_UNSIGNED) {
   1750 			slp->ns_flag &= ~SLP_GETSTREAM;
   1751 			return (0);
   1752 		}
   1753 		m = slp->ns_raw;
   1754 		if (m->m_len >= NFSX_UNSIGNED) {
   1755 			bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
   1756 			m->m_data += NFSX_UNSIGNED;
   1757 			m->m_len -= NFSX_UNSIGNED;
   1758 		} else {
   1759 			cp1 = (caddr_t)&recmark;
   1760 			cp2 = mtod(m, caddr_t);
   1761 			while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
   1762 				while (m->m_len == 0) {
   1763 					m = m->m_next;
   1764 					cp2 = mtod(m, caddr_t);
   1765 				}
   1766 				*cp1++ = *cp2++;
   1767 				m->m_data++;
   1768 				m->m_len--;
   1769 			}
   1770 		}
   1771 		slp->ns_cc -= NFSX_UNSIGNED;
   1772 		recmark = ntohl(recmark);
   1773 		slp->ns_reclen = recmark & ~0x80000000;
   1774 		if (recmark & 0x80000000)
   1775 			slp->ns_flag |= SLP_LASTFRAG;
   1776 		else
   1777 			slp->ns_flag &= ~SLP_LASTFRAG;
   1778 		if (slp->ns_reclen < NFS_MINPACKET || slp->ns_reclen > NFS_MAXPACKET) {
   1779 			slp->ns_flag &= ~SLP_GETSTREAM;
   1780 			return (EPERM);
   1781 		}
   1782 	    }
   1783 
   1784 	    /*
   1785 	     * Now get the record part.
   1786 	     */
   1787 	    if (slp->ns_cc == slp->ns_reclen) {
   1788 		recm = slp->ns_raw;
   1789 		slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
   1790 		slp->ns_cc = slp->ns_reclen = 0;
   1791 	    } else if (slp->ns_cc > slp->ns_reclen) {
   1792 		len = 0;
   1793 		m = slp->ns_raw;
   1794 		om = (struct mbuf *)0;
   1795 		while (len < slp->ns_reclen) {
   1796 			if ((len + m->m_len) > slp->ns_reclen) {
   1797 				m2 = m_copym(m, 0, slp->ns_reclen - len,
   1798 					waitflag);
   1799 				if (m2) {
   1800 					if (om) {
   1801 						om->m_next = m2;
   1802 						recm = slp->ns_raw;
   1803 					} else
   1804 						recm = m2;
   1805 					m->m_data += slp->ns_reclen - len;
   1806 					m->m_len -= slp->ns_reclen - len;
   1807 					len = slp->ns_reclen;
   1808 				} else {
   1809 					slp->ns_flag &= ~SLP_GETSTREAM;
   1810 					return (EWOULDBLOCK);
   1811 				}
   1812 			} else if ((len + m->m_len) == slp->ns_reclen) {
   1813 				om = m;
   1814 				len += m->m_len;
   1815 				m = m->m_next;
   1816 				recm = slp->ns_raw;
   1817 				om->m_next = (struct mbuf *)0;
   1818 			} else {
   1819 				om = m;
   1820 				len += m->m_len;
   1821 				m = m->m_next;
   1822 			}
   1823 		}
   1824 		slp->ns_raw = m;
   1825 		slp->ns_cc -= len;
   1826 		slp->ns_reclen = 0;
   1827 	    } else {
   1828 		slp->ns_flag &= ~SLP_GETSTREAM;
   1829 		return (0);
   1830 	    }
   1831 
   1832 	    /*
   1833 	     * Accumulate the fragments into a record.
   1834 	     */
   1835 	    mpp = &slp->ns_frag;
   1836 	    while (*mpp)
   1837 		mpp = &((*mpp)->m_next);
   1838 	    *mpp = recm;
   1839 	    if (slp->ns_flag & SLP_LASTFRAG) {
   1840 		nfs_realign(slp->ns_frag, 10 * NFSX_UNSIGNED);
   1841 		if (slp->ns_recend)
   1842 		    slp->ns_recend->m_nextpkt = slp->ns_frag;
   1843 		else
   1844 		    slp->ns_rec = slp->ns_frag;
   1845 		slp->ns_recend = slp->ns_frag;
   1846 		slp->ns_frag = (struct mbuf *)0;
   1847 	    }
   1848 	}
   1849 }
   1850 
   1851 /*
   1852  * Parse an RPC header.
