nfs_socket.c revision 1.114.2.8 1 /* $NetBSD: nfs_socket.c,v 1.114.2.8 2008/02/15 10:40:08 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1991, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
35 */
36
37 /*
38 * Socket operations for use by nfs
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.114.2.8 2008/02/15 10:40:08 yamt Exp $");
43
44 #include "fs_nfs.h"
45 #include "opt_nfs.h"
46 #include "opt_nfsserver.h"
47 #include "opt_mbuftrace.h"
48 #include "opt_inet.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/evcnt.h>
53 #include <sys/callout.h>
54 #include <sys/proc.h>
55 #include <sys/mount.h>
56 #include <sys/kernel.h>
57 #include <sys/kmem.h>
58 #include <sys/mbuf.h>
59 #include <sys/vnode.h>
60 #include <sys/domain.h>
61 #include <sys/protosw.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/syslog.h>
65 #include <sys/tprintf.h>
66 #include <sys/namei.h>
67 #include <sys/signal.h>
68 #include <sys/signalvar.h>
69 #include <sys/kauth.h>
70
71 #include <netinet/in.h>
72 #include <netinet/tcp.h>
73
74 #include <nfs/rpcv2.h>
75 #include <nfs/nfsproto.h>
76 #include <nfs/nfs.h>
77 #include <nfs/xdr_subs.h>
78 #include <nfs/nfsm_subs.h>
79 #include <nfs/nfsmount.h>
80 #include <nfs/nfsnode.h>
81 #include <nfs/nfsrtt.h>
82 #include <nfs/nfs_var.h>
83
84 #ifdef MBUFTRACE
85 struct mowner nfs_mowner = MOWNER_INIT("nfs","");
86 #endif
87
88 /*
89 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
90 * Use the mean and mean deviation of rtt for the appropriate type of rpc
91 * for the frequent rpcs and a default for the others.
92 * The justification for doing "other" this way is that these rpcs
93 * happen so infrequently that timer est. would probably be stale.
94 * Also, since many of these rpcs are
95 * non-idempotent, a conservative timeout is desired.
96 * getattr, lookup - A+2D
97 * read, write - A+4D
98 * other - nm_timeo
99 */
100 #define NFS_RTO(n, t) \
101 ((t) == 0 ? (n)->nm_timeo : \
102 ((t) < 3 ? \
103 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
104 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
105 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
106 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
107 /*
108 * External data, mostly RPC constants in XDR form
109 */
110 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
111 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
112 rpc_auth_kerb;
113 extern u_int32_t nfs_prog;
114 extern const int nfsv3_procid[NFS_NPROCS];
115 extern int nfs_ticks;
116
117 /*
118 * Defines which timer to use for the procnum.
119 * 0 - default
120 * 1 - getattr
121 * 2 - lookup
122 * 3 - read
123 * 4 - write
124 */
125 static const int proct[NFS_NPROCS] = {
126 [NFSPROC_NULL] = 0,
127 [NFSPROC_GETATTR] = 1,
128 [NFSPROC_SETATTR] = 0,
129 [NFSPROC_LOOKUP] = 2,
130 [NFSPROC_ACCESS] = 1,
131 [NFSPROC_READLINK] = 3,
132 [NFSPROC_READ] = 3,
133 [NFSPROC_WRITE] = 4,
134 [NFSPROC_CREATE] = 0,
135 [NFSPROC_MKDIR] = 0,
136 [NFSPROC_SYMLINK] = 0,
137 [NFSPROC_MKNOD] = 0,
138 [NFSPROC_REMOVE] = 0,
139 [NFSPROC_RMDIR] = 0,
140 [NFSPROC_RENAME] = 0,
141 [NFSPROC_LINK] = 0,
142 [NFSPROC_READDIR] = 3,
143 [NFSPROC_READDIRPLUS] = 3,
144 [NFSPROC_FSSTAT] = 0,
145 [NFSPROC_FSINFO] = 0,
146 [NFSPROC_PATHCONF] = 0,
147 [NFSPROC_COMMIT] = 0,
148 [NFSPROC_NOOP] = 0,
149 };
150
151 /*
152 * There is a congestion window for outstanding rpcs maintained per mount
153 * point. The cwnd size is adjusted in roughly the way that:
154 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
155 * SIGCOMM '88". ACM, August 1988.
156 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
157 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
158 * of rpcs is in progress.
159 * (The sent count and cwnd are scaled for integer arith.)
160 * Variants of "slow start" were tried and were found to be too much of a
161 * performance hit (ave. rtt 3 times larger),
162 * I suspect due to the large rtt that nfs rpcs have.
163 */
164 #define NFS_CWNDSCALE 256
165 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
166 static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
167 int nfsrtton = 0;
168 struct nfsrtt nfsrtt;
169 kmutex_t nfs_reqq_lock;
170 struct nfsreqhead nfs_reqq;
171 static callout_t nfs_timer_ch;
172 static struct evcnt nfs_timer_ev;
173 static struct evcnt nfs_timer_start_ev;
174 static struct evcnt nfs_timer_stop_ev;
175
176 static int nfs_sndlock(struct nfsmount *, struct nfsreq *);
177 static void nfs_sndunlock(struct nfsmount *);
178 static int nfs_rcvlock(struct nfsmount *, struct nfsreq *);
179 static void nfs_rcvunlock(struct nfsmount *);
180
181 #if defined(NFSSERVER)
182 static void nfsrv_wakenfsd_locked(struct nfssvc_sock *);
183 #endif /* defined(NFSSERVER) */
184
185 /*
186 * Initialize sockets and congestion for a new NFS connection.
187 * We do not free the sockaddr if error.
188 */
189 int
190 nfs_connect(nmp, rep, l)
191 struct nfsmount *nmp;
192 struct nfsreq *rep;
193 struct lwp *l;
194 {
195 struct socket *so;
196 int s, error, rcvreserve, sndreserve;
197 struct sockaddr *saddr;
198 struct sockaddr_in *sin;
199 #ifdef INET6
200 struct sockaddr_in6 *sin6;
201 #endif
202 struct mbuf *m;
203
204 KERNEL_LOCK(1, NULL);
205
206 nmp->nm_so = (struct socket *)0;
207 saddr = mtod(nmp->nm_nam, struct sockaddr *);
208 error = socreate(saddr->sa_family, &nmp->nm_so,
209 nmp->nm_sotype, nmp->nm_soproto, l);
210 if (error)
211 goto bad;
212 so = nmp->nm_so;
213 #ifdef MBUFTRACE
214 so->so_mowner = &nfs_mowner;
215 so->so_rcv.sb_mowner = &nfs_mowner;
216 so->so_snd.sb_mowner = &nfs_mowner;
217 #endif
218 nmp->nm_soflags = so->so_proto->pr_flags;
219
220 /*
221 * Some servers require that the client port be a reserved port number.
222 */
223 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
224 m = m_get(M_WAIT, MT_SOOPTS);
225 MCLAIM(m, so->so_mowner);
226 *mtod(m, int32_t *) = IP_PORTRANGE_LOW;
227 m->m_len = sizeof(int32_t);
228 if ((error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, m)))
229 goto bad;
230 m = m_get(M_WAIT, MT_SONAME);
231 MCLAIM(m, so->so_mowner);
232 sin = mtod(m, struct sockaddr_in *);
233 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
234 sin->sin_family = AF_INET;
235 sin->sin_addr.s_addr = INADDR_ANY;
236 sin->sin_port = 0;
237 error = sobind(so, m, &lwp0);
238 m_freem(m);
239 if (error)
240 goto bad;
241 }
242 #ifdef INET6
243 if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) {
244 m = m_get(M_WAIT, MT_SOOPTS);
245 MCLAIM(m, so->so_mowner);
246 *mtod(m, int32_t *) = IPV6_PORTRANGE_LOW;
247 m->m_len = sizeof(int32_t);
248 if ((error = sosetopt(so, IPPROTO_IPV6, IPV6_PORTRANGE, m)))
249 goto bad;
250 m = m_get(M_WAIT, MT_SONAME);
251 MCLAIM(m, so->so_mowner);
252 sin6 = mtod(m, struct sockaddr_in6 *);
253 sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6);
254 sin6->sin6_family = AF_INET6;
255 sin6->sin6_addr = in6addr_any;
256 sin6->sin6_port = 0;
257 error = sobind(so, m, &lwp0);
258 m_freem(m);
259 if (error)
260 goto bad;
261 }
262 #endif
263
264 /*
265 * Protocols that do not require connections may be optionally left
266 * unconnected for servers that reply from a port other than NFS_PORT.
267 */
268 if (nmp->nm_flag & NFSMNT_NOCONN) {
269 if (nmp->nm_soflags & PR_CONNREQUIRED) {
270 error = ENOTCONN;
271 goto bad;
272 }
273 } else {
274 error = soconnect(so, nmp->nm_nam, l);
275 if (error)
276 goto bad;
277
278 /*
279 * Wait for the connection to complete. Cribbed from the
280 * connect system call but with the wait timing out so
281 * that interruptible mounts don't hang here for a long time.
282 */
283 s = splsoftnet();
284 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
285 (void) tsleep((void *)&so->so_timeo, PSOCK,
286 "nfscn1", 2 * hz);
287 if ((so->so_state & SS_ISCONNECTING) &&
288 so->so_error == 0 && rep &&
289 (error = nfs_sigintr(nmp, rep, rep->r_lwp)) != 0){
290 so->so_state &= ~SS_ISCONNECTING;
291 splx(s);
292 goto bad;
293 }
294 }
295 if (so->so_error) {
296 error = so->so_error;
297 so->so_error = 0;
298 splx(s);
299 goto bad;
300 }
301 splx(s);
302 }
303 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
304 so->so_rcv.sb_timeo = (5 * hz);
305 so->so_snd.sb_timeo = (5 * hz);
306 } else {
307 /*
308 * enable receive timeout to detect server crash and reconnect.
309 * otherwise, we can be stuck in soreceive forever.
310 */
311 so->so_rcv.sb_timeo = (5 * hz);
312 so->so_snd.sb_timeo = 0;
313 }
314 if (nmp->nm_sotype == SOCK_DGRAM) {
315 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
316 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
317 NFS_MAXPKTHDR) * 2;
318 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
319 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
320 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
321 NFS_MAXPKTHDR) * 2;
322 } else {
323 if (nmp->nm_sotype != SOCK_STREAM)
324 panic("nfscon sotype");
325 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
326 m = m_get(M_WAIT, MT_SOOPTS);
327 MCLAIM(m, so->so_mowner);
328 *mtod(m, int32_t *) = 1;
329 m->m_len = sizeof(int32_t);
330 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
331 }
332 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
333 m = m_get(M_WAIT, MT_SOOPTS);
334 MCLAIM(m, so->so_mowner);
335 *mtod(m, int32_t *) = 1;
336 m->m_len = sizeof(int32_t);
337 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
338 }
339 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
340 sizeof (u_int32_t)) * 2;
341 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
342 sizeof (u_int32_t)) * 2;
343 }
344 error = soreserve(so, sndreserve, rcvreserve);
345 if (error)
346 goto bad;
347 so->so_rcv.sb_flags |= SB_NOINTR;
348 so->so_snd.sb_flags |= SB_NOINTR;
349
350 /* Initialize other non-zero congestion variables */
351 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
352 NFS_TIMEO << 3;
353 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
354 nmp->nm_sdrtt[3] = 0;
355 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
356 nmp->nm_sent = 0;
357 nmp->nm_timeouts = 0;
358 KERNEL_UNLOCK_ONE(NULL);
359 return (0);
360
361 bad:
362 nfs_disconnect(nmp);
363 KERNEL_UNLOCK_ONE(NULL);
364 return (error);
365 }
366
367 /*
368 * Reconnect routine:
369 * Called when a connection is broken on a reliable protocol.
