nfs_socket.c revision 1.100 1 /* $NetBSD: nfs_socket.c,v 1.100 2003/12/07 21:15:46 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1991, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
35 */
36
37 /*
38 * Socket operations for use by nfs
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.100 2003/12/07 21:15:46 fvdl Exp $");
43
44 #include "fs_nfs.h"
45 #include "opt_nfs.h"
46 #include "opt_nfsserver.h"
47 #include "opt_mbuftrace.h"
48 #include "opt_inet.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/callout.h>
53 #include <sys/proc.h>
54 #include <sys/mount.h>
55 #include <sys/kernel.h>
56 #include <sys/mbuf.h>
57 #include <sys/vnode.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/socket.h>
61 #include <sys/socketvar.h>
62 #include <sys/syslog.h>
63 #include <sys/tprintf.h>
64 #include <sys/namei.h>
65 #include <sys/signal.h>
66 #include <sys/signalvar.h>
67
68 #include <netinet/in.h>
69 #include <netinet/tcp.h>
70
71 #include <nfs/rpcv2.h>
72 #include <nfs/nfsproto.h>
73 #include <nfs/nfs.h>
74 #include <nfs/xdr_subs.h>
75 #include <nfs/nfsm_subs.h>
76 #include <nfs/nfsmount.h>
77 #include <nfs/nfsnode.h>
78 #include <nfs/nfsrtt.h>
79 #include <nfs/nqnfs.h>
80 #include <nfs/nfs_var.h>
81
82 MALLOC_DEFINE(M_NFSREQ, "NFS req", "NFS request header");
83 #ifdef MBUFTRACE
84 struct mowner nfs_mowner = { "nfs" };
85 #endif
86
87 /*
88 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
89 * Use the mean and mean deviation of rtt for the appropriate type of rpc
90 * for the frequent rpcs and a default for the others.
91 * The justification for doing "other" this way is that these rpcs
92 * happen so infrequently that timer est. would probably be stale.
93 * Also, since many of these rpcs are
94 * non-idempotent, a conservative timeout is desired.
95 * getattr, lookup - A+2D
96 * read, write - A+4D
97 * other - nm_timeo
98 */
99 #define NFS_RTO(n, t) \
100 ((t) == 0 ? (n)->nm_timeo : \
101 ((t) < 3 ? \
102 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
103 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
104 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
105 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
106 /*
107 * External data, mostly RPC constants in XDR form
108 */
109 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
110 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
111 rpc_auth_kerb;
112 extern u_int32_t nfs_prog, nqnfs_prog;
113 extern time_t nqnfsstarttime;
114 extern const int nfsv3_procid[NFS_NPROCS];
115 extern int nfs_ticks;
116
117 /*
118 * Defines which timer to use for the procnum.
119 * 0 - default
120 * 1 - getattr
121 * 2 - lookup
122 * 3 - read
123 * 4 - write
124 */
125 static const int proct[NFS_NPROCS] = {
126 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
127 0, 0, 0,
128 };
129
130 /*
131 * There is a congestion window for outstanding rpcs maintained per mount
132 * point. The cwnd size is adjusted in roughly the way that:
133 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
134 * SIGCOMM '88". ACM, August 1988.
135 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
136 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
137 * of rpcs is in progress.
138 * (The sent count and cwnd are scaled for integer arith.)
139 * Variants of "slow start" were tried and were found to be too much of a
140 * performance hit (ave. rtt 3 times larger),
141 * I suspect due to the large rtt that nfs rpcs have.
142 */
143 #define NFS_CWNDSCALE 256
144 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
145 static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
146 int nfsrtton = 0;
147 struct nfsrtt nfsrtt;
148 struct nfsreqhead nfs_reqq;
149
150 struct callout nfs_timer_ch = CALLOUT_INITIALIZER_SETFUNC(nfs_timer, NULL);
151
152 /*
153 * Initialize sockets and congestion for a new NFS connection.
154 * We do not free the sockaddr if error.
155 */
156 int
157 nfs_connect(nmp, rep)
158 struct nfsmount *nmp;
159 struct nfsreq *rep;
160 {
161 struct socket *so;
162 int s, error, rcvreserve, sndreserve;
163 struct sockaddr *saddr;
164 struct sockaddr_in *sin;
165 #ifdef INET6
166 struct sockaddr_in6 *sin6;
167 #endif
168 struct mbuf *m;
169
170 nmp->nm_so = (struct socket *)0;
171 saddr = mtod(nmp->nm_nam, struct sockaddr *);
172 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
173 nmp->nm_soproto);
174 if (error)
175 goto bad;
176 so = nmp->nm_so;
177 #ifdef MBUFTRACE
178 so->so_mowner = &nfs_mowner;
179 so->so_rcv.sb_mowner = &nfs_mowner;
180 so->so_snd.sb_mowner = &nfs_mowner;
181 #endif
182 nmp->nm_soflags = so->so_proto->pr_flags;
183
184 /*
185 * Some servers require that the client port be a reserved port number.
186 */
187 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
188 m = m_get(M_WAIT, MT_SOOPTS);
189 MCLAIM(m, so->so_mowner);
190 *mtod(m, int32_t *) = IP_PORTRANGE_LOW;
191 m->m_len = sizeof(int32_t);
192 if ((error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, m)))
193 goto bad;
194 m = m_get(M_WAIT, MT_SONAME);
195 MCLAIM(m, so->so_mowner);
196 sin = mtod(m, struct sockaddr_in *);
197 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
198 sin->sin_family = AF_INET;
199 sin->sin_addr.s_addr = INADDR_ANY;
200 sin->sin_port = 0;
201 error = sobind(so, m, &proc0);
202 m_freem(m);
203 if (error)
204 goto bad;
205 }
206 #ifdef INET6
207 if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) {
208 m = m_get(M_WAIT, MT_SOOPTS);
209 MCLAIM(m, so->so_mowner);
210 *mtod(m, int32_t *) = IPV6_PORTRANGE_LOW;
211 m->m_len = sizeof(int32_t);
212 if ((error = sosetopt(so, IPPROTO_IPV6, IPV6_PORTRANGE, m)))
213 goto bad;
214 m = m_get(M_WAIT, MT_SONAME);
215 MCLAIM(m, so->so_mowner);
216 sin6 = mtod(m, struct sockaddr_in6 *);
217 sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6);
218 sin6->sin6_family = AF_INET6;
219 sin6->sin6_addr = in6addr_any;
220 sin6->sin6_port = 0;
221 error = sobind(so, m, &proc0);
222 m_freem(m);
223 if (error)
224 goto bad;
225 }
226 #endif
227
228 /*
229 * Protocols that do not require connections may be optionally left
230 * unconnected for servers that reply from a port other than NFS_PORT.
231 */
232 if (nmp->nm_flag & NFSMNT_NOCONN) {
233 if (nmp->nm_soflags & PR_CONNREQUIRED) {
234 error = ENOTCONN;
235 goto bad;
236 }
237 } else {
238 error = soconnect(so, nmp->nm_nam);
239 if (error)
240 goto bad;
241
242 /*
243 * Wait for the connection to complete. Cribbed from the
244 * connect system call but with the wait timing out so
245 * that interruptible mounts don't hang here for a long time.
246 */
247 s = splsoftnet();
248 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
249 (void) tsleep((caddr_t)&so->so_timeo, PSOCK,
250 "nfscn1", 2 * hz);
251 if ((so->so_state & SS_ISCONNECTING) &&
252 so->so_error == 0 && rep &&
253 (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){
254 so->so_state &= ~SS_ISCONNECTING;
255 splx(s);
256 goto bad;
257 }
258 }
259 if (so->so_error) {
260 error = so->so_error;
261 so->so_error = 0;
262 splx(s);
263 goto bad;
264 }
265 splx(s);
266 }
267 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
268 so->so_rcv.sb_timeo = (5 * hz);
269 so->so_snd.sb_timeo = (5 * hz);
270 } else {
271 so->so_rcv.sb_timeo = 0;
272 so->so_snd.sb_timeo = 0;
273 }
274 if (nmp->nm_sotype == SOCK_DGRAM) {
275 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
276 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
277 NFS_MAXPKTHDR) * 2;
278 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
279 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
280 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
281 NFS_MAXPKTHDR) * 2;
282 } else {
283 if (nmp->nm_sotype != SOCK_STREAM)
284 panic("nfscon sotype");
285 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
286 m = m_get(M_WAIT, MT_SOOPTS);
287 MCLAIM(m, so->so_mowner);
288 *mtod(m, int32_t *) = 1;
289 m->m_len = sizeof(int32_t);
290 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
291 }
292 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
293 m = m_get(M_WAIT, MT_SOOPTS);
294 MCLAIM(m, so->so_mowner);
295 *mtod(m, int32_t *) = 1;
296 m->m_len = sizeof(int32_t);
297 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
298 }
299 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
300 sizeof (u_int32_t)) * 2;
301 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
302 sizeof (u_int32_t)) * 2;
303 }
304 error = soreserve(so, sndreserve, rcvreserve);
305 if (error)
306 goto bad;
307 so->so_rcv.sb_flags |= SB_NOINTR;
308 so->so_snd.sb_flags |= SB_NOINTR;
309
310 /* Initialize other non-zero congestion variables */
311 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
312 NFS_TIMEO << 3;
313 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
314 nmp->nm_sdrtt[3] = 0;
315 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
316 nmp->nm_sent = 0;
317 nmp->nm_timeouts = 0;
318 return (0);
319
320 bad:
321 nfs_disconnect(nmp);
322 return (error);
323 }
324
325 /*
326 * Reconnect routine:
327 * Called when a connection is broken on a reliable protocol.
