nfs_socket.c revision 1.151 1 /* $NetBSD: nfs_socket.c,v 1.151 2007/04/29 14:56:59 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1991, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
35 */
36
37 /*
38 * Socket operations for use by nfs
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.151 2007/04/29 14:56:59 yamt Exp $");
43
44 #include "fs_nfs.h"
45 #include "opt_nfs.h"
46 #include "opt_nfsserver.h"
47 #include "opt_mbuftrace.h"
48 #include "opt_inet.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/callout.h>
53 #include <sys/proc.h>
54 #include <sys/mount.h>
55 #include <sys/kernel.h>
56 #include <sys/mbuf.h>
57 #include <sys/vnode.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/socket.h>
61 #include <sys/socketvar.h>
62 #include <sys/syslog.h>
63 #include <sys/tprintf.h>
64 #include <sys/namei.h>
65 #include <sys/signal.h>
66 #include <sys/signalvar.h>
67 #include <sys/kauth.h>
68
69 #include <netinet/in.h>
70 #include <netinet/tcp.h>
71
72 #include <nfs/rpcv2.h>
73 #include <nfs/nfsproto.h>
74 #include <nfs/nfs.h>
75 #include <nfs/xdr_subs.h>
76 #include <nfs/nfsm_subs.h>
77 #include <nfs/nfsmount.h>
78 #include <nfs/nfsnode.h>
79 #include <nfs/nfsrtt.h>
80 #include <nfs/nfs_var.h>
81
82 MALLOC_DEFINE(M_NFSREQ, "NFS req", "NFS request header");
83 #ifdef MBUFTRACE
84 struct mowner nfs_mowner = MOWNER_INIT("nfs","");
85 #endif
86
87 /*
88 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
89 * Use the mean and mean deviation of rtt for the appropriate type of rpc
90 * for the frequent rpcs and a default for the others.
91 * The justification for doing "other" this way is that these rpcs
92 * happen so infrequently that timer est. would probably be stale.
93 * Also, since many of these rpcs are
94 * non-idempotent, a conservative timeout is desired.
95 * getattr, lookup - A+2D
96 * read, write - A+4D
97 * other - nm_timeo
98 */
99 #define NFS_RTO(n, t) \
100 ((t) == 0 ? (n)->nm_timeo : \
101 ((t) < 3 ? \
102 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
103 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
104 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
105 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
106 /*
107 * External data, mostly RPC constants in XDR form
108 */
109 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
110 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
111 rpc_auth_kerb;
112 extern u_int32_t nfs_prog;
113 extern const int nfsv3_procid[NFS_NPROCS];
114 extern int nfs_ticks;
115
116 /*
117 * Defines which timer to use for the procnum.
118 * 0 - default
119 * 1 - getattr
120 * 2 - lookup
121 * 3 - read
122 * 4 - write
123 */
124 static const int proct[NFS_NPROCS] = {
125 [NFSPROC_NULL] = 0,
126 [NFSPROC_GETATTR] = 1,
127 [NFSPROC_SETATTR] = 0,
128 [NFSPROC_LOOKUP] = 2,
129 [NFSPROC_ACCESS] = 1,
130 [NFSPROC_READLINK] = 3,
131 [NFSPROC_READ] = 3,
132 [NFSPROC_WRITE] = 4,
133 [NFSPROC_CREATE] = 0,
134 [NFSPROC_MKDIR] = 0,
135 [NFSPROC_SYMLINK] = 0,
136 [NFSPROC_MKNOD] = 0,
137 [NFSPROC_REMOVE] = 0,
138 [NFSPROC_RMDIR] = 0,
139 [NFSPROC_RENAME] = 0,
140 [NFSPROC_LINK] = 0,
141 [NFSPROC_READDIR] = 3,
142 [NFSPROC_READDIRPLUS] = 3,
143 [NFSPROC_FSSTAT] = 0,
144 [NFSPROC_FSINFO] = 0,
145 [NFSPROC_PATHCONF] = 0,
146 [NFSPROC_COMMIT] = 0,
147 [NFSPROC_NOOP] = 0,
148 };
149
150 /*
151 * There is a congestion window for outstanding rpcs maintained per mount
152 * point. The cwnd size is adjusted in roughly the way that:
153 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
154 * SIGCOMM '88". ACM, August 1988.
155 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
156 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
157 * of rpcs is in progress.
158 * (The sent count and cwnd are scaled for integer arith.)
159 * Variants of "slow start" were tried and were found to be too much of a
160 * performance hit (ave. rtt 3 times larger),
161 * I suspect due to the large rtt that nfs rpcs have.
162 */
163 #define NFS_CWNDSCALE 256
164 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
165 static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
166 int nfsrtton = 0;
167 struct nfsrtt nfsrtt;
168 struct nfsreqhead nfs_reqq;
169
170 struct callout nfs_timer_ch = CALLOUT_INITIALIZER_SETFUNC(nfs_timer, NULL);
171
172 static int nfs_sndlock(struct nfsmount *, struct nfsreq *);
173 static void nfs_sndunlock(struct nfsmount *);
174 static int nfs_rcvlock(struct nfsmount *, struct nfsreq *);
175 static void nfs_rcvunlock(struct nfsmount *);
176
177 /*
178 * Initialize sockets and congestion for a new NFS connection.
179 * We do not free the sockaddr if error.
180 */
181 int
182 nfs_connect(nmp, rep, l)
183 struct nfsmount *nmp;
184 struct nfsreq *rep;
185 struct lwp *l;
186 {
187 struct socket *so;
188 int s, error, rcvreserve, sndreserve;
189 struct sockaddr *saddr;
190 struct sockaddr_in *sin;
191 #ifdef INET6
192 struct sockaddr_in6 *sin6;
193 #endif
194 struct mbuf *m;
195
196 nmp->nm_so = (struct socket *)0;
197 saddr = mtod(nmp->nm_nam, struct sockaddr *);
198 error = socreate(saddr->sa_family, &nmp->nm_so,
199 nmp->nm_sotype, nmp->nm_soproto, l);
200 if (error)
201 goto bad;
202 so = nmp->nm_so;
203 #ifdef MBUFTRACE
204 so->so_mowner = &nfs_mowner;
205 so->so_rcv.sb_mowner = &nfs_mowner;
206 so->so_snd.sb_mowner = &nfs_mowner;
207 #endif
208 nmp->nm_soflags = so->so_proto->pr_flags;
209
210 /*
211 * Some servers require that the client port be a reserved port number.
212 */
213 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
214 m = m_get(M_WAIT, MT_SOOPTS);
215 MCLAIM(m, so->so_mowner);
216 *mtod(m, int32_t *) = IP_PORTRANGE_LOW;
217 m->m_len = sizeof(int32_t);
218 if ((error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, m)))
219 goto bad;
220 m = m_get(M_WAIT, MT_SONAME);
221 MCLAIM(m, so->so_mowner);
222 sin = mtod(m, struct sockaddr_in *);
223 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
224 sin->sin_family = AF_INET;
225 sin->sin_addr.s_addr = INADDR_ANY;
226 sin->sin_port = 0;
227 error = sobind(so, m, &lwp0);
228 m_freem(m);
229 if (error)
230 goto bad;
231 }
232 #ifdef INET6
233 if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) {
234 m = m_get(M_WAIT, MT_SOOPTS);
235 MCLAIM(m, so->so_mowner);
236 *mtod(m, int32_t *) = IPV6_PORTRANGE_LOW;
237 m->m_len = sizeof(int32_t);
238 if ((error = sosetopt(so, IPPROTO_IPV6, IPV6_PORTRANGE, m)))
239 goto bad;
240 m = m_get(M_WAIT, MT_SONAME);
241 MCLAIM(m, so->so_mowner);
242 sin6 = mtod(m, struct sockaddr_in6 *);
243 sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6);
244 sin6->sin6_family = AF_INET6;
245 sin6->sin6_addr = in6addr_any;
246 sin6->sin6_port = 0;
247 error = sobind(so, m, &lwp0);
248 m_freem(m);
249 if (error)
250 goto bad;
251 }
252 #endif
253
254 /*
255 * Protocols that do not require connections may be optionally left
256 * unconnected for servers that reply from a port other than NFS_PORT.
257 */
258 if (nmp->nm_flag & NFSMNT_NOCONN) {
259 if (nmp->nm_soflags & PR_CONNREQUIRED) {
260 error = ENOTCONN;
261 goto bad;
262 }
263 } else {
264 error = soconnect(so, nmp->nm_nam, l);
265 if (error)
266 goto bad;
267
268 /*
269 * Wait for the connection to complete. Cribbed from the
270 * connect system call but with the wait timing out so
271 * that interruptible mounts don't hang here for a long time.
272 */
273 s = splsoftnet();
274 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
275 (void) tsleep((void *)&so->so_timeo, PSOCK,
276 "nfscn1", 2 * hz);
277 if ((so->so_state & SS_ISCONNECTING) &&
278 so->so_error == 0 && rep &&
279 (error = nfs_sigintr(nmp, rep, rep->r_lwp)) != 0){
280 so->so_state &= ~SS_ISCONNECTING;
281 splx(s);
282 goto bad;
283 }
284 }
285 if (so->so_error) {
286 error = so->so_error;
287 so->so_error = 0;
288 splx(s);
289 goto bad;
290 }
291 splx(s);
292 }
293 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
294 so->so_rcv.sb_timeo = (5 * hz);
295 so->so_snd.sb_timeo = (5 * hz);
296 } else {
297 /*
298 * enable receive timeout to detect server crash and reconnect.
299 * otherwise, we can be stuck in soreceive forever.
300 */
301 so->so_rcv.sb_timeo = (5 * hz);
302 so->so_snd.sb_timeo = 0;
303 }
304 if (nmp->nm_sotype == SOCK_DGRAM) {
305 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
306 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
307 NFS_MAXPKTHDR) * 2;
308 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
309 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
310 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
311 NFS_MAXPKTHDR) * 2;
312 } else {
313 if (nmp->nm_sotype != SOCK_STREAM)
314 panic("nfscon sotype");
315 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
316 m = m_get(M_WAIT, MT_SOOPTS);
317 MCLAIM(m, so->so_mowner);
318 *mtod(m, int32_t *) = 1;
319 m->m_len = sizeof(int32_t);
320 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
321 }
322 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
323 m = m_get(M_WAIT, MT_SOOPTS);
324 MCLAIM(m, so->so_mowner);
325 *mtod(m, int32_t *) = 1;
326 m->m_len = sizeof(int32_t);
327 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
328 }
329 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
330 sizeof (u_int32_t)) * 2;
331 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
332 sizeof (u_int32_t)) * 2;
333 }
334 error = soreserve(so, sndreserve, rcvreserve);
335 if (error)
336 goto bad;
337 so->so_rcv.sb_flags |= SB_NOINTR;
338 so->so_snd.sb_flags |= SB_NOINTR;
339
340 /* Initialize other non-zero congestion variables */
341 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
342 NFS_TIMEO << 3;
343 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
344 nmp->nm_sdrtt[3] = 0;
345 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
346 nmp->nm_sent = 0;
347 nmp->nm_timeouts = 0;
348 return (0);
349
350 bad:
351 nfs_disconnect(nmp);
352 return (error);
353 }
354
355 /*
356 * Reconnect routine:
357 * Called when a connection is broken on a reliable protocol.