370 * - clean up the old socket
371 * - nfs_connect() again
372 * - set R_MUSTRESEND for all outstanding requests on mount point
373 * If this fails the mount point is DEAD!
374 * nb: Must be called with the nfs_sndlock() set on the mount point.
375 */
376 int
377 nfs_reconnect(struct nfsreq *rep)
378 {
379 struct nfsreq *rp;
380 struct nfsmount *nmp = rep->r_nmp;
381 int error;
382
383 nfs_disconnect(nmp);
384 while ((error = nfs_connect(nmp, rep, &lwp0)) != 0) {
385 if (error == EINTR || error == ERESTART)
386 return (EINTR);
387 kpause("nfscn2", false, hz, NULL);
388 }
389
390 /*
391 * Loop through outstanding request list and fix up all requests
392 * on old socket.
393 */
394 mutex_enter(&nfs_reqq_lock);
395 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) {
396 if (rp->r_nmp == nmp) {
397 if ((rp->r_flags & R_MUSTRESEND) == 0)
398 rp->r_flags |= R_MUSTRESEND | R_REXMITTED;
399 rp->r_rexmit = 0;
400 }
401 }
402 mutex_exit(&nfs_reqq_lock);
403 return (0);
404 }
405
406 /*
407 * NFS disconnect. Clean up and unlink.
408 */
409 void
410 nfs_disconnect(nmp)
411 struct nfsmount *nmp;
412 {
413 struct socket *so;
414 int drain = 0;
415
416 KERNEL_LOCK(1, NULL);
417 if (nmp->nm_so) {
418 so = nmp->nm_so;
419 nmp->nm_so = (struct socket *)0;
420 soshutdown(so, SHUT_RDWR);
421 drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0;
422 if (drain) {
423 /*
424 * soshutdown() above should wake up the current
425 * listener.
426 * Now wake up those waiting for the receive lock, and
427 * wait for them to go away unhappy, to prevent *nmp
428 * from evaporating while they're sleeping.
429 */
430 mutex_enter(&nmp->nm_lock);
431 while (nmp->nm_waiters > 0) {
432 cv_broadcast(&nmp->nm_rcvcv);
433 cv_broadcast(&nmp->nm_sndcv);
434 cv_wait(&nmp->nm_disconcv, &nmp->nm_lock);
435 }
436 mutex_exit(&nmp->nm_lock);
437 }
438 soclose(so);
439 }
440 KERNEL_UNLOCK_ONE(NULL);
441
442 #ifdef DIAGNOSTIC
443 if (drain && (nmp->nm_waiters > 0))
444 panic("nfs_disconnect: waiters left after drain?");
445 #endif
446 }
447
448 void
449 nfs_safedisconnect(nmp)
450 struct nfsmount *nmp;
451 {
452 struct nfsreq dummyreq;
453
454 memset(&dummyreq, 0, sizeof(dummyreq));
455 dummyreq.r_nmp = nmp;
456 nfs_rcvlock(nmp, &dummyreq); /* XXX ignored error return */
457 nfs_disconnect(nmp);
458 nfs_rcvunlock(nmp);
459 }
460
461 /*
462 * This is the nfs send routine. For connection based socket types, it
463 * must be called with an nfs_sndlock() on the socket.
464 * "rep == NULL" indicates that it has been called from a server.
465 * For the client side:
466 * - return EINTR if the RPC is terminated, 0 otherwise
467 * - set R_MUSTRESEND if the send fails for any reason
468 * - do any cleanup required by recoverable socket errors (? ? ?)
469 * For the server side:
470 * - return EINTR or ERESTART if interrupted by a signal
471 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
472 * - do any cleanup required by recoverable socket errors (? ? ?)
473 */
474 int
475 nfs_send(so, nam, top, rep, l)
476 struct socket *so;
477 struct mbuf *nam;
478 struct mbuf *top;
479 struct nfsreq *rep;
480 struct lwp *l;
481 {
482 struct mbuf *sendnam;
483 int error, soflags, flags;
484
485 /* XXX nfs_doio()/nfs_request() calls with rep->r_lwp == NULL */
486 if (l == NULL && rep->r_lwp == NULL)
487 l = curlwp;
488
489 if (rep) {
490 if (rep->r_flags & R_SOFTTERM) {
491 m_freem(top);
492 return (EINTR);
493 }
494 if ((so = rep->r_nmp->nm_so) == NULL) {
495 rep->r_flags |= R_MUSTRESEND;
496 m_freem(top);
497 return (0);
498 }
499 rep->r_flags &= ~R_MUSTRESEND;
500 soflags = rep->r_nmp->nm_soflags;
501 } else
502 soflags = so->so_proto->pr_flags;
503 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
504 sendnam = (struct mbuf *)0;
505 else
506 sendnam = nam;
507 if (so->so_type == SOCK_SEQPACKET)
508 flags = MSG_EOR;
509 else
510 flags = 0;
511
512 KERNEL_LOCK(1, curlwp);
513 error = (*so->so_send)(so, sendnam, NULL, top, NULL, flags, l);
514 KERNEL_UNLOCK_ONE(curlwp);
515 if (error) {
516 if (rep) {
517 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
518 /*
519 * We're too fast for the network/driver,
520 * and UDP isn't flowcontrolled.
521 * We need to resend. This is not fatal,
522 * just try again.
523 *
524 * Could be smarter here by doing some sort
525 * of a backoff, but this is rare.
526 */
527 rep->r_flags |= R_MUSTRESEND;
528 } else {
529 if (error != EPIPE)
530 log(LOG_INFO,
531 "nfs send error %d for %s\n",
532 error,
533 rep->r_nmp->nm_mountp->
534 mnt_stat.f_mntfromname);
535 /*
536 * Deal with errors for the client side.
537 */
538 if (rep->r_flags & R_SOFTTERM)
539 error = EINTR;
540 else
541 rep->r_flags |= R_MUSTRESEND;
542 }
543 } else {
544 /*
545 * See above. This error can happen under normal
546 * circumstances and the log is too noisy.
547 * The error will still show up in nfsstat.
548 */
549 if (error != ENOBUFS || so->so_type != SOCK_DGRAM)
550 log(LOG_INFO, "nfsd send error %d\n", error);
551 }
552
553 /*
554 * Handle any recoverable (soft) socket errors here. (? ? ?)
555 */
556 if (error != EINTR && error != ERESTART &&
557 error != EWOULDBLOCK && error != EPIPE)
558 error = 0;
559 }
560 return (error);
561 }
562
563 #ifdef NFS
564 /*
565 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
566 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
567 * Mark and consolidate the data into a new mbuf list.
568 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
569 * small mbufs.
570 * For SOCK_STREAM we must be very careful to read an entire record once
571 * we have read any of it, even if the system call has been interrupted.
572 */
573 int
574 nfs_receive(rep, aname, mp, l)
575 struct nfsreq *rep;
576 struct mbuf **aname;
577 struct mbuf **mp;
578 struct lwp *l;
579 {
580 struct socket *so;
581 struct uio auio;
582 struct iovec aio;
583 struct mbuf *m;
584 struct mbuf *control;
585 u_int32_t len;
586 struct mbuf **getnam;
587 int error, sotype, rcvflg;
588
589 /*
590 * Set up arguments for soreceive()
591 */
592 *mp = (struct mbuf *)0;
593 *aname = (struct mbuf *)0;
594 sotype = rep->r_nmp->nm_sotype;
595
596 /*
597 * For reliable protocols, lock against other senders/receivers
598 * in case a reconnect is necessary.
599 * For SOCK_STREAM, first get the Record Mark to find out how much
600 * more there is to get.
601 * We must lock the socket against other receivers
602 * until we have an entire rpc request/reply.
603 */
604 if (sotype != SOCK_DGRAM) {
605 error = nfs_sndlock(rep->r_nmp, rep);
606 if (error)
607 return (error);
608 tryagain:
609 /*
610 * Check for fatal errors and resending request.
611 */
612 /*
613 * Ugh: If a reconnect attempt just happened, nm_so
614 * would have changed. NULL indicates a failed
615 * attempt that has essentially shut down this
616 * mount point.
617 */
618 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
619 nfs_sndunlock(rep->r_nmp);
620 return (EINTR);
621 }
622 so = rep->r_nmp->nm_so;
623 if (!so) {
624 error = nfs_reconnect(rep);
625 if (error) {
626 nfs_sndunlock(rep->r_nmp);
627 return (error);
628 }
629 goto tryagain;
630 }
631 while (rep->r_flags & R_MUSTRESEND) {
632 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
633 nfsstats.rpcretries++;
634 rep->r_rtt = 0;
635 rep->r_flags &= ~R_TIMING;
636 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep, l);
637 if (error) {
638 if (error == EINTR || error == ERESTART ||
639 (error = nfs_reconnect(rep)) != 0) {
640 nfs_sndunlock(rep->r_nmp);
641 return (error);
642 }
643 goto tryagain;
644 }
645 }
646 nfs_sndunlock(rep->r_nmp);
647 if (sotype == SOCK_STREAM) {
648 aio.iov_base = (void *) &len;
649 aio.iov_len = sizeof(u_int32_t);
650 auio.uio_iov = &aio;
651 auio.uio_iovcnt = 1;
652 auio.uio_rw = UIO_READ;
653 auio.uio_offset = 0;
654 auio.uio_resid = sizeof(u_int32_t);
655 UIO_SETUP_SYSSPACE(&auio);
656 do {
657 rcvflg = MSG_WAITALL;
658 KERNEL_LOCK(1, NULL);
659 error = (*so->so_receive)(so, (struct mbuf **)0, &auio,
660 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
661 KERNEL_UNLOCK_ONE(NULL);
662 if (error == EWOULDBLOCK && rep) {
663 if (rep->r_flags & R_SOFTTERM)
664 return (EINTR);
665 /*
666 * if it seems that the server died after it
667 * received our request, set EPIPE so that
668 * we'll reconnect and retransmit requests.
669 */
670 if (rep->r_rexmit >= rep->r_nmp->nm_retry) {
671 nfsstats.rpctimeouts++;
672 error = EPIPE;
673 }
674 }
675 } while (error == EWOULDBLOCK);
676 if (!error && auio.uio_resid > 0) {
677 /*
678 * Don't log a 0 byte receive; it means
679 * that the socket has been closed, and
680 * can happen during normal operation
681 * (forcible unmount or Solaris server).