328 * - clean up the old socket
329 * - nfs_connect() again
330 * - set R_MUSTRESEND for all outstanding requests on mount point
331 * If this fails the mount point is DEAD!
332 * nb: Must be called with the nfs_sndlock() set on the mount point.
333 */
334 int
335 nfs_reconnect(rep)
336 struct nfsreq *rep;
337 {
338 struct nfsreq *rp;
339 struct nfsmount *nmp = rep->r_nmp;
340 int error;
341
342 nfs_disconnect(nmp);
343 while ((error = nfs_connect(nmp, rep)) != 0) {
344 if (error == EINTR || error == ERESTART)
345 return (EINTR);
346 (void) tsleep((caddr_t)&lbolt, PSOCK, "nfscn2", 0);
347 }
348
349 /*
350 * Loop through outstanding request list and fix up all requests
351 * on old socket.
352 */
353 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) {
354 if (rp->r_nmp == nmp)
355 rp->r_flags |= R_MUSTRESEND;
356 }
357 return (0);
358 }
359
360 /*
361 * NFS disconnect. Clean up and unlink.
362 */
363 void
364 nfs_disconnect(nmp)
365 struct nfsmount *nmp;
366 {
367 struct socket *so;
368 int drain = 0;
369
370 if (nmp->nm_so) {
371 so = nmp->nm_so;
372 nmp->nm_so = (struct socket *)0;
373 soshutdown(so, 2);
374 drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0;
375 if (drain) {
376 /*
377 * soshutdown() above should wake up the current
378 * listener.
379 * Now wake up those waiting for the receive lock, and
380 * wait for them to go away unhappy, to prevent *nmp
381 * from evaporating while they're sleeping.
382 */
383 while (nmp->nm_waiters > 0) {
384 wakeup (&nmp->nm_iflag);
385 (void) tsleep(&nmp->nm_waiters, PVFS,
386 "nfsdis", 0);
387 }
388 }
389 soclose(so);
390 }
391 #ifdef DIAGNOSTIC
392 if (drain && (nmp->nm_waiters > 0))
393 panic("nfs_disconnect: waiters left after drain?");
394 #endif
395 }
396
397 void
398 nfs_safedisconnect(nmp)
399 struct nfsmount *nmp;
400 {
401 struct nfsreq dummyreq;
402
403 memset(&dummyreq, 0, sizeof(dummyreq));
404 dummyreq.r_nmp = nmp;
405 nfs_rcvlock(&dummyreq); /* XXX ignored error return */
406 nfs_disconnect(nmp);
407 nfs_rcvunlock(nmp);
408 }
409
410 /*
411 * This is the nfs send routine. For connection based socket types, it
412 * must be called with an nfs_sndlock() on the socket.
413 * "rep == NULL" indicates that it has been called from a server.
414 * For the client side:
415 * - return EINTR if the RPC is terminated, 0 otherwise
416 * - set R_MUSTRESEND if the send fails for any reason
417 * - do any cleanup required by recoverable socket errors (? ? ?)
418 * For the server side:
419 * - return EINTR or ERESTART if interrupted by a signal
420 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
421 * - do any cleanup required by recoverable socket errors (? ? ?)
422 */
423 int
424 nfs_send(so, nam, top, rep)
425 struct socket *so;
426 struct mbuf *nam;
427 struct mbuf *top;
428 struct nfsreq *rep;
429 {
430 struct mbuf *sendnam;
431 int error, soflags, flags;
432
433 if (rep) {
434 if (rep->r_flags & R_SOFTTERM) {
435 m_freem(top);
436 return (EINTR);
437 }
438 if ((so = rep->r_nmp->nm_so) == NULL) {
439 rep->r_flags |= R_MUSTRESEND;
440 m_freem(top);
441 return (0);
442 }
443 rep->r_flags &= ~R_MUSTRESEND;
444 soflags = rep->r_nmp->nm_soflags;
445 } else
446 soflags = so->so_proto->pr_flags;
447 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
448 sendnam = (struct mbuf *)0;
449 else
450 sendnam = nam;
451 if (so->so_type == SOCK_SEQPACKET)
452 flags = MSG_EOR;
453 else
454 flags = 0;
455
456 error = (*so->so_send)(so, sendnam, (struct uio *)0, top,
457 (struct mbuf *)0, flags);
458 if (error) {
459 if (rep) {
460 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
461 /*
462 * We're too fast for the network/driver,
463 * and UDP isn't flowcontrolled.
464 * We need to resend. This is not fatal,
465 * just try again.
466 *
467 * Could be smarter here by doing some sort
468 * of a backoff, but this is rare.
469 */
470 rep->r_flags |= R_MUSTRESEND;
471 } else {
472 log(LOG_INFO, "nfs send error %d for %s\n",
473 error,
474 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
475 /*
476 * Deal with errors for the client side.
477 */
478 if (rep->r_flags & R_SOFTTERM)
479 error = EINTR;
480 else
481 rep->r_flags |= R_MUSTRESEND;
482 }
483 } else {
484 /*
485 * See above. This error can happen under normal
486 * circumstances and the log is too noisy.
487 * The error will still show up in nfsstat.
488 */
489 if (error != ENOBUFS || so->so_type != SOCK_DGRAM)
490 log(LOG_INFO, "nfsd send error %d\n", error);
491 }
492
493 /*
494 * Handle any recoverable (soft) socket errors here. (? ? ?)
495 */
496 if (error != EINTR && error != ERESTART &&
497 error != EWOULDBLOCK && error != EPIPE)
498 error = 0;
499 }
500 return (error);
501 }
502
503 #ifdef NFS
504 /*
505 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
506 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
507 * Mark and consolidate the data into a new mbuf list.
508 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
509 * small mbufs.
510 * For SOCK_STREAM we must be very careful to read an entire record once
511 * we have read any of it, even if the system call has been interrupted.
512 */
513 int
514 nfs_receive(rep, aname, mp)
515 struct nfsreq *rep;
516 struct mbuf **aname;
517 struct mbuf **mp;
518 {
519 struct socket *so;
520 struct uio auio;
521 struct iovec aio;
522 struct mbuf *m;
523 struct mbuf *control;
524 u_int32_t len;
525 struct mbuf **getnam;
526 int error, sotype, rcvflg;
527 struct proc *p = curproc; /* XXX */
528
529 /*
530 * Set up arguments for soreceive()
531 */
532 *mp = (struct mbuf *)0;
533 *aname = (struct mbuf *)0;
534 sotype = rep->r_nmp->nm_sotype;
535
536 /*
537 * For reliable protocols, lock against other senders/receivers
538 * in case a reconnect is necessary.
539 * For SOCK_STREAM, first get the Record Mark to find out how much
540 * more there is to get.
541 * We must lock the socket against other receivers
542 * until we have an entire rpc request/reply.
543 */
544 if (sotype != SOCK_DGRAM) {
545 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep);
546 if (error)
547 return (error);
548 tryagain:
549 /*
550 * Check for fatal errors and resending request.
551 */
552 /*
553 * Ugh: If a reconnect attempt just happened, nm_so
554 * would have changed. NULL indicates a failed
555 * attempt that has essentially shut down this
556 * mount point.
557 */
558 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
559 nfs_sndunlock(&rep->r_nmp->nm_iflag);
560 return (EINTR);
561 }
562 so = rep->r_nmp->nm_so;
563 if (!so) {
564 error = nfs_reconnect(rep);
565 if (error) {
566 nfs_sndunlock(&rep->r_nmp->nm_iflag);
567 return (error);
568 }
569 goto tryagain;
570 }
571 while (rep->r_flags & R_MUSTRESEND) {
572 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
573 nfsstats.rpcretries++;
574 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
575 if (error) {
576 if (error == EINTR || error == ERESTART ||
577 (error = nfs_reconnect(rep)) != 0) {
578 nfs_sndunlock(&rep->r_nmp->nm_iflag);
579 return (error);
580 }
581 goto tryagain;
582 }
583 }
584 nfs_sndunlock(&rep->r_nmp->nm_iflag);
585 if (sotype == SOCK_STREAM) {
586 aio.iov_base = (caddr_t) &len;
587 aio.iov_len = sizeof(u_int32_t);
588 auio.uio_iov = &aio;
589 auio.uio_iovcnt = 1;
590 auio.uio_segflg = UIO_SYSSPACE;
591 auio.uio_rw = UIO_READ;
592 auio.uio_offset = 0;
593 auio.uio_resid = sizeof(u_int32_t);
594 auio.uio_procp = p;
595 do {
596 rcvflg = MSG_WAITALL;
597 error = (*so->so_receive)(so, (struct mbuf **)0, &auio,
598 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
599 if (error == EWOULDBLOCK && rep) {
600 if (rep->r_flags & R_SOFTTERM)
601 return (EINTR);
602 }
603 } while (error == EWOULDBLOCK);
604 if (!error && auio.uio_resid > 0) {
605 /*
606 * Don't log a 0 byte receive; it means
607 * that the socket has been closed, and
608 * can happen during normal operation
609 * (forcible unmount or Solaris server).
