nfs_socket.c revision 1.165 1 /* $NetBSD: nfs_socket.c,v 1.165 2007/12/04 17:42:31 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1991, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
35 */
36
37 /*
38 * Socket operations for use by nfs
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.165 2007/12/04 17:42:31 yamt Exp $");
43
44 #include "fs_nfs.h"
45 #include "opt_nfs.h"
46 #include "opt_nfsserver.h"
47 #include "opt_mbuftrace.h"
48 #include "opt_inet.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/evcnt.h>
53 #include <sys/callout.h>
54 #include <sys/proc.h>
55 #include <sys/mount.h>
56 #include <sys/kernel.h>
57 #include <sys/mbuf.h>
58 #include <sys/vnode.h>
59 #include <sys/domain.h>
60 #include <sys/protosw.h>
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <sys/syslog.h>
64 #include <sys/tprintf.h>
65 #include <sys/namei.h>
66 #include <sys/signal.h>
67 #include <sys/signalvar.h>
68 #include <sys/kauth.h>
69
70 #include <netinet/in.h>
71 #include <netinet/tcp.h>
72
73 #include <nfs/rpcv2.h>
74 #include <nfs/nfsproto.h>
75 #include <nfs/nfs.h>
76 #include <nfs/xdr_subs.h>
77 #include <nfs/nfsm_subs.h>
78 #include <nfs/nfsmount.h>
79 #include <nfs/nfsnode.h>
80 #include <nfs/nfsrtt.h>
81 #include <nfs/nfs_var.h>
82
83 MALLOC_DEFINE(M_NFSREQ, "NFS req", "NFS request header");
84 #ifdef MBUFTRACE
85 struct mowner nfs_mowner = MOWNER_INIT("nfs","");
86 #endif
87
88 /*
89 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
90 * Use the mean and mean deviation of rtt for the appropriate type of rpc
91 * for the frequent rpcs and a default for the others.
92 * The justification for doing "other" this way is that these rpcs
93 * happen so infrequently that timer est. would probably be stale.
94 * Also, since many of these rpcs are
95 * non-idempotent, a conservative timeout is desired.
96 * getattr, lookup - A+2D
97 * read, write - A+4D
98 * other - nm_timeo
99 */
100 #define NFS_RTO(n, t) \
101 ((t) == 0 ? (n)->nm_timeo : \
102 ((t) < 3 ? \
103 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
104 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
105 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
106 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
107 /*
108 * External data, mostly RPC constants in XDR form
109 */
110 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
111 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
112 rpc_auth_kerb;
113 extern u_int32_t nfs_prog;
114 extern const int nfsv3_procid[NFS_NPROCS];
115 extern int nfs_ticks;
116
117 /*
118 * Defines which timer to use for the procnum.
119 * 0 - default
120 * 1 - getattr
121 * 2 - lookup
122 * 3 - read
123 * 4 - write
124 */
125 static const int proct[NFS_NPROCS] = {
126 [NFSPROC_NULL] = 0,
127 [NFSPROC_GETATTR] = 1,
128 [NFSPROC_SETATTR] = 0,
129 [NFSPROC_LOOKUP] = 2,
130 [NFSPROC_ACCESS] = 1,
131 [NFSPROC_READLINK] = 3,
132 [NFSPROC_READ] = 3,
133 [NFSPROC_WRITE] = 4,
134 [NFSPROC_CREATE] = 0,
135 [NFSPROC_MKDIR] = 0,
136 [NFSPROC_SYMLINK] = 0,
137 [NFSPROC_MKNOD] = 0,
138 [NFSPROC_REMOVE] = 0,
139 [NFSPROC_RMDIR] = 0,
140 [NFSPROC_RENAME] = 0,
141 [NFSPROC_LINK] = 0,
142 [NFSPROC_READDIR] = 3,
143 [NFSPROC_READDIRPLUS] = 3,
144 [NFSPROC_FSSTAT] = 0,
145 [NFSPROC_FSINFO] = 0,
146 [NFSPROC_PATHCONF] = 0,
147 [NFSPROC_COMMIT] = 0,
148 [NFSPROC_NOOP] = 0,
149 };
150
151 /*
152 * There is a congestion window for outstanding rpcs maintained per mount
153 * point. The cwnd size is adjusted in roughly the way that:
154 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
155 * SIGCOMM '88". ACM, August 1988.
156 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
157 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
158 * of rpcs is in progress.
159 * (The sent count and cwnd are scaled for integer arith.)
160 * Variants of "slow start" were tried and were found to be too much of a
161 * performance hit (ave. rtt 3 times larger),
162 * I suspect due to the large rtt that nfs rpcs have.
163 */
164 #define NFS_CWNDSCALE 256
165 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
166 static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
167 int nfsrtton = 0;
168 struct nfsrtt nfsrtt;
169 struct nfsreqhead nfs_reqq;
170 static callout_t nfs_timer_ch;
171 static struct evcnt nfs_timer_ev;
172 static struct evcnt nfs_timer_start_ev;
173 static struct evcnt nfs_timer_stop_ev;
174
175 static int nfs_sndlock(struct nfsmount *, struct nfsreq *);
176 static void nfs_sndunlock(struct nfsmount *);
177 static int nfs_rcvlock(struct nfsmount *, struct nfsreq *);
178 static void nfs_rcvunlock(struct nfsmount *);
179
180 #if defined(NFSSERVER)
181 static void nfsrv_wakenfsd_locked(struct nfssvc_sock *);
182 #endif /* defined(NFSSERVER) */
183
184 /*
185 * Initialize sockets and congestion for a new NFS connection.
186 * We do not free the sockaddr if error.