358 * - clean up the old socket
359 * - nfs_connect() again
360 * - set R_MUSTRESEND for all outstanding requests on mount point
361 * If this fails the mount point is DEAD!
362 * nb: Must be called with the nfs_sndlock() set on the mount point.
363 */
364 int
365 nfs_reconnect(rep, l)
366 struct nfsreq *rep;
367 struct lwp *l;
368 {
369 struct nfsreq *rp;
370 struct nfsmount *nmp = rep->r_nmp;
371 int error;
372
373 nfs_disconnect(nmp);
374 while ((error = nfs_connect(nmp, rep, l)) != 0) {
375 if (error == EINTR || error == ERESTART)
376 return (EINTR);
377 (void) tsleep((void *)&lbolt, PSOCK, "nfscn2", 0);
378 }
379
380 /*
381 * Loop through outstanding request list and fix up all requests
382 * on old socket.
383 */
384 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) {
385 if (rp->r_nmp == nmp) {
386 if ((rp->r_flags & R_MUSTRESEND) == 0)
387 rp->r_flags |= R_MUSTRESEND | R_REXMITTED;
388 rp->r_rexmit = 0;
389 }
390 }
391 return (0);
392 }
393
394 /*
395 * NFS disconnect. Clean up and unlink.
396 */
397 void
398 nfs_disconnect(nmp)
399 struct nfsmount *nmp;
400 {
401 struct socket *so;
402 int drain = 0;
403
404 if (nmp->nm_so) {
405 so = nmp->nm_so;
406 nmp->nm_so = (struct socket *)0;
407 soshutdown(so, SHUT_RDWR);
408 drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0;
409 if (drain) {
410 /*
411 * soshutdown() above should wake up the current
412 * listener.
413 * Now wake up those waiting for the receive lock, and
414 * wait for them to go away unhappy, to prevent *nmp
415 * from evaporating while they're sleeping.
416 */
417 mutex_enter(&nmp->nm_lock);
418 while (nmp->nm_waiters > 0) {
419 cv_broadcast(&nmp->nm_rcvcv);
420 cv_broadcast(&nmp->nm_sndcv);
421 cv_wait(&nmp->nm_disconcv, &nmp->nm_lock);
422 }
423 mutex_exit(&nmp->nm_lock);
424 }
425 soclose(so);
426 }
427 #ifdef DIAGNOSTIC
428 if (drain && (nmp->nm_waiters > 0))
429 panic("nfs_disconnect: waiters left after drain?");
430 #endif
431 }
432
433 void
434 nfs_safedisconnect(nmp)
435 struct nfsmount *nmp;
436 {
437 struct nfsreq dummyreq;
438
439 memset(&dummyreq, 0, sizeof(dummyreq));
440 dummyreq.r_nmp = nmp;
441 nfs_rcvlock(nmp, &dummyreq); /* XXX ignored error return */
442 nfs_disconnect(nmp);
443 nfs_rcvunlock(nmp);
444 }
445
446 /*
447 * This is the nfs send routine. For connection based socket types, it
448 * must be called with an nfs_sndlock() on the socket.
449 * "rep == NULL" indicates that it has been called from a server.
450 * For the client side:
451 * - return EINTR if the RPC is terminated, 0 otherwise
452 * - set R_MUSTRESEND if the send fails for any reason
453 * - do any cleanup required by recoverable socket errors (? ? ?)
454 * For the server side:
455 * - return EINTR or ERESTART if interrupted by a signal
456 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
457 * - do any cleanup required by recoverable socket errors (? ? ?)
458 */
459 int
460 nfs_send(so, nam, top, rep, l)
461 struct socket *so;
462 struct mbuf *nam;
463 struct mbuf *top;
464 struct nfsreq *rep;
465 struct lwp *l;
466 {
467 struct mbuf *sendnam;
468 int error, soflags, flags;
469
470 /* XXX nfs_doio()/nfs_request() calls with rep->r_lwp == NULL */
471 if (l == NULL && rep->r_lwp == NULL)
472 l = curlwp;
473
474 if (rep) {
475 if (rep->r_flags & R_SOFTTERM) {
476 m_freem(top);
477 return (EINTR);
478 }
479 if ((so = rep->r_nmp->nm_so) == NULL) {
480 rep->r_flags |= R_MUSTRESEND;
481 m_freem(top);
482 return (0);
483 }
484 rep->r_flags &= ~R_MUSTRESEND;
485 soflags = rep->r_nmp->nm_soflags;
486 } else
487 soflags = so->so_proto->pr_flags;
488 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
489 sendnam = (struct mbuf *)0;
490 else
491 sendnam = nam;
492 if (so->so_type == SOCK_SEQPACKET)
493 flags = MSG_EOR;
494 else
495 flags = 0;
496
497 error = (*so->so_send)(so, sendnam, (struct uio *)0, top,
498 (struct mbuf *)0, flags, l);
499 if (error) {
500 if (rep) {
501 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
502 /*
503 * We're too fast for the network/driver,
504 * and UDP isn't flowcontrolled.
505 * We need to resend. This is not fatal,
506 * just try again.
507 *
508 * Could be smarter here by doing some sort
509 * of a backoff, but this is rare.
510 */
511 rep->r_flags |= R_MUSTRESEND;
512 } else {
513 if (error != EPIPE)
514 log(LOG_INFO,
515 "nfs send error %d for %s\n",
516 error,
517 rep->r_nmp->nm_mountp->
518 mnt_stat.f_mntfromname);
519 /*
520 * Deal with errors for the client side.
521 */
522 if (rep->r_flags & R_SOFTTERM)
523 error = EINTR;
524 else
525 rep->r_flags |= R_MUSTRESEND;
526 }
527 } else {
528 /*
529 * See above. This error can happen under normal
530 * circumstances and the log is too noisy.
531 * The error will still show up in nfsstat.
532 */
533 if (error != ENOBUFS || so->so_type != SOCK_DGRAM)
534 log(LOG_INFO, "nfsd send error %d\n", error);
535 }
536
537 /*
538 * Handle any recoverable (soft) socket errors here. (? ? ?)
539 */
540 if (error != EINTR && error != ERESTART &&
541 error != EWOULDBLOCK && error != EPIPE)
542 error = 0;
543 }
544 return (error);
545 }
546
547 #ifdef NFS
548 /*
549 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
550 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
551 * Mark and consolidate the data into a new mbuf list.
552 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
553 * small mbufs.
554 * For SOCK_STREAM we must be very careful to read an entire record once
555 * we have read any of it, even if the system call has been interrupted.
556 */
557 int
558 nfs_receive(rep, aname, mp, l)
559 struct nfsreq *rep;
560 struct mbuf **aname;
561 struct mbuf **mp;
562 struct lwp *l;
563 {
564 struct socket *so;
565 struct uio auio;
566 struct iovec aio;
567 struct mbuf *m;
568 struct mbuf *control;
569 u_int32_t len;
570 struct mbuf **getnam;
571 int error, sotype, rcvflg;
572
573 /*
574 * Set up arguments for soreceive()
575 */
576 *mp = (struct mbuf *)0;
577 *aname = (struct mbuf *)0;
578 sotype = rep->r_nmp->nm_sotype;
579
580 /*
581 * For reliable protocols, lock against other senders/receivers
582 * in case a reconnect is necessary.
583 * For SOCK_STREAM, first get the Record Mark to find out how much
584 * more there is to get.
585 * We must lock the socket against other receivers
586 * until we have an entire rpc request/reply.
587 */
588 if (sotype != SOCK_DGRAM) {
589 error = nfs_sndlock(rep->r_nmp, rep);
590 if (error)
591 return (error);
592 tryagain:
593 /*
594 * Check for fatal errors and resending request.
595 */
596 /*
597 * Ugh: If a reconnect attempt just happened, nm_so
598 * would have changed. NULL indicates a failed
599 * attempt that has essentially shut down this
600 * mount point.
601 */
602 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
603 nfs_sndunlock(rep->r_nmp);
604 return (EINTR);
605 }
606 so = rep->r_nmp->nm_so;
607 if (!so) {
608 error = nfs_reconnect(rep, l);
609 if (error) {
610 nfs_sndunlock(rep->r_nmp);
611 return (error);
612 }
613 goto tryagain;
614 }
615 while (rep->r_flags & R_MUSTRESEND) {
616 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
617 nfsstats.rpcretries++;
618 rep->r_rtt = 0;
619 rep->r_flags &= ~R_TIMING;
620 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep, l);
621 if (error) {
622 if (error == EINTR || error == ERESTART ||
623 (error = nfs_reconnect(rep, l)) != 0) {
624 nfs_sndunlock(rep->r_nmp);
625 return (error);
626 }
627 goto tryagain;
628 }
629 }
630 nfs_sndunlock(rep->r_nmp);
631 if (sotype == SOCK_STREAM) {
632 aio.iov_base = (void *) &len;
633 aio.iov_len = sizeof(u_int32_t);
634 auio.uio_iov = &aio;
635 auio.uio_iovcnt = 1;
636 auio.uio_rw = UIO_READ;
637 auio.uio_offset = 0;
638 auio.uio_resid = sizeof(u_int32_t);
639 UIO_SETUP_SYSSPACE(&auio);
640 do {
641 rcvflg = MSG_WAITALL;
642 error = (*so->so_receive)(so, (struct mbuf **)0, &auio,
643 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
644 if (error == EWOULDBLOCK && rep) {
645 if (rep->r_flags & R_SOFTTERM)
646 return (EINTR);
647 /*
648 * if it seems that the server died after it
649 * received our request, set EPIPE so that
650 * we'll reconnect and retransmit requests.
651 */
652 if (rep->r_rexmit >= rep->r_nmp->nm_retry) {
653 nfsstats.rpctimeouts++;
654 error = EPIPE;
655 }
656 }
657 } while (error == EWOULDBLOCK);
658 if (!error && auio.uio_resid > 0) {
659 /*
660 * Don't log a 0 byte receive; it means
661 * that the socket has been closed, and
662 * can happen during normal operation
663 * (forcible unmount or Solaris server).