610 */
611 if (auio.uio_resid != sizeof (u_int32_t))
612 log(LOG_INFO,
613 "short receive (%lu/%lu) from nfs server %s\n",
614 (u_long)sizeof(u_int32_t) - auio.uio_resid,
615 (u_long)sizeof(u_int32_t),
616 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
617 error = EPIPE;
618 }
619 if (error)
620 goto errout;
621 len = ntohl(len) & ~0x80000000;
622 /*
623 * This is SERIOUS! We are out of sync with the sender
624 * and forcing a disconnect/reconnect is all I can do.
625 */
626 if (len > NFS_MAXPACKET) {
627 log(LOG_ERR, "%s (%d) from nfs server %s\n",
628 "impossible packet length",
629 len,
630 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
631 error = EFBIG;
632 goto errout;
633 }
634 auio.uio_resid = len;
635 do {
636 rcvflg = MSG_WAITALL;
637 error = (*so->so_receive)(so, (struct mbuf **)0,
638 &auio, mp, (struct mbuf **)0, &rcvflg);
639 } while (error == EWOULDBLOCK || error == EINTR ||
640 error == ERESTART);
641 if (!error && auio.uio_resid > 0) {
642 if (len != auio.uio_resid)
643 log(LOG_INFO,
644 "short receive (%lu/%d) from nfs server %s\n",
645 (u_long)len - auio.uio_resid, len,
646 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
647 error = EPIPE;
648 }
649 } else {
650 /*
651 * NB: Since uio_resid is big, MSG_WAITALL is ignored
652 * and soreceive() will return when it has either a
653 * control msg or a data msg.
654 * We have no use for control msg., but must grab them
655 * and then throw them away so we know what is going
656 * on.
657 */
658 auio.uio_resid = len = 100000000; /* Anything Big */
659 auio.uio_procp = p;
660 do {
661 rcvflg = 0;
662 error = (*so->so_receive)(so, (struct mbuf **)0,
663 &auio, mp, &control, &rcvflg);
664 if (control)
665 m_freem(control);
666 if (error == EWOULDBLOCK && rep) {
667 if (rep->r_flags & R_SOFTTERM)
668 return (EINTR);
669 }
670 } while (error == EWOULDBLOCK ||
671 (!error && *mp == NULL && control));
672 if ((rcvflg & MSG_EOR) == 0)
673 printf("Egad!!\n");
674 if (!error && *mp == NULL)
675 error = EPIPE;
676 len -= auio.uio_resid;
677 }
678 errout:
679 if (error && error != EINTR && error != ERESTART) {
680 m_freem(*mp);
681 *mp = (struct mbuf *)0;
682 if (error != EPIPE)
683 log(LOG_INFO,
684 "receive error %d from nfs server %s\n",
685 error,
686 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
687 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep);
688 if (!error)
689 error = nfs_reconnect(rep);
690 if (!error)
691 goto tryagain;
692 else
693 nfs_sndunlock(&rep->r_nmp->nm_iflag);
694 }
695 } else {
696 if ((so = rep->r_nmp->nm_so) == NULL)
697 return (EACCES);
698 if (so->so_state & SS_ISCONNECTED)
699 getnam = (struct mbuf **)0;
700 else
701 getnam = aname;
702 auio.uio_resid = len = 1000000;
703 auio.uio_procp = p;
704 do {
705 rcvflg = 0;
706 error = (*so->so_receive)(so, getnam, &auio, mp,
707 (struct mbuf **)0, &rcvflg);
708 if (error == EWOULDBLOCK &&
709 (rep->r_flags & R_SOFTTERM))
710 return (EINTR);
711 } while (error == EWOULDBLOCK);
712 len -= auio.uio_resid;
713 if (!error && *mp == NULL)
714 error = EPIPE;
715 }
716 if (error) {
717 m_freem(*mp);
718 *mp = (struct mbuf *)0;
719 }
720 return (error);
721 }
722
723 /*
724 * Implement receipt of reply on a socket.
725 * We must search through the list of received datagrams matching them
726 * with outstanding requests using the xid, until ours is found.
727 */
728 /* ARGSUSED */
729 int
730 nfs_reply(myrep)
731 struct nfsreq *myrep;
732 {
733 struct nfsreq *rep;
734 struct nfsmount *nmp = myrep->r_nmp;
735 int32_t t1;
736 struct mbuf *mrep, *nam, *md;
737 u_int32_t rxid, *tl;
738 caddr_t dpos, cp2;
739 int error;
740
741 /*
742 * Loop around until we get our own reply
743 */
744 for (;;) {
745 /*
746 * Lock against other receivers so that I don't get stuck in
747 * sbwait() after someone else has received my reply for me.
748 * Also necessary for connection based protocols to avoid
749 * race conditions during a reconnect.
750 */
751 error = nfs_rcvlock(myrep);
752 if (error == EALREADY)
753 return (0);
754 if (error)
755 return (error);
756 /*
757 * Get the next Rpc reply off the socket
758 */
759 nmp->nm_waiters++;
760 error = nfs_receive(myrep, &nam, &mrep);
761 nfs_rcvunlock(nmp);
762 if (error) {
763
764 if (nmp->nm_iflag & NFSMNT_DISMNT) {
765 /*
766 * Oops, we're going away now..
767 */
768 nmp->nm_waiters--;
769 wakeup (&nmp->nm_waiters);
770 return error;
771 }
772 nmp->nm_waiters--;
773 /*
774 * Ignore routing errors on connectionless protocols? ?
775 */
776 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
777 nmp->nm_so->so_error = 0;
778 #ifdef DEBUG
779 printf("nfs_reply: ignoring error %d\n", error);
780 #endif
781 if (myrep->r_flags & R_GETONEREP)
782 return (0);
783 continue;
784 }
785 return (error);
786 }
787 nmp->nm_waiters--;
788 if (nam)
789 m_freem(nam);
790
791 /*
792 * Get the xid and check that it is an rpc reply
793 */
794 md = mrep;
795 dpos = mtod(md, caddr_t);
796 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
797 rxid = *tl++;
798 if (*tl != rpc_reply) {
799 #ifndef NFS_V2_ONLY
800 if (nmp->nm_flag & NFSMNT_NQNFS) {
801 if (nqnfs_callback(nmp, mrep, md, dpos))
802 nfsstats.rpcinvalid++;
803 } else
804 #endif
805 {
806 nfsstats.rpcinvalid++;
807 m_freem(mrep);
808 }
809 nfsmout:
810 if (myrep->r_flags & R_GETONEREP)
811 return (0);
812 continue;
813 }
814
815 /*
816 * Loop through the request list to match up the reply
817 * Iff no match, just drop the datagram
818 */
819 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
820 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
821 /* Found it.. */
822 rep->r_mrep = mrep;
823 rep->r_md = md;
824 rep->r_dpos = dpos;
825 if (nfsrtton) {
826 struct rttl *rt;
827
828 rt = &nfsrtt.rttl[nfsrtt.pos];
829 rt->proc = rep->r_procnum;
830 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
831 rt->sent = nmp->nm_sent;
832 rt->cwnd = nmp->nm_cwnd;
833 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
834 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
835 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
836 rt->tstamp = time;
837 if (rep->r_flags & R_TIMING)
838 rt->rtt = rep->r_rtt;
839 else
840 rt->rtt = 1000000;
841 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
842 }
843 /*
844 * Update congestion window.
845 * Do the additive increase of
846 * one rpc/rtt.
847 */
848 if (nmp->nm_cwnd <= nmp->nm_sent) {
849 nmp->nm_cwnd +=
850 (NFS_CWNDSCALE * NFS_CWNDSCALE +
851 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
852 if (nmp->nm_cwnd > NFS_MAXCWND)
853 nmp->nm_cwnd = NFS_MAXCWND;
854 }
855 rep->r_flags &= ~R_SENT;
856 nmp->nm_sent -= NFS_CWNDSCALE;
857 /*
858 * Update rtt using a gain of 0.125 on the mean
859 * and a gain of 0.25 on the deviation.
860 */
861 if (rep->r_flags & R_TIMING) {
862 /*
863 * Since the timer resolution of
864 * NFS_HZ is so course, it can often
865 * result in r_rtt == 0. Since
866 * r_rtt == N means that the actual
867 * rtt is between N+dt and N+2-dt ticks,
868 * add 1.
869 */
870 t1 = rep->r_rtt + 1;
871 t1 -= (NFS_SRTT(rep) >> 3);
872 NFS_SRTT(rep) += t1;
873 if (t1 < 0)
874 t1 = -t1;
875 t1 -= (NFS_SDRTT(rep) >> 2);
876 NFS_SDRTT(rep) += t1;
877 }
878 nmp->nm_timeouts = 0;
879 break;
880 }
881 }
882 /*
883 * If not matched to a request, drop it.
884 * If it's mine, get out.
