nfs_socket.c revision 1.164 1 /* $NetBSD: nfs_socket.c,v 1.164 2007/10/21 08:23:19 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1991, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
35 */
36
37 /*
38 * Socket operations for use by nfs
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.164 2007/10/21 08:23:19 yamt Exp $");
43
44 #include "fs_nfs.h"
45 #include "opt_nfs.h"
46 #include "opt_nfsserver.h"
47 #include "opt_mbuftrace.h"
48 #include "opt_inet.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/evcnt.h>
53 #include <sys/callout.h>
54 #include <sys/proc.h>
55 #include <sys/mount.h>
56 #include <sys/kernel.h>
57 #include <sys/mbuf.h>
58 #include <sys/vnode.h>
59 #include <sys/domain.h>
60 #include <sys/protosw.h>
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <sys/syslog.h>
64 #include <sys/tprintf.h>
65 #include <sys/namei.h>
66 #include <sys/signal.h>
67 #include <sys/signalvar.h>
68 #include <sys/kauth.h>
69
70 #include <netinet/in.h>
71 #include <netinet/tcp.h>
72
73 #include <nfs/rpcv2.h>
74 #include <nfs/nfsproto.h>
75 #include <nfs/nfs.h>
76 #include <nfs/xdr_subs.h>
77 #include <nfs/nfsm_subs.h>
78 #include <nfs/nfsmount.h>
79 #include <nfs/nfsnode.h>
80 #include <nfs/nfsrtt.h>
81 #include <nfs/nfs_var.h>
82
83 MALLOC_DEFINE(M_NFSREQ, "NFS req", "NFS request header");
84 #ifdef MBUFTRACE
85 struct mowner nfs_mowner = MOWNER_INIT("nfs","");
86 #endif
87
88 /*
89 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
90 * Use the mean and mean deviation of rtt for the appropriate type of rpc
91 * for the frequent rpcs and a default for the others.
92 * The justification for doing "other" this way is that these rpcs
93 * happen so infrequently that timer est. would probably be stale.
94 * Also, since many of these rpcs are
95 * non-idempotent, a conservative timeout is desired.
96 * getattr, lookup - A+2D
97 * read, write - A+4D
98 * other - nm_timeo
99 */
100 #define NFS_RTO(n, t) \
101 ((t) == 0 ? (n)->nm_timeo : \
102 ((t) < 3 ? \
103 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
104 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
105 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
106 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
107 /*
108 * External data, mostly RPC constants in XDR form
109 */
110 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
111 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
112 rpc_auth_kerb;
113 extern u_int32_t nfs_prog;
114 extern const int nfsv3_procid[NFS_NPROCS];
115 extern int nfs_ticks;
116
117 /*
118 * Defines which timer to use for the procnum.
119 * 0 - default
120 * 1 - getattr
121 * 2 - lookup
122 * 3 - read
123 * 4 - write
124 */
125 static const int proct[NFS_NPROCS] = {
126 [NFSPROC_NULL] = 0,
127 [NFSPROC_GETATTR] = 1,
128 [NFSPROC_SETATTR] = 0,
129 [NFSPROC_LOOKUP] = 2,
130 [NFSPROC_ACCESS] = 1,
131 [NFSPROC_READLINK] = 3,
132 [NFSPROC_READ] = 3,
133 [NFSPROC_WRITE] = 4,
134 [NFSPROC_CREATE] = 0,
135 [NFSPROC_MKDIR] = 0,
136 [NFSPROC_SYMLINK] = 0,
137 [NFSPROC_MKNOD] = 0,
138 [NFSPROC_REMOVE] = 0,
139 [NFSPROC_RMDIR] = 0,
140 [NFSPROC_RENAME] = 0,
141 [NFSPROC_LINK] = 0,
142 [NFSPROC_READDIR] = 3,
143 [NFSPROC_READDIRPLUS] = 3,
144 [NFSPROC_FSSTAT] = 0,
145 [NFSPROC_FSINFO] = 0,
146 [NFSPROC_PATHCONF] = 0,
147 [NFSPROC_COMMIT] = 0,
148 [NFSPROC_NOOP] = 0,
149 };
150
151 /*
152 * There is a congestion window for outstanding rpcs maintained per mount
153 * point. The cwnd size is adjusted in roughly the way that:
154 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
155 * SIGCOMM '88". ACM, August 1988.
156 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
157 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
158 * of rpcs is in progress.
159 * (The sent count and cwnd are scaled for integer arith.)
160 * Variants of "slow start" were tried and were found to be too much of a
161 * performance hit (ave. rtt 3 times larger),
162 * I suspect due to the large rtt that nfs rpcs have.
163 */
164 #define NFS_CWNDSCALE 256
165 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
166 static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
167 int nfsrtton = 0;
168 struct nfsrtt nfsrtt;
169 struct nfsreqhead nfs_reqq;
170 static callout_t nfs_timer_ch;
171 static struct evcnt nfs_timer_ev;
172 static struct evcnt nfs_timer_start_ev;
173 static struct evcnt nfs_timer_stop_ev;
174
175 static int nfs_sndlock(struct nfsmount *, struct nfsreq *);
176 static void nfs_sndunlock(struct nfsmount *);
177 static int nfs_rcvlock(struct nfsmount *, struct nfsreq *);
178 static void nfs_rcvunlock(struct nfsmount *);
179
180 /*
181 * Initialize sockets and congestion for a new NFS connection.
182 * We do not free the sockaddr if error.
183 */
184 int
185 nfs_connect(nmp, rep, l)
186 struct nfsmount *nmp;
187 struct nfsreq *rep;
188 struct lwp *l;
189 {
190 struct socket *so;
191 int s, error, rcvreserve, sndreserve;
192 struct sockaddr *saddr;
193 struct sockaddr_in *sin;
194 #ifdef INET6
195 struct sockaddr_in6 *sin6;
196 #endif
197 struct mbuf *m;
198
199 nmp->nm_so = (struct socket *)0;
200 saddr = mtod(nmp->nm_nam, struct sockaddr *);
201 error = socreate(saddr->sa_family, &nmp->nm_so,
202 nmp->nm_sotype, nmp->nm_soproto, l);
203 if (error)
204 goto bad;
205 so = nmp->nm_so;
206 #ifdef MBUFTRACE
207 so->so_mowner = &nfs_mowner;
208 so->so_rcv.sb_mowner = &nfs_mowner;
209 so->so_snd.sb_mowner = &nfs_mowner;
210 #endif
211 nmp->nm_soflags = so->so_proto->pr_flags;
212
213 /*
214 * Some servers require that the client port be a reserved port number.
215 */
216 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
217 m = m_get(M_WAIT, MT_SOOPTS);
218 MCLAIM(m, so->so_mowner);
219 *mtod(m, int32_t *) = IP_PORTRANGE_LOW;
220 m->m_len = sizeof(int32_t);
221 if ((error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, m)))
222 goto bad;
223 m = m_get(M_WAIT, MT_SONAME);
224 MCLAIM(m, so->so_mowner);
225 sin = mtod(m, struct sockaddr_in *);
226 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
227 sin->sin_family = AF_INET;
228 sin->sin_addr.s_addr = INADDR_ANY;
229 sin->sin_port = 0;
230 error = sobind(so, m, &lwp0);
231 m_freem(m);
232 if (error)
233 goto bad;
234 }
235 #ifdef INET6
236 if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) {
237 m = m_get(M_WAIT, MT_SOOPTS);
238 MCLAIM(m, so->so_mowner);
239 *mtod(m, int32_t *) = IPV6_PORTRANGE_LOW;
240 m->m_len = sizeof(int32_t);
241 if ((error = sosetopt(so, IPPROTO_IPV6, IPV6_PORTRANGE, m)))
242 goto bad;
243 m = m_get(M_WAIT, MT_SONAME);
244 MCLAIM(m, so->so_mowner);
245 sin6 = mtod(m, struct sockaddr_in6 *);
246 sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6);
247 sin6->sin6_family = AF_INET6;
248 sin6->sin6_addr = in6addr_any;
249 sin6->sin6_port = 0;
250 error = sobind(so, m, &lwp0);
251 m_freem(m);
252 if (error)
253 goto bad;
254 }
255 #endif
256
257 /*
258 * Protocols that do not require connections may be optionally left
259 * unconnected for servers that reply from a port other than NFS_PORT.
260 */
261 if (nmp->nm_flag & NFSMNT_NOCONN) {
262 if (nmp->nm_soflags & PR_CONNREQUIRED) {
263 error = ENOTCONN;
264 goto bad;
265 }
266 } else {
267 error = soconnect(so, nmp->nm_nam, l);
268 if (error)
269 goto bad;
270
271 /*
272 * Wait for the connection to complete. Cribbed from the
273 * connect system call but with the wait timing out so
274 * that interruptible mounts don't hang here for a long time.
275 */
276 s = splsoftnet();
277 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
278 (void) tsleep((void *)&so->so_timeo, PSOCK,
279 "nfscn1", 2 * hz);
280 if ((so->so_state & SS_ISCONNECTING) &&
281 so->so_error == 0 && rep &&
282 (error = nfs_sigintr(nmp, rep, rep->r_lwp)) != 0){
283 so->so_state &= ~SS_ISCONNECTING;
284 splx(s);
285 goto bad;
286 }
287 }
288 if (so->so_error) {
289 error = so->so_error;
290 so->so_error = 0;
291 splx(s);
292 goto bad;
293 }
294 splx(s);
295 }
296 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
297 so->so_rcv.sb_timeo = (5 * hz);
298 so->so_snd.sb_timeo = (5 * hz);
299 } else {
300 /*
301 * enable receive timeout to detect server crash and reconnect.
302 * otherwise, we can be stuck in soreceive forever.
303 */
304 so->so_rcv.sb_timeo = (5 * hz);
305 so->so_snd.sb_timeo = 0;
306 }
307 if (nmp->nm_sotype == SOCK_DGRAM) {
308 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
309 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
310 NFS_MAXPKTHDR) * 2;
311 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
312 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
313 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
314 NFS_MAXPKTHDR) * 2;
315 } else {
316 if (nmp->nm_sotype != SOCK_STREAM)
317 panic("nfscon sotype");
318 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
319 m = m_get(M_WAIT, MT_SOOPTS);
320 MCLAIM(m, so->so_mowner);
321 *mtod(m, int32_t *) = 1;
322 m->m_len = sizeof(int32_t);
323 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
324 }
325 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
326 m = m_get(M_WAIT, MT_SOOPTS);
327 MCLAIM(m, so->so_mowner);
328 *mtod(m, int32_t *) = 1;
329 m->m_len = sizeof(int32_t);
330 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
331 }
332 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
333 sizeof (u_int32_t)) * 2;
334 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
335 sizeof (u_int32_t)) * 2;
336 }
337 error = soreserve(so, sndreserve, rcvreserve);
338 if (error)
339 goto bad;
340 so->so_rcv.sb_flags |= SB_NOINTR;
341 so->so_snd.sb_flags |= SB_NOINTR;
342
343 /* Initialize other non-zero congestion variables */
344 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
345 NFS_TIMEO << 3;
346 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
347 nmp->nm_sdrtt[3] = 0;
348 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
349 nmp->nm_sent = 0;
350 nmp->nm_timeouts = 0;
351 return (0);
352
353 bad:
354 nfs_disconnect(nmp);
355 return (error);
356 }
357
358 /*
359 * Reconnect routine:
360 * Called when a connection is broken on a reliable protocol.