664 */
665 if (auio.uio_resid != sizeof (u_int32_t))
666 log(LOG_INFO,
667 "short receive (%lu/%lu) from nfs server %s\n",
668 (u_long)sizeof(u_int32_t) - auio.uio_resid,
669 (u_long)sizeof(u_int32_t),
670 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
671 error = EPIPE;
672 }
673 if (error)
674 goto errout;
675 len = ntohl(len) & ~0x80000000;
676 /*
677 * This is SERIOUS! We are out of sync with the sender
678 * and forcing a disconnect/reconnect is all I can do.
679 */
680 if (len > NFS_MAXPACKET) {
681 log(LOG_ERR, "%s (%d) from nfs server %s\n",
682 "impossible packet length",
683 len,
684 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
685 error = EFBIG;
686 goto errout;
687 }
688 auio.uio_resid = len;
689 do {
690 rcvflg = MSG_WAITALL;
691 error = (*so->so_receive)(so, (struct mbuf **)0,
692 &auio, mp, (struct mbuf **)0, &rcvflg);
693 } while (error == EWOULDBLOCK || error == EINTR ||
694 error == ERESTART);
695 if (!error && auio.uio_resid > 0) {
696 if (len != auio.uio_resid)
697 log(LOG_INFO,
698 "short receive (%lu/%d) from nfs server %s\n",
699 (u_long)len - auio.uio_resid, len,
700 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
701 error = EPIPE;
702 }
703 } else {
704 /*
705 * NB: Since uio_resid is big, MSG_WAITALL is ignored
706 * and soreceive() will return when it has either a
707 * control msg or a data msg.
708 * We have no use for control msg., but must grab them
709 * and then throw them away so we know what is going
710 * on.
711 */
712 auio.uio_resid = len = 100000000; /* Anything Big */
713 /* not need to setup uio_vmspace */
714 do {
715 rcvflg = 0;
716 error = (*so->so_receive)(so, (struct mbuf **)0,
717 &auio, mp, &control, &rcvflg);
718 if (control)
719 m_freem(control);
720 if (error == EWOULDBLOCK && rep) {
721 if (rep->r_flags & R_SOFTTERM)
722 return (EINTR);
723 }
724 } while (error == EWOULDBLOCK ||
725 (!error && *mp == NULL && control));
726 if ((rcvflg & MSG_EOR) == 0)
727 printf("Egad!!\n");
728 if (!error && *mp == NULL)
729 error = EPIPE;
730 len -= auio.uio_resid;
731 }
732 errout:
733 if (error && error != EINTR && error != ERESTART) {
734 m_freem(*mp);
735 *mp = (struct mbuf *)0;
736 if (error != EPIPE)
737 log(LOG_INFO,
738 "receive error %d from nfs server %s\n",
739 error,
740 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
741 error = nfs_sndlock(rep->r_nmp, rep);
742 if (!error)
743 error = nfs_reconnect(rep, l);
744 if (!error)
745 goto tryagain;
746 else
747 nfs_sndunlock(rep->r_nmp);
748 }
749 } else {
750 if ((so = rep->r_nmp->nm_so) == NULL)
751 return (EACCES);
752 if (so->so_state & SS_ISCONNECTED)
753 getnam = (struct mbuf **)0;
754 else
755 getnam = aname;
756 auio.uio_resid = len = 1000000;
757 /* not need to setup uio_vmspace */
758 do {
759 rcvflg = 0;
760 error = (*so->so_receive)(so, getnam, &auio, mp,
761 (struct mbuf **)0, &rcvflg);
762 if (error == EWOULDBLOCK &&
763 (rep->r_flags & R_SOFTTERM))
764 return (EINTR);
765 } while (error == EWOULDBLOCK);
766 len -= auio.uio_resid;
767 if (!error && *mp == NULL)
768 error = EPIPE;
769 }
770 if (error) {
771 m_freem(*mp);
772 *mp = (struct mbuf *)0;
773 }
774 return (error);
775 }
776
777 /*
778 * Implement receipt of reply on a socket.
779 * We must search through the list of received datagrams matching them
780 * with outstanding requests using the xid, until ours is found.
781 */
782 /* ARGSUSED */
783 int
784 nfs_reply(myrep, lwp)
785 struct nfsreq *myrep;
786 struct lwp *lwp;
787 {
788 struct nfsreq *rep;
789 struct nfsmount *nmp = myrep->r_nmp;
790 int32_t t1;
791 struct mbuf *mrep, *nam, *md;
792 u_int32_t rxid, *tl;
793 char *dpos, *cp2;
794 int error;
795
796 /*
797 * Loop around until we get our own reply
798 */
799 for (;;) {
800 /*
801 * Lock against other receivers so that I don't get stuck in
802 * sbwait() after someone else has received my reply for me.
803 * Also necessary for connection based protocols to avoid
804 * race conditions during a reconnect.
805 */
806 error = nfs_rcvlock(nmp, myrep);
807 if (error == EALREADY)
808 return (0);
809 if (error)
810 return (error);
811 /*
812 * Get the next Rpc reply off the socket
813 */
814
815 mutex_enter(&nmp->nm_lock);
816 nmp->nm_waiters++;
817 mutex_exit(&nmp->nm_lock);
818
819 error = nfs_receive(myrep, &nam, &mrep, lwp);
820 nfs_rcvunlock(nmp);
821
822 mutex_enter(&nmp->nm_lock);
823 nmp->nm_waiters--;
824 cv_signal(&nmp->nm_disconcv);
825 mutex_exit(&nmp->nm_lock);
826
827 if (error) {
828
829 if (nmp->nm_iflag & NFSMNT_DISMNT) {
830 /*
831 * Oops, we're going away now..
832 */
833 return error;
834 }
835 /*
836 * Ignore routing errors on connectionless protocols? ?
837 */
838 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
839 nmp->nm_so->so_error = 0;
840 #ifdef DEBUG
841 printf("nfs_reply: ignoring error %d\n", error);
842 #endif
843 if (myrep->r_flags & R_GETONEREP)
844 return (0);
845 continue;
846 }
847 return (error);
848 }
849 if (nam)
850 m_freem(nam);
851
852 /*
853 * Get the xid and check that it is an rpc reply
854 */
855 md = mrep;
856 dpos = mtod(md, void *);
857 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
858 rxid = *tl++;
859 if (*tl != rpc_reply) {
860 nfsstats.rpcinvalid++;
861 m_freem(mrep);
862 nfsmout:
863 if (myrep->r_flags & R_GETONEREP)
864 return (0);
865 continue;
866 }
867
868 /*
869 * Loop through the request list to match up the reply
870 * Iff no match, just drop the datagram
871 */
872 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
873 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
874 /* Found it.. */
875 rep->r_mrep = mrep;
876 rep->r_md = md;
877 rep->r_dpos = dpos;
878 if (nfsrtton) {
879 struct rttl *rt;
880
881 rt = &nfsrtt.rttl[nfsrtt.pos];
882 rt->proc = rep->r_procnum;
883 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
884 rt->sent = nmp->nm_sent;
885 rt->cwnd = nmp->nm_cwnd;
886 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
887 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
888 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsidx;
889 getmicrotime(&rt->tstamp);
890 if (rep->r_flags & R_TIMING)
891 rt->rtt = rep->r_rtt;
892 else
893 rt->rtt = 1000000;
894 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
895 }
896 /*
897 * Update congestion window.
898 * Do the additive increase of
899 * one rpc/rtt.
900 */
901 if (nmp->nm_cwnd <= nmp->nm_sent) {
902 nmp->nm_cwnd +=
903 (NFS_CWNDSCALE * NFS_CWNDSCALE +
904 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
905 if (nmp->nm_cwnd > NFS_MAXCWND)
906 nmp->nm_cwnd = NFS_MAXCWND;
907 }
908 rep->r_flags &= ~R_SENT;
909 nmp->nm_sent -= NFS_CWNDSCALE;
910 /*
911 * Update rtt using a gain of 0.125 on the mean
912 * and a gain of 0.25 on the deviation.
913 */
914 if (rep->r_flags & R_TIMING) {
915 /*
916 * Since the timer resolution of
917 * NFS_HZ is so course, it can often
918 * result in r_rtt == 0. Since
919 * r_rtt == N means that the actual
920 * rtt is between N+dt and N+2-dt ticks,
921 * add 1.
922 */
923 t1 = rep->r_rtt + 1;
924 t1 -= (NFS_SRTT(rep) >> 3);
925 NFS_SRTT(rep) += t1;
926 if (t1 < 0)
927 t1 = -t1;
928 t1 -= (NFS_SDRTT(rep) >> 2);
929 NFS_SDRTT(rep) += t1;
930 }
931 nmp->nm_timeouts = 0;
932 break;
933 }
934 }
935 /*
936 * If not matched to a request, drop it.
937 * If it's mine, get out.
938 */
939 if (rep == 0) {
940 nfsstats.rpcunexpected++;
941 m_freem(mrep);
942 } else if (rep == myrep) {
943 if (rep->r_mrep == NULL)
944 panic("nfsreply nil");
945 return (0);
946 }
947 if (myrep->r_flags & R_GETONEREP)
948 return (0);
949 }
950 }
951
952 /*
953 * nfs_request - goes something like this
954 * - fill in request struct
955 * - links it into list
956 * - calls nfs_send() for first transmit
957 * - calls nfs_receive() to get reply
958 * - break down rpc header and return with nfs reply pointed to
959 * by mrep or error
960 * nb: always frees up mreq mbuf list
961 */
962 int
963 nfs_request(np, mrest, procnum, lwp, cred, mrp, mdp, dposp, rexmitp)
964 struct nfsnode *np;
965 struct mbuf *mrest;
966 int procnum;
967 struct lwp *lwp;
968 kauth_cred_t cred;
969 struct mbuf **mrp;
970 struct mbuf **mdp;
971 char **dposp;
972 int *rexmitp;
973 {
974 struct mbuf *m, *mrep;
975 struct nfsreq *rep;
976 u_int32_t *tl;
977 int i;
978 struct nfsmount *nmp = VFSTONFS(np->n_vnode->v_mount);
979 struct mbuf *md, *mheadend;
980 char nickv[RPCX_NICKVERF];
981 time_t waituntil;
982 char *dpos, *cp2;
983 int t1, s, error = 0, mrest_len, auth_len, auth_type;
984 int trylater_delay = NFS_TRYLATERDEL, failed_auth = 0;
985 int verf_len, verf_type;
986 u_int32_t xid;
987 char *auth_str, *verf_str;
988 NFSKERBKEY_T key; /* save session key */
989 kauth_cred_t acred;
990 struct mbuf *mrest_backup = NULL;
991 kauth_cred_t origcred = NULL; /* XXX: gcc */
992 bool retry_cred = true;
993 bool use_opencred = (np->n_flag & NUSEOPENCRED) != 0;
994
995 if (rexmitp != NULL)
996 *rexmitp = 0;
997
998 acred = kauth_cred_alloc();
999
1000 tryagain_cred:
1001 KASSERT(cred != NULL);
1002 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
1003 rep->r_nmp = nmp;
1004 rep->r_lwp = lwp;
1005 rep->r_procnum = procnum;
1006 i = 0;
1007 m = mrest;
1008 while (m) {
1009 i += m->m_len;
1010 m = m->m_next;
1011 }
1012 mrest_len = i;
1013
1014 /*
1015 * Get the RPC header with authorization.