682 */
683 if (auio.uio_resid != sizeof (u_int32_t))
684 log(LOG_INFO,
685 "short receive (%lu/%lu) from nfs server %s\n",
686 (u_long)sizeof(u_int32_t) - auio.uio_resid,
687 (u_long)sizeof(u_int32_t),
688 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
689 error = EPIPE;
690 }
691 if (error)
692 goto errout;
693 len = ntohl(len) & ~0x80000000;
694 /*
695 * This is SERIOUS! We are out of sync with the sender
696 * and forcing a disconnect/reconnect is all I can do.
697 */
698 if (len > NFS_MAXPACKET) {
699 log(LOG_ERR, "%s (%d) from nfs server %s\n",
700 "impossible packet length",
701 len,
702 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
703 error = EFBIG;
704 goto errout;
705 }
706 auio.uio_resid = len;
707 do {
708 rcvflg = MSG_WAITALL;
709 KERNEL_LOCK(1, NULL);
710 error = (*so->so_receive)(so, (struct mbuf **)0,
711 &auio, mp, (struct mbuf **)0, &rcvflg);
712 KERNEL_UNLOCK_ONE(NULL);
713 } while (error == EWOULDBLOCK || error == EINTR ||
714 error == ERESTART);
715 if (!error && auio.uio_resid > 0) {
716 if (len != auio.uio_resid)
717 log(LOG_INFO,
718 "short receive (%lu/%d) from nfs server %s\n",
719 (u_long)len - auio.uio_resid, len,
720 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
721 error = EPIPE;
722 }
723 } else {
724 /*
725 * NB: Since uio_resid is big, MSG_WAITALL is ignored
726 * and soreceive() will return when it has either a
727 * control msg or a data msg.
728 * We have no use for control msg., but must grab them
729 * and then throw them away so we know what is going
730 * on.
731 */
732 auio.uio_resid = len = 100000000; /* Anything Big */
733 /* not need to setup uio_vmspace */
734 do {
735 rcvflg = 0;
736 KERNEL_LOCK(1, NULL);
737 error = (*so->so_receive)(so, (struct mbuf **)0,
738 &auio, mp, &control, &rcvflg);
739 KERNEL_UNLOCK_ONE(NULL);
740 if (control)
741 m_freem(control);
742 if (error == EWOULDBLOCK && rep) {
743 if (rep->r_flags & R_SOFTTERM)
744 return (EINTR);
745 }
746 } while (error == EWOULDBLOCK ||
747 (!error && *mp == NULL && control));
748 if ((rcvflg & MSG_EOR) == 0)
749 printf("Egad!!\n");
750 if (!error && *mp == NULL)
751 error = EPIPE;
752 len -= auio.uio_resid;
753 }
754 errout:
755 if (error && error != EINTR && error != ERESTART) {
756 m_freem(*mp);
757 *mp = (struct mbuf *)0;
758 if (error != EPIPE)
759 log(LOG_INFO,
760 "receive error %d from nfs server %s\n",
761 error,
762 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
763 error = nfs_sndlock(rep->r_nmp, rep);
764 if (!error)
765 error = nfs_reconnect(rep);
766 if (!error)
767 goto tryagain;
768 else
769 nfs_sndunlock(rep->r_nmp);
770 }
771 } else {
772 if ((so = rep->r_nmp->nm_so) == NULL)
773 return (EACCES);
774 if (so->so_state & SS_ISCONNECTED)
775 getnam = (struct mbuf **)0;
776 else
777 getnam = aname;
778 auio.uio_resid = len = 1000000;
779 /* not need to setup uio_vmspace */
780 do {
781 rcvflg = 0;
782 KERNEL_LOCK(1, NULL);
783 error = (*so->so_receive)(so, getnam, &auio, mp,
784 (struct mbuf **)0, &rcvflg);
785 KERNEL_UNLOCK_ONE(NULL);
786 if (error == EWOULDBLOCK &&
787 (rep->r_flags & R_SOFTTERM))
788 return (EINTR);
789 } while (error == EWOULDBLOCK);
790 len -= auio.uio_resid;
791 if (!error && *mp == NULL)
792 error = EPIPE;
793 }
794 if (error) {
795 m_freem(*mp);
796 *mp = (struct mbuf *)0;
797 }
798 return (error);
799 }
800
801 /*
802 * Implement receipt of reply on a socket.
803 * We must search through the list of received datagrams matching them
804 * with outstanding requests using the xid, until ours is found.
805 */
806 /* ARGSUSED */
807 int
808 nfs_reply(myrep, lwp)
809 struct nfsreq *myrep;
810 struct lwp *lwp;
811 {
812 struct nfsreq *rep;
813 struct nfsmount *nmp = myrep->r_nmp;
814 int32_t t1;
815 struct mbuf *mrep, *nam, *md;
816 u_int32_t rxid, *tl;
817 char *dpos, *cp2;
818 int error;
819
820 /*
821 * Loop around until we get our own reply
822 */
823 for (;;) {
824 /*
825 * Lock against other receivers so that I don't get stuck in
826 * sbwait() after someone else has received my reply for me.
827 * Also necessary for connection based protocols to avoid
828 * race conditions during a reconnect.
829 */
830 error = nfs_rcvlock(nmp, myrep);
831 if (error == EALREADY)
832 return (0);
833 if (error)
834 return (error);
835 /*
836 * Get the next Rpc reply off the socket
837 */
838
839 mutex_enter(&nmp->nm_lock);
840 nmp->nm_waiters++;
841 mutex_exit(&nmp->nm_lock);
842
843 error = nfs_receive(myrep, &nam, &mrep, lwp);
844
845 mutex_enter(&nmp->nm_lock);
846 nmp->nm_waiters--;
847 cv_signal(&nmp->nm_disconcv);
848 mutex_exit(&nmp->nm_lock);
849
850 if (error) {
851 nfs_rcvunlock(nmp);
852
853 if (nmp->nm_iflag & NFSMNT_DISMNT) {
854 /*
855 * Oops, we're going away now..
856 */
857 return error;
858 }
859 /*
860 * Ignore routing errors on connectionless protocols? ?
861 */
862 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
863 nmp->nm_so->so_error = 0;
864 #ifdef DEBUG
865 printf("nfs_reply: ignoring error %d\n", error);
866 #endif
867 continue;
868 }
869 return (error);
870 }
871 if (nam)
872 m_freem(nam);
873
874 /*
875 * Get the xid and check that it is an rpc reply
876 */
877 md = mrep;
878 dpos = mtod(md, void *);
879 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
880 rxid = *tl++;
881 if (*tl != rpc_reply) {
882 nfsstats.rpcinvalid++;
883 m_freem(mrep);
884 nfsmout:
885 nfs_rcvunlock(nmp);
886 continue;
887 }
888
889 /*
890 * Loop through the request list to match up the reply
891 * Iff no match, just drop the datagram
892 */
893 mutex_enter(&nfs_reqq_lock);
894 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
895 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
896 /* Found it.. */
897 rep->r_mrep = mrep;
898 rep->r_md = md;
899 rep->r_dpos = dpos;
900 if (nfsrtton) {
901 struct rttl *rt;
902
903 rt = &nfsrtt.rttl[nfsrtt.pos];
904 rt->proc = rep->r_procnum;
905 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
906 rt->sent = nmp->nm_sent;
907 rt->cwnd = nmp->nm_cwnd;
908 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
909 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
910 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsidx;
911 getmicrotime(&rt->tstamp);
912 if (rep->r_flags & R_TIMING)
913 rt->rtt = rep->r_rtt;
914 else
915 rt->rtt = 1000000;
916 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
917 }
918 /*
919 * Update congestion window.
920 * Do the additive increase of
921 * one rpc/rtt.
922 */
923 if (nmp->nm_cwnd <= nmp->nm_sent) {
924 nmp->nm_cwnd +=
925 (NFS_CWNDSCALE * NFS_CWNDSCALE +
926 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
927 if (nmp->nm_cwnd > NFS_MAXCWND)
928 nmp->nm_cwnd = NFS_MAXCWND;
929 }
930 rep->r_flags &= ~R_SENT;
931 nmp->nm_sent -= NFS_CWNDSCALE;
932 /*
933 * Update rtt using a gain of 0.125 on the mean
934 * and a gain of 0.25 on the deviation.
935 */
936 if (rep->r_flags & R_TIMING) {
937 /*
938 * Since the timer resolution of
939 * NFS_HZ is so course, it can often
940 * result in r_rtt == 0. Since
941 * r_rtt == N means that the actual
942 * rtt is between N+dt and N+2-dt ticks,
943 * add 1.
944 */
945 t1 = rep->r_rtt + 1;
946 t1 -= (NFS_SRTT(rep) >> 3);
947 NFS_SRTT(rep) += t1;
948 if (t1 < 0)
949 t1 = -t1;
950 t1 -= (NFS_SDRTT(rep) >> 2);
951 NFS_SDRTT(rep) += t1;
952 }
953 nmp->nm_timeouts = 0;
954 break;
955 }
956 }
957 mutex_exit(&nfs_reqq_lock);
958 nfs_rcvunlock(nmp);
959 /*
960 * If not matched to a request, drop it.
961 * If it's mine, get out.
962 */
963 if (rep == 0) {
964 nfsstats.rpcunexpected++;
965 m_freem(mrep);
966 } else if (rep == myrep) {
967 if (rep->r_mrep == NULL)
968 panic("nfsreply nil");
969 return (0);
970 }
971 }
972 }
973
974 /*
975 * nfs_request - goes something like this
976 * - fill in request struct
977 * - links it into list
978 * - calls nfs_send() for first transmit
979 * - calls nfs_receive() to get reply
980 * - break down rpc header and return with nfs reply pointed to
981 * by mrep or error
982 * nb: always frees up mreq mbuf list
983 */
984 int
985 nfs_request(np, mrest, procnum, lwp, cred, mrp, mdp, dposp, rexmitp)
986 struct nfsnode *np;
987 struct mbuf *mrest;
988 int procnum;
989 struct lwp *lwp;
990 kauth_cred_t cred;
991 struct mbuf **mrp;
992 struct mbuf **mdp;
993 char **dposp;
994 int *rexmitp;
995 {
996 struct mbuf *m, *mrep;
997 struct nfsreq *rep;
998 u_int32_t *tl;
999 int i;
1000 struct nfsmount *nmp = VFSTONFS(np->n_vnode->v_mount);
1001 struct mbuf *md, *mheadend;
1002 char nickv[RPCX_NICKVERF];
1003 time_t waituntil;
1004 char *dpos, *cp2;
1005 int t1, error = 0, mrest_len, auth_len, auth_type;
1006 int trylater_delay = NFS_TRYLATERDEL, failed_auth = 0;
1007 int verf_len, verf_type;
1008 u_int32_t xid;
1009 char *auth_str, *verf_str;
1010 NFSKERBKEY_T key; /* save session key */
1011 kauth_cred_t acred;
1012 struct mbuf *mrest_backup = NULL;
1013 kauth_cred_t origcred = NULL; /* XXX: gcc */
1014 bool retry_cred = true;
1015 bool use_opencred = (np->n_flag & NUSEOPENCRED) != 0;
1016
1017 if (rexmitp != NULL)
1018 *rexmitp = 0;
1019
1020 acred = kauth_cred_alloc();
1021
1022 tryagain_cred:
1023 KASSERT(cred != NULL);
1024 rep = kmem_alloc(sizeof(*rep), KM_SLEEP);
1025 rep->r_nmp = nmp;
1026 KASSERT(lwp == NULL || lwp == curlwp);
1027 rep->r_lwp = lwp;
1028 rep->r_procnum = procnum;
1029 i = 0;
1030 m = mrest;
1031 while (m) {
1032 i += m->m_len;
1033 m = m->m_next;
1034 }
1035 mrest_len = i;
1036
1037 /*
1038 * Get the RPC header with authorization.