361 * - clean up the old socket
362 * - nfs_connect() again
363 * - set R_MUSTRESEND for all outstanding requests on mount point
364 * If this fails the mount point is DEAD!
365 * nb: Must be called with the nfs_sndlock() set on the mount point.
366 */
367 int
368 nfs_reconnect(struct nfsreq *rep)
369 {
370 struct nfsreq *rp;
371 struct nfsmount *nmp = rep->r_nmp;
372 int error;
373
374 nfs_disconnect(nmp);
375 while ((error = nfs_connect(nmp, rep, &lwp0)) != 0) {
376 if (error == EINTR || error == ERESTART)
377 return (EINTR);
378 kpause("nfscn2", false, hz, NULL);
379 }
380
381 /*
382 * Loop through outstanding request list and fix up all requests
383 * on old socket.
384 */
385 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) {
386 if (rp->r_nmp == nmp) {
387 if ((rp->r_flags & R_MUSTRESEND) == 0)
388 rp->r_flags |= R_MUSTRESEND | R_REXMITTED;
389 rp->r_rexmit = 0;
390 }
391 }
392 return (0);
393 }
394
395 /*
396 * NFS disconnect. Clean up and unlink.
397 */
398 void
399 nfs_disconnect(nmp)
400 struct nfsmount *nmp;
401 {
402 struct socket *so;
403 int drain = 0;
404
405 if (nmp->nm_so) {
406 so = nmp->nm_so;
407 nmp->nm_so = (struct socket *)0;
408 soshutdown(so, SHUT_RDWR);
409 drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0;
410 if (drain) {
411 /*
412 * soshutdown() above should wake up the current
413 * listener.
414 * Now wake up those waiting for the receive lock, and
415 * wait for them to go away unhappy, to prevent *nmp
416 * from evaporating while they're sleeping.
417 */
418 mutex_enter(&nmp->nm_lock);
419 while (nmp->nm_waiters > 0) {
420 cv_broadcast(&nmp->nm_rcvcv);
421 cv_broadcast(&nmp->nm_sndcv);
422 cv_wait(&nmp->nm_disconcv, &nmp->nm_lock);
423 }
424 mutex_exit(&nmp->nm_lock);
425 }
426 soclose(so);
427 }
428 #ifdef DIAGNOSTIC
429 if (drain && (nmp->nm_waiters > 0))
430 panic("nfs_disconnect: waiters left after drain?");
431 #endif
432 }
433
434 void
435 nfs_safedisconnect(nmp)
436 struct nfsmount *nmp;
437 {
438 struct nfsreq dummyreq;
439
440 memset(&dummyreq, 0, sizeof(dummyreq));
441 dummyreq.r_nmp = nmp;
442 nfs_rcvlock(nmp, &dummyreq); /* XXX ignored error return */
443 nfs_disconnect(nmp);
444 nfs_rcvunlock(nmp);
445 }
446
447 /*
448 * This is the nfs send routine. For connection based socket types, it
449 * must be called with an nfs_sndlock() on the socket.
450 * "rep == NULL" indicates that it has been called from a server.
451 * For the client side:
452 * - return EINTR if the RPC is terminated, 0 otherwise
453 * - set R_MUSTRESEND if the send fails for any reason
454 * - do any cleanup required by recoverable socket errors (? ? ?)
455 * For the server side:
456 * - return EINTR or ERESTART if interrupted by a signal
457 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
458 * - do any cleanup required by recoverable socket errors (? ? ?)
459 */
460 int
461 nfs_send(so, nam, top, rep, l)
462 struct socket *so;
463 struct mbuf *nam;
464 struct mbuf *top;
465 struct nfsreq *rep;
466 struct lwp *l;
467 {
468 struct mbuf *sendnam;
469 int error, soflags, flags;
470
471 /* XXX nfs_doio()/nfs_request() calls with rep->r_lwp == NULL */
472 if (l == NULL && rep->r_lwp == NULL)
473 l = curlwp;
474
475 if (rep) {
476 if (rep->r_flags & R_SOFTTERM) {
477 m_freem(top);
478 return (EINTR);
479 }
480 if ((so = rep->r_nmp->nm_so) == NULL) {
481 rep->r_flags |= R_MUSTRESEND;
482 m_freem(top);
483 return (0);
484 }
485 rep->r_flags &= ~R_MUSTRESEND;
486 soflags = rep->r_nmp->nm_soflags;
487 } else
488 soflags = so->so_proto->pr_flags;
489 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
490 sendnam = (struct mbuf *)0;
491 else
492 sendnam = nam;
493 if (so->so_type == SOCK_SEQPACKET)
494 flags = MSG_EOR;
495 else
496 flags = 0;
497
498 error = (*so->so_send)(so, sendnam, (struct uio *)0, top,
499 (struct mbuf *)0, flags, l);
500 if (error) {
501 if (rep) {
502 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
503 /*
504 * We're too fast for the network/driver,
505 * and UDP isn't flowcontrolled.
506 * We need to resend. This is not fatal,
507 * just try again.
508 *
509 * Could be smarter here by doing some sort
510 * of a backoff, but this is rare.
511 */
512 rep->r_flags |= R_MUSTRESEND;
513 } else {
514 if (error != EPIPE)
515 log(LOG_INFO,
516 "nfs send error %d for %s\n",
517 error,
518 rep->r_nmp->nm_mountp->
519 mnt_stat.f_mntfromname);
520 /*
521 * Deal with errors for the client side.
522 */
523 if (rep->r_flags & R_SOFTTERM)
524 error = EINTR;
525 else
526 rep->r_flags |= R_MUSTRESEND;
527 }
528 } else {
529 /*
530 * See above. This error can happen under normal
531 * circumstances and the log is too noisy.
532 * The error will still show up in nfsstat.
533 */
534 if (error != ENOBUFS || so->so_type != SOCK_DGRAM)
535 log(LOG_INFO, "nfsd send error %d\n", error);
536 }
537
538 /*
539 * Handle any recoverable (soft) socket errors here. (? ? ?)
540 */
541 if (error != EINTR && error != ERESTART &&
542 error != EWOULDBLOCK && error != EPIPE)
543 error = 0;
544 }
545 return (error);
546 }
547
548 #ifdef NFS
549 /*
550 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
551 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
552 * Mark and consolidate the data into a new mbuf list.
553 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
554 * small mbufs.
555 * For SOCK_STREAM we must be very careful to read an entire record once
556 * we have read any of it, even if the system call has been interrupted.
557 */
558 int
559 nfs_receive(rep, aname, mp, l)
560 struct nfsreq *rep;
561 struct mbuf **aname;
562 struct mbuf **mp;
563 struct lwp *l;
564 {
565 struct socket *so;
566 struct uio auio;
567 struct iovec aio;
568 struct mbuf *m;
569 struct mbuf *control;
570 u_int32_t len;
571 struct mbuf **getnam;
572 int error, sotype, rcvflg;
573
574 /*
575 * Set up arguments for soreceive()
576 */
577 *mp = (struct mbuf *)0;
578 *aname = (struct mbuf *)0;
579 sotype = rep->r_nmp->nm_sotype;
580
581 /*
582 * For reliable protocols, lock against other senders/receivers
583 * in case a reconnect is necessary.
584 * For SOCK_STREAM, first get the Record Mark to find out how much
585 * more there is to get.
586 * We must lock the socket against other receivers
587 * until we have an entire rpc request/reply.
588 */
589 if (sotype != SOCK_DGRAM) {
590 error = nfs_sndlock(rep->r_nmp, rep);
591 if (error)
592 return (error);
593 tryagain:
594 /*
595 * Check for fatal errors and resending request.
596 */
597 /*
598 * Ugh: If a reconnect attempt just happened, nm_so
599 * would have changed. NULL indicates a failed
600 * attempt that has essentially shut down this
601 * mount point.
602 */
603 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
604 nfs_sndunlock(rep->r_nmp);
605 return (EINTR);
606 }
607 so = rep->r_nmp->nm_so;
608 if (!so) {
609 error = nfs_reconnect(rep);
610 if (error) {
611 nfs_sndunlock(rep->r_nmp);
612 return (error);
613 }
614 goto tryagain;
615 }
616 while (rep->r_flags & R_MUSTRESEND) {
617 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
618 nfsstats.rpcretries++;
619 rep->r_rtt = 0;
620 rep->r_flags &= ~R_TIMING;
621 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep, l);
622 if (error) {
623 if (error == EINTR || error == ERESTART ||
624 (error = nfs_reconnect(rep)) != 0) {
625 nfs_sndunlock(rep->r_nmp);
626 return (error);
627 }
628 goto tryagain;
629 }
630 }
631 nfs_sndunlock(rep->r_nmp);
632 if (sotype == SOCK_STREAM) {
633 aio.iov_base = (void *) &len;
634 aio.iov_len = sizeof(u_int32_t);
635 auio.uio_iov = &aio;
636 auio.uio_iovcnt = 1;
637 auio.uio_rw = UIO_READ;
638 auio.uio_offset = 0;
639 auio.uio_resid = sizeof(u_int32_t);
640 UIO_SETUP_SYSSPACE(&auio);
641 do {
642 rcvflg = MSG_WAITALL;
643 error = (*so->so_receive)(so, (struct mbuf **)0, &auio,
644 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
645 if (error == EWOULDBLOCK && rep) {
646 if (rep->r_flags & R_SOFTTERM)
647 return (EINTR);
648 /*
649 * if it seems that the server died after it
650 * received our request, set EPIPE so that
651 * we'll reconnect and retransmit requests.
652 */
653 if (rep->r_rexmit >= rep->r_nmp->nm_retry) {
654 nfsstats.rpctimeouts++;
655 error = EPIPE;
656 }
657 }
658 } while (error == EWOULDBLOCK);
659 if (!error && auio.uio_resid > 0) {
660 /*
661 * Don't log a 0 byte receive; it means
662 * that the socket has been closed, and
663 * can happen during normal operation
664 * (forcible unmount or Solaris server).
665 */
666 if (auio.uio_resid != sizeof (u_int32_t))
667 log(LOG_INFO,
668 "short receive (%lu/%lu) from nfs server %s\n",
669 (u_long)sizeof(u_int32_t) - auio.uio_resid,
670 (u_long)sizeof(u_int32_t),
671 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
672 error = EPIPE;
673 }
674 if (error)
675 goto errout;
676 len = ntohl(len) & ~0x80000000;
677 /*
678 * This is SERIOUS! We are out of sync with the sender
679 * and forcing a disconnect/reconnect is all I can do.