1016 */
1017 kerbauth:
1018 verf_str = auth_str = (char *)0;
1019 if (nmp->nm_flag & NFSMNT_KERB) {
1020 verf_str = nickv;
1021 verf_len = sizeof (nickv);
1022 auth_type = RPCAUTH_KERB4;
1023 memset((void *)key, 0, sizeof (key));
1024 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
1025 &auth_len, verf_str, verf_len)) {
1026 error = nfs_getauth(nmp, rep, cred, &auth_str,
1027 &auth_len, verf_str, &verf_len, key);
1028 if (error) {
1029 free((void *)rep, M_NFSREQ);
1030 m_freem(mrest);
1031 KASSERT(kauth_cred_getrefcnt(acred) == 1);
1032 kauth_cred_free(acred);
1033 return (error);
1034 }
1035 }
1036 retry_cred = false;
1037 } else {
1038 /* AUTH_UNIX */
1039 uid_t uid;
1040 gid_t gid;
1041
1042 /*
1043 * on the most unix filesystems, permission checks are
1044 * done when the file is open(2)'ed.
1045 * ie. once a file is successfully open'ed,
1046 * following i/o operations never fail with EACCES.
1047 * we try to follow the semantics as far as possible.
1048 *
1049 * note that we expect that the nfs server always grant
1050 * accesses by the file's owner.
1051 */
1052 origcred = cred;
1053 switch (procnum) {
1054 case NFSPROC_READ:
1055 case NFSPROC_WRITE:
1056 case NFSPROC_COMMIT:
1057 uid = np->n_vattr->va_uid;
1058 gid = np->n_vattr->va_gid;
1059 if (kauth_cred_geteuid(cred) == uid &&
1060 kauth_cred_getegid(cred) == gid) {
1061 retry_cred = false;
1062 break;
1063 }
1064 if (use_opencred)
1065 break;
1066 kauth_cred_setuid(acred, uid);
1067 kauth_cred_seteuid(acred, uid);
1068 kauth_cred_setsvuid(acred, uid);
1069 kauth_cred_setgid(acred, gid);
1070 kauth_cred_setegid(acred, gid);
1071 kauth_cred_setsvgid(acred, gid);
1072 cred = acred;
1073 break;
1074 default:
1075 retry_cred = false;
1076 break;
1077 }
1078 /*
1079 * backup mbuf chain if we can need it later to retry.
1080 *
1081 * XXX maybe we can keep a direct reference to
1082 * mrest without doing m_copym, but it's ...ugly.
1083 */
1084 if (retry_cred)
1085 mrest_backup = m_copym(mrest, 0, M_COPYALL, M_WAIT);
1086 auth_type = RPCAUTH_UNIX;
1087 /* XXX elad - ngroups */
1088 auth_len = (((kauth_cred_ngroups(cred) > nmp->nm_numgrps) ?
1089 nmp->nm_numgrps : kauth_cred_ngroups(cred)) << 2) +
1090 5 * NFSX_UNSIGNED;
1091 }
1092 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
1093 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
1094 if (auth_str)
1095 free(auth_str, M_TEMP);
1096
1097 /*
1098 * For stream protocols, insert a Sun RPC Record Mark.
1099 */
1100 if (nmp->nm_sotype == SOCK_STREAM) {
1101 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
1102 *mtod(m, u_int32_t *) = htonl(0x80000000 |
1103 (m->m_pkthdr.len - NFSX_UNSIGNED));
1104 }
1105 rep->r_mreq = m;
1106 rep->r_xid = xid;
1107 tryagain:
1108 if (nmp->nm_flag & NFSMNT_SOFT)
1109 rep->r_retry = nmp->nm_retry;
1110 else
1111 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
1112 rep->r_rtt = rep->r_rexmit = 0;
1113 if (proct[procnum] > 0)
1114 rep->r_flags = R_TIMING;
1115 else
1116 rep->r_flags = 0;
1117 rep->r_mrep = NULL;
1118
1119 /*
1120 * Do the client side RPC.
1121 */
1122 nfsstats.rpcrequests++;
1123 /*
1124 * Chain request into list of outstanding requests. Be sure
1125 * to put it LAST so timer finds oldest requests first.
1126 */
1127 s = splsoftnet();
1128 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
1129
1130 /*
1131 * If backing off another request or avoiding congestion, don't
1132 * send this one now but let timer do it. If not timing a request,
1133 * do it now.
1134 */
1135 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
1136 (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1137 nmp->nm_sent < nmp->nm_cwnd)) {
1138 splx(s);
1139 if (nmp->nm_soflags & PR_CONNREQUIRED)
1140 error = nfs_sndlock(nmp, rep);
1141 if (!error) {
1142 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
1143 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep, lwp);
1144 if (nmp->nm_soflags & PR_CONNREQUIRED)
1145 nfs_sndunlock(nmp);
1146 }
1147 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
1148 nmp->nm_sent += NFS_CWNDSCALE;
1149 rep->r_flags |= R_SENT;
1150 }
1151 } else {
1152 splx(s);
1153 rep->r_rtt = -1;
1154 }
1155
1156 /*
1157 * Wait for the reply from our send or the timer's.
1158 */
1159 if (!error || error == EPIPE)
1160 error = nfs_reply(rep, lwp);
1161
1162 /*
1163 * RPC done, unlink the request.
1164 */
1165 s = splsoftnet();
1166 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
1167 splx(s);
1168
1169 /*
1170 * Decrement the outstanding request count.
1171 */
1172 if (rep->r_flags & R_SENT) {
1173 rep->r_flags &= ~R_SENT; /* paranoia */
1174 nmp->nm_sent -= NFS_CWNDSCALE;
1175 }
1176
1177 if (rexmitp != NULL) {
1178 int rexmit;
1179
1180 if (nmp->nm_sotype != SOCK_DGRAM)
1181 rexmit = (rep->r_flags & R_REXMITTED) != 0;
1182 else
1183 rexmit = rep->r_rexmit;
1184 *rexmitp = rexmit;
1185 }
1186
1187 /*
1188 * If there was a successful reply and a tprintf msg.
1189 * tprintf a response.
1190 */
1191 if (!error && (rep->r_flags & R_TPRINTFMSG))
1192 nfs_msg(rep->r_lwp, nmp->nm_mountp->mnt_stat.f_mntfromname,
1193 "is alive again");
1194 mrep = rep->r_mrep;
1195 md = rep->r_md;
1196 dpos = rep->r_dpos;
1197 if (error)
1198 goto nfsmout;
1199
1200 /*
1201 * break down the rpc header and check if ok
1202 */
1203 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1204 if (*tl++ == rpc_msgdenied) {
1205 if (*tl == rpc_mismatch)
1206 error = EOPNOTSUPP;
1207 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
1208 if (!failed_auth) {
1209 failed_auth++;
1210 mheadend->m_next = (struct mbuf *)0;
1211 m_freem(mrep);
1212 m_freem(rep->r_mreq);
1213 goto kerbauth;
1214 } else
1215 error = EAUTH;
1216 } else
1217 error = EACCES;
1218 m_freem(mrep);
1219 goto nfsmout;
1220 }
1221
1222 /*
1223 * Grab any Kerberos verifier, otherwise just throw it away.
1224 */
1225 verf_type = fxdr_unsigned(int, *tl++);
1226 i = fxdr_unsigned(int32_t, *tl);
1227 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1228 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1229 if (error)
1230 goto nfsmout;
1231 } else if (i > 0)
1232 nfsm_adv(nfsm_rndup(i));
1233 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1234 /* 0 == ok */
1235 if (*tl == 0) {
1236 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1237 if (*tl != 0) {
1238 error = fxdr_unsigned(int, *tl);
1239 switch (error) {
1240 case NFSERR_PERM:
1241 error = EPERM;
1242 break;
1243
1244 case NFSERR_NOENT:
1245 error = ENOENT;
1246 break;
1247
1248 case NFSERR_IO:
1249 error = EIO;
1250 break;
1251
1252 case NFSERR_NXIO:
1253 error = ENXIO;
1254 break;
1255
1256 case NFSERR_ACCES:
1257 error = EACCES;
1258 if (!retry_cred)
1259 break;
1260 m_freem(mrep);
1261 m_freem(rep->r_mreq);
1262 FREE(rep, M_NFSREQ);
1263 use_opencred = !use_opencred;
1264 if (mrest_backup == NULL) {
1265 /* m_copym failure */
1266 KASSERT(
1267 kauth_cred_getrefcnt(acred) == 1);
1268 kauth_cred_free(acred);
1269 return ENOMEM;
1270 }
1271 mrest = mrest_backup;
1272 mrest_backup = NULL;
1273 cred = origcred;
1274 error = 0;
1275 retry_cred = false;
1276 goto tryagain_cred;
1277
1278 case NFSERR_EXIST:
1279 error = EEXIST;
1280 break;
1281
1282 case NFSERR_XDEV:
1283 error = EXDEV;
1284 break;
1285
1286 case NFSERR_NODEV:
1287 error = ENODEV;
1288 break;
1289
1290 case NFSERR_NOTDIR:
1291 error = ENOTDIR;
1292 break;
1293
1294 case NFSERR_ISDIR:
1295 error = EISDIR;
1296 break;
1297
1298 case NFSERR_INVAL:
1299 error = EINVAL;
1300 break;
1301
1302 case NFSERR_FBIG:
1303 error = EFBIG;
1304 break;
1305
1306 case NFSERR_NOSPC:
1307 error = ENOSPC;
1308 break;
1309
1310 case NFSERR_ROFS:
1311 error = EROFS;
1312 break;
1313
1314 case NFSERR_MLINK:
1315 error = EMLINK;
1316 break;
1317
1318 case NFSERR_TIMEDOUT:
1319 error = ETIMEDOUT;
1320 break;
1321
1322 case NFSERR_NAMETOL:
1323 error = ENAMETOOLONG;
1324 break;
1325
1326 case NFSERR_NOTEMPTY:
1327 error = ENOTEMPTY;
1328 break;
1329
1330 case NFSERR_DQUOT:
1331 error = EDQUOT;
1332 break;
1333
1334 case NFSERR_STALE:
1335 /*
1336 * If the File Handle was stale, invalidate the
1337 * lookup cache, just in case.