187 */
188 int
189 nfs_connect(nmp, rep, l)
190 struct nfsmount *nmp;
191 struct nfsreq *rep;
192 struct lwp *l;
193 {
194 struct socket *so;
195 int s, error, rcvreserve, sndreserve;
196 struct sockaddr *saddr;
197 struct sockaddr_in *sin;
198 #ifdef INET6
199 struct sockaddr_in6 *sin6;
200 #endif
201 struct mbuf *m;
202
203 nmp->nm_so = (struct socket *)0;
204 saddr = mtod(nmp->nm_nam, struct sockaddr *);
205 error = socreate(saddr->sa_family, &nmp->nm_so,
206 nmp->nm_sotype, nmp->nm_soproto, l);
207 if (error)
208 goto bad;
209 so = nmp->nm_so;
210 #ifdef MBUFTRACE
211 so->so_mowner = &nfs_mowner;
212 so->so_rcv.sb_mowner = &nfs_mowner;
213 so->so_snd.sb_mowner = &nfs_mowner;
214 #endif
215 nmp->nm_soflags = so->so_proto->pr_flags;
216
217 /*
218 * Some servers require that the client port be a reserved port number.
219 */
220 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
221 m = m_get(M_WAIT, MT_SOOPTS);
222 MCLAIM(m, so->so_mowner);
223 *mtod(m, int32_t *) = IP_PORTRANGE_LOW;
224 m->m_len = sizeof(int32_t);
225 if ((error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, m)))
226 goto bad;
227 m = m_get(M_WAIT, MT_SONAME);
228 MCLAIM(m, so->so_mowner);
229 sin = mtod(m, struct sockaddr_in *);
230 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
231 sin->sin_family = AF_INET;
232 sin->sin_addr.s_addr = INADDR_ANY;
233 sin->sin_port = 0;
234 error = sobind(so, m, &lwp0);
235 m_freem(m);
236 if (error)
237 goto bad;
238 }
239 #ifdef INET6
240 if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) {
241 m = m_get(M_WAIT, MT_SOOPTS);
242 MCLAIM(m, so->so_mowner);
243 *mtod(m, int32_t *) = IPV6_PORTRANGE_LOW;
244 m->m_len = sizeof(int32_t);
245 if ((error = sosetopt(so, IPPROTO_IPV6, IPV6_PORTRANGE, m)))
246 goto bad;
247 m = m_get(M_WAIT, MT_SONAME);
248 MCLAIM(m, so->so_mowner);
249 sin6 = mtod(m, struct sockaddr_in6 *);
250 sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6);
251 sin6->sin6_family = AF_INET6;
252 sin6->sin6_addr = in6addr_any;
253 sin6->sin6_port = 0;
254 error = sobind(so, m, &lwp0);
255 m_freem(m);
256 if (error)
257 goto bad;
258 }
259 #endif
260
261 /*
262 * Protocols that do not require connections may be optionally left
263 * unconnected for servers that reply from a port other than NFS_PORT.
264 */
265 if (nmp->nm_flag & NFSMNT_NOCONN) {
266 if (nmp->nm_soflags & PR_CONNREQUIRED) {
267 error = ENOTCONN;
268 goto bad;
269 }
270 } else {
271 error = soconnect(so, nmp->nm_nam, l);
272 if (error)
273 goto bad;
274
275 /*
276 * Wait for the connection to complete. Cribbed from the
277 * connect system call but with the wait timing out so
278 * that interruptible mounts don't hang here for a long time.
279 */
280 s = splsoftnet();
281 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
282 (void) tsleep((void *)&so->so_timeo, PSOCK,
283 "nfscn1", 2 * hz);
284 if ((so->so_state & SS_ISCONNECTING) &&
285 so->so_error == 0 && rep &&
286 (error = nfs_sigintr(nmp, rep, rep->r_lwp)) != 0){
287 so->so_state &= ~SS_ISCONNECTING;
288 splx(s);
289 goto bad;
290 }
291 }
292 if (so->so_error) {
293 error = so->so_error;
294 so->so_error = 0;
295 splx(s);
296 goto bad;
297 }
298 splx(s);
299 }
300 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
301 so->so_rcv.sb_timeo = (5 * hz);
302 so->so_snd.sb_timeo = (5 * hz);
303 } else {
304 /*
305 * enable receive timeout to detect server crash and reconnect.
306 * otherwise, we can be stuck in soreceive forever.
307 */
308 so->so_rcv.sb_timeo = (5 * hz);
309 so->so_snd.sb_timeo = 0;
310 }
311 if (nmp->nm_sotype == SOCK_DGRAM) {
312 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
313 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
314 NFS_MAXPKTHDR) * 2;
315 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
316 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
317 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
318 NFS_MAXPKTHDR) * 2;
319 } else {
320 if (nmp->nm_sotype != SOCK_STREAM)
321 panic("nfscon sotype");
322 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
323 m = m_get(M_WAIT, MT_SOOPTS);
324 MCLAIM(m, so->so_mowner);
325 *mtod(m, int32_t *) = 1;
326 m->m_len = sizeof(int32_t);
327 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
328 }
329 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
330 m = m_get(M_WAIT, MT_SOOPTS);
331 MCLAIM(m, so->so_mowner);
332 *mtod(m, int32_t *) = 1;
333 m->m_len = sizeof(int32_t);
334 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
335 }
336 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
337 sizeof (u_int32_t)) * 2;
338 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
339 sizeof (u_int32_t)) * 2;
340 }
341 error = soreserve(so, sndreserve, rcvreserve);
342 if (error)
343 goto bad;
344 so->so_rcv.sb_flags |= SB_NOINTR;
345 so->so_snd.sb_flags |= SB_NOINTR;
346
347 /* Initialize other non-zero congestion variables */
348 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
349 NFS_TIMEO << 3;
350 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
351 nmp->nm_sdrtt[3] = 0;
352 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
353 nmp->nm_sent = 0;
354 nmp->nm_timeouts = 0;
355 return (0);
356
357 bad:
358 nfs_disconnect(nmp);
359 return (error);
360 }
361
362 /*
363 * Reconnect routine:
364 * Called when a connection is broken on a reliable protocol.
365 * - clean up the old socket
366 * - nfs_connect() again
367 * - set R_MUSTRESEND for all outstanding requests on mount point
368 * If this fails the mount point is DEAD!