   1853  */
   1854 int
   1855 nfsrv_dorec(slp, nfsd, ndp)
   1856 	register struct nfssvc_sock *slp;
   1857 	struct nfsd *nfsd;
   1858 	struct nfsrv_descript **ndp;
   1859 {
   1860 	register struct mbuf *m, *nam;
   1861 	register struct nfsrv_descript *nd;
   1862 	int error;
   1863 
   1864 	*ndp = NULL;
   1865 	if ((slp->ns_flag & SLP_VALID) == 0 ||
   1866 	    (m = slp->ns_rec) == (struct mbuf *)0)
   1867 		return (ENOBUFS);
   1868 	slp->ns_rec = m->m_nextpkt;
   1869 	if (slp->ns_rec)
   1870 		m->m_nextpkt = (struct mbuf *)0;
   1871 	else
   1872 		slp->ns_recend = (struct mbuf *)0;
   1873 	if (m->m_type == MT_SONAME) {
   1874 		nam = m;
   1875 		m = m->m_next;
   1876 		nam->m_next = NULL;
   1877 	} else
   1878 		nam = NULL;
   1879 	MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
   1880 		M_NFSRVDESC, M_WAITOK);
   1881 	nd->nd_md = nd->nd_mrep = m;
   1882 	nd->nd_nam2 = nam;
   1883 	nd->nd_dpos = mtod(m, caddr_t);
   1884 	error = nfs_getreq(nd, nfsd, TRUE);
   1885 	if (error) {
   1886 		m_freem(nam);
   1887 		free((caddr_t)nd, M_NFSRVDESC);
   1888 		return (error);
   1889 	}
   1890 	*ndp = nd;
   1891 	nfsd->nfsd_nd = nd;
   1892 	return (0);
   1893 }
   1894 
   1895 /*
   1896  * Parse an RPC request
   1897  * - verify it
   1898  * - fill in the cred struct.
   1899  */
   1900 int
   1901 nfs_getreq(nd, nfsd, has_header)
   1902 	register struct nfsrv_descript *nd;
   1903 	struct nfsd *nfsd;
   1904 	int has_header;
   1905 {
   1906 	register int len, i;
   1907 	register u_long *tl;
   1908 	register long t1;
   1909 	struct uio uio;
   1910 	struct iovec iov;
   1911 	caddr_t dpos, cp2, cp;
   1912 	u_long nfsvers, auth_type;
   1913 	uid_t nickuid;
   1914 	int error = 0, nqnfs = 0, ticklen;
   1915 	struct mbuf *mrep, *md;
   1916 	register struct nfsuid *nuidp;
   1917 	struct timeval tvin, tvout;
   1918 	NFSKERBKEYSCHED_T keys;	/* stores key schedule */
   1919 
   1920 	mrep = nd->nd_mrep;
   1921 	md = nd->nd_md;
   1922 	dpos = nd->nd_dpos;
   1923 	if (has_header) {
   1924 		nfsm_dissect(tl, u_long *, 10 * NFSX_UNSIGNED);
   1925 		nd->nd_retxid = fxdr_unsigned(u_long, *tl++);
   1926 		if (*tl++ != rpc_call) {
   1927 			m_freem(mrep);
   1928 			return (EBADRPC);
   1929 		}
   1930 	} else
   1931 		nfsm_dissect(tl, u_long *, 8 * NFSX_UNSIGNED);
   1932 	nd->nd_repstat = 0;
   1933 	nd->nd_flag = 0;
   1934 	if (*tl++ != rpc_vers) {
   1935 		nd->nd_repstat = ERPCMISMATCH;
   1936 		nd->nd_procnum = NFSPROC_NOOP;
   1937 		return (0);
   1938 	}
   1939 	if (*tl != nfs_prog) {
   1940 		if (*tl == nqnfs_prog)
   1941 			nqnfs++;
   1942 		else {
   1943 			nd->nd_repstat = EPROGUNAVAIL;
   1944 			nd->nd_procnum = NFSPROC_NOOP;
   1945 			return (0);
   1946 		}
   1947 	}
   1948 	tl++;
   1949 	nfsvers = fxdr_unsigned(u_long, *tl++);
   1950 	if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) ||
   1951 		(nfsvers != NQNFS_VER3 && nqnfs)) {
   1952 		nd->nd_repstat = EPROGMISMATCH;
   1953 		nd->nd_procnum = NFSPROC_NOOP;
   1954 		return (0);
   1955 	}
   1956 	if (nqnfs)
   1957 		nd->nd_flag = (ND_NFSV3 | ND_NQNFS);
   1958 	else if (nfsvers == NFS_VER3)
   1959 		nd->nd_flag = ND_NFSV3;
   1960 	nd->nd_procnum = fxdr_unsigned(u_long, *tl++);
   1961 	if (nd->nd_procnum == NFSPROC_NULL)
   1962 		return (0);
   1963 	if (nd->nd_procnum >= NFS_NPROCS ||
   1964 		(!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
   1965 		(!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
   1966 		nd->nd_repstat = EPROCUNAVAIL;
   1967 		nd->nd_procnum = NFSPROC_NOOP;
   1968 		return (0);
   1969 	}
   1970 	if ((nd->nd_flag & ND_NFSV3) == 0)
   1971 		nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
   1972 	auth_type = *tl++;
   1973 	len = fxdr_unsigned(int, *tl++);
   1974 	if (len < 0 || len > RPCAUTH_MAXSIZ) {
   1975 		m_freem(mrep);
   1976 		return (EBADRPC);
   1977 	}
   1978 
   1979 	nd->nd_flag &= ~ND_KERBAUTH;
   1980 	/*
   1981 	 * Handle auth_unix or auth_kerb.