1338 */
1339 error = ESTALE;
1340 cache_purge(NFSTOV(np));
1341 break;
1342
1343 case NFSERR_REMOTE:
1344 error = EREMOTE;
1345 break;
1346
1347 case NFSERR_WFLUSH:
1348 case NFSERR_BADHANDLE:
1349 case NFSERR_NOT_SYNC:
1350 case NFSERR_BAD_COOKIE:
1351 error = EINVAL;
1352 break;
1353
1354 case NFSERR_NOTSUPP:
1355 error = ENOTSUP;
1356 break;
1357
1358 case NFSERR_TOOSMALL:
1359 case NFSERR_SERVERFAULT:
1360 case NFSERR_BADTYPE:
1361 error = EINVAL;
1362 break;
1363
1364 case NFSERR_TRYLATER:
1365 if ((nmp->nm_flag & NFSMNT_NFSV3) == 0)
1366 break;
1367 m_freem(mrep);
1368 error = 0;
1369 waituntil = time_second + trylater_delay;
1370 while (time_second < waituntil) {
1371 tsleep(&lbolt, PSOCK, "nfstrylater", 0);
1372 }
1373 trylater_delay *= NFS_TRYLATERDELMUL;
1374 if (trylater_delay > NFS_TRYLATERDELMAX)
1375 trylater_delay = NFS_TRYLATERDELMAX;
1376 /*
1377 * RFC1813:
1378 * The client should wait and then try
1379 * the request with a new RPC transaction ID.
1380 */
1381 nfs_renewxid(rep);
1382 goto tryagain;
1383
1384 default:
1385 #ifdef DIAGNOSTIC
1386 printf("Invalid rpc error code %d\n", error);
1387 #endif
1388 error = EINVAL;
1389 break;
1390 }
1391
1392 if (nmp->nm_flag & NFSMNT_NFSV3) {
1393 *mrp = mrep;
1394 *mdp = md;
1395 *dposp = dpos;
1396 error |= NFSERR_RETERR;
1397 } else
1398 m_freem(mrep);
1399 goto nfsmout;
1400 }
1401
1402 /*
1403 * note which credential worked to minimize number of retries.
1404 */
1405 if (use_opencred)
1406 np->n_flag |= NUSEOPENCRED;
1407 else
1408 np->n_flag &= ~NUSEOPENCRED;
1409
1410 *mrp = mrep;
1411 *mdp = md;
1412 *dposp = dpos;
1413
1414 KASSERT(error == 0);
1415 goto nfsmout;
1416 }
1417 m_freem(mrep);
1418 error = EPROTONOSUPPORT;
1419 nfsmout:
1420 KASSERT(kauth_cred_getrefcnt(acred) == 1);
1421 kauth_cred_free(acred);
1422 m_freem(rep->r_mreq);
1423 free((void *)rep, M_NFSREQ);
1424 m_freem(mrest_backup);
1425 return (error);
1426 }
1427 #endif /* NFS */
1428
1429 /*
1430 * Generate the rpc reply header
1431 * siz arg. is used to decide if adding a cluster is worthwhile
1432 */
1433 int
1434 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1435 int siz;
1436 struct nfsrv_descript *nd;
1437 struct nfssvc_sock *slp;
1438 int err;
1439 int cache;
1440 u_quad_t *frev;
1441 struct mbuf **mrq;
1442 struct mbuf **mbp;
1443 char **bposp;
1444 {
1445 u_int32_t *tl;
1446 struct mbuf *mreq;
1447 char *bpos;
1448 struct mbuf *mb;
1449
1450 mreq = m_gethdr(M_WAIT, MT_DATA);
1451 MCLAIM(mreq, &nfs_mowner);
1452 mb = mreq;
1453 /*
1454 * If this is a big reply, use a cluster else
1455 * try and leave leading space for the lower level headers.
1456 */
1457 siz += RPC_REPLYSIZ;
1458 if (siz >= max_datalen) {
1459 m_clget(mreq, M_WAIT);
1460 } else
1461 mreq->m_data += max_hdr;
1462 tl = mtod(mreq, u_int32_t *);
1463 mreq->m_len = 6 * NFSX_UNSIGNED;
1464 bpos = ((char *)tl) + mreq->m_len;
1465 *tl++ = txdr_unsigned(nd->nd_retxid);
1466 *tl++ = rpc_reply;
1467 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1468 *tl++ = rpc_msgdenied;
1469 if (err & NFSERR_AUTHERR) {
1470 *tl++ = rpc_autherr;
1471 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1472 mreq->m_len -= NFSX_UNSIGNED;
1473 bpos -= NFSX_UNSIGNED;
1474 } else {
1475 *tl++ = rpc_mismatch;
1476 *tl++ = txdr_unsigned(RPC_VER2);
1477 *tl = txdr_unsigned(RPC_VER2);
1478 }
1479 } else {
1480 *tl++ = rpc_msgaccepted;
1481
1482 /*
1483 * For Kerberos authentication, we must send the nickname
1484 * verifier back, otherwise just RPCAUTH_NULL.
1485 */
1486 if (nd->nd_flag & ND_KERBFULL) {
1487 struct nfsuid *nuidp;
1488 struct timeval ktvin, ktvout;
1489
1490 memset(&ktvout, 0, sizeof ktvout); /* XXX gcc */
1491
1492 LIST_FOREACH(nuidp,
1493 NUIDHASH(slp, kauth_cred_geteuid(nd->nd_cr)),
1494 nu_hash) {
1495 if (kauth_cred_geteuid(nuidp->nu_cr) ==
1496 kauth_cred_geteuid(nd->nd_cr) &&
1497 (!nd->nd_nam2 || netaddr_match(
1498 NU_NETFAM(nuidp), &nuidp->nu_haddr,
1499 nd->nd_nam2)))
1500 break;
1501 }
1502 if (nuidp) {
1503 ktvin.tv_sec =
1504 txdr_unsigned(nuidp->nu_timestamp.tv_sec
1505 - 1);
1506 ktvin.tv_usec =
1507 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1508
1509 /*
1510 * Encrypt the timestamp in ecb mode using the
1511 * session key.
1512 */
1513 #ifdef NFSKERB
1514 XXX
1515 #endif
1516
1517 *tl++ = rpc_auth_kerb;
1518 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1519 *tl = ktvout.tv_sec;
1520 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1521 *tl++ = ktvout.tv_usec;
1522 *tl++ = txdr_unsigned(
1523 kauth_cred_geteuid(nuidp->nu_cr));
1524 } else {
1525 *tl++ = 0;
1526 *tl++ = 0;
1527 }
1528 } else {
1529 *tl++ = 0;
1530 *tl++ = 0;
1531 }
1532 switch (err) {
1533 case EPROGUNAVAIL:
1534 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1535 break;
1536 case EPROGMISMATCH:
1537 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1538 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1539 *tl++ = txdr_unsigned(2);
1540 *tl = txdr_unsigned(3);
1541 break;
1542 case EPROCUNAVAIL:
1543 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1544 break;
1545 case EBADRPC:
1546 *tl = txdr_unsigned(RPC_GARBAGE);
1547 break;
1548 default:
1549 *tl = 0;
1550 if (err != NFSERR_RETVOID) {
1551 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1552 if (err)
1553 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1554 else
1555 *tl = 0;
1556 }
1557 break;
1558 };
1559 }
1560
1561 if (mrq != NULL)
1562 *mrq = mreq;
1563 *mbp = mb;
1564 *bposp = bpos;
1565 if (err != 0 && err != NFSERR_RETVOID)
1566 nfsstats.srvrpc_errs++;
1567 return (0);
1568 }
1569
1570 /*
1571 * Nfs timer routine
1572 * Scan the nfsreq list and retranmit any requests that have timed out
1573 * To avoid retransmission attempts on STREAM sockets (in the future) make
1574 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1575 */
1576 void
1577 nfs_timer(void *arg)
1578 {
1579 struct nfsreq *rep;
1580 struct mbuf *m;
1581 struct socket *so;
1582 struct nfsmount *nmp;
1583 int timeo;
1584 int s, error;
1585 #ifdef NFSSERVER
1586 struct timeval tv;
1587 struct nfssvc_sock *slp;
1588 u_quad_t cur_usec;
1589 #endif
1590
1591 s = splsoftnet();
1592 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
1593 nmp = rep->r_nmp;
1594 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1595 continue;
1596 if (nfs_sigintr(nmp, rep, rep->r_lwp)) {
1597 rep->r_flags |= R_SOFTTERM;
1598 continue;
1599 }
1600 if (rep->r_rtt >= 0) {
1601 rep->r_rtt++;
1602 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1603 timeo = nmp->nm_timeo;
1604 else
1605 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1606 if (nmp->nm_timeouts > 0)
1607 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1608 if (rep->r_rtt <= timeo)
1609 continue;
1610 if (nmp->nm_timeouts <
1611 (sizeof(nfs_backoff) / sizeof(nfs_backoff[0])))
1612 nmp->nm_timeouts++;
1613 }
1614 /*
1615 * Check for server not responding
1616 */
1617 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1618 rep->r_rexmit > nmp->nm_deadthresh) {
1619 nfs_msg(rep->r_lwp,
1620 nmp->nm_mountp->mnt_stat.f_mntfromname,
1621 "not responding");
1622 rep->r_flags |= R_TPRINTFMSG;
1623 }
1624 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1625 nfsstats.rpctimeouts++;
1626 rep->r_flags |= R_SOFTTERM;
1627 continue;
1628 }
1629 if (nmp->nm_sotype != SOCK_DGRAM) {
1630 if (++rep->r_rexmit > NFS_MAXREXMIT)
1631 rep->r_rexmit = NFS_MAXREXMIT;
1632 continue;
1633 }
1634 if ((so = nmp->nm_so) == NULL)
1635 continue;
1636
1637 /*
1638 * If there is enough space and the window allows..
1639 * Resend it
1640 * Set r_rtt to -1 in case we fail to send it now.
1641 */
1642 rep->r_rtt = -1;
1643 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1644 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1645 (rep->r_flags & R_SENT) ||
1646 nmp->nm_sent < nmp->nm_cwnd) &&
1647 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1648 if (so->so_state & SS_ISCONNECTED)
1649 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1650 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1651 else
1652 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1653 nmp->nm_nam, (struct mbuf *)0, (struct lwp *)0);
1654 if (error) {
1655 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
1656 #ifdef DEBUG
1657 printf("nfs_timer: ignoring error %d\n",
1658 error);
1659 #endif
1660 so->so_error = 0;
1661 }
1662 } else {
1663 /*
1664 * Iff first send, start timing
1665 * else turn timing off, backoff timer
1666 * and divide congestion window by 2.
1667 */
1668 if (rep->r_flags & R_SENT) {
1669 rep->r_flags &= ~R_TIMING;
1670 if (++rep->r_rexmit > NFS_MAXREXMIT)
1671 rep->r_rexmit = NFS_MAXREXMIT;
1672 nmp->nm_cwnd >>= 1;
1673 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1674 nmp->nm_cwnd = NFS_CWNDSCALE;
1675 nfsstats.rpcretries++;
1676 } else {
1677 rep->r_flags |= R_SENT;
1678 nmp->nm_sent += NFS_CWNDSCALE;
1679 }
1680 rep->r_rtt = 0;
1681 }
1682 }
1683 }
1684
1685 #ifdef NFSSERVER
1686 /*
1687 * Scan the write gathering queues for writes that need to be
1688 * completed now.