680 */
681 if (len > NFS_MAXPACKET) {
682 log(LOG_ERR, "%s (%d) from nfs server %s\n",
683 "impossible packet length",
684 len,
685 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
686 error = EFBIG;
687 goto errout;
688 }
689 auio.uio_resid = len;
690 do {
691 rcvflg = MSG_WAITALL;
692 error = (*so->so_receive)(so, (struct mbuf **)0,
693 &auio, mp, (struct mbuf **)0, &rcvflg);
694 } while (error == EWOULDBLOCK || error == EINTR ||
695 error == ERESTART);
696 if (!error && auio.uio_resid > 0) {
697 if (len != auio.uio_resid)
698 log(LOG_INFO,
699 "short receive (%lu/%d) from nfs server %s\n",
700 (u_long)len - auio.uio_resid, len,
701 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
702 error = EPIPE;
703 }
704 } else {
705 /*
706 * NB: Since uio_resid is big, MSG_WAITALL is ignored
707 * and soreceive() will return when it has either a
708 * control msg or a data msg.
709 * We have no use for control msg., but must grab them
710 * and then throw them away so we know what is going
711 * on.
712 */
713 auio.uio_resid = len = 100000000; /* Anything Big */
714 /* not need to setup uio_vmspace */
715 do {
716 rcvflg = 0;
717 error = (*so->so_receive)(so, (struct mbuf **)0,
718 &auio, mp, &control, &rcvflg);
719 if (control)
720 m_freem(control);
721 if (error == EWOULDBLOCK && rep) {
722 if (rep->r_flags & R_SOFTTERM)
723 return (EINTR);
724 }
725 } while (error == EWOULDBLOCK ||
726 (!error && *mp == NULL && control));
727 if ((rcvflg & MSG_EOR) == 0)
728 printf("Egad!!\n");
729 if (!error && *mp == NULL)
730 error = EPIPE;
731 len -= auio.uio_resid;
732 }
733 errout:
734 if (error && error != EINTR && error != ERESTART) {
735 m_freem(*mp);
736 *mp = (struct mbuf *)0;
737 if (error != EPIPE)
738 log(LOG_INFO,
739 "receive error %d from nfs server %s\n",
740 error,
741 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
742 error = nfs_sndlock(rep->r_nmp, rep);
743 if (!error)
744 error = nfs_reconnect(rep);
745 if (!error)
746 goto tryagain;
747 else
748 nfs_sndunlock(rep->r_nmp);
749 }
750 } else {
751 if ((so = rep->r_nmp->nm_so) == NULL)
752 return (EACCES);
753 if (so->so_state & SS_ISCONNECTED)
754 getnam = (struct mbuf **)0;
755 else
756 getnam = aname;
757 auio.uio_resid = len = 1000000;
758 /* not need to setup uio_vmspace */
759 do {
760 rcvflg = 0;
761 error = (*so->so_receive)(so, getnam, &auio, mp,
762 (struct mbuf **)0, &rcvflg);
763 if (error == EWOULDBLOCK &&
764 (rep->r_flags & R_SOFTTERM))
765 return (EINTR);
766 } while (error == EWOULDBLOCK);
767 len -= auio.uio_resid;
768 if (!error && *mp == NULL)
769 error = EPIPE;
770 }
771 if (error) {
772 m_freem(*mp);
773 *mp = (struct mbuf *)0;
774 }
775 return (error);
776 }
777
778 /*
779 * Implement receipt of reply on a socket.
780 * We must search through the list of received datagrams matching them
781 * with outstanding requests using the xid, until ours is found.
782 */
783 /* ARGSUSED */
784 int
785 nfs_reply(myrep, lwp)
786 struct nfsreq *myrep;
787 struct lwp *lwp;
788 {
789 struct nfsreq *rep;
790 struct nfsmount *nmp = myrep->r_nmp;
791 int32_t t1;
792 struct mbuf *mrep, *nam, *md;
793 u_int32_t rxid, *tl;
794 char *dpos, *cp2;
795 int error;
796
797 /*
798 * Loop around until we get our own reply
799 */
800 for (;;) {
801 /*
802 * Lock against other receivers so that I don't get stuck in
803 * sbwait() after someone else has received my reply for me.
804 * Also necessary for connection based protocols to avoid
805 * race conditions during a reconnect.
806 */
807 error = nfs_rcvlock(nmp, myrep);
808 if (error == EALREADY)
809 return (0);
810 if (error)
811 return (error);
812 /*
813 * Get the next Rpc reply off the socket
814 */
815
816 mutex_enter(&nmp->nm_lock);
817 nmp->nm_waiters++;
818 mutex_exit(&nmp->nm_lock);
819
820 error = nfs_receive(myrep, &nam, &mrep, lwp);
821
822 mutex_enter(&nmp->nm_lock);
823 nmp->nm_waiters--;
824 cv_signal(&nmp->nm_disconcv);
825 mutex_exit(&nmp->nm_lock);
826
827 if (error) {
828 nfs_rcvunlock(nmp);
829
830 if (nmp->nm_iflag & NFSMNT_DISMNT) {
831 /*
832 * Oops, we're going away now..
833 */
834 return error;
835 }
836 /*
837 * Ignore routing errors on connectionless protocols? ?
838 */
839 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
840 nmp->nm_so->so_error = 0;
841 #ifdef DEBUG
842 printf("nfs_reply: ignoring error %d\n", error);
843 #endif
844 continue;
845 }
846 return (error);
847 }
848 if (nam)
849 m_freem(nam);
850
851 /*
852 * Get the xid and check that it is an rpc reply
853 */
854 md = mrep;
855 dpos = mtod(md, void *);
856 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
857 rxid = *tl++;
858 if (*tl != rpc_reply) {
859 nfsstats.rpcinvalid++;
860 m_freem(mrep);
861 nfsmout:
862 nfs_rcvunlock(nmp);
863 continue;
864 }
865
866 /*
867 * Loop through the request list to match up the reply
868 * Iff no match, just drop the datagram
869 */
870 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
871 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
872 /* Found it.. */
873 rep->r_mrep = mrep;
874 rep->r_md = md;
875 rep->r_dpos = dpos;
876 if (nfsrtton) {
877 struct rttl *rt;
878
879 rt = &nfsrtt.rttl[nfsrtt.pos];
880 rt->proc = rep->r_procnum;
881 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
882 rt->sent = nmp->nm_sent;
883 rt->cwnd = nmp->nm_cwnd;
884 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
885 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
886 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsidx;
887 getmicrotime(&rt->tstamp);
888 if (rep->r_flags & R_TIMING)
889 rt->rtt = rep->r_rtt;
890 else
891 rt->rtt = 1000000;
892 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
893 }
894 /*
895 * Update congestion window.
896 * Do the additive increase of
897 * one rpc/rtt.
898 */
899 if (nmp->nm_cwnd <= nmp->nm_sent) {
900 nmp->nm_cwnd +=
901 (NFS_CWNDSCALE * NFS_CWNDSCALE +
902 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
903 if (nmp->nm_cwnd > NFS_MAXCWND)
904 nmp->nm_cwnd = NFS_MAXCWND;
905 }
906 rep->r_flags &= ~R_SENT;
907 nmp->nm_sent -= NFS_CWNDSCALE;
908 /*
909 * Update rtt using a gain of 0.125 on the mean
910 * and a gain of 0.25 on the deviation.
911 */
912 if (rep->r_flags & R_TIMING) {
913 /*
914 * Since the timer resolution of
915 * NFS_HZ is so course, it can often
916 * result in r_rtt == 0. Since
917 * r_rtt == N means that the actual
918 * rtt is between N+dt and N+2-dt ticks,
919 * add 1.
920 */
921 t1 = rep->r_rtt + 1;
922 t1 -= (NFS_SRTT(rep) >> 3);
923 NFS_SRTT(rep) += t1;
924 if (t1 < 0)
925 t1 = -t1;
926 t1 -= (NFS_SDRTT(rep) >> 2);
927 NFS_SDRTT(rep) += t1;
928 }
929 nmp->nm_timeouts = 0;
930 break;
931 }
932 }
933 nfs_rcvunlock(nmp);
934 /*
935 * If not matched to a request, drop it.
936 * If it's mine, get out.
937 */
938 if (rep == 0) {
939 nfsstats.rpcunexpected++;
940 m_freem(mrep);
941 } else if (rep == myrep) {
942 if (rep->r_mrep == NULL)
943 panic("nfsreply nil");
944 return (0);
945 }
946 }
947 }
948
949 /*
950 * nfs_request - goes something like this
951 * - fill in request struct
952 * - links it into list
953 * - calls nfs_send() for first transmit
954 * - calls nfs_receive() to get reply
955 * - break down rpc header and return with nfs reply pointed to
956 * by mrep or error
957 * nb: always frees up mreq mbuf list
958 */
959 int
960 nfs_request(np, mrest, procnum, lwp, cred, mrp, mdp, dposp, rexmitp)
961 struct nfsnode *np;
962 struct mbuf *mrest;
963 int procnum;
964 struct lwp *lwp;
965 kauth_cred_t cred;
966 struct mbuf **mrp;
967 struct mbuf **mdp;
968 char **dposp;
969 int *rexmitp;
970 {
971 struct mbuf *m, *mrep;
972 struct nfsreq *rep;
973 u_int32_t *tl;
974 int i;
975 struct nfsmount *nmp = VFSTONFS(np->n_vnode->v_mount);
976 struct mbuf *md, *mheadend;
977 char nickv[RPCX_NICKVERF];
978 time_t waituntil;
979 char *dpos, *cp2;
980 int t1, s, error = 0, mrest_len, auth_len, auth_type;
981 int trylater_delay = NFS_TRYLATERDEL, failed_auth = 0;
982 int verf_len, verf_type;
983 u_int32_t xid;
984 char *auth_str, *verf_str;
985 NFSKERBKEY_T key; /* save session key */
986 kauth_cred_t acred;
987 struct mbuf *mrest_backup = NULL;
988 kauth_cred_t origcred = NULL; /* XXX: gcc */
989 bool retry_cred = true;
990 bool use_opencred = (np->n_flag & NUSEOPENCRED) != 0;
991
992 if (rexmitp != NULL)
993 *rexmitp = 0;
994
995 acred = kauth_cred_alloc();
996
997 tryagain_cred:
998 KASSERT(cred != NULL);
999 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
1000 rep->r_nmp = nmp;
1001 KASSERT(lwp == NULL || lwp == curlwp);
1002 rep->r_lwp = lwp;
1003 rep->r_procnum = procnum;
1004 i = 0;
1005 m = mrest;
1006 while (m) {
1007 i += m->m_len;
1008 m = m->m_next;
1009 }
1010 mrest_len = i;
1011
1012 /*
1013 * Get the RPC header with authorization.