369 * nb: Must be called with the nfs_sndlock() set on the mount point.
370 */
371 int
372 nfs_reconnect(struct nfsreq *rep)
373 {
374 struct nfsreq *rp;
375 struct nfsmount *nmp = rep->r_nmp;
376 int error;
377
378 nfs_disconnect(nmp);
379 while ((error = nfs_connect(nmp, rep, &lwp0)) != 0) {
380 if (error == EINTR || error == ERESTART)
381 return (EINTR);
382 kpause("nfscn2", false, hz, NULL);
383 }
384
385 /*
386 * Loop through outstanding request list and fix up all requests
387 * on old socket.
388 */
389 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) {
390 if (rp->r_nmp == nmp) {
391 if ((rp->r_flags & R_MUSTRESEND) == 0)
392 rp->r_flags |= R_MUSTRESEND | R_REXMITTED;
393 rp->r_rexmit = 0;
394 }
395 }
396 return (0);
397 }
398
399 /*
400 * NFS disconnect. Clean up and unlink.
401 */
402 void
403 nfs_disconnect(nmp)
404 struct nfsmount *nmp;
405 {
406 struct socket *so;
407 int drain = 0;
408
409 if (nmp->nm_so) {
410 so = nmp->nm_so;
411 nmp->nm_so = (struct socket *)0;
412 soshutdown(so, SHUT_RDWR);
413 drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0;
414 if (drain) {
415 /*
416 * soshutdown() above should wake up the current
417 * listener.
418 * Now wake up those waiting for the receive lock, and
419 * wait for them to go away unhappy, to prevent *nmp
420 * from evaporating while they're sleeping.
421 */
422 mutex_enter(&nmp->nm_lock);
423 while (nmp->nm_waiters > 0) {
424 cv_broadcast(&nmp->nm_rcvcv);
425 cv_broadcast(&nmp->nm_sndcv);
426 cv_wait(&nmp->nm_disconcv, &nmp->nm_lock);
427 }
428 mutex_exit(&nmp->nm_lock);
429 }
430 soclose(so);
431 }
432 #ifdef DIAGNOSTIC
433 if (drain && (nmp->nm_waiters > 0))
434 panic("nfs_disconnect: waiters left after drain?");
435 #endif
436 }
437
438 void
439 nfs_safedisconnect(nmp)
440 struct nfsmount *nmp;
441 {
442 struct nfsreq dummyreq;
443
444 memset(&dummyreq, 0, sizeof(dummyreq));
445 dummyreq.r_nmp = nmp;
446 nfs_rcvlock(nmp, &dummyreq); /* XXX ignored error return */
447 nfs_disconnect(nmp);
448 nfs_rcvunlock(nmp);
449 }
450
451 /*
452 * This is the nfs send routine. For connection based socket types, it
453 * must be called with an nfs_sndlock() on the socket.
454 * "rep == NULL" indicates that it has been called from a server.
455 * For the client side:
456 * - return EINTR if the RPC is terminated, 0 otherwise
457 * - set R_MUSTRESEND if the send fails for any reason
458 * - do any cleanup required by recoverable socket errors (? ? ?)
459 * For the server side:
460 * - return EINTR or ERESTART if interrupted by a signal
461 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
462 * - do any cleanup required by recoverable socket errors (? ? ?)
463 */
464 int
465 nfs_send(so, nam, top, rep, l)
466 struct socket *so;
467 struct mbuf *nam;
468 struct mbuf *top;
469 struct nfsreq *rep;
470 struct lwp *l;
471 {
472 struct mbuf *sendnam;
473 int error, soflags, flags;
474
475 /* XXX nfs_doio()/nfs_request() calls with rep->r_lwp == NULL */
476 if (l == NULL && rep->r_lwp == NULL)
477 l = curlwp;
478
479 if (rep) {
480 if (rep->r_flags & R_SOFTTERM) {
481 m_freem(top);
482 return (EINTR);
483 }
484 if ((so = rep->r_nmp->nm_so) == NULL) {
485 rep->r_flags |= R_MUSTRESEND;
486 m_freem(top);
487 return (0);
488 }
489 rep->r_flags &= ~R_MUSTRESEND;
490 soflags = rep->r_nmp->nm_soflags;
491 } else
492 soflags = so->so_proto->pr_flags;
493 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
494 sendnam = (struct mbuf *)0;
495 else
496 sendnam = nam;
497 if (so->so_type == SOCK_SEQPACKET)
498 flags = MSG_EOR;
499 else
500 flags = 0;
501
502 KERNEL_LOCK(1, curlwp);
503 error = (*so->so_send)(so, sendnam, NULL, top, NULL, flags, l);
504 KERNEL_UNLOCK_ONE(curlwp);
505 if (error) {
506 if (rep) {
507 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
508 /*
509 * We're too fast for the network/driver,
510 * and UDP isn't flowcontrolled.
511 * We need to resend. This is not fatal,
512 * just try again.
513 *
514 * Could be smarter here by doing some sort
515 * of a backoff, but this is rare.
516 */
517 rep->r_flags |= R_MUSTRESEND;
518 } else {
519 if (error != EPIPE)
520 log(LOG_INFO,
521 "nfs send error %d for %s\n",
522 error,
523 rep->r_nmp->nm_mountp->
524 mnt_stat.f_mntfromname);
525 /*
526 * Deal with errors for the client side.
527 */
528 if (rep->r_flags & R_SOFTTERM)
529 error = EINTR;
530 else
531 rep->r_flags |= R_MUSTRESEND;
532 }
533 } else {
534 /*
535 * See above. This error can happen under normal
536 * circumstances and the log is too noisy.
537 * The error will still show up in nfsstat.
538 */
539 if (error != ENOBUFS || so->so_type != SOCK_DGRAM)
540 log(LOG_INFO, "nfsd send error %d\n", error);
541 }
542
543 /*
544 * Handle any recoverable (soft) socket errors here. (? ? ?)