1689 */
1690 getmicrotime(&tv);
1691 cur_usec = (u_quad_t)tv.tv_sec * 1000000 + (u_quad_t)tv.tv_usec;
1692 TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1693 if (LIST_FIRST(&slp->ns_tq) &&
1694 LIST_FIRST(&slp->ns_tq)->nd_time <= cur_usec)
1695 nfsrv_wakenfsd(slp);
1696 }
1697 #endif /* NFSSERVER */
1698 splx(s);
1699 callout_schedule(&nfs_timer_ch, nfs_ticks);
1700 }
1701
1702 /*ARGSUSED*/
1703 void
1704 nfs_exit(struct proc *p, void *v)
1705 {
1706 struct nfsreq *rp;
1707 int s = splsoftnet();
1708
1709 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) {
1710 if (rp->r_lwp && rp->r_lwp->l_proc == p)
1711 TAILQ_REMOVE(&nfs_reqq, rp, r_chain);
1712 }
1713 splx(s);
1714 }
1715
1716 /*
1717 * Test for a termination condition pending on the process.
1718 * This is used for NFSMNT_INT mounts.
1719 */
1720 int
1721 nfs_sigintr(nmp, rep, l)
1722 struct nfsmount *nmp;
1723 struct nfsreq *rep;
1724 struct lwp *l;
1725 {
1726 sigset_t ss;
1727
1728 if (rep && (rep->r_flags & R_SOFTTERM))
1729 return (EINTR);
1730 if (!(nmp->nm_flag & NFSMNT_INT))
1731 return (0);
1732 if (l) {
1733 sigpending1(l, &ss);
1734 #if 0
1735 sigminusset(&l->l_proc->p_sigctx.ps_sigignore, &ss);
1736 #endif
1737 if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) ||
1738 sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) ||
1739 sigismember(&ss, SIGQUIT))
1740 return (EINTR);
1741 }
1742 return (0);
1743 }
1744
1745 /*
1746 * Lock a socket against others.
1747 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1748 * and also to avoid race conditions between the processes with nfs requests
1749 * in progress when a reconnect is necessary.
1750 */
1751 static int
1752 nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep)
1753 {
1754 struct lwp *l;
1755 int timeo = 0;
1756 bool catch = false;
1757 int error = 0;
1758
1759 if (rep) {
1760 l = rep->r_lwp;
1761 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1762 catch = true;
1763 } else
1764 l = NULL;
1765 mutex_enter(&nmp->nm_lock);
1766 while ((nmp->nm_iflag & NFSMNT_SNDLOCK) != 0) {
1767 if (rep && nfs_sigintr(rep->r_nmp, rep, l)) {
1768 error = EINTR;
1769 goto quit;
1770 }
1771 if (catch) {
1772 cv_timedwait_sig(&nmp->nm_sndcv, &nmp->nm_lock, timeo);
1773 } else {
1774 cv_timedwait(&nmp->nm_sndcv, &nmp->nm_lock, timeo);
1775 }
1776 if (catch) {
1777 catch = false;
1778 timeo = 2 * hz;
1779 }
1780 }
1781 nmp->nm_iflag |= NFSMNT_SNDLOCK;
1782 quit:
1783 mutex_exit(&nmp->nm_lock);
1784 return error;
1785 }
1786
1787 /*
1788 * Unlock the stream socket for others.
1789 */
1790 static void
1791 nfs_sndunlock(struct nfsmount *nmp)
1792 {
1793
1794 mutex_enter(&nmp->nm_lock);
1795 if ((nmp->nm_iflag & NFSMNT_SNDLOCK) == 0)
1796 panic("nfs sndunlock");
1797 nmp->nm_iflag &= ~NFSMNT_SNDLOCK;
1798 cv_signal(&nmp->nm_sndcv);
1799 mutex_exit(&nmp->nm_lock);
1800 }
1801
1802 static int
1803 nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep)
1804 {
1805 int *flagp = &nmp->nm_iflag;
1806 int slptimeo = 0;
1807 bool catch;
1808 int error = 0;
1809
1810 KASSERT(nmp == rep->r_nmp);
1811
1812 if (*flagp & NFSMNT_DISMNT)
1813 return EIO;
1814
1815 if (*flagp & NFSMNT_INT)
1816 catch = true;
1817 else
1818 catch = false;
1819 mutex_enter(&nmp->nm_lock);
1820 while (*flagp & NFSMNT_RCVLOCK) {
1821 if (nfs_sigintr(rep->r_nmp, rep, rep->r_lwp)) {
1822 error = EINTR;
1823 goto quit;
1824 }
1825 if (catch) {
1826 cv_timedwait_sig(&nmp->nm_rcvcv, &nmp->nm_lock,
1827 slptimeo);
1828 } else {
1829 cv_timedwait(&nmp->nm_rcvcv, &nmp->nm_lock,
1830 slptimeo);
1831 }
1832 if (*flagp & NFSMNT_DISMNT) {
1833 cv_signal(&nmp->nm_disconcv);
1834 error = EIO;
1835 goto quit;
1836 }
1837 /* If our reply was received while we were sleeping,
1838 * then just return without taking the lock to avoid a
1839 * situation where a single iod could 'capture' the
1840 * receive lock.
1841 */
1842 if (rep->r_mrep != NULL) {
1843 cv_signal(&nmp->nm_rcvcv);
1844 error = EALREADY;
1845 goto quit;
1846 }
1847 if (catch) {
1848 catch = false;
1849 slptimeo = 2 * hz;
1850 }
1851 }
1852 *flagp |= NFSMNT_RCVLOCK;
1853 quit:
1854 mutex_exit(&nmp->nm_lock);
1855 return error;
1856 }
1857
1858 /*
1859 * Unlock the stream socket for others.
1860 */
1861 static void
1862 nfs_rcvunlock(struct nfsmount *nmp)
1863 {
1864
1865 mutex_enter(&nmp->nm_lock);
1866 if ((nmp->nm_iflag & NFSMNT_RCVLOCK) == 0)
1867 panic("nfs rcvunlock");
1868 nmp->nm_iflag &= ~NFSMNT_RCVLOCK;
1869 cv_signal(&nmp->nm_rcvcv);
1870 mutex_exit(&nmp->nm_lock);
1871 }
1872
1873 /*
1874 * Parse an RPC request
1875 * - verify it
1876 * - allocate and fill in the cred.
1877 */
1878 int
1879 nfs_getreq(nd, nfsd, has_header)
1880 struct nfsrv_descript *nd;
1881 struct nfsd *nfsd;
1882 int has_header;
1883 {
1884 int len, i;
1885 u_int32_t *tl;
1886 int32_t t1;
1887 struct uio uio;
1888 struct iovec iov;
1889 char *dpos, *cp2, *cp;
1890 u_int32_t nfsvers, auth_type;
1891 uid_t nickuid;
1892 int error = 0, ticklen;
1893 struct mbuf *mrep, *md;
1894 struct nfsuid *nuidp;
1895 struct timeval tvin, tvout;
1896
1897 memset(&tvout, 0, sizeof tvout); /* XXX gcc */
1898
1899 KASSERT(nd->nd_cr == NULL);
1900 mrep = nd->nd_mrep;
1901 md = nd->nd_md;
1902 dpos = nd->nd_dpos;
1903 if (has_header) {
1904 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1905 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1906 if (*tl++ != rpc_call) {
1907 m_freem(mrep);
1908 return (EBADRPC);
1909 }
1910 } else
1911 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1912 nd->nd_repstat = 0;
1913 nd->nd_flag = 0;
1914 if (*tl++ != rpc_vers) {
1915 nd->nd_repstat = ERPCMISMATCH;
1916 nd->nd_procnum = NFSPROC_NOOP;
1917 return (0);
1918 }
1919 if (*tl != nfs_prog) {
1920 nd->nd_repstat = EPROGUNAVAIL;
1921 nd->nd_procnum = NFSPROC_NOOP;
1922 return (0);
1923 }
1924 tl++;
1925 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1926 if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) {
1927 nd->nd_repstat = EPROGMISMATCH;
1928 nd->nd_procnum = NFSPROC_NOOP;
1929 return (0);
1930 }
1931 if (nfsvers == NFS_VER3)
1932 nd->nd_flag = ND_NFSV3;
1933 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1934 if (nd->nd_procnum == NFSPROC_NULL)
1935 return (0);
1936 if (nd->nd_procnum > NFSPROC_COMMIT ||
1937 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1938 nd->nd_repstat = EPROCUNAVAIL;
1939 nd->nd_procnum = NFSPROC_NOOP;
1940 return (0);
1941 }
1942 if ((nd->nd_flag & ND_NFSV3) == 0)
1943 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1944 auth_type = *tl++;
1945 len = fxdr_unsigned(int, *tl++);
1946 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1947 m_freem(mrep);
1948 return (EBADRPC);
1949 }
1950
1951 nd->nd_flag &= ~ND_KERBAUTH;
1952 /*
1953 * Handle auth_unix or auth_kerb.