1014 */
1015 kerbauth:
1016 verf_str = auth_str = (char *)0;
1017 if (nmp->nm_flag & NFSMNT_KERB) {
1018 verf_str = nickv;
1019 verf_len = sizeof (nickv);
1020 auth_type = RPCAUTH_KERB4;
1021 memset((void *)key, 0, sizeof (key));
1022 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
1023 &auth_len, verf_str, verf_len)) {
1024 error = nfs_getauth(nmp, rep, cred, &auth_str,
1025 &auth_len, verf_str, &verf_len, key);
1026 if (error) {
1027 free((void *)rep, M_NFSREQ);
1028 m_freem(mrest);
1029 KASSERT(kauth_cred_getrefcnt(acred) == 1);
1030 kauth_cred_free(acred);
1031 return (error);
1032 }
1033 }
1034 retry_cred = false;
1035 } else {
1036 /* AUTH_UNIX */
1037 uid_t uid;
1038 gid_t gid;
1039
1040 /*
1041 * on the most unix filesystems, permission checks are
1042 * done when the file is open(2)'ed.
1043 * ie. once a file is successfully open'ed,
1044 * following i/o operations never fail with EACCES.
1045 * we try to follow the semantics as far as possible.
1046 *
1047 * note that we expect that the nfs server always grant
1048 * accesses by the file's owner.
1049 */
1050 origcred = cred;
1051 switch (procnum) {
1052 case NFSPROC_READ:
1053 case NFSPROC_WRITE:
1054 case NFSPROC_COMMIT:
1055 uid = np->n_vattr->va_uid;
1056 gid = np->n_vattr->va_gid;
1057 if (kauth_cred_geteuid(cred) == uid &&
1058 kauth_cred_getegid(cred) == gid) {
1059 retry_cred = false;
1060 break;
1061 }
1062 if (use_opencred)
1063 break;
1064 kauth_cred_setuid(acred, uid);
1065 kauth_cred_seteuid(acred, uid);
1066 kauth_cred_setsvuid(acred, uid);
1067 kauth_cred_setgid(acred, gid);
1068 kauth_cred_setegid(acred, gid);
1069 kauth_cred_setsvgid(acred, gid);
1070 cred = acred;
1071 break;
1072 default:
1073 retry_cred = false;
1074 break;
1075 }
1076 /*
1077 * backup mbuf chain if we can need it later to retry.
1078 *
1079 * XXX maybe we can keep a direct reference to
1080 * mrest without doing m_copym, but it's ...ugly.
1081 */
1082 if (retry_cred)
1083 mrest_backup = m_copym(mrest, 0, M_COPYALL, M_WAIT);
1084 auth_type = RPCAUTH_UNIX;
1085 /* XXX elad - ngroups */
1086 auth_len = (((kauth_cred_ngroups(cred) > nmp->nm_numgrps) ?
1087 nmp->nm_numgrps : kauth_cred_ngroups(cred)) << 2) +
1088 5 * NFSX_UNSIGNED;
1089 }
1090 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
1091 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
1092 if (auth_str)
1093 free(auth_str, M_TEMP);
1094
1095 /*
1096 * For stream protocols, insert a Sun RPC Record Mark.
1097 */
1098 if (nmp->nm_sotype == SOCK_STREAM) {
1099 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
1100 *mtod(m, u_int32_t *) = htonl(0x80000000 |
1101 (m->m_pkthdr.len - NFSX_UNSIGNED));
1102 }
1103 rep->r_mreq = m;
1104 rep->r_xid = xid;
1105 tryagain:
1106 if (nmp->nm_flag & NFSMNT_SOFT)
1107 rep->r_retry = nmp->nm_retry;
1108 else
1109 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
1110 rep->r_rtt = rep->r_rexmit = 0;
1111 if (proct[procnum] > 0)
1112 rep->r_flags = R_TIMING;
1113 else
1114 rep->r_flags = 0;
1115 rep->r_mrep = NULL;
1116
1117 /*
1118 * Do the client side RPC.
1119 */
1120 nfsstats.rpcrequests++;
1121 /*
1122 * Chain request into list of outstanding requests. Be sure
1123 * to put it LAST so timer finds oldest requests first.
1124 */
1125 s = splsoftnet();
1126 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
1127 nfs_timer_start();
1128
1129 /*
1130 * If backing off another request or avoiding congestion, don't
1131 * send this one now but let timer do it. If not timing a request,
1132 * do it now.
1133 */
1134 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
1135 (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1136 nmp->nm_sent < nmp->nm_cwnd)) {
1137 splx(s);
1138 if (nmp->nm_soflags & PR_CONNREQUIRED)
1139 error = nfs_sndlock(nmp, rep);
1140 if (!error) {
1141 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
1142 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep, lwp);
1143 if (nmp->nm_soflags & PR_CONNREQUIRED)
1144 nfs_sndunlock(nmp);
1145 }
1146 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
1147 nmp->nm_sent += NFS_CWNDSCALE;
1148 rep->r_flags |= R_SENT;
1149 }
1150 } else {
1151 splx(s);
1152 rep->r_rtt = -1;
1153 }
1154
1155 /*
1156 * Wait for the reply from our send or the timer's.
1157 */
1158 if (!error || error == EPIPE)
1159 error = nfs_reply(rep, lwp);
1160
1161 /*
1162 * RPC done, unlink the request.
1163 */
1164 s = splsoftnet();
1165 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
1166 splx(s);
1167
1168 /*
1169 * Decrement the outstanding request count.
1170 */
1171 if (rep->r_flags & R_SENT) {
1172 rep->r_flags &= ~R_SENT; /* paranoia */
1173 nmp->nm_sent -= NFS_CWNDSCALE;
1174 }
1175
1176 if (rexmitp != NULL) {
1177 int rexmit;
1178
1179 if (nmp->nm_sotype != SOCK_DGRAM)
1180 rexmit = (rep->r_flags & R_REXMITTED) != 0;
1181 else
1182 rexmit = rep->r_rexmit;
1183 *rexmitp = rexmit;
1184 }
1185
1186 /*
1187 * If there was a successful reply and a tprintf msg.
1188 * tprintf a response.
1189 */
1190 if (!error && (rep->r_flags & R_TPRINTFMSG))
1191 nfs_msg(rep->r_lwp, nmp->nm_mountp->mnt_stat.f_mntfromname,
1192 "is alive again");
1193 mrep = rep->r_mrep;
1194 md = rep->r_md;
1195 dpos = rep->r_dpos;
1196 if (error)
1197 goto nfsmout;
1198
1199 /*
1200 * break down the rpc header and check if ok
1201 */
1202 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1203 if (*tl++ == rpc_msgdenied) {
1204 if (*tl == rpc_mismatch)
1205 error = EOPNOTSUPP;
1206 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
1207 if (!failed_auth) {
1208 failed_auth++;
1209 mheadend->m_next = (struct mbuf *)0;
1210 m_freem(mrep);
1211 m_freem(rep->r_mreq);
1212 goto kerbauth;
1213 } else
1214 error = EAUTH;
1215 } else
1216 error = EACCES;
1217 m_freem(mrep);
1218 goto nfsmout;
1219 }
1220
1221 /*
1222 * Grab any Kerberos verifier, otherwise just throw it away.
1223 */
1224 verf_type = fxdr_unsigned(int, *tl++);
1225 i = fxdr_unsigned(int32_t, *tl);
1226 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1227 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1228 if (error)
1229 goto nfsmout;
1230 } else if (i > 0)
1231 nfsm_adv(nfsm_rndup(i));
1232 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1233 /* 0 == ok */
1234 if (*tl == 0) {
1235 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1236 if (*tl != 0) {
1237 error = fxdr_unsigned(int, *tl);
1238 switch (error) {
1239 case NFSERR_PERM:
1240 error = EPERM;
1241 break;
1242
1243 case NFSERR_NOENT:
1244 error = ENOENT;
1245 break;
1246
1247 case NFSERR_IO:
1248 error = EIO;
1249 break;
1250
1251 case NFSERR_NXIO:
1252 error = ENXIO;
1253 break;
1254
1255 case NFSERR_ACCES:
1256 error = EACCES;
1257 if (!retry_cred)
1258 break;
1259 m_freem(mrep);
1260 m_freem(rep->r_mreq);
1261 FREE(rep, M_NFSREQ);
1262 use_opencred = !use_opencred;
1263 if (mrest_backup == NULL) {
1264 /* m_copym failure */
1265 KASSERT(
1266 kauth_cred_getrefcnt(acred) == 1);
1267 kauth_cred_free(acred);
1268 return ENOMEM;
1269 }
1270 mrest = mrest_backup;
1271 mrest_backup = NULL;
1272 cred = origcred;
1273 error = 0;
1274 retry_cred = false;
1275 goto tryagain_cred;
1276
1277 case NFSERR_EXIST:
1278 error = EEXIST;
1279 break;
1280
1281 case NFSERR_XDEV:
1282 error = EXDEV;
1283 break;
1284
1285 case NFSERR_NODEV:
1286 error = ENODEV;
1287 break;
1288
1289 case NFSERR_NOTDIR:
1290 error = ENOTDIR;
1291 break;
1292
1293 case NFSERR_ISDIR:
1294 error = EISDIR;
1295 break;
1296
1297 case NFSERR_INVAL:
1298 error = EINVAL;
1299 break;
1300
1301 case NFSERR_FBIG:
1302 error = EFBIG;
1303 break;
1304
1305 case NFSERR_NOSPC:
1306 error = ENOSPC;
1307 break;
1308
1309 case NFSERR_ROFS:
1310 error = EROFS;
1311 break;
1312
1313 case NFSERR_MLINK:
1314 error = EMLINK;
1315 break;
1316
1317 case NFSERR_TIMEDOUT:
1318 error = ETIMEDOUT;
1319 break;
1320
1321 case NFSERR_NAMETOL:
1322 error = ENAMETOOLONG;
1323 break;
1324
1325 case NFSERR_NOTEMPTY:
1326 error = ENOTEMPTY;
1327 break;
1328
1329 case NFSERR_DQUOT:
1330 error = EDQUOT;
1331 break;
1332
1333 case NFSERR_STALE:
1334 /*
1335 * If the File Handle was stale, invalidate the
1336 * lookup cache, just in case.
1337 */
1338 error = ESTALE;
1339 cache_purge(NFSTOV(np));
1340 break;
1341
1342 case NFSERR_REMOTE:
1343 error = EREMOTE;
1344 break;
1345
1346 case NFSERR_WFLUSH:
1347 case NFSERR_BADHANDLE:
1348 case NFSERR_NOT_SYNC:
1349 case NFSERR_BAD_COOKIE:
1350 error = EINVAL;
1351 break;
1352
1353 case NFSERR_NOTSUPP:
1354 error = ENOTSUP;
1355 break;
1356
1357 case NFSERR_TOOSMALL:
1358 case NFSERR_SERVERFAULT:
1359 case NFSERR_BADTYPE:
1360 error = EINVAL;
1361 break;
1362
1363 case NFSERR_TRYLATER:
1364 if ((nmp->nm_flag & NFSMNT_NFSV3) == 0)
1365 break;
1366 m_freem(mrep);
1367 error = 0;
1368 waituntil = time_second + trylater_delay;
1369 while (time_second < waituntil) {
1370 kpause("nfstrylater", false, hz, NULL);
1371 }
1372 trylater_delay *= NFS_TRYLATERDELMUL;
1373 if (trylater_delay > NFS_TRYLATERDELMAX)
1374 trylater_delay = NFS_TRYLATERDELMAX;
1375 /*
1376 * RFC1813:
1377 * The client should wait and then try
1378 * the request with a new RPC transaction ID.