1039 */
1040 kerbauth:
1041 verf_str = auth_str = (char *)0;
1042 if (nmp->nm_flag & NFSMNT_KERB) {
1043 verf_str = nickv;
1044 verf_len = sizeof (nickv);
1045 auth_type = RPCAUTH_KERB4;
1046 memset((void *)key, 0, sizeof (key));
1047 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
1048 &auth_len, verf_str, verf_len)) {
1049 error = nfs_getauth(nmp, rep, cred, &auth_str,
1050 &auth_len, verf_str, &verf_len, key);
1051 if (error) {
1052 kmem_free(rep, sizeof(*rep));
1053 m_freem(mrest);
1054 KASSERT(kauth_cred_getrefcnt(acred) == 1);
1055 kauth_cred_free(acred);
1056 return (error);
1057 }
1058 }
1059 retry_cred = false;
1060 } else {
1061 /* AUTH_UNIX */
1062 uid_t uid;
1063 gid_t gid;
1064
1065 /*
1066 * on the most unix filesystems, permission checks are
1067 * done when the file is open(2)'ed.
1068 * ie. once a file is successfully open'ed,
1069 * following i/o operations never fail with EACCES.
1070 * we try to follow the semantics as far as possible.
1071 *
1072 * note that we expect that the nfs server always grant
1073 * accesses by the file's owner.
1074 */
1075 origcred = cred;
1076 switch (procnum) {
1077 case NFSPROC_READ:
1078 case NFSPROC_WRITE:
1079 case NFSPROC_COMMIT:
1080 uid = np->n_vattr->va_uid;
1081 gid = np->n_vattr->va_gid;
1082 if (kauth_cred_geteuid(cred) == uid &&
1083 kauth_cred_getegid(cred) == gid) {
1084 retry_cred = false;
1085 break;
1086 }
1087 if (use_opencred)
1088 break;
1089 kauth_cred_setuid(acred, uid);
1090 kauth_cred_seteuid(acred, uid);
1091 kauth_cred_setsvuid(acred, uid);
1092 kauth_cred_setgid(acred, gid);
1093 kauth_cred_setegid(acred, gid);
1094 kauth_cred_setsvgid(acred, gid);
1095 cred = acred;
1096 break;
1097 default:
1098 retry_cred = false;
1099 break;
1100 }
1101 /*
1102 * backup mbuf chain if we can need it later to retry.
1103 *
1104 * XXX maybe we can keep a direct reference to
1105 * mrest without doing m_copym, but it's ...ugly.
1106 */
1107 if (retry_cred)
1108 mrest_backup = m_copym(mrest, 0, M_COPYALL, M_WAIT);
1109 auth_type = RPCAUTH_UNIX;
1110 /* XXX elad - ngroups */
1111 auth_len = (((kauth_cred_ngroups(cred) > nmp->nm_numgrps) ?
1112 nmp->nm_numgrps : kauth_cred_ngroups(cred)) << 2) +
1113 5 * NFSX_UNSIGNED;
1114 }
1115 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
1116 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
1117 if (auth_str)
1118 free(auth_str, M_TEMP);
1119
1120 /*
1121 * For stream protocols, insert a Sun RPC Record Mark.
1122 */
1123 if (nmp->nm_sotype == SOCK_STREAM) {
1124 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
1125 *mtod(m, u_int32_t *) = htonl(0x80000000 |
1126 (m->m_pkthdr.len - NFSX_UNSIGNED));
1127 }
1128 rep->r_mreq = m;
1129 rep->r_xid = xid;
1130 tryagain:
1131 if (nmp->nm_flag & NFSMNT_SOFT)
1132 rep->r_retry = nmp->nm_retry;
1133 else
1134 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
1135 rep->r_rtt = rep->r_rexmit = 0;
1136 if (proct[procnum] > 0)
1137 rep->r_flags = R_TIMING;
1138 else
1139 rep->r_flags = 0;
1140 rep->r_mrep = NULL;
1141
1142 /*
1143 * Do the client side RPC.
1144 */
1145 nfsstats.rpcrequests++;
1146 /*
1147 * Chain request into list of outstanding requests. Be sure
1148 * to put it LAST so timer finds oldest requests first.
1149 */
1150 mutex_enter(&nfs_reqq_lock);
1151 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
1152
1153 nfs_timer_start();
1154
1155 /*
1156 * If backing off another request or avoiding congestion, don't
1157 * send this one now but let timer do it. If not timing a request,
1158 * do it now.
1159 */
1160 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
1161 (nmp->nm_flag & NFSMNT_DUMBTIMR) || nmp->nm_sent < nmp->nm_cwnd)) {
1162 if (nmp->nm_soflags & PR_CONNREQUIRED)
1163 error = nfs_sndlock(nmp, rep);
1164 if (!error) {
1165 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
1166 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep, lwp);
1167 if (nmp->nm_soflags & PR_CONNREQUIRED)
1168 nfs_sndunlock(nmp);
1169 }
1170 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
1171 nmp->nm_sent += NFS_CWNDSCALE;
1172 rep->r_flags |= R_SENT;
1173 }
1174 } else {
1175 rep->r_rtt = -1;
1176 }
1177
1178 /*
1179 * Wait for the reply from our send or the timer's.
1180 */
1181 if (!error || error == EPIPE) {
1182 mutex_exit(&nfs_reqq_lock);
1183 error = nfs_reply(rep, lwp);
1184 mutex_enter(&nfs_reqq_lock);
1185 }
1186
1187 /*
1188 * RPC done, unlink the request.
1189 */
1190 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
1191
1192 /*
1193 * Decrement the outstanding request count.
1194 */
1195 if (rep->r_flags & R_SENT) {
1196 rep->r_flags &= ~R_SENT; /* paranoia */
1197 nmp->nm_sent -= NFS_CWNDSCALE;
1198 }
1199 mutex_exit(&nfs_reqq_lock);
1200
1201 if (rexmitp != NULL) {
1202 int rexmit;
1203
1204 if (nmp->nm_sotype != SOCK_DGRAM)
1205 rexmit = (rep->r_flags & R_REXMITTED) != 0;
1206 else
1207 rexmit = rep->r_rexmit;
1208 *rexmitp = rexmit;
1209 }
1210
1211 /*
1212 * If there was a successful reply and a tprintf msg.
1213 * tprintf a response.
1214 */
1215 if (!error && (rep->r_flags & R_TPRINTFMSG))
1216 nfs_msg(rep->r_lwp, nmp->nm_mountp->mnt_stat.f_mntfromname,
1217 "is alive again");
1218 mrep = rep->r_mrep;
1219 md = rep->r_md;
1220 dpos = rep->r_dpos;
1221 if (error)
1222 goto nfsmout;
1223
1224 /*
1225 * break down the rpc header and check if ok
1226 */
1227 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1228 if (*tl++ == rpc_msgdenied) {
1229 if (*tl == rpc_mismatch)
1230 error = EOPNOTSUPP;
1231 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
1232 if (!failed_auth) {
1233 failed_auth++;
1234 mheadend->m_next = (struct mbuf *)0;
1235 m_freem(mrep);
1236 m_freem(rep->r_mreq);
1237 goto kerbauth;
1238 } else
1239 error = EAUTH;
1240 } else
1241 error = EACCES;
1242 m_freem(mrep);
1243 goto nfsmout;
1244 }
1245
1246 /*
1247 * Grab any Kerberos verifier, otherwise just throw it away.
1248 */
1249 verf_type = fxdr_unsigned(int, *tl++);
1250 i = fxdr_unsigned(int32_t, *tl);
1251 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1252 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1253 if (error)
1254 goto nfsmout;
1255 } else if (i > 0)
1256 nfsm_adv(nfsm_rndup(i));
1257 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1258 /* 0 == ok */
1259 if (*tl == 0) {
1260 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1261 if (*tl != 0) {
1262 error = fxdr_unsigned(int, *tl);
1263 switch (error) {
1264 case NFSERR_PERM:
1265 error = EPERM;
1266 break;
1267
1268 case NFSERR_NOENT:
1269 error = ENOENT;
1270 break;
1271
1272 case NFSERR_IO:
1273 error = EIO;
1274 break;
1275
1276 case NFSERR_NXIO:
1277 error = ENXIO;
1278 break;
1279
1280 case NFSERR_ACCES:
1281 error = EACCES;
1282 if (!retry_cred)
1283 break;
1284 m_freem(mrep);
1285 m_freem(rep->r_mreq);
1286 kmem_free(rep, sizeof(*rep));
1287 use_opencred = !use_opencred;
1288 if (mrest_backup == NULL) {
1289 /* m_copym failure */
1290 KASSERT(
1291 kauth_cred_getrefcnt(acred) == 1);
1292 kauth_cred_free(acred);
1293 return ENOMEM;
1294 }
1295 mrest = mrest_backup;
1296 mrest_backup = NULL;
1297 cred = origcred;
1298 error = 0;
1299 retry_cred = false;
1300 goto tryagain_cred;
1301
1302 case NFSERR_EXIST:
1303 error = EEXIST;
1304 break;
1305
1306 case NFSERR_XDEV:
1307 error = EXDEV;
1308 break;
1309
1310 case NFSERR_NODEV:
1311 error = ENODEV;
1312 break;
1313
1314 case NFSERR_NOTDIR:
1315 error = ENOTDIR;
1316 break;
1317
1318 case NFSERR_ISDIR:
1319 error = EISDIR;
1320 break;
1321
1322 case NFSERR_INVAL:
1323 error = EINVAL;
1324 break;
1325
1326 case NFSERR_FBIG:
1327 error = EFBIG;
1328 break;
1329
1330 case NFSERR_NOSPC:
1331 error = ENOSPC;
1332 break;
1333
1334 case NFSERR_ROFS:
1335 error = EROFS;
1336 break;
1337
1338 case NFSERR_MLINK:
1339 error = EMLINK;
1340 break;
1341
1342 case NFSERR_TIMEDOUT:
1343 error = ETIMEDOUT;
1344 break;
1345
1346 case NFSERR_NAMETOL:
1347 error = ENAMETOOLONG;
1348 break;
1349
1350 case NFSERR_NOTEMPTY:
1351 error = ENOTEMPTY;
1352 break;
1353
1354 case NFSERR_DQUOT:
1355 error = EDQUOT;
1356 break;
1357
1358 case NFSERR_STALE:
1359 /*
1360 * If the File Handle was stale, invalidate the
1361 * lookup cache, just in case.