885 */
886 if (rep == 0) {
887 nfsstats.rpcunexpected++;
888 m_freem(mrep);
889 } else if (rep == myrep) {
890 if (rep->r_mrep == NULL)
891 panic("nfsreply nil");
892 return (0);
893 }
894 if (myrep->r_flags & R_GETONEREP)
895 return (0);
896 }
897 }
898
899 /*
900 * nfs_request - goes something like this
901 * - fill in request struct
902 * - links it into list
903 * - calls nfs_send() for first transmit
904 * - calls nfs_receive() to get reply
905 * - break down rpc header and return with nfs reply pointed to
906 * by mrep or error
907 * nb: always frees up mreq mbuf list
908 */
909 int
910 nfs_request(np, mrest, procnum, procp, cred, mrp, mdp, dposp)
911 struct nfsnode *np;
912 struct mbuf *mrest;
913 int procnum;
914 struct proc *procp;
915 struct ucred *cred;
916 struct mbuf **mrp;
917 struct mbuf **mdp;
918 caddr_t *dposp;
919 {
920 struct mbuf *m, *mrep;
921 struct nfsreq *rep;
922 u_int32_t *tl;
923 int i;
924 struct nfsmount *nmp;
925 struct mbuf *md, *mheadend;
926 char nickv[RPCX_NICKVERF];
927 time_t reqtime, waituntil;
928 caddr_t dpos, cp2;
929 int t1, s, error = 0, mrest_len, auth_len, auth_type;
930 int trylater_delay = NFS_TRYLATERDEL, failed_auth = 0;
931 int verf_len, verf_type;
932 u_int32_t xid;
933 char *auth_str, *verf_str;
934 NFSKERBKEY_T key; /* save session key */
935 struct ucred acred;
936 #ifndef NFS_V2_ONLY
937 int nqlflag, cachable;
938 u_quad_t frev;
939 #endif
940
941 KASSERT(cred != NULL);
942 nmp = VFSTONFS(np->n_vnode->v_mount);
943 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
944 rep->r_nmp = nmp;
945 rep->r_procp = procp;
946 rep->r_procnum = procnum;
947 i = 0;
948 m = mrest;
949 while (m) {
950 i += m->m_len;
951 m = m->m_next;
952 }
953 mrest_len = i;
954
955 /*
956 * Get the RPC header with authorization.
957 */
958 kerbauth:
959 verf_str = auth_str = (char *)0;
960 if (nmp->nm_flag & NFSMNT_KERB) {
961 verf_str = nickv;
962 verf_len = sizeof (nickv);
963 auth_type = RPCAUTH_KERB4;
964 memset((caddr_t)key, 0, sizeof (key));
965 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
966 &auth_len, verf_str, verf_len)) {
967 error = nfs_getauth(nmp, rep, cred, &auth_str,
968 &auth_len, verf_str, &verf_len, key);
969 if (error) {
970 free((caddr_t)rep, M_NFSREQ);
971 m_freem(mrest);
972 return (error);
973 }
974 }
975 } else {
976 switch (procnum) {
977 case NFSPROC_READ:
978 case NFSPROC_WRITE:
979 case NFSPROC_COMMIT:
980 acred.cr_uid = np->n_vattr->va_uid;
981 acred.cr_gid = np->n_vattr->va_gid;
982 acred.cr_ngroups = 0;
983 acred.cr_ref = 2; /* Just to be safe.. */
984 cred = &acred;
985 break;
986 }
987 auth_type = RPCAUTH_UNIX;
988 auth_len = (((cred->cr_ngroups > nmp->nm_numgrps) ?
989 nmp->nm_numgrps : cred->cr_ngroups) << 2) +
990 5 * NFSX_UNSIGNED;
991 }
992 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
993 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
994 if (auth_str)
995 free(auth_str, M_TEMP);
996
997 /*
998 * For stream protocols, insert a Sun RPC Record Mark.
999 */
1000 if (nmp->nm_sotype == SOCK_STREAM) {
1001 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
1002 *mtod(m, u_int32_t *) = htonl(0x80000000 |
1003 (m->m_pkthdr.len - NFSX_UNSIGNED));
1004 }
1005 rep->r_mreq = m;
1006 rep->r_xid = xid;
1007 tryagain:
1008 if (nmp->nm_flag & NFSMNT_SOFT)
1009 rep->r_retry = nmp->nm_retry;
1010 else
1011 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
1012 rep->r_rtt = rep->r_rexmit = 0;
1013 if (proct[procnum] > 0)
1014 rep->r_flags = R_TIMING;
1015 else
1016 rep->r_flags = 0;
1017 rep->r_mrep = NULL;
1018
1019 /*
1020 * Do the client side RPC.
1021 */
1022 nfsstats.rpcrequests++;
1023 /*
1024 * Chain request into list of outstanding requests. Be sure
1025 * to put it LAST so timer finds oldest requests first.
1026 */
1027 s = splsoftnet();
1028 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
1029
1030 /* Get send time for nqnfs */
1031 reqtime = time.tv_sec;
1032
1033 /*
1034 * If backing off another request or avoiding congestion, don't
1035 * send this one now but let timer do it. If not timing a request,
1036 * do it now.
1037 */
1038 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
1039 (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1040 nmp->nm_sent < nmp->nm_cwnd)) {
1041 splx(s);
1042 if (nmp->nm_soflags & PR_CONNREQUIRED)
1043 error = nfs_sndlock(&nmp->nm_iflag, rep);
1044 if (!error) {
1045 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
1046 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
1047 if (nmp->nm_soflags & PR_CONNREQUIRED)
1048 nfs_sndunlock(&nmp->nm_iflag);
1049 }
1050 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
1051 nmp->nm_sent += NFS_CWNDSCALE;
1052 rep->r_flags |= R_SENT;
1053 }
1054 } else {
1055 splx(s);
1056 rep->r_rtt = -1;
1057 }
1058
1059 /*
1060 * Wait for the reply from our send or the timer's.
1061 */
1062 if (!error || error == EPIPE)
1063 error = nfs_reply(rep);
1064
1065 /*
1066 * RPC done, unlink the request.
1067 */
1068 s = splsoftnet();
1069 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
1070 splx(s);
1071
1072 /*
1073 * Decrement the outstanding request count.
1074 */
1075 if (rep->r_flags & R_SENT) {
1076 rep->r_flags &= ~R_SENT; /* paranoia */
1077 nmp->nm_sent -= NFS_CWNDSCALE;
1078 }
1079
1080 /*
1081 * If there was a successful reply and a tprintf msg.
1082 * tprintf a response.
1083 */
1084 if (!error && (rep->r_flags & R_TPRINTFMSG))
1085 nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
1086 "is alive again");
1087 mrep = rep->r_mrep;
1088 md = rep->r_md;
1089 dpos = rep->r_dpos;
1090 if (error) {
1091 m_freem(rep->r_mreq);
1092 free((caddr_t)rep, M_NFSREQ);
1093 return (error);
1094 }
1095
1096 /*
1097 * break down the rpc header and check if ok
1098 */
1099 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1100 if (*tl++ == rpc_msgdenied) {
1101 if (*tl == rpc_mismatch)
1102 error = EOPNOTSUPP;
1103 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
1104 if (!failed_auth) {
1105 failed_auth++;
1106 mheadend->m_next = (struct mbuf *)0;
1107 m_freem(mrep);
1108 m_freem(rep->r_mreq);
1109 goto kerbauth;
1110 } else
1111 error = EAUTH;
1112 } else
1113 error = EACCES;
1114 m_freem(mrep);
1115 m_freem(rep->r_mreq);
1116 free((caddr_t)rep, M_NFSREQ);
1117 return (error);
1118 }
1119
1120 /*
1121 * Grab any Kerberos verifier, otherwise just throw it away.
1122 */
1123 verf_type = fxdr_unsigned(int, *tl++);
1124 i = fxdr_unsigned(int32_t, *tl);
1125 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1126 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1127 if (error)
1128 goto nfsmout;
1129 } else if (i > 0)
1130 nfsm_adv(nfsm_rndup(i));
1131 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1132 /* 0 == ok */
1133 if (*tl == 0) {
1134 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1135 if (*tl != 0) {
1136 error = fxdr_unsigned(int, *tl);
1137 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1138 error == NFSERR_TRYLATER) {
1139 m_freem(mrep);
1140 error = 0;
1141 waituntil = time.tv_sec + trylater_delay;
1142 while (time.tv_sec < waituntil)
1143 (void) tsleep((caddr_t)&lbolt,
1144 PSOCK, "nqnfstry", 0);
1145 trylater_delay *= NFS_TRYLATERDELMUL;
1146 if (trylater_delay > NFS_TRYLATERDELMAX)
1147 trylater_delay = NFS_TRYLATERDELMAX;
1148 /*
1149 * RFC1813:
1150 * The client should wait and then try
1151 * the request with a new RPC transaction ID.
1152 */
1153 nfs_renewxid(rep);
1154 goto tryagain;
1155 }
1156
1157 /*
1158 * If the File Handle was stale, invalidate the
1159 * lookup cache, just in case.