1379 */
1380 nfs_renewxid(rep);
1381 goto tryagain;
1382
1383 default:
1384 #ifdef DIAGNOSTIC
1385 printf("Invalid rpc error code %d\n", error);
1386 #endif
1387 error = EINVAL;
1388 break;
1389 }
1390
1391 if (nmp->nm_flag & NFSMNT_NFSV3) {
1392 *mrp = mrep;
1393 *mdp = md;
1394 *dposp = dpos;
1395 error |= NFSERR_RETERR;
1396 } else
1397 m_freem(mrep);
1398 goto nfsmout;
1399 }
1400
1401 /*
1402 * note which credential worked to minimize number of retries.
1403 */
1404 if (use_opencred)
1405 np->n_flag |= NUSEOPENCRED;
1406 else
1407 np->n_flag &= ~NUSEOPENCRED;
1408
1409 *mrp = mrep;
1410 *mdp = md;
1411 *dposp = dpos;
1412
1413 KASSERT(error == 0);
1414 goto nfsmout;
1415 }
1416 m_freem(mrep);
1417 error = EPROTONOSUPPORT;
1418 nfsmout:
1419 KASSERT(kauth_cred_getrefcnt(acred) == 1);
1420 kauth_cred_free(acred);
1421 m_freem(rep->r_mreq);
1422 free((void *)rep, M_NFSREQ);
1423 m_freem(mrest_backup);
1424 return (error);
1425 }
1426 #endif /* NFS */
1427
1428 /*
1429 * Generate the rpc reply header
1430 * siz arg. is used to decide if adding a cluster is worthwhile
1431 */
1432 int
1433 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1434 int siz;
1435 struct nfsrv_descript *nd;
1436 struct nfssvc_sock *slp;
1437 int err;
1438 int cache;
1439 u_quad_t *frev;
1440 struct mbuf **mrq;
1441 struct mbuf **mbp;
1442 char **bposp;
1443 {
1444 u_int32_t *tl;
1445 struct mbuf *mreq;
1446 char *bpos;
1447 struct mbuf *mb;
1448
1449 mreq = m_gethdr(M_WAIT, MT_DATA);
1450 MCLAIM(mreq, &nfs_mowner);
1451 mb = mreq;
1452 /*
1453 * If this is a big reply, use a cluster else
1454 * try and leave leading space for the lower level headers.
1455 */
1456 siz += RPC_REPLYSIZ;
1457 if (siz >= max_datalen) {
1458 m_clget(mreq, M_WAIT);
1459 } else
1460 mreq->m_data += max_hdr;
1461 tl = mtod(mreq, u_int32_t *);
1462 mreq->m_len = 6 * NFSX_UNSIGNED;
1463 bpos = ((char *)tl) + mreq->m_len;
1464 *tl++ = txdr_unsigned(nd->nd_retxid);
1465 *tl++ = rpc_reply;
1466 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1467 *tl++ = rpc_msgdenied;
1468 if (err & NFSERR_AUTHERR) {
1469 *tl++ = rpc_autherr;
1470 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1471 mreq->m_len -= NFSX_UNSIGNED;
1472 bpos -= NFSX_UNSIGNED;
1473 } else {
1474 *tl++ = rpc_mismatch;
1475 *tl++ = txdr_unsigned(RPC_VER2);
1476 *tl = txdr_unsigned(RPC_VER2);
1477 }
1478 } else {
1479 *tl++ = rpc_msgaccepted;
1480
1481 /*
1482 * For Kerberos authentication, we must send the nickname
1483 * verifier back, otherwise just RPCAUTH_NULL.
1484 */
1485 if (nd->nd_flag & ND_KERBFULL) {
1486 struct nfsuid *nuidp;
1487 struct timeval ktvin, ktvout;
1488
1489 memset(&ktvout, 0, sizeof ktvout); /* XXX gcc */
1490
1491 LIST_FOREACH(nuidp,
1492 NUIDHASH(slp, kauth_cred_geteuid(nd->nd_cr)),
1493 nu_hash) {
1494 if (kauth_cred_geteuid(nuidp->nu_cr) ==
1495 kauth_cred_geteuid(nd->nd_cr) &&
1496 (!nd->nd_nam2 || netaddr_match(
1497 NU_NETFAM(nuidp), &nuidp->nu_haddr,
1498 nd->nd_nam2)))
1499 break;
1500 }
1501 if (nuidp) {
1502 ktvin.tv_sec =
1503 txdr_unsigned(nuidp->nu_timestamp.tv_sec
1504 - 1);
1505 ktvin.tv_usec =
1506 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1507
1508 /*
1509 * Encrypt the timestamp in ecb mode using the
1510 * session key.
1511 */
1512 #ifdef NFSKERB
1513 XXX
1514 #endif
1515
1516 *tl++ = rpc_auth_kerb;
1517 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1518 *tl = ktvout.tv_sec;
1519 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1520 *tl++ = ktvout.tv_usec;
1521 *tl++ = txdr_unsigned(
1522 kauth_cred_geteuid(nuidp->nu_cr));
1523 } else {
1524 *tl++ = 0;
1525 *tl++ = 0;
1526 }
1527 } else {
1528 *tl++ = 0;
1529 *tl++ = 0;
1530 }
1531 switch (err) {
1532 case EPROGUNAVAIL:
1533 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1534 break;
1535 case EPROGMISMATCH:
1536 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1537 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1538 *tl++ = txdr_unsigned(2);
1539 *tl = txdr_unsigned(3);
1540 break;
1541 case EPROCUNAVAIL:
1542 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1543 break;
1544 case EBADRPC:
1545 *tl = txdr_unsigned(RPC_GARBAGE);
1546 break;
1547 default:
1548 *tl = 0;
1549 if (err != NFSERR_RETVOID) {
1550 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1551 if (err)
1552 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1553 else
1554 *tl = 0;
1555 }
1556 break;
1557 };
1558 }
1559
1560 if (mrq != NULL)
1561 *mrq = mreq;
1562 *mbp = mb;
1563 *bposp = bpos;
1564 if (err != 0 && err != NFSERR_RETVOID)
1565 nfsstats.srvrpc_errs++;
1566 return (0);
1567 }
1568
1569 static void
1570 nfs_timer_schedule(void)
1571 {
1572
1573 callout_schedule(&nfs_timer_ch, nfs_ticks);
1574 }
1575
1576 void
1577 nfs_timer_start(void)
1578 {
1579
1580 if (callout_pending(&nfs_timer_ch))
1581 return;
1582
1583 nfs_timer_start_ev.ev_count++;
1584 nfs_timer_schedule();
1585 }
1586
1587 void
1588 nfs_timer_init(void)
1589 {
1590
1591 callout_init(&nfs_timer_ch, 0);
1592 callout_setfunc(&nfs_timer_ch, nfs_timer, NULL);
1593 evcnt_attach_dynamic(&nfs_timer_ev, EVCNT_TYPE_MISC, NULL,
1594 "nfs", "timer");
1595 evcnt_attach_dynamic(&nfs_timer_start_ev, EVCNT_TYPE_MISC, NULL,
1596 "nfs", "timer start");
1597 evcnt_attach_dynamic(&nfs_timer_stop_ev, EVCNT_TYPE_MISC, NULL,
1598 "nfs", "timer stop");
1599 }
1600
1601 /*
1602 * Nfs timer routine
1603 * Scan the nfsreq list and retranmit any requests that have timed out
1604 * To avoid retransmission attempts on STREAM sockets (in the future) make
1605 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1606 * A non-NULL argument means 'initialize'.
1607 */
1608 void
1609 nfs_timer(void *arg)
1610 {
1611 struct nfsreq *rep;
1612 struct mbuf *m;
1613 struct socket *so;
1614 struct nfsmount *nmp;
1615 int timeo;
1616 int s, error;
1617 bool more = false;
1618 #ifdef NFSSERVER
1619 struct timeval tv;
1620 struct nfssvc_sock *slp;
1621 u_quad_t cur_usec;
1622 #endif
1623
1624 nfs_timer_ev.ev_count++;
1625
1626 s = splsoftnet();
1627 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
1628 more = true;
1629 nmp = rep->r_nmp;
1630 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1631 continue;
1632 if (nfs_sigintr(nmp, rep, rep->r_lwp)) {
1633 rep->r_flags |= R_SOFTTERM;
1634 continue;
1635 }
1636 if (rep->r_rtt >= 0) {
1637 rep->r_rtt++;
1638 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1639 timeo = nmp->nm_timeo;
1640 else
1641 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1642 if (nmp->nm_timeouts > 0)
1643 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1644 if (rep->r_rtt <= timeo)
1645 continue;
1646 if (nmp->nm_timeouts <
1647 (sizeof(nfs_backoff) / sizeof(nfs_backoff[0])))
1648 nmp->nm_timeouts++;
1649 }
1650 /*
1651 * Check for server not responding
1652 */
1653 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1654 rep->r_rexmit > nmp->nm_deadthresh) {
1655 nfs_msg(rep->r_lwp,
1656 nmp->nm_mountp->mnt_stat.f_mntfromname,
1657 "not responding");
1658 rep->r_flags |= R_TPRINTFMSG;
1659 }
1660 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1661 nfsstats.rpctimeouts++;
1662 rep->r_flags |= R_SOFTTERM;
1663 continue;
1664 }
1665 if (nmp->nm_sotype != SOCK_DGRAM) {
1666 if (++rep->r_rexmit > NFS_MAXREXMIT)
1667 rep->r_rexmit = NFS_MAXREXMIT;
1668 continue;
1669 }
1670 if ((so = nmp->nm_so) == NULL)
1671 continue;
1672
1673 /*
1674 * If there is enough space and the window allows..
1675 * Resend it
1676 * Set r_rtt to -1 in case we fail to send it now.
1677 */
1678 rep->r_rtt = -1;
1679 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1680 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1681 (rep->r_flags & R_SENT) ||
1682 nmp->nm_sent < nmp->nm_cwnd) &&
1683 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1684 if (so->so_state & SS_ISCONNECTED)
1685 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1686 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1687 else
1688 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1689 nmp->nm_nam, (struct mbuf *)0, (struct lwp *)0);
1690 if (error) {
1691 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
1692 #ifdef DEBUG
1693 printf("nfs_timer: ignoring error %d\n",
1694 error);
1695 #endif
1696 so->so_error = 0;
1697 }
1698 } else {
1699 /*
1700 * Iff first send, start timing
1701 * else turn timing off, backoff timer
1702 * and divide congestion window by 2.