545 */
546 if (error != EINTR && error != ERESTART &&
547 error != EWOULDBLOCK && error != EPIPE)
548 error = 0;
549 }
550 return (error);
551 }
552
553 #ifdef NFS
554 /*
555 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
556 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
557 * Mark and consolidate the data into a new mbuf list.
558 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
559 * small mbufs.
560 * For SOCK_STREAM we must be very careful to read an entire record once
561 * we have read any of it, even if the system call has been interrupted.
562 */
563 int
564 nfs_receive(rep, aname, mp, l)
565 struct nfsreq *rep;
566 struct mbuf **aname;
567 struct mbuf **mp;
568 struct lwp *l;
569 {
570 struct socket *so;
571 struct uio auio;
572 struct iovec aio;
573 struct mbuf *m;
574 struct mbuf *control;
575 u_int32_t len;
576 struct mbuf **getnam;
577 int error, sotype, rcvflg;
578
579 /*
580 * Set up arguments for soreceive()
581 */
582 *mp = (struct mbuf *)0;
583 *aname = (struct mbuf *)0;
584 sotype = rep->r_nmp->nm_sotype;
585
586 /*
587 * For reliable protocols, lock against other senders/receivers
588 * in case a reconnect is necessary.
589 * For SOCK_STREAM, first get the Record Mark to find out how much
590 * more there is to get.
591 * We must lock the socket against other receivers
592 * until we have an entire rpc request/reply.
593 */
594 if (sotype != SOCK_DGRAM) {
595 error = nfs_sndlock(rep->r_nmp, rep);
596 if (error)
597 return (error);
598 tryagain:
599 /*
600 * Check for fatal errors and resending request.
601 */
602 /*
603 * Ugh: If a reconnect attempt just happened, nm_so
604 * would have changed. NULL indicates a failed
605 * attempt that has essentially shut down this
606 * mount point.
607 */
608 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
609 nfs_sndunlock(rep->r_nmp);
610 return (EINTR);
611 }
612 so = rep->r_nmp->nm_so;
613 if (!so) {
614 error = nfs_reconnect(rep);
615 if (error) {
616 nfs_sndunlock(rep->r_nmp);
617 return (error);
618 }
619 goto tryagain;
620 }
621 while (rep->r_flags & R_MUSTRESEND) {
622 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
623 nfsstats.rpcretries++;
624 rep->r_rtt = 0;
625 rep->r_flags &= ~R_TIMING;
626 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep, l);
627 if (error) {
628 if (error == EINTR || error == ERESTART ||
629 (error = nfs_reconnect(rep)) != 0) {
630 nfs_sndunlock(rep->r_nmp);
631 return (error);
632 }
633 goto tryagain;
634 }
635 }
636 nfs_sndunlock(rep->r_nmp);
637 if (sotype == SOCK_STREAM) {
638 aio.iov_base = (void *) &len;
639 aio.iov_len = sizeof(u_int32_t);
640 auio.uio_iov = &aio;
641 auio.uio_iovcnt = 1;
642 auio.uio_rw = UIO_READ;
643 auio.uio_offset = 0;
644 auio.uio_resid = sizeof(u_int32_t);
645 UIO_SETUP_SYSSPACE(&auio);
646 do {
647 rcvflg = MSG_WAITALL;
648 error = (*so->so_receive)(so, (struct mbuf **)0, &auio,
649 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
650 if (error == EWOULDBLOCK && rep) {
651 if (rep->r_flags & R_SOFTTERM)
652 return (EINTR);
653 /*
654 * if it seems that the server died after it
655 * received our request, set EPIPE so that
656 * we'll reconnect and retransmit requests.
657 */
658 if (rep->r_rexmit >= rep->r_nmp->nm_retry) {
659 nfsstats.rpctimeouts++;
660 error = EPIPE;
661 }
662 }
663 } while (error == EWOULDBLOCK);
664 if (!error && auio.uio_resid > 0) {
665 /*
666 * Don't log a 0 byte receive; it means
667 * that the socket has been closed, and
668 * can happen during normal operation
669 * (forcible unmount or Solaris server).
670 */
671 if (auio.uio_resid != sizeof (u_int32_t))
672 log(LOG_INFO,
673 "short receive (%lu/%lu) from nfs server %s\n",
674 (u_long)sizeof(u_int32_t) - auio.uio_resid,
675 (u_long)sizeof(u_int32_t),
676 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
677 error = EPIPE;
678 }
679 if (error)
680 goto errout;
681 len = ntohl(len) & ~0x80000000;
682 /*
683 * This is SERIOUS! We are out of sync with the sender
684 * and forcing a disconnect/reconnect is all I can do.
685 */
686 if (len > NFS_MAXPACKET) {
687 log(LOG_ERR, "%s (%d) from nfs server %s\n",
688 "impossible packet length",
689 len,
690 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
691 error = EFBIG;
692 goto errout;
693 }
694 auio.uio_resid = len;
695 do {
696 rcvflg = MSG_WAITALL;
697 error = (*so->so_receive)(so, (struct mbuf **)0,
698 &auio, mp, (struct mbuf **)0, &rcvflg);
699 } while (error == EWOULDBLOCK || error == EINTR ||
700 error == ERESTART);
701 if (!error && auio.uio_resid > 0) {
702 if (len != auio.uio_resid)
703 log(LOG_INFO,
704 "short receive (%lu/%d) from nfs server %s\n",
705 (u_long)len - auio.uio_resid, len,
706 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
707 error = EPIPE;
708 }
709 } else {
710 /*
711 * NB: Since uio_resid is big, MSG_WAITALL is ignored
712 * and soreceive() will return when it has either a
713 * control msg or a data msg.
714 * We have no use for control msg., but must grab them
715 * and then throw them away so we know what is going
716 * on.