1160 */
1161 if (error == ESTALE)
1162 cache_purge(NFSTOV(np));
1163 if (nmp->nm_flag & NFSMNT_NFSV3) {
1164 *mrp = mrep;
1165 *mdp = md;
1166 *dposp = dpos;
1167 error |= NFSERR_RETERR;
1168 } else
1169 m_freem(mrep);
1170 m_freem(rep->r_mreq);
1171 free((caddr_t)rep, M_NFSREQ);
1172 return (error);
1173 }
1174
1175 #ifndef NFS_V2_ONLY
1176 /*
1177 * For nqnfs, get any lease in reply
1178 */
1179 if (nmp->nm_flag & NFSMNT_NQNFS) {
1180 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1181 if (*tl) {
1182 nqlflag = fxdr_unsigned(int, *tl);
1183 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED);
1184 cachable = fxdr_unsigned(int, *tl++);
1185 reqtime += fxdr_unsigned(int, *tl++);
1186 if (reqtime > time.tv_sec) {
1187 frev = fxdr_hyper(tl);
1188 nqnfs_clientlease(nmp, np, nqlflag,
1189 cachable, reqtime, frev);
1190 }
1191 }
1192 }
1193 #endif
1194 *mrp = mrep;
1195 *mdp = md;
1196 *dposp = dpos;
1197 m_freem(rep->r_mreq);
1198 FREE((caddr_t)rep, M_NFSREQ);
1199 return (0);
1200 }
1201 m_freem(mrep);
1202 error = EPROTONOSUPPORT;
1203 nfsmout:
1204 m_freem(rep->r_mreq);
1205 free((caddr_t)rep, M_NFSREQ);
1206 return (error);
1207 }
1208 #endif /* NFS */
1209
1210 /*
1211 * Generate the rpc reply header
1212 * siz arg. is used to decide if adding a cluster is worthwhile
1213 */
1214 int
1215 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1216 int siz;
1217 struct nfsrv_descript *nd;
1218 struct nfssvc_sock *slp;
1219 int err;
1220 int cache;
1221 u_quad_t *frev;
1222 struct mbuf **mrq;
1223 struct mbuf **mbp;
1224 caddr_t *bposp;
1225 {
1226 u_int32_t *tl;
1227 struct mbuf *mreq;
1228 caddr_t bpos;
1229 struct mbuf *mb;
1230
1231 mreq = m_gethdr(M_WAIT, MT_DATA);
1232 MCLAIM(mreq, &nfs_mowner);
1233 mb = mreq;
1234 /*
1235 * If this is a big reply, use a cluster else
1236 * try and leave leading space for the lower level headers.
1237 */
1238 siz += RPC_REPLYSIZ;
1239 if (siz >= max_datalen) {
1240 m_clget(mreq, M_WAIT);
1241 } else
1242 mreq->m_data += max_hdr;
1243 tl = mtod(mreq, u_int32_t *);
1244 mreq->m_len = 6 * NFSX_UNSIGNED;
1245 bpos = ((caddr_t)tl) + mreq->m_len;
1246 *tl++ = txdr_unsigned(nd->nd_retxid);
1247 *tl++ = rpc_reply;
1248 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1249 *tl++ = rpc_msgdenied;
1250 if (err & NFSERR_AUTHERR) {
1251 *tl++ = rpc_autherr;
1252 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1253 mreq->m_len -= NFSX_UNSIGNED;
1254 bpos -= NFSX_UNSIGNED;
1255 } else {
1256 *tl++ = rpc_mismatch;
1257 *tl++ = txdr_unsigned(RPC_VER2);
1258 *tl = txdr_unsigned(RPC_VER2);
1259 }
1260 } else {
1261 *tl++ = rpc_msgaccepted;
1262
1263 /*
1264 * For Kerberos authentication, we must send the nickname
1265 * verifier back, otherwise just RPCAUTH_NULL.
1266 */
1267 if (nd->nd_flag & ND_KERBFULL) {
1268 struct nfsuid *nuidp;
1269 struct timeval ktvin, ktvout;
1270
1271 LIST_FOREACH(nuidp, NUIDHASH(slp, nd->nd_cr.cr_uid),
1272 nu_hash) {
1273 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1274 (!nd->nd_nam2 || netaddr_match(
1275 NU_NETFAM(nuidp), &nuidp->nu_haddr,
1276 nd->nd_nam2)))
1277 break;
1278 }
1279 if (nuidp) {
1280 ktvin.tv_sec =
1281 txdr_unsigned(nuidp->nu_timestamp.tv_sec
1282 - 1);
1283 ktvin.tv_usec =
1284 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1285
1286 /*
1287 * Encrypt the timestamp in ecb mode using the
1288 * session key.
1289 */
1290 #ifdef NFSKERB
1291 XXX
1292 #endif
1293
1294 *tl++ = rpc_auth_kerb;
1295 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1296 *tl = ktvout.tv_sec;
1297 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1298 *tl++ = ktvout.tv_usec;
1299 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1300 } else {
1301 *tl++ = 0;
1302 *tl++ = 0;
1303 }
1304 } else {
1305 *tl++ = 0;
1306 *tl++ = 0;
1307 }
1308 switch (err) {
1309 case EPROGUNAVAIL:
1310 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1311 break;
1312 case EPROGMISMATCH:
1313 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1314 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1315 if (nd->nd_flag & ND_NQNFS) {
1316 *tl++ = txdr_unsigned(3);
1317 *tl = txdr_unsigned(3);
1318 } else {
1319 *tl++ = txdr_unsigned(2);
1320 *tl = txdr_unsigned(3);
1321 }
1322 break;
1323 case EPROCUNAVAIL:
1324 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1325 break;
1326 case EBADRPC:
1327 *tl = txdr_unsigned(RPC_GARBAGE);
1328 break;
1329 default:
1330 *tl = 0;
1331 if (err != NFSERR_RETVOID) {
1332 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1333 if (err)
1334 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1335 else
1336 *tl = 0;
1337 }
1338 break;
1339 };
1340 }
1341
1342 /*
1343 * For nqnfs, piggyback lease as requested.
1344 */
1345 if ((nd->nd_flag & ND_NQNFS) && err == 0) {
1346 if (nd->nd_flag & ND_LEASE) {
1347 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1348 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE);
1349 *tl++ = txdr_unsigned(cache);
1350 *tl++ = txdr_unsigned(nd->nd_duration);
1351 txdr_hyper(*frev, tl);
1352 } else {
1353 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1354 *tl = 0;
1355 }
1356 }
1357 if (mrq != NULL)
1358 *mrq = mreq;
1359 *mbp = mb;
1360 *bposp = bpos;
1361 if (err != 0 && err != NFSERR_RETVOID)
1362 nfsstats.srvrpc_errs++;
1363 return (0);
1364 }
1365
1366 /*
1367 * Nfs timer routine
1368 * Scan the nfsreq list and retranmit any requests that have timed out
1369 * To avoid retransmission attempts on STREAM sockets (in the future) make
1370 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1371 */
1372 void
1373 nfs_timer(arg)
1374 void *arg; /* never used */
1375 {
1376 struct nfsreq *rep;
1377 struct mbuf *m;
1378 struct socket *so;
1379 struct nfsmount *nmp;
1380 int timeo;
1381 int s, error;
1382 #ifdef NFSSERVER
1383 struct nfssvc_sock *slp;
1384 static long lasttime = 0;
1385 u_quad_t cur_usec;
1386 #endif
1387
1388 s = splsoftnet();
1389 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
1390 nmp = rep->r_nmp;
1391 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1392 continue;
1393 if (nfs_sigintr(nmp, rep, rep->r_procp)) {
1394 rep->r_flags |= R_SOFTTERM;
1395 continue;
1396 }
1397 if (rep->r_rtt >= 0) {
1398 rep->r_rtt++;
1399 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1400 timeo = nmp->nm_timeo;
1401 else
1402 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1403 if (nmp->nm_timeouts > 0)
1404 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1405 if (rep->r_rtt <= timeo)
1406 continue;
1407 if (nmp->nm_timeouts <
1408 (sizeof(nfs_backoff) / sizeof(nfs_backoff[0])))
1409 nmp->nm_timeouts++;
1410 }
1411 /*
1412 * Check for server not responding
1413 */
1414 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1415 rep->r_rexmit > nmp->nm_deadthresh) {
1416 nfs_msg(rep->r_procp,
1417 nmp->nm_mountp->mnt_stat.f_mntfromname,
1418 "not responding");
1419 rep->r_flags |= R_TPRINTFMSG;
1420 }
1421 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1422 nfsstats.rpctimeouts++;
1423 rep->r_flags |= R_SOFTTERM;
1424 continue;
1425 }
1426 if (nmp->nm_sotype != SOCK_DGRAM) {
1427 if (++rep->r_rexmit > NFS_MAXREXMIT)
1428 rep->r_rexmit = NFS_MAXREXMIT;
1429 continue;
1430 }
1431 if ((so = nmp->nm_so) == NULL)
1432 continue;
1433
1434 /*
1435 * If there is enough space and the window allows..
1436 * Resend it
1437 * Set r_rtt to -1 in case we fail to send it now.