1362 */
1363 error = ESTALE;
1364 cache_purge(NFSTOV(np));
1365 break;
1366
1367 case NFSERR_REMOTE:
1368 error = EREMOTE;
1369 break;
1370
1371 case NFSERR_WFLUSH:
1372 case NFSERR_BADHANDLE:
1373 case NFSERR_NOT_SYNC:
1374 case NFSERR_BAD_COOKIE:
1375 error = EINVAL;
1376 break;
1377
1378 case NFSERR_NOTSUPP:
1379 error = ENOTSUP;
1380 break;
1381
1382 case NFSERR_TOOSMALL:
1383 case NFSERR_SERVERFAULT:
1384 case NFSERR_BADTYPE:
1385 error = EINVAL;
1386 break;
1387
1388 case NFSERR_TRYLATER:
1389 if ((nmp->nm_flag & NFSMNT_NFSV3) == 0)
1390 break;
1391 m_freem(mrep);
1392 error = 0;
1393 waituntil = time_second + trylater_delay;
1394 while (time_second < waituntil) {
1395 kpause("nfstrylater", false, hz, NULL);
1396 }
1397 trylater_delay *= NFS_TRYLATERDELMUL;
1398 if (trylater_delay > NFS_TRYLATERDELMAX)
1399 trylater_delay = NFS_TRYLATERDELMAX;
1400 /*
1401 * RFC1813:
1402 * The client should wait and then try
1403 * the request with a new RPC transaction ID.
1404 */
1405 nfs_renewxid(rep);
1406 goto tryagain;
1407
1408 default:
1409 #ifdef DIAGNOSTIC
1410 printf("Invalid rpc error code %d\n", error);
1411 #endif
1412 error = EINVAL;
1413 break;
1414 }
1415
1416 if (nmp->nm_flag & NFSMNT_NFSV3) {
1417 *mrp = mrep;
1418 *mdp = md;
1419 *dposp = dpos;
1420 error |= NFSERR_RETERR;
1421 } else
1422 m_freem(mrep);
1423 goto nfsmout;
1424 }
1425
1426 /*
1427 * note which credential worked to minimize number of retries.
1428 */
1429 if (use_opencred)
1430 np->n_flag |= NUSEOPENCRED;
1431 else
1432 np->n_flag &= ~NUSEOPENCRED;
1433
1434 *mrp = mrep;
1435 *mdp = md;
1436 *dposp = dpos;
1437
1438 KASSERT(error == 0);
1439 goto nfsmout;
1440 }
1441 m_freem(mrep);
1442 error = EPROTONOSUPPORT;
1443 nfsmout:
1444 KASSERT(kauth_cred_getrefcnt(acred) == 1);
1445 kauth_cred_free(acred);
1446 m_freem(rep->r_mreq);
1447 kmem_free(rep, sizeof(*rep));
1448 m_freem(mrest_backup);
1449 return (error);
1450 }
1451 #endif /* NFS */
1452
1453 /*
1454 * Generate the rpc reply header
1455 * siz arg. is used to decide if adding a cluster is worthwhile
1456 */
1457 int
1458 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1459 int siz;
1460 struct nfsrv_descript *nd;
1461 struct nfssvc_sock *slp;
1462 int err;
1463 int cache;
1464 u_quad_t *frev;
1465 struct mbuf **mrq;
1466 struct mbuf **mbp;
1467 char **bposp;
1468 {
1469 u_int32_t *tl;
1470 struct mbuf *mreq;
1471 char *bpos;
1472 struct mbuf *mb;
1473
1474 mreq = m_gethdr(M_WAIT, MT_DATA);
1475 MCLAIM(mreq, &nfs_mowner);
1476 mb = mreq;
1477 /*
1478 * If this is a big reply, use a cluster else
1479 * try and leave leading space for the lower level headers.
1480 */
1481 siz += RPC_REPLYSIZ;
1482 if (siz >= max_datalen) {
1483 m_clget(mreq, M_WAIT);
1484 } else
1485 mreq->m_data += max_hdr;
1486 tl = mtod(mreq, u_int32_t *);
1487 mreq->m_len = 6 * NFSX_UNSIGNED;
1488 bpos = ((char *)tl) + mreq->m_len;
1489 *tl++ = txdr_unsigned(nd->nd_retxid);
1490 *tl++ = rpc_reply;
1491 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1492 *tl++ = rpc_msgdenied;
1493 if (err & NFSERR_AUTHERR) {
1494 *tl++ = rpc_autherr;
1495 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1496 mreq->m_len -= NFSX_UNSIGNED;
1497 bpos -= NFSX_UNSIGNED;
1498 } else {
1499 *tl++ = rpc_mismatch;
1500 *tl++ = txdr_unsigned(RPC_VER2);
1501 *tl = txdr_unsigned(RPC_VER2);
1502 }
1503 } else {
1504 *tl++ = rpc_msgaccepted;
1505
1506 /*
1507 * For Kerberos authentication, we must send the nickname
1508 * verifier back, otherwise just RPCAUTH_NULL.
1509 */
1510 if (nd->nd_flag & ND_KERBFULL) {
1511 struct nfsuid *nuidp;
1512 struct timeval ktvin, ktvout;
1513
1514 memset(&ktvout, 0, sizeof ktvout); /* XXX gcc */
1515
1516 LIST_FOREACH(nuidp,
1517 NUIDHASH(slp, kauth_cred_geteuid(nd->nd_cr)),
1518 nu_hash) {
1519 if (kauth_cred_geteuid(nuidp->nu_cr) ==
1520 kauth_cred_geteuid(nd->nd_cr) &&
1521 (!nd->nd_nam2 || netaddr_match(
1522 NU_NETFAM(nuidp), &nuidp->nu_haddr,
1523 nd->nd_nam2)))
1524 break;
1525 }
1526 if (nuidp) {
1527 ktvin.tv_sec =
1528 txdr_unsigned(nuidp->nu_timestamp.tv_sec
1529 - 1);
1530 ktvin.tv_usec =
1531 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1532
1533 /*
1534 * Encrypt the timestamp in ecb mode using the
1535 * session key.
1536 */
1537 #ifdef NFSKERB
1538 XXX
1539 #endif
1540
1541 *tl++ = rpc_auth_kerb;
1542 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1543 *tl = ktvout.tv_sec;
1544 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1545 *tl++ = ktvout.tv_usec;
1546 *tl++ = txdr_unsigned(
1547 kauth_cred_geteuid(nuidp->nu_cr));
1548 } else {
1549 *tl++ = 0;
1550 *tl++ = 0;
1551 }
1552 } else {
1553 *tl++ = 0;
1554 *tl++ = 0;
1555 }
1556 switch (err) {
1557 case EPROGUNAVAIL:
1558 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1559 break;
1560 case EPROGMISMATCH:
1561 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1562 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1563 *tl++ = txdr_unsigned(2);
1564 *tl = txdr_unsigned(3);
1565 break;
1566 case EPROCUNAVAIL:
1567 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1568 break;
1569 case EBADRPC:
1570 *tl = txdr_unsigned(RPC_GARBAGE);
1571 break;
1572 default:
1573 *tl = 0;
1574 if (err != NFSERR_RETVOID) {
1575 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1576 if (err)
1577 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1578 else
1579 *tl = 0;
1580 }
1581 break;
1582 };
1583 }
1584
1585 if (mrq != NULL)
1586 *mrq = mreq;
1587 *mbp = mb;
1588 *bposp = bpos;
1589 if (err != 0 && err != NFSERR_RETVOID)
1590 nfsstats.srvrpc_errs++;
1591 return (0);
1592 }
1593
1594 static void
1595 nfs_timer_schedule(void)
1596 {
1597
1598 callout_schedule(&nfs_timer_ch, nfs_ticks);
1599 }
1600
1601 void
1602 nfs_timer_start(void)
1603 {
1604
1605 if (callout_pending(&nfs_timer_ch))
1606 return;
1607
1608 nfs_timer_start_ev.ev_count++;
1609 nfs_timer_schedule();
1610 }
1611
1612 void
1613 nfs_timer_init(void)
1614 {
1615
1616 callout_init(&nfs_timer_ch, 0);
1617 callout_setfunc(&nfs_timer_ch, nfs_timer, NULL);
1618 evcnt_attach_dynamic(&nfs_timer_ev, EVCNT_TYPE_MISC, NULL,
1619 "nfs", "timer");
1620 evcnt_attach_dynamic(&nfs_timer_start_ev, EVCNT_TYPE_MISC, NULL,
1621 "nfs", "timer start");
1622 evcnt_attach_dynamic(&nfs_timer_stop_ev, EVCNT_TYPE_MISC, NULL,
1623 "nfs", "timer stop");
1624 }
1625
1626 /*
1627 * Nfs timer routine
1628 * Scan the nfsreq list and retranmit any requests that have timed out
1629 * To avoid retransmission attempts on STREAM sockets (in the future) make
1630 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1631 * A non-NULL argument means 'initialize'.
1632 */
1633 void
1634 nfs_timer(void *arg)
1635 {
1636 struct nfsreq *rep;
1637 struct mbuf *m;
1638 struct socket *so;
1639 struct nfsmount *nmp;
1640 int timeo;
1641 int error;
1642 bool more = false;
1643 #ifdef NFSSERVER
1644 struct timeval tv;
1645 struct nfssvc_sock *slp;
1646 u_quad_t cur_usec;
1647 #endif
1648
1649 nfs_timer_ev.ev_count++;
1650
1651 mutex_enter(&nfs_reqq_lock);
1652 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
1653 more = true;
1654 nmp = rep->r_nmp;
1655 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1656 continue;
1657 if (nfs_sigintr(nmp, rep, rep->r_lwp)) {
1658 rep->r_flags |= R_SOFTTERM;
1659 continue;
1660 }
1661 if (rep->r_rtt >= 0) {
1662 rep->r_rtt++;
1663 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1664 timeo = nmp->nm_timeo;
1665 else
1666 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1667 if (nmp->nm_timeouts > 0)
1668 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1669 if (rep->r_rtt <= timeo)
1670 continue;
1671 if (nmp->nm_timeouts <
1672 (sizeof(nfs_backoff) / sizeof(nfs_backoff[0])))
1673 nmp->nm_timeouts++;
1674 }
1675 /*
1676 * Check for server not responding
1677 */
1678 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1679 rep->r_rexmit > nmp->nm_deadthresh) {
1680 nfs_msg(rep->r_lwp,
1681 nmp->nm_mountp->mnt_stat.f_mntfromname,
1682 "not responding");
1683 rep->r_flags |= R_TPRINTFMSG;
1684 }
1685 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1686 nfsstats.rpctimeouts++;
1687 rep->r_flags |= R_SOFTTERM;
1688 continue;
1689 }
1690 if (nmp->nm_sotype != SOCK_DGRAM) {
1691 if (++rep->r_rexmit > NFS_MAXREXMIT)
1692 rep->r_rexmit = NFS_MAXREXMIT;
1693 continue;
1694 }
1695 if ((so = nmp->nm_so) == NULL)
1696 continue;
1697
1698 /*
1699 * If there is enough space and the window allows..
1700 * Resend it
1701 * Set r_rtt to -1 in case we fail to send it now.