1954 */
1955 if (auth_type == rpc_auth_unix) {
1956 uid_t uid;
1957 gid_t gid, *grbuf;
1958
1959 nd->nd_cr = kauth_cred_alloc();
1960 len = fxdr_unsigned(int, *++tl);
1961 if (len < 0 || len > NFS_MAXNAMLEN) {
1962 m_freem(mrep);
1963 error = EBADRPC;
1964 goto errout;
1965 }
1966 nfsm_adv(nfsm_rndup(len));
1967 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1968
1969 uid = fxdr_unsigned(uid_t, *tl++);
1970 gid = fxdr_unsigned(gid_t, *tl++);
1971 kauth_cred_setuid(nd->nd_cr, uid);
1972 kauth_cred_seteuid(nd->nd_cr, uid);
1973 kauth_cred_setsvuid(nd->nd_cr, uid);
1974 kauth_cred_setgid(nd->nd_cr, gid);
1975 kauth_cred_setegid(nd->nd_cr, gid);
1976 kauth_cred_setsvgid(nd->nd_cr, gid);
1977
1978 len = fxdr_unsigned(int, *tl);
1979 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
1980 m_freem(mrep);
1981 error = EBADRPC;
1982 goto errout;
1983 }
1984 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
1985
1986 grbuf = malloc(len * sizeof(gid_t), M_TEMP, M_WAITOK);
1987 for (i = 0; i < len; i++) {
1988 if (i < NGROUPS) /* XXX elad */
1989 grbuf[i] = fxdr_unsigned(gid_t, *tl++);
1990 else
1991 tl++;
1992 }
1993 kauth_cred_setgroups(nd->nd_cr, grbuf, min(len, NGROUPS), -1);
1994 free(grbuf, M_TEMP);
1995
1996 len = fxdr_unsigned(int, *++tl);
1997 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1998 m_freem(mrep);
1999 error = EBADRPC;
2000 goto errout;
2001 }
2002 if (len > 0)
2003 nfsm_adv(nfsm_rndup(len));
2004 } else if (auth_type == rpc_auth_kerb) {
2005 switch (fxdr_unsigned(int, *tl++)) {
2006 case RPCAKN_FULLNAME:
2007 ticklen = fxdr_unsigned(int, *tl);
2008 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
2009 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
2010 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
2011 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
2012 m_freem(mrep);
2013 error = EBADRPC;
2014 goto errout;
2015 }
2016 uio.uio_offset = 0;
2017 uio.uio_iov = &iov;
2018 uio.uio_iovcnt = 1;
2019 UIO_SETUP_SYSSPACE(&uio);
2020 iov.iov_base = (void *)&nfsd->nfsd_authstr[4];
2021 iov.iov_len = RPCAUTH_MAXSIZ - 4;
2022 nfsm_mtouio(&uio, uio.uio_resid);
2023 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2024 if (*tl++ != rpc_auth_kerb ||
2025 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
2026 printf("Bad kerb verifier\n");
2027 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2028 nd->nd_procnum = NFSPROC_NOOP;
2029 return (0);
2030 }
2031 nfsm_dissect(cp, void *, 4 * NFSX_UNSIGNED);
2032 tl = (u_int32_t *)cp;
2033 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
2034 printf("Not fullname kerb verifier\n");
2035 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2036 nd->nd_procnum = NFSPROC_NOOP;
2037 return (0);
2038 }
2039 cp += NFSX_UNSIGNED;
2040 memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED);
2041 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
2042 nd->nd_flag |= ND_KERBFULL;
2043 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
2044 break;
2045 case RPCAKN_NICKNAME:
2046 if (len != 2 * NFSX_UNSIGNED) {
2047 printf("Kerb nickname short\n");
2048 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
2049 nd->nd_procnum = NFSPROC_NOOP;
2050 return (0);
2051 }
2052 nickuid = fxdr_unsigned(uid_t, *tl);
2053 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2054 if (*tl++ != rpc_auth_kerb ||
2055 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
2056 printf("Kerb nick verifier bad\n");
2057 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2058 nd->nd_procnum = NFSPROC_NOOP;
2059 return (0);
2060 }
2061 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2062 tvin.tv_sec = *tl++;
2063 tvin.tv_usec = *tl;
2064
2065 LIST_FOREACH(nuidp, NUIDHASH(nfsd->nfsd_slp, nickuid),
2066 nu_hash) {
2067 if (kauth_cred_geteuid(nuidp->nu_cr) == nickuid &&
2068 (!nd->nd_nam2 ||
2069 netaddr_match(NU_NETFAM(nuidp),
2070 &nuidp->nu_haddr, nd->nd_nam2)))
2071 break;
2072 }
2073 if (!nuidp) {
2074 nd->nd_repstat =
2075 (NFSERR_AUTHERR|AUTH_REJECTCRED);
2076 nd->nd_procnum = NFSPROC_NOOP;
2077 return (0);
2078 }
2079
2080 /*
2081 * Now, decrypt the timestamp using the session key
2082 * and validate it.
2083 */
2084 #ifdef NFSKERB
2085 XXX
2086 #endif
2087
2088 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
2089 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
2090 if (nuidp->nu_expire < time_second ||
2091 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
2092 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
2093 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
2094 nuidp->nu_expire = 0;
2095 nd->nd_repstat =
2096 (NFSERR_AUTHERR|AUTH_REJECTVERF);
2097 nd->nd_procnum = NFSPROC_NOOP;
2098 return (0);
2099 }
2100 kauth_cred_hold(nuidp->nu_cr);
2101 nd->nd_cr = nuidp->nu_cr;
2102 nd->nd_flag |= ND_KERBNICK;
2103 }
2104 } else {
2105 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
2106 nd->nd_procnum = NFSPROC_NOOP;
2107 return (0);
2108 }
2109
2110 nd->nd_md = md;
2111 nd->nd_dpos = dpos;
2112 KASSERT((nd->nd_cr == NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) != 0)
2113 || (nd->nd_cr != NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) == 0));
2114 return (0);
2115 nfsmout:
2116 errout:
2117 KASSERT(error != 0);
2118 if (nd->nd_cr != NULL) {
2119 kauth_cred_free(nd->nd_cr);
2120 nd->nd_cr = NULL;
2121 }
2122 return (error);
2123 }
2124
2125 int
2126 nfs_msg(l, server, msg)
2127 struct lwp *l;
2128 const char *server, *msg;
2129 {
2130 tpr_t tpr;
2131
2132 if (l)
2133 tpr = tprintf_open(l->l_proc);
2134 else
2135 tpr = NULL;
2136 tprintf(tpr, "nfs server %s: %s\n", server, msg);
2137 tprintf_close(tpr);
2138 return (0);
2139 }
2140
2141 #ifdef NFSSERVER
2142 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
2143 struct nfssvc_sock *, struct lwp *,
2144 struct mbuf **)) = {
2145 nfsrv_null,
2146 nfsrv_getattr,
2147 nfsrv_setattr,
2148 nfsrv_lookup,
2149 nfsrv3_access,
2150 nfsrv_readlink,
2151 nfsrv_read,
2152 nfsrv_write,
2153 nfsrv_create,
2154 nfsrv_mkdir,
2155 nfsrv_symlink,
2156 nfsrv_mknod,
2157 nfsrv_remove,
2158 nfsrv_rmdir,
2159 nfsrv_rename,
2160 nfsrv_link,
2161 nfsrv_readdir,
2162 nfsrv_readdirplus,
2163 nfsrv_statfs,
2164 nfsrv_fsinfo,
2165 nfsrv_pathconf,
2166 nfsrv_commit,
2167 nfsrv_noop
2168 };
2169
2170 /*
2171 * Socket upcall routine for the nfsd sockets.
2172 * The void *arg is a pointer to the "struct nfssvc_sock".
2173 * Essentially do as much as possible non-blocking, else punt and it will
2174 * be called with M_WAIT from an nfsd.
2175 */
2176 void
2177 nfsrv_rcv(so, arg, waitflag)
2178 struct socket *so;
2179 void *arg;
2180 int waitflag;
2181 {
2182 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2183 struct mbuf *m;
2184 struct mbuf *mp, *nam;
2185 struct uio auio;
2186 int flags, error;
2187 int setflags = 0;
2188
2189 error = nfsdsock_lock(slp, (waitflag != M_DONTWAIT));
2190 if (error) {
2191 setflags |= SLP_NEEDQ;
2192 goto dorecs_unlocked;
2193 }
2194
2195 KASSERT(so == slp->ns_so);
2196 #define NFS_TEST_HEAVY
2197 #ifdef NFS_TEST_HEAVY
2198 /*
2199 * Define this to test for nfsds handling this under heavy load.
2200 *
2201 * XXX it isn't safe to call so_receive from so_upcall context.
2202 */
2203 if (waitflag == M_DONTWAIT) {
2204 setflags |= SLP_NEEDQ;
2205 goto dorecs;
2206 }
2207 #endif
2208 simple_lock(&slp->ns_lock);
2209 slp->ns_flag &= ~SLP_NEEDQ;
2210 simple_unlock(&slp->ns_lock);
2211 if (so->so_type == SOCK_STREAM) {
2212 #ifndef NFS_TEST_HEAVY
2213 /*
2214 * If there are already records on the queue, defer soreceive()
2215 * to an nfsd so that there is feedback to the TCP layer that
2216 * the nfs servers are heavily loaded.
2217 */
2218 if (slp->ns_rec && waitflag == M_DONTWAIT) {
2219 setflags |= SLP_NEEDQ;
2220 goto dorecs;
2221 }
2222 #endif
2223
2224 /*
2225 * Do soreceive().
2226 */
2227 auio.uio_resid = 1000000000;
2228 /* not need to setup uio_vmspace */
2229 flags = MSG_DONTWAIT;
2230 error = (*so->so_receive)(so, &nam, &auio, &mp, NULL, &flags);
2231 if (error || mp == NULL) {
2232 if (error == EWOULDBLOCK)
2233 setflags |= SLP_NEEDQ;
2234 else
2235 setflags |= SLP_DISCONN;
2236 goto dorecs;
2237 }
2238 m = mp;
2239 m_claimm(m, &nfs_mowner);
2240 if (slp->ns_rawend) {
2241 slp->ns_rawend->m_next = m;
2242 slp->ns_cc += 1000000000 - auio.uio_resid;
2243 } else {
2244 slp->ns_raw = m;
2245 slp->ns_cc = 1000000000 - auio.uio_resid;
2246 }
2247 while (m->m_next)
2248 m = m->m_next;
2249 slp->ns_rawend = m;
2250
2251 /*
2252 * Now try and parse record(s) out of the raw stream data.
2253 */
2254 error = nfsrv_getstream(slp, waitflag);
2255 if (error) {
2256 if (error == EPERM)
2257 setflags |= SLP_DISCONN;
2258 else
2259 setflags |= SLP_NEEDQ;
2260 }
2261 } else {
2262 do {
2263 auio.uio_resid = 1000000000;
2264 /* not need to setup uio_vmspace */
2265 flags = MSG_DONTWAIT;
2266 error = (*so->so_receive)(so, &nam, &auio, &mp, NULL,
2267 &flags);
2268 if (mp) {
2269 if (nam) {
2270 m = nam;
2271 m->m_next = mp;
2272 } else
2273 m = mp;
2274 m_claimm(m, &nfs_mowner);
2275 if (slp->ns_recend)
2276 slp->ns_recend->m_nextpkt = m;
2277 else
2278 slp->ns_rec = m;
2279 slp->ns_recend = m;
2280 m->m_nextpkt = (struct mbuf *)0;
2281 }
2282 if (error) {
2283 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2284 && error != EWOULDBLOCK) {
2285 setflags |= SLP_DISCONN;
2286 goto dorecs;
2287 }
2288 }
2289 } while (mp);
2290 }
2291 dorecs:
2292 nfsdsock_unlock(slp);
2293
2294 dorecs_unlocked:
2295 /*
2296 * Now try and process the request records, non-blocking.