1438 */
1439 rep->r_rtt = -1;
1440 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1441 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1442 (rep->r_flags & R_SENT) ||
1443 nmp->nm_sent < nmp->nm_cwnd) &&
1444 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1445 if (so->so_state & SS_ISCONNECTED)
1446 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1447 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1448 else
1449 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1450 nmp->nm_nam, (struct mbuf *)0, (struct proc *)0);
1451 if (error) {
1452 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
1453 #ifdef DEBUG
1454 printf("nfs_timer: ignoring error %d\n",
1455 error);
1456 #endif
1457 so->so_error = 0;
1458 }
1459 } else {
1460 /*
1461 * Iff first send, start timing
1462 * else turn timing off, backoff timer
1463 * and divide congestion window by 2.
1464 */
1465 if (rep->r_flags & R_SENT) {
1466 rep->r_flags &= ~R_TIMING;
1467 if (++rep->r_rexmit > NFS_MAXREXMIT)
1468 rep->r_rexmit = NFS_MAXREXMIT;
1469 nmp->nm_cwnd >>= 1;
1470 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1471 nmp->nm_cwnd = NFS_CWNDSCALE;
1472 nfsstats.rpcretries++;
1473 } else {
1474 rep->r_flags |= R_SENT;
1475 nmp->nm_sent += NFS_CWNDSCALE;
1476 }
1477 rep->r_rtt = 0;
1478 }
1479 }
1480 }
1481
1482 #ifdef NFSSERVER
1483 /*
1484 * Call the nqnfs server timer once a second to handle leases.
1485 */
1486 if (lasttime != time.tv_sec) {
1487 lasttime = time.tv_sec;
1488 nqnfs_serverd();
1489 }
1490
1491 /*
1492 * Scan the write gathering queues for writes that need to be
1493 * completed now.
1494 */
1495 cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec;
1496 TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1497 if (LIST_FIRST(&slp->ns_tq) &&
1498 LIST_FIRST(&slp->ns_tq)->nd_time <= cur_usec)
1499 nfsrv_wakenfsd(slp);
1500 }
1501 #endif /* NFSSERVER */
1502 splx(s);
1503 callout_schedule(&nfs_timer_ch, nfs_ticks);
1504 }
1505
1506 /*ARGSUSED*/
1507 void
1508 nfs_exit(p, v)
1509 struct proc *p;
1510 void *v;
1511 {
1512 struct nfsreq *rp;
1513 int s = splsoftnet();
1514
1515 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) {
1516 if (rp->r_procp == p)
1517 TAILQ_REMOVE(&nfs_reqq, rp, r_chain);
1518 }
1519 splx(s);
1520 }
1521
1522 /*
1523 * Test for a termination condition pending on the process.
1524 * This is used for NFSMNT_INT mounts.
1525 */
1526 int
1527 nfs_sigintr(nmp, rep, p)
1528 struct nfsmount *nmp;
1529 struct nfsreq *rep;
1530 struct proc *p;
1531 {
1532 sigset_t ss;
1533
1534 if (rep && (rep->r_flags & R_SOFTTERM))
1535 return (EINTR);
1536 if (!(nmp->nm_flag & NFSMNT_INT))
1537 return (0);
1538 if (p) {
1539 sigpending1(p, &ss);
1540 #if 0
1541 sigminusset(&p->p_sigctx.ps_sigignore, &ss);
1542 #endif
1543 if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) ||
1544 sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) ||
1545 sigismember(&ss, SIGQUIT))
1546 return (EINTR);
1547 }
1548 return (0);
1549 }
1550
1551 /*
1552 * Lock a socket against others.
1553 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1554 * and also to avoid race conditions between the processes with nfs requests
1555 * in progress when a reconnect is necessary.
1556 */
1557 int
1558 nfs_sndlock(flagp, rep)
1559 int *flagp;
1560 struct nfsreq *rep;
1561 {
1562 struct proc *p;
1563 int slpflag = 0, slptimeo = 0;
1564
1565 if (rep) {
1566 p = rep->r_procp;
1567 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1568 slpflag = PCATCH;
1569 } else
1570 p = (struct proc *)0;
1571 while (*flagp & NFSMNT_SNDLOCK) {
1572 if (nfs_sigintr(rep->r_nmp, rep, p))
1573 return (EINTR);
1574 *flagp |= NFSMNT_WANTSND;
1575 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck",
1576 slptimeo);
1577 if (slpflag == PCATCH) {
1578 slpflag = 0;
1579 slptimeo = 2 * hz;
1580 }
1581 }
1582 *flagp |= NFSMNT_SNDLOCK;
1583 return (0);
1584 }
1585
1586 /*
1587 * Unlock the stream socket for others.
1588 */
1589 void
1590 nfs_sndunlock(flagp)
1591 int *flagp;
1592 {
1593
1594 if ((*flagp & NFSMNT_SNDLOCK) == 0)
1595 panic("nfs sndunlock");
1596 *flagp &= ~NFSMNT_SNDLOCK;
1597 if (*flagp & NFSMNT_WANTSND) {
1598 *flagp &= ~NFSMNT_WANTSND;
1599 wakeup((caddr_t)flagp);
1600 }
1601 }
1602
1603 int
1604 nfs_rcvlock(rep)
1605 struct nfsreq *rep;
1606 {
1607 struct nfsmount *nmp = rep->r_nmp;
1608 int *flagp = &nmp->nm_iflag;
1609 int slpflag, slptimeo = 0;
1610 int error = 0;
1611
1612 if (*flagp & NFSMNT_DISMNT)
1613 return EIO;
1614
1615 if (*flagp & NFSMNT_INT)
1616 slpflag = PCATCH;
1617 else
1618 slpflag = 0;
1619 simple_lock(&nmp->nm_slock);
1620 while (*flagp & NFSMNT_RCVLOCK) {
1621 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp)) {
1622 error = EINTR;
1623 goto quit;
1624 }
1625 *flagp |= NFSMNT_WANTRCV;
1626 nmp->nm_waiters++;
1627 (void) ltsleep(flagp, slpflag | (PZERO - 1), "nfsrcvlk",
1628 slptimeo, &nmp->nm_slock);
1629 nmp->nm_waiters--;
1630 if (*flagp & NFSMNT_DISMNT) {
1631 wakeup(&nmp->nm_waiters);
1632 error = EIO;
1633 goto quit;
1634 }
1635 /* If our reply was received while we were sleeping,
1636 * then just return without taking the lock to avoid a
1637 * situation where a single iod could 'capture' the
1638 * receive lock.
1639 */
1640 if (rep->r_mrep != NULL) {
1641 error = EALREADY;
1642 goto quit;
1643 }
1644 if (slpflag == PCATCH) {
1645 slpflag = 0;
1646 slptimeo = 2 * hz;
1647 }
1648 }
1649 *flagp |= NFSMNT_RCVLOCK;
1650 quit:
1651 simple_unlock(&nmp->nm_slock);
1652 return error;
1653 }
1654
1655 /*
1656 * Unlock the stream socket for others.
1657 */
1658 void
1659 nfs_rcvunlock(nmp)
1660 struct nfsmount *nmp;
1661 {
1662 int *flagp = &nmp->nm_iflag;
1663
1664 simple_lock(&nmp->nm_slock);
1665 if ((*flagp & NFSMNT_RCVLOCK) == 0)
1666 panic("nfs rcvunlock");
1667 *flagp &= ~NFSMNT_RCVLOCK;
1668 if (*flagp & NFSMNT_WANTRCV) {
1669 *flagp &= ~NFSMNT_WANTRCV;
1670 wakeup((caddr_t)flagp);
1671 }
1672 simple_unlock(&nmp->nm_slock);
1673 }
1674
1675 /*
1676 * Parse an RPC request
1677 * - verify it
1678 * - fill in the cred struct.
1679 */
1680 int
1681 nfs_getreq(nd, nfsd, has_header)
1682 struct nfsrv_descript *nd;
1683 struct nfsd *nfsd;
1684 int has_header;
1685 {
1686 int len, i;
1687 u_int32_t *tl;
1688 int32_t t1;
1689 struct uio uio;
1690 struct iovec iov;
1691 caddr_t dpos, cp2, cp;
1692 u_int32_t nfsvers, auth_type;
1693 uid_t nickuid;
1694 int error = 0, nqnfs = 0, ticklen;
1695 struct mbuf *mrep, *md;
1696 struct nfsuid *nuidp;
1697 struct timeval tvin, tvout;
1698
1699 mrep = nd->nd_mrep;
1700 md = nd->nd_md;
1701 dpos = nd->nd_dpos;
1702 if (has_header) {
1703 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1704 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1705 if (*tl++ != rpc_call) {
1706 m_freem(mrep);
1707 return (EBADRPC);
1708 }
1709 } else
1710 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1711 nd->nd_repstat = 0;
1712 nd->nd_flag = 0;
1713 if (*tl++ != rpc_vers) {
1714 nd->nd_repstat = ERPCMISMATCH;
1715 nd->nd_procnum = NFSPROC_NOOP;
1716 return (0);
1717 }
1718 if (*tl != nfs_prog) {
1719 if (*tl == nqnfs_prog)
1720 nqnfs++;
1721 else {
1722 nd->nd_repstat = EPROGUNAVAIL;
1723 nd->nd_procnum = NFSPROC_NOOP;
1724 return (0);
1725 }
1726 }
1727 tl++;
1728 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1729 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) ||
1730 (nfsvers != NQNFS_VER3 && nqnfs)) {
1731 nd->nd_repstat = EPROGMISMATCH;
1732 nd->nd_procnum = NFSPROC_NOOP;
1733 return (0);
1734 }
1735 if (nqnfs)
1736 nd->nd_flag = (ND_NFSV3 | ND_NQNFS);
1737 else if (nfsvers == NFS_VER3)
1738 nd->nd_flag = ND_NFSV3;
1739 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1740 if (nd->nd_procnum == NFSPROC_NULL)
1741 return (0);
1742 if (nd->nd_procnum >= NFS_NPROCS ||
1743 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
1744 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1745 nd->nd_repstat = EPROCUNAVAIL;
1746 nd->nd_procnum = NFSPROC_NOOP;
1747 return (0);
1748 }
1749 if ((nd->nd_flag & ND_NFSV3) == 0)
1750 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1751 auth_type = *tl++;
1752 len = fxdr_unsigned(int, *tl++);
1753 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1754 m_freem(mrep);
1755 return (EBADRPC);
1756 }
1757
1758 nd->nd_flag &= ~ND_KERBAUTH;
1759 /*
1760 * Handle auth_unix or auth_kerb.