717 */
718 auio.uio_resid = len = 100000000; /* Anything Big */
719 /* not need to setup uio_vmspace */
720 do {
721 rcvflg = 0;
722 error = (*so->so_receive)(so, (struct mbuf **)0,
723 &auio, mp, &control, &rcvflg);
724 if (control)
725 m_freem(control);
726 if (error == EWOULDBLOCK && rep) {
727 if (rep->r_flags & R_SOFTTERM)
728 return (EINTR);
729 }
730 } while (error == EWOULDBLOCK ||
731 (!error && *mp == NULL && control));
732 if ((rcvflg & MSG_EOR) == 0)
733 printf("Egad!!\n");
734 if (!error && *mp == NULL)
735 error = EPIPE;
736 len -= auio.uio_resid;
737 }
738 errout:
739 if (error && error != EINTR && error != ERESTART) {
740 m_freem(*mp);
741 *mp = (struct mbuf *)0;
742 if (error != EPIPE)
743 log(LOG_INFO,
744 "receive error %d from nfs server %s\n",
745 error,
746 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
747 error = nfs_sndlock(rep->r_nmp, rep);
748 if (!error)
749 error = nfs_reconnect(rep);
750 if (!error)
751 goto tryagain;
752 else
753 nfs_sndunlock(rep->r_nmp);
754 }
755 } else {
756 if ((so = rep->r_nmp->nm_so) == NULL)
757 return (EACCES);
758 if (so->so_state & SS_ISCONNECTED)
759 getnam = (struct mbuf **)0;
760 else
761 getnam = aname;
762 auio.uio_resid = len = 1000000;
763 /* not need to setup uio_vmspace */
764 do {
765 rcvflg = 0;
766 error = (*so->so_receive)(so, getnam, &auio, mp,
767 (struct mbuf **)0, &rcvflg);
768 if (error == EWOULDBLOCK &&
769 (rep->r_flags & R_SOFTTERM))
770 return (EINTR);
771 } while (error == EWOULDBLOCK);
772 len -= auio.uio_resid;
773 if (!error && *mp == NULL)
774 error = EPIPE;
775 }
776 if (error) {
777 m_freem(*mp);
778 *mp = (struct mbuf *)0;
779 }
780 return (error);
781 }
782
783 /*
784 * Implement receipt of reply on a socket.
785 * We must search through the list of received datagrams matching them
786 * with outstanding requests using the xid, until ours is found.
787 */
788 /* ARGSUSED */
789 int
790 nfs_reply(myrep, lwp)
791 struct nfsreq *myrep;
792 struct lwp *lwp;
793 {
794 struct nfsreq *rep;
795 struct nfsmount *nmp = myrep->r_nmp;
796 int32_t t1;
797 struct mbuf *mrep, *nam, *md;
798 u_int32_t rxid, *tl;
799 char *dpos, *cp2;
800 int error;
801
802 /*
803 * Loop around until we get our own reply
804 */
805 for (;;) {
806 /*
807 * Lock against other receivers so that I don't get stuck in
808 * sbwait() after someone else has received my reply for me.
809 * Also necessary for connection based protocols to avoid
810 * race conditions during a reconnect.
811 */
812 error = nfs_rcvlock(nmp, myrep);
813 if (error == EALREADY)
814 return (0);
815 if (error)
816 return (error);
817 /*
818 * Get the next Rpc reply off the socket
819 */
820
821 mutex_enter(&nmp->nm_lock);
822 nmp->nm_waiters++;
823 mutex_exit(&nmp->nm_lock);
824
825 error = nfs_receive(myrep, &nam, &mrep, lwp);
826
827 mutex_enter(&nmp->nm_lock);
828 nmp->nm_waiters--;
829 cv_signal(&nmp->nm_disconcv);
830 mutex_exit(&nmp->nm_lock);
831
832 if (error) {
833 nfs_rcvunlock(nmp);
834
835 if (nmp->nm_iflag & NFSMNT_DISMNT) {
836 /*
837 * Oops, we're going away now..
838 */
839 return error;
840 }
841 /*
842 * Ignore routing errors on connectionless protocols? ?
843 */
844 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
845 nmp->nm_so->so_error = 0;
846 #ifdef DEBUG
847 printf("nfs_reply: ignoring error %d\n", error);
848 #endif
849 continue;
850 }
851 return (error);
852 }
853 if (nam)
854 m_freem(nam);
855
856 /*
857 * Get the xid and check that it is an rpc reply
858 */
859 md = mrep;
860 dpos = mtod(md, void *);
861 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
862 rxid = *tl++;
863 if (*tl != rpc_reply) {
864 nfsstats.rpcinvalid++;
865 m_freem(mrep);
866 nfsmout:
867 nfs_rcvunlock(nmp);
868 continue;
869 }
870
871 /*
872 * Loop through the request list to match up the reply
873 * Iff no match, just drop the datagram
874 */
875 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
876 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
877 /* Found it.. */
878 rep->r_mrep = mrep;
879 rep->r_md = md;
880 rep->r_dpos = dpos;
881 if (nfsrtton) {
882 struct rttl *rt;
883
884 rt = &nfsrtt.rttl[nfsrtt.pos];
885 rt->proc = rep->r_procnum;
886 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
887 rt->sent = nmp->nm_sent;
888 rt->cwnd = nmp->nm_cwnd;
889 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
890 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
891 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsidx;
892 getmicrotime(&rt->tstamp);
893 if (rep->r_flags & R_TIMING)
894 rt->rtt = rep->r_rtt;
895 else
896 rt->rtt = 1000000;
897 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
898 }
899 /*
900 * Update congestion window.
901 * Do the additive increase of
902 * one rpc/rtt.
903 */
904 if (nmp->nm_cwnd <= nmp->nm_sent) {
905 nmp->nm_cwnd +=
906 (NFS_CWNDSCALE * NFS_CWNDSCALE +
907 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
908 if (nmp->nm_cwnd > NFS_MAXCWND)
909 nmp->nm_cwnd = NFS_MAXCWND;
910 }
911 rep->r_flags &= ~R_SENT;
912 nmp->nm_sent -= NFS_CWNDSCALE;
913 /*
914 * Update rtt using a gain of 0.125 on the mean
915 * and a gain of 0.25 on the deviation.