1703 */
1704 if (rep->r_flags & R_SENT) {
1705 rep->r_flags &= ~R_TIMING;
1706 if (++rep->r_rexmit > NFS_MAXREXMIT)
1707 rep->r_rexmit = NFS_MAXREXMIT;
1708 nmp->nm_cwnd >>= 1;
1709 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1710 nmp->nm_cwnd = NFS_CWNDSCALE;
1711 nfsstats.rpcretries++;
1712 } else {
1713 rep->r_flags |= R_SENT;
1714 nmp->nm_sent += NFS_CWNDSCALE;
1715 }
1716 rep->r_rtt = 0;
1717 }
1718 }
1719 }
1720
1721 #ifdef NFSSERVER
1722 /*
1723 * Scan the write gathering queues for writes that need to be
1724 * completed now.
1725 */
1726 getmicrotime(&tv);
1727 cur_usec = (u_quad_t)tv.tv_sec * 1000000 + (u_quad_t)tv.tv_usec;
1728 TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1729 if (LIST_FIRST(&slp->ns_tq)) {
1730 if (LIST_FIRST(&slp->ns_tq)->nd_time <= cur_usec) {
1731 nfsrv_wakenfsd(slp);
1732 }
1733 more = true;
1734 }
1735 }
1736 #endif /* NFSSERVER */
1737 splx(s);
1738 if (more) {
1739 nfs_timer_schedule();
1740 } else {
1741 nfs_timer_stop_ev.ev_count++;
1742 }
1743 }
1744
1745 /*
1746 * Test for a termination condition pending on the process.
1747 * This is used for NFSMNT_INT mounts.
1748 */
1749 int
1750 nfs_sigintr(nmp, rep, l)
1751 struct nfsmount *nmp;
1752 struct nfsreq *rep;
1753 struct lwp *l;
1754 {
1755 sigset_t ss;
1756
1757 if (rep && (rep->r_flags & R_SOFTTERM))
1758 return (EINTR);
1759 if (!(nmp->nm_flag & NFSMNT_INT))
1760 return (0);
1761 if (l) {
1762 sigpending1(l, &ss);
1763 #if 0
1764 sigminusset(&l->l_proc->p_sigctx.ps_sigignore, &ss);
1765 #endif
1766 if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) ||
1767 sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) ||
1768 sigismember(&ss, SIGQUIT))
1769 return (EINTR);
1770 }
1771 return (0);
1772 }
1773
1774 /*
1775 * Lock a socket against others.
1776 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1777 * and also to avoid race conditions between the processes with nfs requests
1778 * in progress when a reconnect is necessary.
1779 */
1780 static int
1781 nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep)
1782 {
1783 struct lwp *l;
1784 int timeo = 0;
1785 bool catch = false;
1786 int error = 0;
1787
1788 if (rep) {
1789 l = rep->r_lwp;
1790 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1791 catch = true;
1792 } else
1793 l = NULL;
1794 mutex_enter(&nmp->nm_lock);
1795 while ((nmp->nm_iflag & NFSMNT_SNDLOCK) != 0) {
1796 if (rep && nfs_sigintr(rep->r_nmp, rep, l)) {
1797 error = EINTR;
1798 goto quit;
1799 }
1800 if (catch) {
1801 cv_timedwait_sig(&nmp->nm_sndcv, &nmp->nm_lock, timeo);
1802 } else {
1803 cv_timedwait(&nmp->nm_sndcv, &nmp->nm_lock, timeo);
1804 }
1805 if (catch) {
1806 catch = false;
1807 timeo = 2 * hz;
1808 }
1809 }
1810 nmp->nm_iflag |= NFSMNT_SNDLOCK;
1811 quit:
1812 mutex_exit(&nmp->nm_lock);
1813 return error;
1814 }
1815
1816 /*
1817 * Unlock the stream socket for others.
1818 */
1819 static void
1820 nfs_sndunlock(struct nfsmount *nmp)
1821 {
1822
1823 mutex_enter(&nmp->nm_lock);
1824 if ((nmp->nm_iflag & NFSMNT_SNDLOCK) == 0)
1825 panic("nfs sndunlock");
1826 nmp->nm_iflag &= ~NFSMNT_SNDLOCK;
1827 cv_signal(&nmp->nm_sndcv);
1828 mutex_exit(&nmp->nm_lock);
1829 }
1830
1831 static int
1832 nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep)
1833 {
1834 int *flagp = &nmp->nm_iflag;
1835 int slptimeo = 0;
1836 bool catch;
1837 int error = 0;
1838
1839 KASSERT(nmp == rep->r_nmp);
1840
1841 catch = (nmp->nm_flag & NFSMNT_INT) != 0;
1842 mutex_enter(&nmp->nm_lock);
1843 while (/* CONSTCOND */ true) {
1844 if (*flagp & NFSMNT_DISMNT) {
1845 cv_signal(&nmp->nm_disconcv);
1846 error = EIO;
1847 break;
1848 }
1849 /* If our reply was received while we were sleeping,
1850 * then just return without taking the lock to avoid a
1851 * situation where a single iod could 'capture' the
1852 * receive lock.
1853 */
1854 if (rep->r_mrep != NULL) {
1855 error = EALREADY;
1856 break;
1857 }
1858 if (nfs_sigintr(rep->r_nmp, rep, rep->r_lwp)) {
1859 error = EINTR;
1860 break;
1861 }
1862 if ((*flagp & NFSMNT_RCVLOCK) == 0) {
1863 *flagp |= NFSMNT_RCVLOCK;
1864 break;
1865 }
1866 if (catch) {
1867 cv_timedwait_sig(&nmp->nm_rcvcv, &nmp->nm_lock,
1868 slptimeo);
1869 } else {
1870 cv_timedwait(&nmp->nm_rcvcv, &nmp->nm_lock,
1871 slptimeo);
1872 }
1873 if (catch) {
1874 catch = false;
1875 slptimeo = 2 * hz;
1876 }
1877 }
1878 mutex_exit(&nmp->nm_lock);
1879 return error;
1880 }
1881
1882 /*
1883 * Unlock the stream socket for others.
1884 */
1885 static void
1886 nfs_rcvunlock(struct nfsmount *nmp)
1887 {
1888
1889 mutex_enter(&nmp->nm_lock);
1890 if ((nmp->nm_iflag & NFSMNT_RCVLOCK) == 0)
1891 panic("nfs rcvunlock");
1892 nmp->nm_iflag &= ~NFSMNT_RCVLOCK;
1893 cv_broadcast(&nmp->nm_rcvcv);
1894 mutex_exit(&nmp->nm_lock);
1895 }
1896
1897 /*
1898 * Parse an RPC request
1899 * - verify it
1900 * - allocate and fill in the cred.
1901 */
1902 int
1903 nfs_getreq(nd, nfsd, has_header)
1904 struct nfsrv_descript *nd;
1905 struct nfsd *nfsd;
1906 int has_header;
1907 {
1908 int len, i;
1909 u_int32_t *tl;
1910 int32_t t1;
1911 struct uio uio;
1912 struct iovec iov;
1913 char *dpos, *cp2, *cp;
1914 u_int32_t nfsvers, auth_type;
1915 uid_t nickuid;
1916 int error = 0, ticklen;
1917 struct mbuf *mrep, *md;
1918 struct nfsuid *nuidp;
1919 struct timeval tvin, tvout;
1920
1921 memset(&tvout, 0, sizeof tvout); /* XXX gcc */
1922
1923 KASSERT(nd->nd_cr == NULL);
1924 mrep = nd->nd_mrep;
1925 md = nd->nd_md;
1926 dpos = nd->nd_dpos;
1927 if (has_header) {
1928 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1929 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1930 if (*tl++ != rpc_call) {
1931 m_freem(mrep);
1932 return (EBADRPC);
1933 }
1934 } else
1935 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1936 nd->nd_repstat = 0;
1937 nd->nd_flag = 0;
1938 if (*tl++ != rpc_vers) {
1939 nd->nd_repstat = ERPCMISMATCH;
1940 nd->nd_procnum = NFSPROC_NOOP;
1941 return (0);
1942 }
1943 if (*tl != nfs_prog) {
1944 nd->nd_repstat = EPROGUNAVAIL;
1945 nd->nd_procnum = NFSPROC_NOOP;
1946 return (0);
1947 }
1948 tl++;
1949 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1950 if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) {
1951 nd->nd_repstat = EPROGMISMATCH;
1952 nd->nd_procnum = NFSPROC_NOOP;
1953 return (0);
1954 }
1955 if (nfsvers == NFS_VER3)
1956 nd->nd_flag = ND_NFSV3;
1957 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1958 if (nd->nd_procnum == NFSPROC_NULL)
1959 return (0);
1960 if (nd->nd_procnum > NFSPROC_COMMIT ||
1961 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1962 nd->nd_repstat = EPROCUNAVAIL;
1963 nd->nd_procnum = NFSPROC_NOOP;
1964 return (0);
1965 }
1966 if ((nd->nd_flag & ND_NFSV3) == 0)
1967 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1968 auth_type = *tl++;
1969 len = fxdr_unsigned(int, *tl++);
1970 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1971 m_freem(mrep);
1972 return (EBADRPC);
1973 }
1974
1975 nd->nd_flag &= ~ND_KERBAUTH;
1976 /*
1977 * Handle auth_unix or auth_kerb.