1761 */
1762 if (auth_type == rpc_auth_unix) {
1763 len = fxdr_unsigned(int, *++tl);
1764 if (len < 0 || len > NFS_MAXNAMLEN) {
1765 m_freem(mrep);
1766 return (EBADRPC);
1767 }
1768 nfsm_adv(nfsm_rndup(len));
1769 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1770 memset((caddr_t)&nd->nd_cr, 0, sizeof (struct ucred));
1771 nd->nd_cr.cr_ref = 1;
1772 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
1773 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
1774 len = fxdr_unsigned(int, *tl);
1775 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
1776 m_freem(mrep);
1777 return (EBADRPC);
1778 }
1779 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
1780 for (i = 0; i < len; i++)
1781 if (i < NGROUPS)
1782 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
1783 else
1784 tl++;
1785 nd->nd_cr.cr_ngroups = (len > NGROUPS) ? NGROUPS : len;
1786 if (nd->nd_cr.cr_ngroups > 1)
1787 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
1788 len = fxdr_unsigned(int, *++tl);
1789 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1790 m_freem(mrep);
1791 return (EBADRPC);
1792 }
1793 if (len > 0)
1794 nfsm_adv(nfsm_rndup(len));
1795 } else if (auth_type == rpc_auth_kerb) {
1796 switch (fxdr_unsigned(int, *tl++)) {
1797 case RPCAKN_FULLNAME:
1798 ticklen = fxdr_unsigned(int, *tl);
1799 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
1800 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
1801 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
1802 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
1803 m_freem(mrep);
1804 return (EBADRPC);
1805 }
1806 uio.uio_offset = 0;
1807 uio.uio_iov = &iov;
1808 uio.uio_iovcnt = 1;
1809 uio.uio_segflg = UIO_SYSSPACE;
1810 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
1811 iov.iov_len = RPCAUTH_MAXSIZ - 4;
1812 nfsm_mtouio(&uio, uio.uio_resid);
1813 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1814 if (*tl++ != rpc_auth_kerb ||
1815 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
1816 printf("Bad kerb verifier\n");
1817 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1818 nd->nd_procnum = NFSPROC_NOOP;
1819 return (0);
1820 }
1821 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
1822 tl = (u_int32_t *)cp;
1823 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
1824 printf("Not fullname kerb verifier\n");
1825 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1826 nd->nd_procnum = NFSPROC_NOOP;
1827 return (0);
1828 }
1829 cp += NFSX_UNSIGNED;
1830 memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED);
1831 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
1832 nd->nd_flag |= ND_KERBFULL;
1833 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
1834 break;
1835 case RPCAKN_NICKNAME:
1836 if (len != 2 * NFSX_UNSIGNED) {
1837 printf("Kerb nickname short\n");
1838 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
1839 nd->nd_procnum = NFSPROC_NOOP;
1840 return (0);
1841 }
1842 nickuid = fxdr_unsigned(uid_t, *tl);
1843 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1844 if (*tl++ != rpc_auth_kerb ||
1845 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
1846 printf("Kerb nick verifier bad\n");
1847 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1848 nd->nd_procnum = NFSPROC_NOOP;
1849 return (0);
1850 }
1851 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1852 tvin.tv_sec = *tl++;
1853 tvin.tv_usec = *tl;
1854
1855 LIST_FOREACH(nuidp, NUIDHASH(nfsd->nfsd_slp, nickuid),
1856 nu_hash) {
1857 if (nuidp->nu_cr.cr_uid == nickuid &&
1858 (!nd->nd_nam2 ||
1859 netaddr_match(NU_NETFAM(nuidp),
1860 &nuidp->nu_haddr, nd->nd_nam2)))
1861 break;
1862 }
1863 if (!nuidp) {
1864 nd->nd_repstat =
1865 (NFSERR_AUTHERR|AUTH_REJECTCRED);
1866 nd->nd_procnum = NFSPROC_NOOP;
1867 return (0);
1868 }
1869
1870 /*
1871 * Now, decrypt the timestamp using the session key
1872 * and validate it.
1873 */
1874 #ifdef NFSKERB
1875 XXX
1876 #endif
1877
1878 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
1879 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
1880 if (nuidp->nu_expire < time.tv_sec ||
1881 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
1882 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
1883 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
1884 nuidp->nu_expire = 0;
1885 nd->nd_repstat =
1886 (NFSERR_AUTHERR|AUTH_REJECTVERF);
1887 nd->nd_procnum = NFSPROC_NOOP;
1888 return (0);
1889 }
1890 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
1891 nd->nd_flag |= ND_KERBNICK;
1892 };
1893 } else {
1894 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
1895 nd->nd_procnum = NFSPROC_NOOP;
1896 return (0);
1897 }
1898
1899 /*
1900 * For nqnfs, get piggybacked lease request.
1901 */
1902 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
1903 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1904 nd->nd_flag |= fxdr_unsigned(int, *tl);
1905 if (nd->nd_flag & ND_LEASE) {
1906 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1907 nd->nd_duration = fxdr_unsigned(u_int32_t, *tl);
1908 } else
1909 nd->nd_duration = NQ_MINLEASE;
1910 } else
1911 nd->nd_duration = NQ_MINLEASE;
1912 nd->nd_md = md;
1913 nd->nd_dpos = dpos;
1914 return (0);
1915 nfsmout:
1916 return (error);
1917 }
1918
1919 int
1920 nfs_msg(p, server, msg)
1921 struct proc *p;
1922 char *server, *msg;
1923 {
1924 tpr_t tpr;
1925
1926 if (p)
1927 tpr = tprintf_open(p);
1928 else
1929 tpr = NULL;
1930 tprintf(tpr, "nfs server %s: %s\n", server, msg);
1931 tprintf_close(tpr);
1932 return (0);
1933 }
1934
1935 #ifdef NFSSERVER
1936 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
1937 struct nfssvc_sock *, struct proc *,
1938 struct mbuf **)) = {
1939 nfsrv_null,
1940 nfsrv_getattr,
1941 nfsrv_setattr,
1942 nfsrv_lookup,
1943 nfsrv3_access,
1944 nfsrv_readlink,
1945 nfsrv_read,
1946 nfsrv_write,
1947 nfsrv_create,
1948 nfsrv_mkdir,
1949 nfsrv_symlink,
1950 nfsrv_mknod,
1951 nfsrv_remove,
1952 nfsrv_rmdir,
1953 nfsrv_rename,
1954 nfsrv_link,
1955 nfsrv_readdir,
1956 nfsrv_readdirplus,
1957 nfsrv_statfs,
1958 nfsrv_fsinfo,
1959 nfsrv_pathconf,
1960 nfsrv_commit,
1961 nqnfsrv_getlease,
1962 nqnfsrv_vacated,
1963 nfsrv_noop,
1964 nfsrv_noop
1965 };
1966
1967 /*
1968 * Socket upcall routine for the nfsd sockets.
1969 * The caddr_t arg is a pointer to the "struct nfssvc_sock".
1970 * Essentially do as much as possible non-blocking, else punt and it will
1971 * be called with M_WAIT from an nfsd.
1972 */
1973 void
1974 nfsrv_rcv(so, arg, waitflag)
1975 struct socket *so;
1976 caddr_t arg;
1977 int waitflag;
1978 {
1979 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
1980 struct mbuf *m;
1981 struct mbuf *mp, *nam;
1982 struct uio auio;
1983 int flags, error;
1984
1985 if ((slp->ns_flag & SLP_VALID) == 0)
1986 return;
1987 #ifdef notdef
1988 /*
1989 * Define this to test for nfsds handling this under heavy load.
1990 */
1991 if (waitflag == M_DONTWAIT) {
1992 slp->ns_flag |= SLP_NEEDQ; goto dorecs;
1993 }
1994 #endif
1995 auio.uio_procp = NULL;
1996 if (so->so_type == SOCK_STREAM) {
1997 /*
1998 * If there are already records on the queue, defer soreceive()
1999 * to an nfsd so that there is feedback to the TCP layer that
2000 * the nfs servers are heavily loaded.