916 */
917 if (rep->r_flags & R_TIMING) {
918 /*
919 * Since the timer resolution of
920 * NFS_HZ is so course, it can often
921 * result in r_rtt == 0. Since
922 * r_rtt == N means that the actual
923 * rtt is between N+dt and N+2-dt ticks,
924 * add 1.
925 */
926 t1 = rep->r_rtt + 1;
927 t1 -= (NFS_SRTT(rep) >> 3);
928 NFS_SRTT(rep) += t1;
929 if (t1 < 0)
930 t1 = -t1;
931 t1 -= (NFS_SDRTT(rep) >> 2);
932 NFS_SDRTT(rep) += t1;
933 }
934 nmp->nm_timeouts = 0;
935 break;
936 }
937 }
938 nfs_rcvunlock(nmp);
939 /*
940 * If not matched to a request, drop it.
941 * If it's mine, get out.
942 */
943 if (rep == 0) {
944 nfsstats.rpcunexpected++;
945 m_freem(mrep);
946 } else if (rep == myrep) {
947 if (rep->r_mrep == NULL)
948 panic("nfsreply nil");
949 return (0);
950 }
951 }
952 }
953
954 /*
955 * nfs_request - goes something like this
956 * - fill in request struct
957 * - links it into list
958 * - calls nfs_send() for first transmit
959 * - calls nfs_receive() to get reply
960 * - break down rpc header and return with nfs reply pointed to
961 * by mrep or error
962 * nb: always frees up mreq mbuf list
963 */
964 int
965 nfs_request(np, mrest, procnum, lwp, cred, mrp, mdp, dposp, rexmitp)
966 struct nfsnode *np;
967 struct mbuf *mrest;
968 int procnum;
969 struct lwp *lwp;
970 kauth_cred_t cred;
971 struct mbuf **mrp;
972 struct mbuf **mdp;
973 char **dposp;
974 int *rexmitp;
975 {
976 struct mbuf *m, *mrep;
977 struct nfsreq *rep;
978 u_int32_t *tl;
979 int i;
980 struct nfsmount *nmp = VFSTONFS(np->n_vnode->v_mount);
981 struct mbuf *md, *mheadend;
982 char nickv[RPCX_NICKVERF];
983 time_t waituntil;
984 char *dpos, *cp2;
985 int t1, s, error = 0, mrest_len, auth_len, auth_type;
986 int trylater_delay = NFS_TRYLATERDEL, failed_auth = 0;
987 int verf_len, verf_type;
988 u_int32_t xid;
989 char *auth_str, *verf_str;
990 NFSKERBKEY_T key; /* save session key */
991 kauth_cred_t acred;
992 struct mbuf *mrest_backup = NULL;
993 kauth_cred_t origcred = NULL; /* XXX: gcc */
994 bool retry_cred = true;
995 bool use_opencred = (np->n_flag & NUSEOPENCRED) != 0;
996
997 if (rexmitp != NULL)
998 *rexmitp = 0;
999
1000 acred = kauth_cred_alloc();
1001
1002 tryagain_cred:
1003 KASSERT(cred != NULL);
1004 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
1005 rep->r_nmp = nmp;
1006 KASSERT(lwp == NULL || lwp == curlwp);
1007 rep->r_lwp = lwp;
1008 rep->r_procnum = procnum;
1009 i = 0;
1010 m = mrest;
1011 while (m) {
1012 i += m->m_len;
1013 m = m->m_next;
1014 }
1015 mrest_len = i;
1016
1017 /*
1018 * Get the RPC header with authorization.
1019 */
1020 kerbauth:
1021 verf_str = auth_str = (char *)0;
1022 if (nmp->nm_flag & NFSMNT_KERB) {
1023 verf_str = nickv;
1024 verf_len = sizeof (nickv);
1025 auth_type = RPCAUTH_KERB4;
1026 memset((void *)key, 0, sizeof (key));
1027 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
1028 &auth_len, verf_str, verf_len)) {
1029 error = nfs_getauth(nmp, rep, cred, &auth_str,
1030 &auth_len, verf_str, &verf_len, key);
1031 if (error) {
1032 free((void *)rep, M_NFSREQ);
1033 m_freem(mrest);
1034 KASSERT(kauth_cred_getrefcnt(acred) == 1);
1035 kauth_cred_free(acred);
1036 return (error);
1037 }
1038 }
1039 retry_cred = false;
1040 } else {
1041 /* AUTH_UNIX */
1042 uid_t uid;
1043 gid_t gid;
1044
1045 /*
1046 * on the most unix filesystems, permission checks are
1047 * done when the file is open(2)'ed.
1048 * ie. once a file is successfully open'ed,
1049 * following i/o operations never fail with EACCES.
1050 * we try to follow the semantics as far as possible.
1051 *
1052 * note that we expect that the nfs server always grant
1053 * accesses by the file's owner.
1054 */
1055 origcred = cred;
1056 switch (procnum) {
1057 case NFSPROC_READ:
1058 case NFSPROC_WRITE:
1059 case NFSPROC_COMMIT:
1060 uid = np->n_vattr->va_uid;
1061 gid = np->n_vattr->va_gid;
1062 if (kauth_cred_geteuid(cred) == uid &&
1063 kauth_cred_getegid(cred) == gid) {
1064 retry_cred = false;
1065 break;
1066 }
1067 if (use_opencred)
1068 break;
1069 kauth_cred_setuid(acred, uid);
1070 kauth_cred_seteuid(acred, uid);
1071 kauth_cred_setsvuid(acred, uid);
1072 kauth_cred_setgid(acred, gid);
1073 kauth_cred_setegid(acred, gid);
1074 kauth_cred_setsvgid(acred, gid);
1075 cred = acred;
1076 break;
1077 default:
1078 retry_cred = false;
1079 break;
1080 }
1081 /*
1082 * backup mbuf chain if we can need it later to retry.