1978 */
1979 if (auth_type == rpc_auth_unix) {
1980 uid_t uid;
1981 gid_t gid, *grbuf;
1982
1983 nd->nd_cr = kauth_cred_alloc();
1984 len = fxdr_unsigned(int, *++tl);
1985 if (len < 0 || len > NFS_MAXNAMLEN) {
1986 m_freem(mrep);
1987 error = EBADRPC;
1988 goto errout;
1989 }
1990 nfsm_adv(nfsm_rndup(len));
1991 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1992
1993 uid = fxdr_unsigned(uid_t, *tl++);
1994 gid = fxdr_unsigned(gid_t, *tl++);
1995 kauth_cred_setuid(nd->nd_cr, uid);
1996 kauth_cred_seteuid(nd->nd_cr, uid);
1997 kauth_cred_setsvuid(nd->nd_cr, uid);
1998 kauth_cred_setgid(nd->nd_cr, gid);
1999 kauth_cred_setegid(nd->nd_cr, gid);
2000 kauth_cred_setsvgid(nd->nd_cr, gid);
2001
2002 len = fxdr_unsigned(int, *tl);
2003 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
2004 m_freem(mrep);
2005 error = EBADRPC;
2006 goto errout;
2007 }
2008 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
2009
2010 grbuf = malloc(len * sizeof(gid_t), M_TEMP, M_WAITOK);
2011 for (i = 0; i < len; i++) {
2012 if (i < NGROUPS) /* XXX elad */
2013 grbuf[i] = fxdr_unsigned(gid_t, *tl++);
2014 else
2015 tl++;
2016 }
2017 kauth_cred_setgroups(nd->nd_cr, grbuf, min(len, NGROUPS), -1,
2018 UIO_SYSSPACE);
2019 free(grbuf, M_TEMP);
2020
2021 len = fxdr_unsigned(int, *++tl);
2022 if (len < 0 || len > RPCAUTH_MAXSIZ) {
2023 m_freem(mrep);
2024 error = EBADRPC;
2025 goto errout;
2026 }
2027 if (len > 0)
2028 nfsm_adv(nfsm_rndup(len));
2029 } else if (auth_type == rpc_auth_kerb) {
2030 switch (fxdr_unsigned(int, *tl++)) {
2031 case RPCAKN_FULLNAME:
2032 ticklen = fxdr_unsigned(int, *tl);
2033 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
2034 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
2035 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
2036 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
2037 m_freem(mrep);
2038 error = EBADRPC;
2039 goto errout;
2040 }
2041 uio.uio_offset = 0;
2042 uio.uio_iov = &iov;
2043 uio.uio_iovcnt = 1;
2044 UIO_SETUP_SYSSPACE(&uio);
2045 iov.iov_base = (void *)&nfsd->nfsd_authstr[4];
2046 iov.iov_len = RPCAUTH_MAXSIZ - 4;
2047 nfsm_mtouio(&uio, uio.uio_resid);
2048 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2049 if (*tl++ != rpc_auth_kerb ||
2050 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
2051 printf("Bad kerb verifier\n");
2052 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2053 nd->nd_procnum = NFSPROC_NOOP;
2054 return (0);
2055 }
2056 nfsm_dissect(cp, void *, 4 * NFSX_UNSIGNED);
2057 tl = (u_int32_t *)cp;
2058 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
2059 printf("Not fullname kerb verifier\n");
2060 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2061 nd->nd_procnum = NFSPROC_NOOP;
2062 return (0);
2063 }
2064 cp += NFSX_UNSIGNED;
2065 memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED);
2066 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
2067 nd->nd_flag |= ND_KERBFULL;
2068 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
2069 break;
2070 case RPCAKN_NICKNAME:
2071 if (len != 2 * NFSX_UNSIGNED) {
2072 printf("Kerb nickname short\n");
2073 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
2074 nd->nd_procnum = NFSPROC_NOOP;
2075 return (0);
2076 }
2077 nickuid = fxdr_unsigned(uid_t, *tl);
2078 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2079 if (*tl++ != rpc_auth_kerb ||
2080 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
2081 printf("Kerb nick verifier bad\n");
2082 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2083 nd->nd_procnum = NFSPROC_NOOP;
2084 return (0);
2085 }
2086 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2087 tvin.tv_sec = *tl++;
2088 tvin.tv_usec = *tl;
2089
2090 LIST_FOREACH(nuidp, NUIDHASH(nfsd->nfsd_slp, nickuid),
2091 nu_hash) {
2092 if (kauth_cred_geteuid(nuidp->nu_cr) == nickuid &&
2093 (!nd->nd_nam2 ||
2094 netaddr_match(NU_NETFAM(nuidp),
2095 &nuidp->nu_haddr, nd->nd_nam2)))
2096 break;
2097 }
2098 if (!nuidp) {
2099 nd->nd_repstat =
2100 (NFSERR_AUTHERR|AUTH_REJECTCRED);
2101 nd->nd_procnum = NFSPROC_NOOP;
2102 return (0);
2103 }
2104
2105 /*
2106 * Now, decrypt the timestamp using the session key
2107 * and validate it.
2108 */
2109 #ifdef NFSKERB
2110 XXX
2111 #endif
2112
2113 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
2114 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
2115 if (nuidp->nu_expire < time_second ||
2116 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
2117 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
2118 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
2119 nuidp->nu_expire = 0;
2120 nd->nd_repstat =
2121 (NFSERR_AUTHERR|AUTH_REJECTVERF);
2122 nd->nd_procnum = NFSPROC_NOOP;
2123 return (0);
2124 }
2125 kauth_cred_hold(nuidp->nu_cr);
2126 nd->nd_cr = nuidp->nu_cr;
2127 nd->nd_flag |= ND_KERBNICK;
2128 }
2129 } else {
2130 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
2131 nd->nd_procnum = NFSPROC_NOOP;
2132 return (0);
2133 }
2134
2135 nd->nd_md = md;
2136 nd->nd_dpos = dpos;
2137 KASSERT((nd->nd_cr == NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) != 0)
2138 || (nd->nd_cr != NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) == 0));
2139 return (0);
2140 nfsmout:
2141 errout:
2142 KASSERT(error != 0);
2143 if (nd->nd_cr != NULL) {
2144 kauth_cred_free(nd->nd_cr);
2145 nd->nd_cr = NULL;
2146 }
2147 return (error);
2148 }
2149
2150 int
2151 nfs_msg(l, server, msg)
2152 struct lwp *l;
2153 const char *server, *msg;
2154 {
2155 tpr_t tpr;
2156
2157 if (l)
2158 tpr = tprintf_open(l->l_proc);
2159 else
2160 tpr = NULL;
2161 tprintf(tpr, "nfs server %s: %s\n", server, msg);
2162 tprintf_close(tpr);
2163 return (0);
2164 }
2165
2166 #ifdef NFSSERVER
2167 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
2168 struct nfssvc_sock *, struct lwp *,
2169 struct mbuf **)) = {
2170 nfsrv_null,
2171 nfsrv_getattr,
2172 nfsrv_setattr,
2173 nfsrv_lookup,
2174 nfsrv3_access,
2175 nfsrv_readlink,
2176 nfsrv_read,
2177 nfsrv_write,
2178 nfsrv_create,
2179 nfsrv_mkdir,
2180 nfsrv_symlink,
2181 nfsrv_mknod,
2182 nfsrv_remove,
2183 nfsrv_rmdir,
2184 nfsrv_rename,
2185 nfsrv_link,
2186 nfsrv_readdir,
2187 nfsrv_readdirplus,
2188 nfsrv_statfs,
2189 nfsrv_fsinfo,
2190 nfsrv_pathconf,
2191 nfsrv_commit,
2192 nfsrv_noop
2193 };
2194
2195 /*
2196 * Socket upcall routine for the nfsd sockets.
2197 * The void *arg is a pointer to the "struct nfssvc_sock".
2198 * Essentially do as much as possible non-blocking, else punt and it will
2199 * be called with M_WAIT from an nfsd.
2200 */
2201 void
2202 nfsrv_rcv(so, arg, waitflag)
2203 struct socket *so;
2204 void *arg;
2205 int waitflag;
2206 {
2207 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2208 struct mbuf *m;
2209 struct mbuf *mp, *nam;
2210 struct uio auio;
2211 int flags, error;
2212 int setflags = 0;
2213
2214 error = nfsdsock_lock(slp, (waitflag != M_DONTWAIT));
2215 if (error) {
2216 setflags |= SLP_NEEDQ;
2217 goto dorecs_unlocked;
2218 }
2219
2220 KASSERT(so == slp->ns_so);
2221 #define NFS_TEST_HEAVY
2222 #ifdef NFS_TEST_HEAVY
2223 /*
2224 * Define this to test for nfsds handling this under heavy load.
2225 *
2226 * XXX it isn't safe to call so_receive from so_upcall context.
2227 */
2228 if (waitflag == M_DONTWAIT) {
2229 setflags |= SLP_NEEDQ;
2230 goto dorecs;
2231 }
2232 #endif
2233 mutex_enter(&slp->ns_lock);
2234 slp->ns_flag &= ~SLP_NEEDQ;
2235 mutex_exit(&slp->ns_lock);
2236 if (so->so_type == SOCK_STREAM) {
2237 #ifndef NFS_TEST_HEAVY
2238 /*
2239 * If there are already records on the queue, defer soreceive()
2240 * to an nfsd so that there is feedback to the TCP layer that
2241 * the nfs servers are heavily loaded.
2242 */
2243 if (slp->ns_rec && waitflag == M_DONTWAIT) {
2244 setflags |= SLP_NEEDQ;
2245 goto dorecs;
2246 }
2247 #endif
2248
2249 /*
2250 * Do soreceive().
2251 */
2252 auio.uio_resid = 1000000000;
2253 /* not need to setup uio_vmspace */
2254 flags = MSG_DONTWAIT;
2255 error = (*so->so_receive)(so, &nam, &auio, &mp, NULL, &flags);
2256 if (error || mp == NULL) {
2257 if (error == EWOULDBLOCK)
2258 setflags |= SLP_NEEDQ;
2259 else
2260 setflags |= SLP_DISCONN;
2261 goto dorecs;
2262 }
2263 m = mp;
2264 m_claimm(m, &nfs_mowner);
2265 if (slp->ns_rawend) {
2266 slp->ns_rawend->m_next = m;
2267 slp->ns_cc += 1000000000 - auio.uio_resid;
2268 } else {
2269 slp->ns_raw = m;
2270 slp->ns_cc = 1000000000 - auio.uio_resid;
2271 }
2272 while (m->m_next)
2273 m = m->m_next;
2274 slp->ns_rawend = m;
2275
2276 /*
2277 * Now try and parse record(s) out of the raw stream data.
2278 */
2279 error = nfsrv_getstream(slp, waitflag);
2280 if (error) {
2281 if (error == EPERM)
2282 setflags |= SLP_DISCONN;
2283 else
2284 setflags |= SLP_NEEDQ;
2285 }
2286 } else {
2287 do {
2288 auio.uio_resid = 1000000000;
2289 /* not need to setup uio_vmspace */
2290 flags = MSG_DONTWAIT;
2291 error = (*so->so_receive)(so, &nam, &auio, &mp, NULL,
2292 &flags);
2293 if (mp) {
2294 if (nam) {
2295 m = nam;
2296 m->m_next = mp;
2297 } else
2298 m = mp;
2299 m_claimm(m, &nfs_mowner);
2300 if (slp->ns_recend)
2301 slp->ns_recend->m_nextpkt = m;
2302 else
2303 slp->ns_rec = m;
2304 slp->ns_recend = m;
2305 m->m_nextpkt = (struct mbuf *)0;
2306 }
2307 if (error) {
2308 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2309 && error != EWOULDBLOCK) {
2310 setflags |= SLP_DISCONN;
2311 goto dorecs;
2312 }
2313 }
2314 } while (mp);
2315 }
2316 dorecs:
2317 nfsdsock_unlock(slp);
2318
2319 dorecs_unlocked:
2320 /*
2321 * Now try and process the request records, non-blocking.