   1982 	 */
   1983 	if (auth_type == rpc_auth_unix) {
   1984 		len = fxdr_unsigned(int, *++tl);
   1985 		if (len < 0 || len > NFS_MAXNAMLEN) {
   1986 			m_freem(mrep);
   1987 			return (EBADRPC);
   1988 		}
   1989 		nfsm_adv(nfsm_rndup(len));
   1990 		nfsm_dissect(tl, u_long *, 3 * NFSX_UNSIGNED);
   1991 		bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
   1992 		nd->nd_cr.cr_ref = 1;
   1993 		nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
   1994 		nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
   1995 		len = fxdr_unsigned(int, *tl);
   1996 		if (len < 0 || len > RPCAUTH_UNIXGIDS) {
   1997 			m_freem(mrep);
   1998 			return (EBADRPC);
   1999 		}
   2000 		nfsm_dissect(tl, u_long *, (len + 2) * NFSX_UNSIGNED);
   2001 		for (i = 1; i <= len; i++)
   2002 		    if (i < NGROUPS)
   2003 			nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
   2004 		    else
   2005 			tl++;
   2006 		nd->nd_cr.cr_ngroups = (len >= NGROUPS) ? NGROUPS : (len + 1);
   2007 		if (nd->nd_cr.cr_ngroups > 1)
   2008 		    nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
   2009 		len = fxdr_unsigned(int, *++tl);
   2010 		if (len < 0 || len > RPCAUTH_MAXSIZ) {
   2011 			m_freem(mrep);
   2012 			return (EBADRPC);
   2013 		}
   2014 		if (len > 0)
   2015 			nfsm_adv(nfsm_rndup(len));
   2016 	} else if (auth_type == rpc_auth_kerb) {
   2017 		switch (fxdr_unsigned(int, *tl++)) {
   2018 		case RPCAKN_FULLNAME:
   2019 			ticklen = fxdr_unsigned(int, *tl);
   2020 			*((u_long *)nfsd->nfsd_authstr) = *tl;
   2021 			uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
   2022 			nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
   2023 			if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
   2024 				m_freem(mrep);
   2025 				return (EBADRPC);
   2026 			}
   2027 			uio.uio_offset = 0;
   2028 			uio.uio_iov = &iov;
   2029 			uio.uio_iovcnt = 1;
   2030 			uio.uio_segflg = UIO_SYSSPACE;
   2031 			iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
   2032 			iov.iov_len = RPCAUTH_MAXSIZ - 4;
   2033 			nfsm_mtouio(&uio, uio.uio_resid);
   2034 			nfsm_dissect(tl, u_long *, 2 * NFSX_UNSIGNED);
   2035 			if (*tl++ != rpc_auth_kerb ||
   2036 				fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
   2037 				printf("Bad kerb verifier\n");
   2038 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
   2039 				nd->nd_procnum = NFSPROC_NOOP;
   2040 				return (0);
   2041 			}
   2042 			nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
   2043 			tl = (u_long *)cp;
   2044 			if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
   2045 				printf("Not fullname kerb verifier\n");
   2046 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
   2047 				nd->nd_procnum = NFSPROC_NOOP;
   2048 				return (0);
   2049 			}
   2050 			cp += NFSX_UNSIGNED;
   2051 			bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
   2052 			nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
   2053 			nd->nd_flag |= ND_KERBFULL;
   2054 			nfsd->nfsd_flag |= NFSD_NEEDAUTH;
   2055 			break;
   2056 		case RPCAKN_NICKNAME:
   2057 			if (len != 2 * NFSX_UNSIGNED) {
   2058 				printf("Kerb nickname short\n");
   2059 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
   2060 				nd->nd_procnum = NFSPROC_NOOP;
   2061 				return (0);
   2062 			}
   2063 			nickuid = fxdr_unsigned(uid_t, *tl);
   2064 			nfsm_dissect(tl, u_long *, 2 * NFSX_UNSIGNED);
   2065 			if (*tl++ != rpc_auth_kerb ||
   2066 				fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
   2067 				printf("Kerb nick verifier bad\n");
   2068 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
   2069 				nd->nd_procnum = NFSPROC_NOOP;
   2070 				return (0);
   2071 			}
   2072 			nfsm_dissect(tl, u_long *, 3 * NFSX_UNSIGNED);
   2073 			tvin.tv_sec = *tl++;
   2074 			tvin.tv_usec = *tl;
   2075 
   2076 			for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
   2077 			    nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
   2078 				if (nuidp->nu_cr.cr_uid == nickuid &&
   2079 				    (!nd->nd_nam2 ||
   2080 				     netaddr_match(NU_NETFAM(nuidp),
   2081 				      &nuidp->nu_haddr, nd->nd_nam2)))
   2082 					break;
   2083 			}
   2084 			if (!nuidp) {
   2085 				nd->nd_repstat =
   2086 					(NFSERR_AUTHERR|AUTH_REJECTCRED);
   2087 				nd->nd_procnum = NFSPROC_NOOP;
   2088 				return (0);
   2089 			}
   2090 
   2091 			/*
   2092 			 * Now, decrypt the timestamp using the session key
   2093 			 * and validate it.