1083 *
1084 * XXX maybe we can keep a direct reference to
1085 * mrest without doing m_copym, but it's ...ugly.
1086 */
1087 if (retry_cred)
1088 mrest_backup = m_copym(mrest, 0, M_COPYALL, M_WAIT);
1089 auth_type = RPCAUTH_UNIX;
1090 /* XXX elad - ngroups */
1091 auth_len = (((kauth_cred_ngroups(cred) > nmp->nm_numgrps) ?
1092 nmp->nm_numgrps : kauth_cred_ngroups(cred)) << 2) +
1093 5 * NFSX_UNSIGNED;
1094 }
1095 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
1096 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
1097 if (auth_str)
1098 free(auth_str, M_TEMP);
1099
1100 /*
1101 * For stream protocols, insert a Sun RPC Record Mark.
1102 */
1103 if (nmp->nm_sotype == SOCK_STREAM) {
1104 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
1105 *mtod(m, u_int32_t *) = htonl(0x80000000 |
1106 (m->m_pkthdr.len - NFSX_UNSIGNED));
1107 }
1108 rep->r_mreq = m;
1109 rep->r_xid = xid;
1110 tryagain:
1111 if (nmp->nm_flag & NFSMNT_SOFT)
1112 rep->r_retry = nmp->nm_retry;
1113 else
1114 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
1115 rep->r_rtt = rep->r_rexmit = 0;
1116 if (proct[procnum] > 0)
1117 rep->r_flags = R_TIMING;
1118 else
1119 rep->r_flags = 0;
1120 rep->r_mrep = NULL;
1121
1122 /*
1123 * Do the client side RPC.
1124 */
1125 nfsstats.rpcrequests++;
1126 /*
1127 * Chain request into list of outstanding requests. Be sure
1128 * to put it LAST so timer finds oldest requests first.
1129 */
1130 s = splsoftnet();
1131 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
1132 nfs_timer_start();
1133
1134 /*
1135 * If backing off another request or avoiding congestion, don't
1136 * send this one now but let timer do it. If not timing a request,
1137 * do it now.
1138 */
1139 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
1140 (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1141 nmp->nm_sent < nmp->nm_cwnd)) {
1142 splx(s);
1143 if (nmp->nm_soflags & PR_CONNREQUIRED)
1144 error = nfs_sndlock(nmp, rep);
1145 if (!error) {
1146 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
1147 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep, lwp);
1148 if (nmp->nm_soflags & PR_CONNREQUIRED)
1149 nfs_sndunlock(nmp);
1150 }
1151 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
1152 nmp->nm_sent += NFS_CWNDSCALE;
1153 rep->r_flags |= R_SENT;
1154 }
1155 } else {
1156 splx(s);
1157 rep->r_rtt = -1;
1158 }
1159
1160 /*
1161 * Wait for the reply from our send or the timer's.
1162 */
1163 if (!error || error == EPIPE)
1164 error = nfs_reply(rep, lwp);
1165
1166 /*
1167 * RPC done, unlink the request.
1168 */
1169 s = splsoftnet();
1170 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
1171 splx(s);
1172
1173 /*
1174 * Decrement the outstanding request count.
1175 */
1176 if (rep->r_flags & R_SENT) {
1177 rep->r_flags &= ~R_SENT; /* paranoia */
1178 nmp->nm_sent -= NFS_CWNDSCALE;
1179 }
1180
1181 if (rexmitp != NULL) {
1182 int rexmit;
1183
1184 if (nmp->nm_sotype != SOCK_DGRAM)
1185 rexmit = (rep->r_flags & R_REXMITTED) != 0;
1186 else
1187 rexmit = rep->r_rexmit;
1188 *rexmitp = rexmit;
1189 }
1190
1191 /*
1192 * If there was a successful reply and a tprintf msg.
1193 * tprintf a response.
1194 */
1195 if (!error && (rep->r_flags & R_TPRINTFMSG))
1196 nfs_msg(rep->r_lwp, nmp->nm_mountp->mnt_stat.f_mntfromname,
1197 "is alive again");
1198 mrep = rep->r_mrep;
1199 md = rep->r_md;
1200 dpos = rep->r_dpos;
1201 if (error)
1202 goto nfsmout;
1203
1204 /*
1205 * break down the rpc header and check if ok
1206 */
1207 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1208 if (*tl++ == rpc_msgdenied) {
1209 if (*tl == rpc_mismatch)
1210 error = EOPNOTSUPP;
1211 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
1212 if (!failed_auth) {
1213 failed_auth++;
1214 mheadend->m_next = (struct mbuf *)0;
1215 m_freem(mrep);
1216 m_freem(rep->r_mreq);
1217 goto kerbauth;
1218 } else
1219 error = EAUTH;
1220 } else
1221 error = EACCES;
1222 m_freem(mrep);
1223 goto nfsmout;
1224 }
1225
1226 /*
1227 * Grab any Kerberos verifier, otherwise just throw it away.