2322 */
2323 if (setflags) {
2324 mutex_enter(&slp->ns_lock);
2325 slp->ns_flag |= setflags;
2326 mutex_exit(&slp->ns_lock);
2327 }
2328 if (waitflag == M_DONTWAIT &&
2329 (slp->ns_rec || (slp->ns_flag & (SLP_DISCONN | SLP_NEEDQ)) != 0)) {
2330 nfsrv_wakenfsd(slp);
2331 }
2332 }
2333
2334 int
2335 nfsdsock_lock(struct nfssvc_sock *slp, bool waitok)
2336 {
2337
2338 mutex_enter(&slp->ns_lock);
2339 while ((~slp->ns_flag & (SLP_BUSY|SLP_VALID)) == 0) {
2340 if (!waitok) {
2341 mutex_exit(&slp->ns_lock);
2342 return EWOULDBLOCK;
2343 }
2344 cv_wait(&slp->ns_cv, &slp->ns_lock);
2345 }
2346 if ((slp->ns_flag & SLP_VALID) == 0) {
2347 mutex_exit(&slp->ns_lock);
2348 return EINVAL;
2349 }
2350 KASSERT((slp->ns_flag & SLP_BUSY) == 0);
2351 slp->ns_flag |= SLP_BUSY;
2352 mutex_exit(&slp->ns_lock);
2353
2354 return 0;
2355 }
2356
2357 void
2358 nfsdsock_unlock(struct nfssvc_sock *slp)
2359 {
2360
2361 mutex_enter(&slp->ns_lock);
2362 KASSERT((slp->ns_flag & SLP_BUSY) != 0);
2363 KASSERT((slp->ns_flag & SLP_VALID) != 0);
2364 cv_broadcast(&slp->ns_cv);
2365 slp->ns_flag &= ~SLP_BUSY;
2366 mutex_exit(&slp->ns_lock);
2367 }
2368
2369 int
2370 nfsdsock_drain(struct nfssvc_sock *slp)
2371 {
2372 int error = 0;
2373
2374 mutex_enter(&slp->ns_lock);
2375 if ((slp->ns_flag & SLP_VALID) == 0) {
2376 error = EINVAL;
2377 goto done;
2378 }
2379 slp->ns_flag &= ~SLP_VALID;
2380 while ((slp->ns_flag & SLP_BUSY) != 0) {
2381 cv_wait(&slp->ns_cv, &slp->ns_lock);
2382 }
2383 done:
2384 mutex_exit(&slp->ns_lock);
2385
2386 return error;
2387 }
2388
2389 /*
2390 * Try and extract an RPC request from the mbuf data list received on a
2391 * stream socket. The "waitflag" argument indicates whether or not it
2392 * can sleep.
2393 */
2394 int
2395 nfsrv_getstream(slp, waitflag)
2396 struct nfssvc_sock *slp;
2397 int waitflag;
2398 {
2399 struct mbuf *m, **mpp;
2400 struct mbuf *recm;
2401 u_int32_t recmark;
2402 int error = 0;
2403
2404 KASSERT((slp->ns_flag & SLP_BUSY) != 0);
2405 for (;;) {
2406 if (slp->ns_reclen == 0) {
2407 if (slp->ns_cc < NFSX_UNSIGNED) {
2408 break;
2409 }
2410 m = slp->ns_raw;
2411 m_copydata(m, 0, NFSX_UNSIGNED, (void *)&recmark);
2412 m_adj(m, NFSX_UNSIGNED);
2413 slp->ns_cc -= NFSX_UNSIGNED;
2414 recmark = ntohl(recmark);
2415 slp->ns_reclen = recmark & ~0x80000000;
2416 if (recmark & 0x80000000)
2417 slp->ns_flag |= SLP_LASTFRAG;
2418 else
2419 slp->ns_flag &= ~SLP_LASTFRAG;
2420 if (slp->ns_reclen > NFS_MAXPACKET) {
2421 error = EPERM;
2422 break;
2423 }
2424 }
2425
2426 /*
2427 * Now get the record part.
2428 *
2429 * Note that slp->ns_reclen may be 0. Linux sometimes
2430 * generates 0-length records.
2431 */
2432 if (slp->ns_cc == slp->ns_reclen) {
2433 recm = slp->ns_raw;
2434 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
2435 slp->ns_cc = slp->ns_reclen = 0;
2436 } else if (slp->ns_cc > slp->ns_reclen) {
2437 recm = slp->ns_raw;
2438 m = m_split(recm, slp->ns_reclen, waitflag);
2439 if (m == NULL) {
2440 error = EWOULDBLOCK;
2441 break;
2442 }
2443 m_claimm(recm, &nfs_mowner);
2444 slp->ns_raw = m;
2445 if (m->m_next == NULL)
2446 slp->ns_rawend = m;
2447 slp->ns_cc -= slp->ns_reclen;
2448 slp->ns_reclen = 0;
2449 } else {
2450 break;
2451 }
2452
2453 /*
2454 * Accumulate the fragments into a record.
2455 */
2456 mpp = &slp->ns_frag;
2457 while (*mpp)
2458 mpp = &((*mpp)->m_next);
2459 *mpp = recm;
2460 if (slp->ns_flag & SLP_LASTFRAG) {
2461 if (slp->ns_recend)
2462 slp->ns_recend->m_nextpkt = slp->ns_frag;
2463 else
2464 slp->ns_rec = slp->ns_frag;
2465 slp->ns_recend = slp->ns_frag;
2466 slp->ns_frag = (struct mbuf *)0;
2467 }
2468 }
2469
2470 return error;
2471 }
2472
2473 /*
2474 * Parse an RPC header.
2475 */
2476 int
2477 nfsrv_dorec(slp, nfsd, ndp)
2478 struct nfssvc_sock *slp;
2479 struct nfsd *nfsd;
2480 struct nfsrv_descript **ndp;
2481 {
2482 struct mbuf *m, *nam;
2483 struct nfsrv_descript *nd;
2484 int error;
2485
2486 *ndp = NULL;
2487
2488 if (nfsdsock_lock(slp, true)) {
2489 return ENOBUFS;
2490 }
2491 m = slp->ns_rec;
2492 if (m == NULL) {
2493 nfsdsock_unlock(slp);
2494 return ENOBUFS;
2495 }
2496 slp->ns_rec = m->m_nextpkt;
2497 if (slp->ns_rec)
2498 m->m_nextpkt = NULL;
2499 else
2500 slp->ns_recend = NULL;
2501 nfsdsock_unlock(slp);
2502
2503 if (m->m_type == MT_SONAME) {
2504 nam = m;
2505 m = m->m_next;
2506 nam->m_next = NULL;
2507 } else
2508 nam = NULL;
2509 nd = nfsdreq_alloc();
2510 nd->nd_md = nd->nd_mrep = m;
2511 nd->nd_nam2 = nam;
2512 nd->nd_dpos = mtod(m, void *);
2513 error = nfs_getreq(nd, nfsd, true);
2514 if (error) {
2515 m_freem(nam);
2516 nfsdreq_free(nd);
2517 return (error);
2518 }
2519 *ndp = nd;
2520 nfsd->nfsd_nd = nd;
2521 return (0);
2522 }
2523
2524 /*
2525 * Search for a sleeping nfsd and wake it up.
2526 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2527 * running nfsds will go look for the work in the nfssvc_sock list.
2528 */
2529 void
2530 nfsrv_wakenfsd(slp)
2531 struct nfssvc_sock *slp;
2532 {
2533 struct nfsd *nd;
2534
2535 if ((slp->ns_flag & SLP_VALID) == 0)
2536 return;
2537 mutex_enter(&nfsd_lock);
2538 if (slp->ns_flag & SLP_DOREC) {
2539 mutex_exit(&nfsd_lock);
2540 return;
2541 }
2542 nd = SLIST_FIRST(&nfsd_idle_head);
2543 if (nd) {
2544 SLIST_REMOVE_HEAD(&nfsd_idle_head, nfsd_idle);
2545 if (nd->nfsd_slp)
2546 panic("nfsd wakeup");
2547 slp->ns_sref++;
2548 KASSERT(slp->ns_sref > 0);
2549 nd->nfsd_slp = slp;
2550 cv_signal(&nd->nfsd_cv);
2551 } else {
2552 slp->ns_flag |= SLP_DOREC;
2553 nfsd_head_flag |= NFSD_CHECKSLP;
2554 TAILQ_INSERT_TAIL(&nfssvc_sockpending, slp, ns_pending);
2555 }
2556 mutex_exit(&nfsd_lock);
2557 }
2558
2559 int
2560 nfsdsock_sendreply(struct nfssvc_sock *slp, struct nfsrv_descript *nd)
2561 {
2562 int error;
2563
2564 if (nd->nd_mrep != NULL) {
2565 m_freem(nd->nd_mrep);
2566 nd->nd_mrep = NULL;
2567 }
2568
2569 mutex_enter(&slp->ns_lock);
2570 if ((slp->ns_flag & SLP_SENDING) != 0) {
2571 SIMPLEQ_INSERT_TAIL(&slp->ns_sendq, nd, nd_sendq);
2572 mutex_exit(&slp->ns_lock);
2573 return 0;
2574 }
2575 KASSERT(SIMPLEQ_EMPTY(&slp->ns_sendq));
2576 slp->ns_flag |= SLP_SENDING;
2577 mutex_exit(&slp->ns_lock);
2578
2579 again:
2580 error = nfs_send(slp->ns_so, nd->nd_nam2, nd->nd_mreq, NULL, curlwp);
2581 if (nd->nd_nam2) {
2582 m_free(nd->nd_nam2);
2583 }
2584 nfsdreq_free(nd);
2585
2586 mutex_enter(&slp->ns_lock);
2587 KASSERT((slp->ns_flag & SLP_SENDING) != 0);
2588 nd = SIMPLEQ_FIRST(&slp->ns_sendq);
2589 if (nd != NULL) {
2590 SIMPLEQ_REMOVE_HEAD(&slp->ns_sendq, nd_sendq);
2591 mutex_exit(&slp->ns_lock);
2592 goto again;
2593 }
2594 slp->ns_flag &= ~SLP_SENDING;
2595 mutex_exit(&slp->ns_lock);
2596
2597 return error;
2598 }
2599 #endif /* NFSSERVER */
2600
2601 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
2602 static struct pool nfs_srvdesc_pool;
2603
2604 void
2605 nfsdreq_init(void)
2606 {
2607
2608 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
2609 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr, IPL_NONE);
2610 }
2611
2612 struct nfsrv_descript *
2613 nfsdreq_alloc(void)
2614 {
2615 struct nfsrv_descript *nd;
2616
2617 nd = pool_get(&nfs_srvdesc_pool, PR_WAITOK);
2618 nd->nd_cr = NULL;
2619 return nd;
2620 }
2621
2622 void
2623 nfsdreq_free(struct nfsrv_descript *nd)
2624 {
2625 kauth_cred_t cr;
2626
2627 cr = nd->nd_cr;
2628 if (cr != NULL) {
2629 kauth_cred_free(cr);
2630 }
2631 pool_put(&nfs_srvdesc_pool, nd);
2632 }
2633 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
2634