1702 */
1703 rep->r_rtt = -1;
1704 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1705 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1706 (rep->r_flags & R_SENT) ||
1707 nmp->nm_sent < nmp->nm_cwnd) &&
1708 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1709 if (so->so_state & SS_ISCONNECTED)
1710 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1711 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1712 else
1713 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1714 nmp->nm_nam, (struct mbuf *)0, (struct lwp *)0);
1715 if (error) {
1716 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
1717 #ifdef DEBUG
1718 printf("nfs_timer: ignoring error %d\n",
1719 error);
1720 #endif
1721 so->so_error = 0;
1722 }
1723 } else {
1724 /*
1725 * Iff first send, start timing
1726 * else turn timing off, backoff timer
1727 * and divide congestion window by 2.
1728 */
1729 if (rep->r_flags & R_SENT) {
1730 rep->r_flags &= ~R_TIMING;
1731 if (++rep->r_rexmit > NFS_MAXREXMIT)
1732 rep->r_rexmit = NFS_MAXREXMIT;
1733 nmp->nm_cwnd >>= 1;
1734 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1735 nmp->nm_cwnd = NFS_CWNDSCALE;
1736 nfsstats.rpcretries++;
1737 } else {
1738 rep->r_flags |= R_SENT;
1739 nmp->nm_sent += NFS_CWNDSCALE;
1740 }
1741 rep->r_rtt = 0;
1742 }
1743 }
1744 }
1745 mutex_exit(&nfs_reqq_lock);
1746
1747 #ifdef NFSSERVER
1748 /*
1749 * Scan the write gathering queues for writes that need to be
1750 * completed now.
1751 */
1752 getmicrotime(&tv);
1753 cur_usec = (u_quad_t)tv.tv_sec * 1000000 + (u_quad_t)tv.tv_usec;
1754 mutex_enter(&nfsd_lock);
1755 TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1756 struct nfsrv_descript *nd;
1757
1758 nd = LIST_FIRST(&slp->ns_tq);
1759 if (nd != NULL) {
1760 if (nd->nd_time <= cur_usec) {
1761 nfsrv_wakenfsd_locked(slp);
1762 }
1763 more = true;
1764 }
1765 }
1766 mutex_exit(&nfsd_lock);
1767 #endif /* NFSSERVER */
1768 if (more) {
1769 nfs_timer_schedule();
1770 } else {
1771 nfs_timer_stop_ev.ev_count++;
1772 }
1773 }
1774
1775 /*
1776 * Test for a termination condition pending on the process.
1777 * This is used for NFSMNT_INT mounts.
1778 */
1779 int
1780 nfs_sigintr(nmp, rep, l)
1781 struct nfsmount *nmp;
1782 struct nfsreq *rep;
1783 struct lwp *l;
1784 {
1785 sigset_t ss;
1786
1787 if (rep && (rep->r_flags & R_SOFTTERM))
1788 return (EINTR);
1789 if (!(nmp->nm_flag & NFSMNT_INT))
1790 return (0);
1791 if (l) {
1792 sigpending1(l, &ss);
1793 #if 0
1794 sigminusset(&l->l_proc->p_sigctx.ps_sigignore, &ss);
1795 #endif
1796 if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) ||
1797 sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) ||
1798 sigismember(&ss, SIGQUIT))
1799 return (EINTR);
1800 }
1801 return (0);
1802 }
1803
1804 /*
1805 * Lock a socket against others.
1806 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1807 * and also to avoid race conditions between the processes with nfs requests
1808 * in progress when a reconnect is necessary.
1809 */
1810 static int
1811 nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep)
1812 {
1813 struct lwp *l;
1814 int timeo = 0;
1815 bool catch = false;
1816 int error = 0;
1817
1818 KASSERT(nmp == rep->r_nmp);
1819
1820 if (rep) {
1821 l = rep->r_lwp;
1822 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1823 catch = true;
1824 } else
1825 l = NULL;
1826 mutex_enter(&nmp->nm_lock);
1827 while ((nmp->nm_iflag & NFSMNT_SNDLOCK) != 0) {
1828 if (rep && nfs_sigintr(rep->r_nmp, rep, l)) {
1829 error = EINTR;
1830 goto quit;
1831 }
1832 if (catch) {
1833 cv_timedwait_sig(&nmp->nm_sndcv, &nmp->nm_lock, timeo);
1834 } else {
1835 cv_timedwait(&nmp->nm_sndcv, &nmp->nm_lock, timeo);
1836 }
1837 if (catch) {
1838 catch = false;
1839 timeo = 2 * hz;
1840 }
1841 }
1842 nmp->nm_iflag |= NFSMNT_SNDLOCK;
1843 quit:
1844 mutex_exit(&nmp->nm_lock);
1845 return error;
1846 }
1847
1848 /*
1849 * Unlock the stream socket for others.
1850 */
1851 static void
1852 nfs_sndunlock(struct nfsmount *nmp)
1853 {
1854
1855 mutex_enter(&nmp->nm_lock);
1856 if ((nmp->nm_iflag & NFSMNT_SNDLOCK) == 0)
1857 panic("nfs sndunlock");
1858 nmp->nm_iflag &= ~NFSMNT_SNDLOCK;
1859 cv_signal(&nmp->nm_sndcv);
1860 mutex_exit(&nmp->nm_lock);
1861 }
1862
1863 static int
1864 nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep)
1865 {
1866 int *flagp = &nmp->nm_iflag;
1867 int slptimeo = 0;
1868 bool catch;
1869 int error = 0;
1870
1871 KASSERT(nmp == rep->r_nmp);
1872
1873 catch = (nmp->nm_flag & NFSMNT_INT) != 0;
1874 mutex_enter(&nmp->nm_lock);
1875 while (/* CONSTCOND */ true) {
1876 if (*flagp & NFSMNT_DISMNT) {
1877 cv_signal(&nmp->nm_disconcv);
1878 error = EIO;
1879 break;
1880 }
1881 /* If our reply was received while we were sleeping,
1882 * then just return without taking the lock to avoid a
1883 * situation where a single iod could 'capture' the
1884 * receive lock.
1885 */
1886 if (rep->r_mrep != NULL) {
1887 error = EALREADY;
1888 break;
1889 }
1890 if (nfs_sigintr(rep->r_nmp, rep, rep->r_lwp)) {
1891 error = EINTR;
1892 break;
1893 }
1894 if ((*flagp & NFSMNT_RCVLOCK) == 0) {
1895 *flagp |= NFSMNT_RCVLOCK;
1896 break;
1897 }
1898 if (catch) {
1899 cv_timedwait_sig(&nmp->nm_rcvcv, &nmp->nm_lock,
1900 slptimeo);
1901 } else {
1902 cv_timedwait(&nmp->nm_rcvcv, &nmp->nm_lock,
1903 slptimeo);
1904 }
1905 if (catch) {
1906 catch = false;
1907 slptimeo = 2 * hz;
1908 }
1909 }
1910 mutex_exit(&nmp->nm_lock);
1911 return error;
1912 }
1913
1914 /*
1915 * Unlock the stream socket for others.
1916 */
1917 static void
1918 nfs_rcvunlock(struct nfsmount *nmp)
1919 {
1920
1921 mutex_enter(&nmp->nm_lock);
1922 if ((nmp->nm_iflag & NFSMNT_RCVLOCK) == 0)
1923 panic("nfs rcvunlock");
1924 nmp->nm_iflag &= ~NFSMNT_RCVLOCK;
1925 cv_broadcast(&nmp->nm_rcvcv);
1926 mutex_exit(&nmp->nm_lock);
1927 }
1928
1929 /*
1930 * Parse an RPC request
1931 * - verify it
1932 * - allocate and fill in the cred.
1933 */
1934 int
1935 nfs_getreq(nd, nfsd, has_header)
1936 struct nfsrv_descript *nd;
1937 struct nfsd *nfsd;
1938 int has_header;
1939 {
1940 int len, i;
1941 u_int32_t *tl;
1942 int32_t t1;
1943 struct uio uio;
1944 struct iovec iov;
1945 char *dpos, *cp2, *cp;
1946 u_int32_t nfsvers, auth_type;
1947 uid_t nickuid;
1948 int error = 0, ticklen;
1949 struct mbuf *mrep, *md;
1950 struct nfsuid *nuidp;
1951 struct timeval tvin, tvout;
1952
1953 memset(&tvout, 0, sizeof tvout); /* XXX gcc */
1954
1955 KASSERT(nd->nd_cr == NULL);
1956 mrep = nd->nd_mrep;
1957 md = nd->nd_md;
1958 dpos = nd->nd_dpos;
1959 if (has_header) {
1960 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1961 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1962 if (*tl++ != rpc_call) {
1963 m_freem(mrep);
1964 return (EBADRPC);
1965 }
1966 } else
1967 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1968 nd->nd_repstat = 0;
1969 nd->nd_flag = 0;
1970 if (*tl++ != rpc_vers) {
1971 nd->nd_repstat = ERPCMISMATCH;
1972 nd->nd_procnum = NFSPROC_NOOP;
1973 return (0);
1974 }
1975 if (*tl != nfs_prog) {
1976 nd->nd_repstat = EPROGUNAVAIL;
1977 nd->nd_procnum = NFSPROC_NOOP;
1978 return (0);
1979 }
1980 tl++;
1981 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1982 if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) {
1983 nd->nd_repstat = EPROGMISMATCH;
1984 nd->nd_procnum = NFSPROC_NOOP;
1985 return (0);
1986 }
1987 if (nfsvers == NFS_VER3)
1988 nd->nd_flag = ND_NFSV3;
1989 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1990 if (nd->nd_procnum == NFSPROC_NULL)
1991 return (0);
1992 if (nd->nd_procnum > NFSPROC_COMMIT ||
1993 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1994 nd->nd_repstat = EPROCUNAVAIL;
1995 nd->nd_procnum = NFSPROC_NOOP;
1996 return (0);
1997 }
1998 if ((nd->nd_flag & ND_NFSV3) == 0)
1999 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
2000 auth_type = *tl++;
2001 len = fxdr_unsigned(int, *tl++);
2002 if (len < 0 || len > RPCAUTH_MAXSIZ) {
2003 m_freem(mrep);
2004 return (EBADRPC);
2005 }
2006
2007 nd->nd_flag &= ~ND_KERBAUTH;
2008 /*
2009 * Handle auth_unix or auth_kerb.