2001 */
2002 if (slp->ns_rec && waitflag == M_DONTWAIT) {
2003 slp->ns_flag |= SLP_NEEDQ;
2004 goto dorecs;
2005 }
2006
2007 /*
2008 * Do soreceive().
2009 */
2010 auio.uio_resid = 1000000000;
2011 flags = MSG_DONTWAIT;
2012 error = (*so->so_receive)(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
2013 if (error || mp == (struct mbuf *)0) {
2014 if (error == EWOULDBLOCK)
2015 slp->ns_flag |= SLP_NEEDQ;
2016 else
2017 slp->ns_flag |= SLP_DISCONN;
2018 goto dorecs;
2019 }
2020 m = mp;
2021 if (slp->ns_rawend) {
2022 slp->ns_rawend->m_next = m;
2023 slp->ns_cc += 1000000000 - auio.uio_resid;
2024 } else {
2025 slp->ns_raw = m;
2026 slp->ns_cc = 1000000000 - auio.uio_resid;
2027 }
2028 while (m->m_next)
2029 m = m->m_next;
2030 slp->ns_rawend = m;
2031
2032 /*
2033 * Now try and parse record(s) out of the raw stream data.
2034 */
2035 error = nfsrv_getstream(slp, waitflag);
2036 if (error) {
2037 if (error == EPERM)
2038 slp->ns_flag |= SLP_DISCONN;
2039 else
2040 slp->ns_flag |= SLP_NEEDQ;
2041 }
2042 } else {
2043 do {
2044 auio.uio_resid = 1000000000;
2045 flags = MSG_DONTWAIT;
2046 error = (*so->so_receive)(so, &nam, &auio, &mp,
2047 (struct mbuf **)0, &flags);
2048 if (mp) {
2049 if (nam) {
2050 m = nam;
2051 m->m_next = mp;
2052 } else
2053 m = mp;
2054 if (slp->ns_recend)
2055 slp->ns_recend->m_nextpkt = m;
2056 else
2057 slp->ns_rec = m;
2058 slp->ns_recend = m;
2059 m->m_nextpkt = (struct mbuf *)0;
2060 }
2061 if (error) {
2062 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2063 && error != EWOULDBLOCK) {
2064 slp->ns_flag |= SLP_DISCONN;
2065 goto dorecs;
2066 }
2067 }
2068 } while (mp);
2069 }
2070
2071 /*
2072 * Now try and process the request records, non-blocking.
2073 */
2074 dorecs:
2075 if (waitflag == M_DONTWAIT &&
2076 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
2077 nfsrv_wakenfsd(slp);
2078 }
2079
2080 /*
2081 * Try and extract an RPC request from the mbuf data list received on a
2082 * stream socket. The "waitflag" argument indicates whether or not it
2083 * can sleep.
2084 */
2085 int
2086 nfsrv_getstream(slp, waitflag)
2087 struct nfssvc_sock *slp;
2088 int waitflag;
2089 {
2090 struct mbuf *m, **mpp;
2091 struct mbuf *recm;
2092 u_int32_t recmark;
2093
2094 if (slp->ns_flag & SLP_GETSTREAM)
2095 panic("nfs getstream");
2096 slp->ns_flag |= SLP_GETSTREAM;
2097 for (;;) {
2098 if (slp->ns_reclen == 0) {
2099 if (slp->ns_cc < NFSX_UNSIGNED) {
2100 slp->ns_flag &= ~SLP_GETSTREAM;
2101 return (0);
2102 }
2103 m = slp->ns_raw;
2104 m_copydata(m, 0, NFSX_UNSIGNED, (caddr_t)&recmark);
2105 m_adj(m, NFSX_UNSIGNED);
2106 slp->ns_cc -= NFSX_UNSIGNED;
2107 recmark = ntohl(recmark);
2108 slp->ns_reclen = recmark & ~0x80000000;
2109 if (recmark & 0x80000000)
2110 slp->ns_flag |= SLP_LASTFRAG;
2111 else
2112 slp->ns_flag &= ~SLP_LASTFRAG;
2113 if (slp->ns_reclen > NFS_MAXPACKET) {
2114 slp->ns_flag &= ~SLP_GETSTREAM;
2115 return (EPERM);
2116 }
2117 }
2118
2119 /*
2120 * Now get the record part.
2121 *
2122 * Note that slp->ns_reclen may be 0. Linux sometimes
2123 * generates 0-length records.
2124 */
2125 if (slp->ns_cc == slp->ns_reclen) {
2126 recm = slp->ns_raw;
2127 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
2128 slp->ns_cc = slp->ns_reclen = 0;
2129 } else if (slp->ns_cc > slp->ns_reclen) {
2130 recm = slp->ns_raw;
2131 m = m_split(recm, slp->ns_reclen, waitflag);
2132 if (m == NULL) {
2133 slp->ns_flag &= ~SLP_GETSTREAM;
2134 return (EWOULDBLOCK);
2135 }
2136 m_claim(recm, &nfs_mowner);
2137 slp->ns_raw = m;
2138 if (m->m_next == NULL)
2139 slp->ns_rawend = m;
2140 slp->ns_cc -= slp->ns_reclen;
2141 slp->ns_reclen = 0;
2142 } else {
2143 slp->ns_flag &= ~SLP_GETSTREAM;
2144 return (0);
2145 }
2146
2147 /*
2148 * Accumulate the fragments into a record.
2149 */
2150 mpp = &slp->ns_frag;
2151 while (*mpp)
2152 mpp = &((*mpp)->m_next);
2153 *mpp = recm;
2154 if (slp->ns_flag & SLP_LASTFRAG) {
2155 if (slp->ns_recend)
2156 slp->ns_recend->m_nextpkt = slp->ns_frag;
2157 else
2158 slp->ns_rec = slp->ns_frag;
2159 slp->ns_recend = slp->ns_frag;
2160 slp->ns_frag = (struct mbuf *)0;
2161 }
2162 }
2163 }
2164
2165 /*
2166 * Parse an RPC header.
2167 */
2168 int
2169 nfsrv_dorec(slp, nfsd, ndp)
2170 struct nfssvc_sock *slp;
2171 struct nfsd *nfsd;
2172 struct nfsrv_descript **ndp;
2173 {
2174 struct mbuf *m, *nam;
2175 struct nfsrv_descript *nd;
2176 int error;
2177
2178 *ndp = NULL;
2179 if ((slp->ns_flag & SLP_VALID) == 0 ||
2180 (m = slp->ns_rec) == (struct mbuf *)0)
2181 return (ENOBUFS);
2182 slp->ns_rec = m->m_nextpkt;
2183 if (slp->ns_rec)
2184 m->m_nextpkt = (struct mbuf *)0;
2185 else
2186 slp->ns_recend = (struct mbuf *)0;
2187 if (m->m_type == MT_SONAME) {
2188 nam = m;
2189 m = m->m_next;
2190 nam->m_next = NULL;
2191 } else
2192 nam = NULL;
2193 nd = pool_get(&nfs_srvdesc_pool, PR_WAITOK);
2194 nd->nd_md = nd->nd_mrep = m;
2195 nd->nd_nam2 = nam;
2196 nd->nd_dpos = mtod(m, caddr_t);
2197 error = nfs_getreq(nd, nfsd, TRUE);
2198 if (error) {
2199 m_freem(nam);
2200 pool_put(&nfs_srvdesc_pool, nd);
2201 return (error);
2202 }
2203 *ndp = nd;
2204 nfsd->nfsd_nd = nd;
2205 return (0);
2206 }
2207
2208
2209 /*
2210 * Search for a sleeping nfsd and wake it up.
2211 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2212 * running nfsds will go look for the work in the nfssvc_sock list.
2213 */
2214 void
2215 nfsrv_wakenfsd(slp)
2216 struct nfssvc_sock *slp;
2217 {
2218 struct nfsd *nd;
2219
2220 if ((slp->ns_flag & SLP_VALID) == 0)
2221 return;
2222 simple_lock(&nfsd_slock);
2223 if (slp->ns_flag & SLP_DOREC) {
2224 simple_unlock(&nfsd_slock);
2225 return;
2226 }
2227 nd = SLIST_FIRST(&nfsd_idle_head);
2228 if (nd) {
2229 SLIST_REMOVE_HEAD(&nfsd_idle_head, nfsd_idle);
2230 simple_unlock(&nfsd_slock);
2231
2232 KASSERT(nd->nfsd_flag & NFSD_WAITING);
2233 nd->nfsd_flag &= ~NFSD_WAITING;
2234 if (nd->nfsd_slp)
2235 panic("nfsd wakeup");
2236 slp->ns_sref++;
2237 nd->nfsd_slp = slp;
2238 wakeup(nd);
2239 return;
2240 }
2241 slp->ns_flag |= SLP_DOREC;
2242 nfsd_head_flag |= NFSD_CHECKSLP;
2243 TAILQ_INSERT_TAIL(&nfssvc_sockpending, slp, ns_pending);
2244 simple_unlock(&nfsd_slock);
2245 }
2246 #endif /* NFSSERVER */
2247