   2094 			 */
   2095 #ifdef NFSKERB
   2096 			XXX
   2097 #endif
   2098 
   2099 			tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
   2100 			tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
   2101 			if (nuidp->nu_expire < time.tv_sec ||
   2102 			    nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
   2103 			    (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
   2104 			     nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
   2105 				nuidp->nu_expire = 0;
   2106 				nd->nd_repstat =
   2107 				    (NFSERR_AUTHERR|AUTH_REJECTVERF);
   2108 				nd->nd_procnum = NFSPROC_NOOP;
   2109 				return (0);
   2110 			}
   2111 			nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
   2112 			nd->nd_flag |= ND_KERBNICK;
   2113 		};
   2114 	} else {
   2115 		nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
   2116 		nd->nd_procnum = NFSPROC_NOOP;
   2117 		return (0);
   2118 	}
   2119 
   2120 	/*
   2121 	 * For nqnfs, get piggybacked lease request.
   2122 	 */
   2123 	if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
   2124 		nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
   2125 		nd->nd_flag |= fxdr_unsigned(int, *tl);
   2126 		if (nd->nd_flag & ND_LEASE) {
   2127 			nfsm_dissect(tl, u_long *, NFSX_UNSIGNED);
   2128 			nd->nd_duration = fxdr_unsigned(int, *tl);
   2129 		} else
   2130 			nd->nd_duration = NQ_MINLEASE;
   2131 	} else
   2132 		nd->nd_duration = NQ_MINLEASE;
   2133 	nd->nd_md = md;
   2134 	nd->nd_dpos = dpos;
   2135 	return (0);
   2136 nfsmout:
   2137 	return (error);
   2138 }
   2139 
   2140 /*
   2141  * Search for a sleeping nfsd and wake it up.
   2142  * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
   2143  * running nfsds will go look for the work in the nfssvc_sock list.
   2144  */
   2145 void
   2146 nfsrv_wakenfsd(slp)
   2147 	struct nfssvc_sock *slp;
   2148 {
   2149 	register struct nfsd *nd;
   2150 
   2151 	if ((slp->ns_flag & SLP_VALID) == 0)
   2152 		return;
   2153 	for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) {
   2154 		if (nd->nfsd_flag & NFSD_WAITING) {
   2155 			nd->nfsd_flag &= ~NFSD_WAITING;
   2156 			if (nd->nfsd_slp)
   2157 				panic("nfsd wakeup");
   2158 			slp->ns_sref++;
   2159 			nd->nfsd_slp = slp;
   2160 			wakeup((caddr_t)nd);
   2161 			return;
   2162 		}
   2163 	}
   2164 	slp->ns_flag |= SLP_DOREC;
   2165 	nfsd_head_flag |= NFSD_CHECKSLP;
   2166 }
   2167 
   2168 int
   2169 nfs_msg(p, server, msg)
   2170 	struct proc *p;
   2171 	char *server, *msg;
   2172 {
   2173 	tpr_t tpr;
   2174 
   2175 	if (p)
   2176 		tpr = tprintf_open(p);
   2177 	else
   2178 		tpr = NULL;
   2179 	tprintf(tpr, "nfs server %s: %s\n", server, msg);
   2180 	tprintf_close(tpr);
   2181 	return (0);
   2182 }
   2183