2010 */
2011 if (auth_type == rpc_auth_unix) {
2012 uid_t uid;
2013 gid_t gid;
2014
2015 nd->nd_cr = kauth_cred_alloc();
2016 len = fxdr_unsigned(int, *++tl);
2017 if (len < 0 || len > NFS_MAXNAMLEN) {
2018 m_freem(mrep);
2019 error = EBADRPC;
2020 goto errout;
2021 }
2022 nfsm_adv(nfsm_rndup(len));
2023 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2024
2025 uid = fxdr_unsigned(uid_t, *tl++);
2026 gid = fxdr_unsigned(gid_t, *tl++);
2027 kauth_cred_setuid(nd->nd_cr, uid);
2028 kauth_cred_seteuid(nd->nd_cr, uid);
2029 kauth_cred_setsvuid(nd->nd_cr, uid);
2030 kauth_cred_setgid(nd->nd_cr, gid);
2031 kauth_cred_setegid(nd->nd_cr, gid);
2032 kauth_cred_setsvgid(nd->nd_cr, gid);
2033
2034 len = fxdr_unsigned(int, *tl);
2035 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
2036 m_freem(mrep);
2037 error = EBADRPC;
2038 goto errout;
2039 }
2040 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
2041
2042 if (len > 0) {
2043 size_t grbuf_size = min(len, NGROUPS) * sizeof(gid_t);
2044 gid_t *grbuf = kmem_alloc(grbuf_size, KM_SLEEP);
2045
2046 for (i = 0; i < len; i++) {
2047 if (i < NGROUPS) /* XXX elad */
2048 grbuf[i] = fxdr_unsigned(gid_t, *tl++);
2049 else
2050 tl++;
2051 }
2052 kauth_cred_setgroups(nd->nd_cr, grbuf,
2053 min(len, NGROUPS), -1, UIO_SYSSPACE);
2054 kmem_free(grbuf, grbuf_size);
2055 }
2056
2057 len = fxdr_unsigned(int, *++tl);
2058 if (len < 0 || len > RPCAUTH_MAXSIZ) {
2059 m_freem(mrep);
2060 error = EBADRPC;
2061 goto errout;
2062 }
2063 if (len > 0)
2064 nfsm_adv(nfsm_rndup(len));
2065 } else if (auth_type == rpc_auth_kerb) {
2066 switch (fxdr_unsigned(int, *tl++)) {
2067 case RPCAKN_FULLNAME:
2068 ticklen = fxdr_unsigned(int, *tl);
2069 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
2070 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
2071 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
2072 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
2073 m_freem(mrep);
2074 error = EBADRPC;
2075 goto errout;
2076 }
2077 uio.uio_offset = 0;
2078 uio.uio_iov = &iov;
2079 uio.uio_iovcnt = 1;
2080 UIO_SETUP_SYSSPACE(&uio);
2081 iov.iov_base = (void *)&nfsd->nfsd_authstr[4];
2082 iov.iov_len = RPCAUTH_MAXSIZ - 4;
2083 nfsm_mtouio(&uio, uio.uio_resid);
2084 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2085 if (*tl++ != rpc_auth_kerb ||
2086 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
2087 printf("Bad kerb verifier\n");
2088 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2089 nd->nd_procnum = NFSPROC_NOOP;
2090 return (0);
2091 }
2092 nfsm_dissect(cp, void *, 4 * NFSX_UNSIGNED);
2093 tl = (u_int32_t *)cp;
2094 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
2095 printf("Not fullname kerb verifier\n");
2096 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2097 nd->nd_procnum = NFSPROC_NOOP;
2098 return (0);
2099 }
2100 cp += NFSX_UNSIGNED;
2101 memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED);
2102 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
2103 nd->nd_flag |= ND_KERBFULL;
2104 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
2105 break;
2106 case RPCAKN_NICKNAME:
2107 if (len != 2 * NFSX_UNSIGNED) {
2108 printf("Kerb nickname short\n");
2109 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
2110 nd->nd_procnum = NFSPROC_NOOP;
2111 return (0);
2112 }
2113 nickuid = fxdr_unsigned(uid_t, *tl);
2114 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2115 if (*tl++ != rpc_auth_kerb ||
2116 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
2117 printf("Kerb nick verifier bad\n");
2118 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2119 nd->nd_procnum = NFSPROC_NOOP;
2120 return (0);
2121 }
2122 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2123 tvin.tv_sec = *tl++;
2124 tvin.tv_usec = *tl;
2125
2126 LIST_FOREACH(nuidp, NUIDHASH(nfsd->nfsd_slp, nickuid),
2127 nu_hash) {
2128 if (kauth_cred_geteuid(nuidp->nu_cr) == nickuid &&
2129 (!nd->nd_nam2 ||
2130 netaddr_match(NU_NETFAM(nuidp),
2131 &nuidp->nu_haddr, nd->nd_nam2)))
2132 break;
2133 }
2134 if (!nuidp) {
2135 nd->nd_repstat =
2136 (NFSERR_AUTHERR|AUTH_REJECTCRED);
2137 nd->nd_procnum = NFSPROC_NOOP;
2138 return (0);
2139 }
2140
2141 /*
2142 * Now, decrypt the timestamp using the session key
2143 * and validate it.
2144 */
2145 #ifdef NFSKERB
2146 XXX
2147 #endif
2148
2149 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
2150 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
2151 if (nuidp->nu_expire < time_second ||
2152 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
2153 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
2154 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
2155 nuidp->nu_expire = 0;
2156 nd->nd_repstat =
2157 (NFSERR_AUTHERR|AUTH_REJECTVERF);
2158 nd->nd_procnum = NFSPROC_NOOP;
2159 return (0);
2160 }
2161 kauth_cred_hold(nuidp->nu_cr);
2162 nd->nd_cr = nuidp->nu_cr;
2163 nd->nd_flag |= ND_KERBNICK;
2164 }
2165 } else {
2166 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
2167 nd->nd_procnum = NFSPROC_NOOP;
2168 return (0);
2169 }
2170
2171 nd->nd_md = md;
2172 nd->nd_dpos = dpos;
2173 KASSERT((nd->nd_cr == NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) != 0)
2174 || (nd->nd_cr != NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) == 0));
2175 return (0);
2176 nfsmout:
2177 errout:
2178 KASSERT(error != 0);
2179 if (nd->nd_cr != NULL) {
2180 kauth_cred_free(nd->nd_cr);
2181 nd->nd_cr = NULL;
2182 }
2183 return (error);
2184 }
2185
2186 int
2187 nfs_msg(l, server, msg)
2188 struct lwp *l;
2189 const char *server, *msg;
2190 {
2191 tpr_t tpr;
2192
2193 if (l)
2194 tpr = tprintf_open(l->l_proc);
2195 else
2196 tpr = NULL;
2197 tprintf(tpr, "nfs server %s: %s\n", server, msg);
2198 tprintf_close(tpr);
2199 return (0);
2200 }
2201
2202 #ifdef NFSSERVER
2203 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
2204 struct nfssvc_sock *, struct lwp *,
2205 struct mbuf **)) = {
2206 nfsrv_null,
2207 nfsrv_getattr,
2208 nfsrv_setattr,
2209 nfsrv_lookup,
2210 nfsrv3_access,
2211 nfsrv_readlink,
2212 nfsrv_read,
2213 nfsrv_write,
2214 nfsrv_create,
2215 nfsrv_mkdir,
2216 nfsrv_symlink,
2217 nfsrv_mknod,
2218 nfsrv_remove,
2219 nfsrv_rmdir,
2220 nfsrv_rename,
2221 nfsrv_link,
2222 nfsrv_readdir,
2223 nfsrv_readdirplus,
2224 nfsrv_statfs,
2225 nfsrv_fsinfo,
2226 nfsrv_pathconf,
2227 nfsrv_commit,
2228 nfsrv_noop
2229 };
2230
2231 /*
2232 * Socket upcall routine for the nfsd sockets.
2233 * The void *arg is a pointer to the "struct nfssvc_sock".
2234 */
2235 void
2236 nfsrv_soupcall(struct socket *so, void *arg, int waitflag)
2237 {
2238 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2239
2240 nfsdsock_setbits(slp, SLP_A_NEEDQ);
2241 nfsrv_wakenfsd(slp);
2242 }
2243
2244 void
2245 nfsrv_rcv(struct nfssvc_sock *slp)
2246 {
2247 struct socket *so;
2248 struct mbuf *m;
2249 struct mbuf *mp, *nam;
2250 struct uio auio;
2251 int flags;
2252 int error;
2253 int setflags = 0;
2254
2255 error = nfsdsock_lock(slp, true);
2256 if (error) {
2257 setflags |= SLP_A_NEEDQ;
2258 goto dorecs_unlocked;
2259 }
2260
2261 nfsdsock_clearbits(slp, SLP_A_NEEDQ);
2262
2263 so = slp->ns_so;
2264 if (so->so_type == SOCK_STREAM) {
2265 /*
2266 * Do soreceive().
2267 */
2268 auio.uio_resid = 1000000000;
2269 /* not need to setup uio_vmspace */
2270 flags = MSG_DONTWAIT;
2271 KERNEL_LOCK(1, curlwp);
2272 error = (*so->so_receive)(so, &nam, &auio, &mp, NULL, &flags);
2273 KERNEL_UNLOCK_ONE(curlwp);
2274 if (error || mp == NULL) {
2275 if (error == EWOULDBLOCK)
2276 setflags |= SLP_A_NEEDQ;
2277 else
2278 setflags |= SLP_A_DISCONN;
2279 goto dorecs;
2280 }
2281 m = mp;
2282 m_claimm(m, &nfs_mowner);
2283 if (slp->ns_rawend) {
2284 slp->ns_rawend->m_next = m;
2285 slp->ns_cc += 1000000000 - auio.uio_resid;
2286 } else {
2287 slp->ns_raw = m;
2288 slp->ns_cc = 1000000000 - auio.uio_resid;
2289 }
2290 while (m->m_next)
2291 m = m->m_next;
2292 slp->ns_rawend = m;
2293
2294 /*
2295 * Now try and parse record(s) out of the raw stream data.
2296 */
2297 error = nfsrv_getstream(slp, M_WAIT);
2298 if (error) {
2299 if (error == EPERM)
2300 setflags |= SLP_A_DISCONN;
2301 else
2302 setflags |= SLP_A_NEEDQ;
2303 }
2304 } else {
2305 do {
2306 auio.uio_resid = 1000000000;
2307 /* not need to setup uio_vmspace */
2308 flags = MSG_DONTWAIT;
2309 KERNEL_LOCK(1, curlwp);
2310 error = (*so->so_receive)(so, &nam, &auio, &mp, NULL,
2311 &flags);
2312 KERNEL_UNLOCK_ONE(curlwp);
2313 if (mp) {
2314 if (nam) {
2315 m = nam;
2316 m->m_next = mp;
2317 } else
2318 m = mp;
2319 m_claimm(m, &nfs_mowner);
2320 if (slp->ns_recend)
2321 slp->ns_recend->m_nextpkt = m;
2322 else
2323 slp->ns_rec = m;
2324 slp->ns_recend = m;
2325 m->m_nextpkt = (struct mbuf *)0;
2326 }
2327 if (error) {
2328 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2329 && error != EWOULDBLOCK) {
2330 setflags |= SLP_A_DISCONN;
2331 goto dorecs;
2332 }
2333 }
2334 } while (mp);
2335 }
2336 dorecs:
2337 nfsdsock_unlock(slp);
2338
2339 dorecs_unlocked:
2340 if (setflags) {
2341 nfsdsock_setbits(slp, setflags);
2342 }
2343 }
2344
2345 int
2346 nfsdsock_lock(struct nfssvc_sock *slp, bool waitok)
2347 {
2348
2349 mutex_enter(&slp->ns_lock);
2350 while ((~slp->ns_flags & (SLP_BUSY|SLP_VALID)) == 0) {
2351 if (!waitok) {
2352 mutex_exit(&slp->ns_lock);
2353 return EWOULDBLOCK;
2354 }
2355 cv_wait(&slp->ns_cv, &slp->ns_lock);
2356 }
2357 if ((slp->ns_flags & SLP_VALID) == 0) {
2358 mutex_exit(&slp->ns_lock);
2359 return EINVAL;
2360 }
2361 KASSERT((slp->ns_flags & SLP_BUSY) == 0);
2362 slp->ns_flags |= SLP_BUSY;
2363 mutex_exit(&slp->ns_lock);
2364
2365 return 0;
2366 }
2367
2368 void
2369 nfsdsock_unlock(struct nfssvc_sock *slp)
2370 {
2371
2372 mutex_enter(&slp->ns_lock);
2373 KASSERT((slp->ns_flags & SLP_BUSY) != 0);
2374 cv_broadcast(&slp->ns_cv);
2375 slp->ns_flags &= ~SLP_BUSY;
2376 mutex_exit(&slp->ns_lock);
2377 }
2378
2379 int
2380 nfsdsock_drain(struct nfssvc_sock *slp)
2381 {
2382 int error = 0;
2383
2384 mutex_enter(&slp->ns_lock);
2385 if ((slp->ns_flags & SLP_VALID) == 0) {
2386 error = EINVAL;
2387 goto done;
2388 }
2389 slp->ns_flags &= ~SLP_VALID;
2390 while ((slp->ns_flags & SLP_BUSY) != 0) {
2391 cv_wait(&slp->ns_cv, &slp->ns_lock);
2392 }
2393 done:
2394 mutex_exit(&slp->ns_lock);
2395
2396 return error;
2397 }
2398
2399 /*
2400 * Try and extract an RPC request from the mbuf data list received on a
2401 * stream socket. The "waitflag" argument indicates whether or not it
2402 * can sleep.