2297 */
2298 if (setflags) {
2299 simple_lock(&slp->ns_lock);
2300 slp->ns_flag |= setflags;
2301 simple_unlock(&slp->ns_lock);
2302 }
2303 if (waitflag == M_DONTWAIT &&
2304 (slp->ns_rec || (slp->ns_flag & (SLP_DISCONN | SLP_NEEDQ)) != 0)) {
2305 nfsrv_wakenfsd(slp);
2306 }
2307 }
2308
2309 int
2310 nfsdsock_lock(struct nfssvc_sock *slp, bool waitok)
2311 {
2312
2313 simple_lock(&slp->ns_lock);
2314 while ((slp->ns_flag & (SLP_BUSY|SLP_VALID)) == SLP_BUSY) {
2315 if (!waitok) {
2316 simple_unlock(&slp->ns_lock);
2317 return EWOULDBLOCK;
2318 }
2319 slp->ns_flag |= SLP_WANT;
2320 ltsleep(&slp->ns_flag, PSOCK, "nslock", 0, &slp->ns_lock);
2321 }
2322 if ((slp->ns_flag & SLP_VALID) == 0) {
2323 simple_unlock(&slp->ns_lock);
2324 return EINVAL;
2325 }
2326 slp->ns_flag |= SLP_BUSY;
2327 simple_unlock(&slp->ns_lock);
2328
2329 return 0;
2330 }
2331
2332 void
2333 nfsdsock_unlock(struct nfssvc_sock *slp)
2334 {
2335
2336 KASSERT((slp->ns_flag & SLP_BUSY) != 0);
2337
2338 simple_lock(&slp->ns_lock);
2339 if ((slp->ns_flag & SLP_WANT) != 0) {
2340 wakeup(&slp->ns_flag);
2341 }
2342 slp->ns_flag &= ~(SLP_BUSY|SLP_WANT);
2343 simple_unlock(&slp->ns_lock);
2344 }
2345
2346 int
2347 nfsdsock_drain(struct nfssvc_sock *slp)
2348 {
2349 int error = 0;
2350
2351 simple_lock(&slp->ns_lock);
2352 if ((slp->ns_flag & SLP_VALID) == 0) {
2353 error = EINVAL;
2354 goto done;
2355 }
2356 slp->ns_flag &= ~SLP_VALID;
2357 while ((slp->ns_flag & SLP_BUSY) != 0) {
2358 slp->ns_flag |= SLP_WANT;
2359 ltsleep(&slp->ns_flag, PSOCK, "nsdrain", 0, &slp->ns_lock);
2360 }
2361 done:
2362 simple_unlock(&slp->ns_lock);
2363
2364 return error;
2365 }
2366
2367 /*
2368 * Try and extract an RPC request from the mbuf data list received on a
2369 * stream socket. The "waitflag" argument indicates whether or not it
2370 * can sleep.
2371 */
2372 int
2373 nfsrv_getstream(slp, waitflag)
2374 struct nfssvc_sock *slp;
2375 int waitflag;
2376 {
2377 struct mbuf *m, **mpp;
2378 struct mbuf *recm;
2379 u_int32_t recmark;
2380 int error = 0;
2381
2382 for (;;) {
2383 if (slp->ns_reclen == 0) {
2384 if (slp->ns_cc < NFSX_UNSIGNED) {
2385 break;
2386 }
2387 m = slp->ns_raw;
2388 m_copydata(m, 0, NFSX_UNSIGNED, (void *)&recmark);
2389 m_adj(m, NFSX_UNSIGNED);
2390 slp->ns_cc -= NFSX_UNSIGNED;
2391 recmark = ntohl(recmark);
2392 slp->ns_reclen = recmark & ~0x80000000;
2393 if (recmark & 0x80000000)
2394 slp->ns_flag |= SLP_LASTFRAG;
2395 else
2396 slp->ns_flag &= ~SLP_LASTFRAG;
2397 if (slp->ns_reclen > NFS_MAXPACKET) {
2398 error = EPERM;
2399 break;
2400 }
2401 }
2402
2403 /*
2404 * Now get the record part.
2405 *
2406 * Note that slp->ns_reclen may be 0. Linux sometimes
2407 * generates 0-length records.
2408 */
2409 if (slp->ns_cc == slp->ns_reclen) {
2410 recm = slp->ns_raw;
2411 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
2412 slp->ns_cc = slp->ns_reclen = 0;
2413 } else if (slp->ns_cc > slp->ns_reclen) {
2414 recm = slp->ns_raw;
2415 m = m_split(recm, slp->ns_reclen, waitflag);
2416 if (m == NULL) {
2417 error = EWOULDBLOCK;
2418 break;
2419 }
2420 m_claimm(recm, &nfs_mowner);
2421 slp->ns_raw = m;
2422 if (m->m_next == NULL)
2423 slp->ns_rawend = m;
2424 slp->ns_cc -= slp->ns_reclen;
2425 slp->ns_reclen = 0;
2426 } else {
2427 break;
2428 }
2429
2430 /*
2431 * Accumulate the fragments into a record.
2432 */
2433 mpp = &slp->ns_frag;
2434 while (*mpp)
2435 mpp = &((*mpp)->m_next);
2436 *mpp = recm;
2437 if (slp->ns_flag & SLP_LASTFRAG) {
2438 if (slp->ns_recend)
2439 slp->ns_recend->m_nextpkt = slp->ns_frag;
2440 else
2441 slp->ns_rec = slp->ns_frag;
2442 slp->ns_recend = slp->ns_frag;
2443 slp->ns_frag = (struct mbuf *)0;
2444 }
2445 }
2446
2447 return error;
2448 }
2449
2450 /*
2451 * Parse an RPC header.
2452 */
2453 int
2454 nfsrv_dorec(slp, nfsd, ndp)
2455 struct nfssvc_sock *slp;
2456 struct nfsd *nfsd;
2457 struct nfsrv_descript **ndp;
2458 {
2459 struct mbuf *m, *nam;
2460 struct nfsrv_descript *nd;
2461 int error;
2462
2463 *ndp = NULL;
2464
2465 if (nfsdsock_lock(slp, true)) {
2466 return ENOBUFS;
2467 }
2468 m = slp->ns_rec;
2469 if (m == NULL) {
2470 nfsdsock_unlock(slp);
2471 return ENOBUFS;
2472 }
2473 slp->ns_rec = m->m_nextpkt;
2474 if (slp->ns_rec)
2475 m->m_nextpkt = NULL;
2476 else
2477 slp->ns_recend = NULL;
2478 nfsdsock_unlock(slp);
2479
2480 if (m->m_type == MT_SONAME) {
2481 nam = m;
2482 m = m->m_next;
2483 nam->m_next = NULL;
2484 } else
2485 nam = NULL;
2486 nd = nfsdreq_alloc();
2487 nd->nd_md = nd->nd_mrep = m;
2488 nd->nd_nam2 = nam;
2489 nd->nd_dpos = mtod(m, void *);
2490 error = nfs_getreq(nd, nfsd, true);
2491 if (error) {
2492 m_freem(nam);
2493 nfsdreq_free(nd);
2494 return (error);
2495 }
2496 *ndp = nd;
2497 nfsd->nfsd_nd = nd;
2498 return (0);
2499 }
2500
2501 /*
2502 * Search for a sleeping nfsd and wake it up.
2503 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2504 * running nfsds will go look for the work in the nfssvc_sock list.
2505 */
2506 void
2507 nfsrv_wakenfsd(slp)
2508 struct nfssvc_sock *slp;
2509 {
2510 struct nfsd *nd;
2511
2512 if ((slp->ns_flag & SLP_VALID) == 0)
2513 return;
2514 simple_lock(&nfsd_slock);
2515 if (slp->ns_flag & SLP_DOREC) {
2516 simple_unlock(&nfsd_slock);
2517 return;
2518 }
2519 nd = SLIST_FIRST(&nfsd_idle_head);
2520 if (nd) {
2521 SLIST_REMOVE_HEAD(&nfsd_idle_head, nfsd_idle);
2522 simple_unlock(&nfsd_slock);
2523
2524 if (nd->nfsd_slp)
2525 panic("nfsd wakeup");
2526 slp->ns_sref++;
2527 nd->nfsd_slp = slp;
2528 wakeup(nd);
2529 return;
2530 }
2531 slp->ns_flag |= SLP_DOREC;
2532 nfsd_head_flag |= NFSD_CHECKSLP;
2533 TAILQ_INSERT_TAIL(&nfssvc_sockpending, slp, ns_pending);
2534 simple_unlock(&nfsd_slock);
2535 }
2536
2537 int
2538 nfsdsock_sendreply(struct nfssvc_sock *slp, struct nfsrv_descript *nd)
2539 {
2540 int error;
2541
2542 if (nd->nd_mrep != NULL) {
2543 m_freem(nd->nd_mrep);
2544 nd->nd_mrep = NULL;
2545 }
2546
2547 simple_lock(&slp->ns_lock);
2548 if ((slp->ns_flag & SLP_SENDING) != 0) {
2549 SIMPLEQ_INSERT_TAIL(&slp->ns_sendq, nd, nd_sendq);
2550 simple_unlock(&slp->ns_lock);
2551 return 0;
2552 }
2553 KASSERT(SIMPLEQ_EMPTY(&slp->ns_sendq));
2554 slp->ns_flag |= SLP_SENDING;
2555 simple_unlock(&slp->ns_lock);
2556
2557 again:
2558 error = nfs_send(slp->ns_so, nd->nd_nam2, nd->nd_mreq, NULL, curlwp);
2559 if (nd->nd_nam2) {
2560 m_free(nd->nd_nam2);
2561 }
2562 nfsdreq_free(nd);
2563
2564 simple_lock(&slp->ns_lock);
2565 KASSERT((slp->ns_flag & SLP_SENDING) != 0);
2566 nd = SIMPLEQ_FIRST(&slp->ns_sendq);
2567 if (nd != NULL) {
2568 SIMPLEQ_REMOVE_HEAD(&slp->ns_sendq, nd_sendq);
2569 simple_unlock(&slp->ns_lock);
2570 goto again;
2571 }
2572 slp->ns_flag &= ~SLP_SENDING;
2573 simple_unlock(&slp->ns_lock);
2574
2575 return error;
2576 }
2577 #endif /* NFSSERVER */
2578
2579 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
2580 static struct pool nfs_srvdesc_pool;
2581
2582 void
2583 nfsdreq_init(void)
2584 {
2585
2586 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
2587 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr, IPL_NONE);
2588 }
2589
2590 struct nfsrv_descript *
2591 nfsdreq_alloc(void)
2592 {
2593 struct nfsrv_descript *nd;
2594
2595 nd = pool_get(&nfs_srvdesc_pool, PR_WAITOK);
2596 nd->nd_cr = NULL;
2597 return nd;
2598 }
2599
2600 void
2601 nfsdreq_free(struct nfsrv_descript *nd)
2602 {
2603 kauth_cred_t cr;
2604
2605 cr = nd->nd_cr;
2606 if (cr != NULL) {
2607 kauth_cred_free(cr);
2608 }
2609 pool_put(&nfs_srvdesc_pool, nd);
2610 }
2611 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
2612