2403 */
2404 int
2405 nfsrv_getstream(slp, waitflag)
2406 struct nfssvc_sock *slp;
2407 int waitflag;
2408 {
2409 struct mbuf *m, **mpp;
2410 struct mbuf *recm;
2411 u_int32_t recmark;
2412 int error = 0;
2413
2414 KASSERT((slp->ns_flags & SLP_BUSY) != 0);
2415 for (;;) {
2416 if (slp->ns_reclen == 0) {
2417 if (slp->ns_cc < NFSX_UNSIGNED) {
2418 break;
2419 }
2420 m = slp->ns_raw;
2421 m_copydata(m, 0, NFSX_UNSIGNED, (void *)&recmark);
2422 m_adj(m, NFSX_UNSIGNED);
2423 slp->ns_cc -= NFSX_UNSIGNED;
2424 recmark = ntohl(recmark);
2425 slp->ns_reclen = recmark & ~0x80000000;
2426 if (recmark & 0x80000000)
2427 slp->ns_sflags |= SLP_S_LASTFRAG;
2428 else
2429 slp->ns_sflags &= ~SLP_S_LASTFRAG;
2430 if (slp->ns_reclen > NFS_MAXPACKET) {
2431 error = EPERM;
2432 break;
2433 }
2434 }
2435
2436 /*
2437 * Now get the record part.
2438 *
2439 * Note that slp->ns_reclen may be 0. Linux sometimes
2440 * generates 0-length records.
2441 */
2442 if (slp->ns_cc == slp->ns_reclen) {
2443 recm = slp->ns_raw;
2444 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
2445 slp->ns_cc = slp->ns_reclen = 0;
2446 } else if (slp->ns_cc > slp->ns_reclen) {
2447 recm = slp->ns_raw;
2448 m = m_split(recm, slp->ns_reclen, waitflag);
2449 if (m == NULL) {
2450 error = EWOULDBLOCK;
2451 break;
2452 }
2453 m_claimm(recm, &nfs_mowner);
2454 slp->ns_raw = m;
2455 if (m->m_next == NULL)
2456 slp->ns_rawend = m;
2457 slp->ns_cc -= slp->ns_reclen;
2458 slp->ns_reclen = 0;
2459 } else {
2460 break;
2461 }
2462
2463 /*
2464 * Accumulate the fragments into a record.
2465 */
2466 mpp = &slp->ns_frag;
2467 while (*mpp)
2468 mpp = &((*mpp)->m_next);
2469 *mpp = recm;
2470 if (slp->ns_sflags & SLP_S_LASTFRAG) {
2471 if (slp->ns_recend)
2472 slp->ns_recend->m_nextpkt = slp->ns_frag;
2473 else
2474 slp->ns_rec = slp->ns_frag;
2475 slp->ns_recend = slp->ns_frag;
2476 slp->ns_frag = NULL;
2477 }
2478 }
2479
2480 return error;
2481 }
2482
2483 /*
2484 * Parse an RPC header.
2485 */
2486 int
2487 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
2488 struct nfsrv_descript **ndp, bool *more)
2489 {
2490 struct mbuf *m, *nam;
2491 struct nfsrv_descript *nd;
2492 int error;
2493
2494 *ndp = NULL;
2495 *more = false;
2496
2497 if (nfsdsock_lock(slp, true)) {
2498 return ENOBUFS;
2499 }
2500 m = slp->ns_rec;
2501 if (m == NULL) {
2502 nfsdsock_unlock(slp);
2503 return ENOBUFS;
2504 }
2505 slp->ns_rec = m->m_nextpkt;
2506 if (slp->ns_rec) {
2507 m->m_nextpkt = NULL;
2508 *more = true;
2509 } else {
2510 slp->ns_recend = NULL;
2511 }
2512 nfsdsock_unlock(slp);
2513
2514 if (m->m_type == MT_SONAME) {
2515 nam = m;
2516 m = m->m_next;
2517 nam->m_next = NULL;
2518 } else
2519 nam = NULL;
2520 nd = nfsdreq_alloc();
2521 nd->nd_md = nd->nd_mrep = m;
2522 nd->nd_nam2 = nam;
2523 nd->nd_dpos = mtod(m, void *);
2524 error = nfs_getreq(nd, nfsd, true);
2525 if (error) {
2526 m_freem(nam);
2527 nfsdreq_free(nd);
2528 return (error);
2529 }
2530 *ndp = nd;
2531 nfsd->nfsd_nd = nd;
2532 return (0);
2533 }
2534
2535 /*
2536 * Search for a sleeping nfsd and wake it up.
2537 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2538 * running nfsds will go look for the work in the nfssvc_sock list.
2539 */
2540 static void
2541 nfsrv_wakenfsd_locked(struct nfssvc_sock *slp)
2542 {
2543 struct nfsd *nd;
2544
2545 KASSERT(mutex_owned(&nfsd_lock));
2546
2547 if ((slp->ns_flags & SLP_VALID) == 0)
2548 return;
2549 if (slp->ns_gflags & SLP_G_DOREC)
2550 return;
2551 nd = SLIST_FIRST(&nfsd_idle_head);
2552 if (nd) {
2553 SLIST_REMOVE_HEAD(&nfsd_idle_head, nfsd_idle);
2554 if (nd->nfsd_slp)
2555 panic("nfsd wakeup");
2556 slp->ns_sref++;
2557 KASSERT(slp->ns_sref > 0);
2558 nd->nfsd_slp = slp;
2559 cv_signal(&nd->nfsd_cv);
2560 } else {
2561 slp->ns_gflags |= SLP_G_DOREC;
2562 nfsd_head_flag |= NFSD_CHECKSLP;
2563 TAILQ_INSERT_TAIL(&nfssvc_sockpending, slp, ns_pending);
2564 }
2565 }
2566
2567 void
2568 nfsrv_wakenfsd(struct nfssvc_sock *slp)
2569 {
2570
2571 mutex_enter(&nfsd_lock);
2572 nfsrv_wakenfsd_locked(slp);
2573 mutex_exit(&nfsd_lock);
2574 }
2575
2576 int
2577 nfsdsock_sendreply(struct nfssvc_sock *slp, struct nfsrv_descript *nd)
2578 {
2579 int error;
2580
2581 if (nd->nd_mrep != NULL) {
2582 m_freem(nd->nd_mrep);
2583 nd->nd_mrep = NULL;
2584 }
2585
2586 mutex_enter(&slp->ns_lock);
2587 if ((slp->ns_flags & SLP_SENDING) != 0) {
2588 SIMPLEQ_INSERT_TAIL(&slp->ns_sendq, nd, nd_sendq);
2589 mutex_exit(&slp->ns_lock);
2590 return 0;
2591 }
2592 KASSERT(SIMPLEQ_EMPTY(&slp->ns_sendq));
2593 slp->ns_flags |= SLP_SENDING;
2594 mutex_exit(&slp->ns_lock);
2595
2596 again:
2597 error = nfs_send(slp->ns_so, nd->nd_nam2, nd->nd_mreq, NULL, curlwp);
2598 if (nd->nd_nam2) {
2599 m_free(nd->nd_nam2);
2600 }
2601 nfsdreq_free(nd);
2602
2603 mutex_enter(&slp->ns_lock);
2604 KASSERT((slp->ns_flags & SLP_SENDING) != 0);
2605 nd = SIMPLEQ_FIRST(&slp->ns_sendq);
2606 if (nd != NULL) {
2607 SIMPLEQ_REMOVE_HEAD(&slp->ns_sendq, nd_sendq);
2608 mutex_exit(&slp->ns_lock);
2609 goto again;
2610 }
2611 slp->ns_flags &= ~SLP_SENDING;
2612 mutex_exit(&slp->ns_lock);
2613
2614 return error;
2615 }
2616
2617 void
2618 nfsdsock_setbits(struct nfssvc_sock *slp, int bits)
2619 {
2620
2621 mutex_enter(&slp->ns_alock);
2622 slp->ns_aflags |= bits;
2623 mutex_exit(&slp->ns_alock);
2624 }
2625
2626 void
2627 nfsdsock_clearbits(struct nfssvc_sock *slp, int bits)
2628 {
2629
2630 mutex_enter(&slp->ns_alock);
2631 slp->ns_aflags &= ~bits;
2632 mutex_exit(&slp->ns_alock);
2633 }
2634
2635 bool
2636 nfsdsock_testbits(struct nfssvc_sock *slp, int bits)
2637 {
2638
2639 return (slp->ns_aflags & bits);
2640 }
2641 #endif /* NFSSERVER */
2642
2643 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
2644 static struct pool nfs_srvdesc_pool;
2645
2646 void
2647 nfsdreq_init(void)
2648 {
2649
2650 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
2651 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr, IPL_NONE);
2652 }
2653
2654 struct nfsrv_descript *
2655 nfsdreq_alloc(void)
2656 {
2657 struct nfsrv_descript *nd;
2658
2659 nd = pool_get(&nfs_srvdesc_pool, PR_WAITOK);
2660 nd->nd_cr = NULL;
2661 return nd;
2662 }
2663
2664 void
2665 nfsdreq_free(struct nfsrv_descript *nd)
2666 {
2667 kauth_cred_t cr;
2668
2669 cr = nd->nd_cr;
2670 if (cr != NULL) {
2671 kauth_cred_free(cr);
2672 }
2673 pool_put(&nfs_srvdesc_pool, nd);
2674 }
2675 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
2676