1228 */
1229 verf_type = fxdr_unsigned(int, *tl++);
1230 i = fxdr_unsigned(int32_t, *tl);
1231 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1232 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1233 if (error)
1234 goto nfsmout;
1235 } else if (i > 0)
1236 nfsm_adv(nfsm_rndup(i));
1237 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1238 /* 0 == ok */
1239 if (*tl == 0) {
1240 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1241 if (*tl != 0) {
1242 error = fxdr_unsigned(int, *tl);
1243 switch (error) {
1244 case NFSERR_PERM:
1245 error = EPERM;
1246 break;
1247
1248 case NFSERR_NOENT:
1249 error = ENOENT;
1250 break;
1251
1252 case NFSERR_IO:
1253 error = EIO;
1254 break;
1255
1256 case NFSERR_NXIO:
1257 error = ENXIO;
1258 break;
1259
1260 case NFSERR_ACCES:
1261 error = EACCES;
1262 if (!retry_cred)
1263 break;
1264 m_freem(mrep);
1265 m_freem(rep->r_mreq);
1266 FREE(rep, M_NFSREQ);
1267 use_opencred = !use_opencred;
1268 if (mrest_backup == NULL) {
1269 /* m_copym failure */
1270 KASSERT(
1271 kauth_cred_getrefcnt(acred) == 1);
1272 kauth_cred_free(acred);
1273 return ENOMEM;
1274 }
1275 mrest = mrest_backup;
1276 mrest_backup = NULL;
1277 cred = origcred;
1278 error = 0;
1279 retry_cred = false;
1280 goto tryagain_cred;
1281
1282 case NFSERR_EXIST:
1283 error = EEXIST;
1284 break;
1285
1286 case NFSERR_XDEV:
1287 error = EXDEV;
1288 break;
1289
1290 case NFSERR_NODEV:
1291 error = ENODEV;
1292 break;
1293
1294 case NFSERR_NOTDIR:
1295 error = ENOTDIR;
1296 break;
1297
1298 case NFSERR_ISDIR:
1299 error = EISDIR;
1300 break;
1301
1302 case NFSERR_INVAL:
1303 error = EINVAL;
1304 break;
1305
1306 case NFSERR_FBIG:
1307 error = EFBIG;
1308 break;
1309
1310 case NFSERR_NOSPC:
1311 error = ENOSPC;
1312 break;
1313
1314 case NFSERR_ROFS:
1315 error = EROFS;
1316 break;
1317
1318 case NFSERR_MLINK:
1319 error = EMLINK;
1320 break;
1321
1322 case NFSERR_TIMEDOUT:
1323 error = ETIMEDOUT;
1324 break;
1325
1326 case NFSERR_NAMETOL:
1327 error = ENAMETOOLONG;
1328 break;
1329
1330 case NFSERR_NOTEMPTY:
1331 error = ENOTEMPTY;
1332 break;
1333
1334 case NFSERR_DQUOT:
1335 error = EDQUOT;
1336 break;
1337
1338 case NFSERR_STALE:
1339 /*
1340 * If the File Handle was stale, invalidate the
1341 * lookup cache, just in case.
1342 */
1343 error = ESTALE;
1344 cache_purge(NFSTOV(np));
1345 break;
1346
1347 case NFSERR_REMOTE:
1348 error = EREMOTE;
1349 break;
1350
1351 case NFSERR_WFLUSH:
1352 case NFSERR_BADHANDLE:
1353 case NFSERR_NOT_SYNC:
1354 case NFSERR_BAD_COOKIE:
1355 error = EINVAL;
1356 break;
1357
1358 case NFSERR_NOTSUPP:
1359 error = ENOTSUP;
1360 break;
1361
1362 case NFSERR_TOOSMALL:
1363 case NFSERR_SERVERFAULT:
1364 case NFSERR_BADTYPE:
1365 error = EINVAL;
1366 break;
1367
1368 case NFSERR_TRYLATER:
1369 if ((nmp->nm_flag & NFSMNT_NFSV3) == 0)
1370 break;
1371 m_freem(mrep);
1372 error = 0;
1373 waituntil = time_second + trylater_delay;
1374 while (time_second < waituntil) {
1375 kpause("nfstrylater", false, hz, NULL);
1376 }
1377 trylater_delay *= NFS_TRYLATERDELMUL;
1378 if (trylater_delay > NFS_TRYLATERDELMAX)
1379 trylater_delay = NFS_TRYLATERDELMAX;
1380 /*
1381 * RFC1813:
1382 * The client should wait and then try
1383 * the request with a new RPC transaction ID.
1384 */
1385 nfs_renewxid(rep);
1386 goto tryagain;
1387
1388 default:
1389 #ifdef DIAGNOSTIC
1390 printf("Invalid rpc error code %d\n", error);
1391 #endif
1392 error = EINVAL;
1393 break;
1394 }
1395
1396 if (nmp->nm_flag & NFSMNT_NFSV3) {
1397 *mrp = mrep;
1398 *mdp = md;
1399 *dposp = dpos;
1400 error |= NFSERR_RETERR;
1401 } else
1402 m_freem(mrep);
1403 goto nfsmout;
1404 }
1405
1406 /*
1407 * note which credential worked to minimize number of retries.
1408 */
1409 if (use_opencred)
1410 np->n_flag |= NUSEOPENCRED;
1411 else
1412 np->n_flag &= ~NUSEOPENCRED;
1413
1414 *mrp = mrep;
1415 *mdp = md;
1416 *dposp = dpos;
1417
1418 KASSERT(error == 0);
1419 goto nfsmout;
1420 }
1421 m_freem(mrep);
1422 error = EPROTONOSUPPORT;
1423 nfsmout:
1424 KASSERT(kauth_cred_getrefcnt(acred) == 1);
1425 kauth_cred_free(acred);
1426 m_freem(rep->r_mreq);
1427 free((void *)rep, M_NFSREQ);
1428 m_freem(mrest_backup);
1429 return (error);
1430 }
1431 #endif /* NFS */
1432
1433 /*
1434 * Generate the rpc reply header
1435 * siz arg. is used to decide if adding a cluster is worthwhile
1436 */
1437 int
1438 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1439 int siz;
1440 struct nfsrv_descript *nd;
1441 struct nfssvc_sock *slp;
1442 int err;
1443 int cache;
1444 u_quad_t *frev;
1445 struct mbuf **mrq;
1446 struct mbuf **mbp;
1447 char **bposp;
1448 {
1449 u_int32_t *tl;
1450 struct mbuf *mreq;
1451 char *bpos;
1452 struct mbuf *mb;
1453
1454 mreq = m_gethdr(M_WAIT, MT_DATA);
1455 MCLAIM(mreq, &nfs_mowner);
1456 mb = mreq;
1457 /*
1458 * If this is a big reply, use a cluster else
1459 * try and leave leading space for the lower level headers.
1460 */
1461 siz += RPC_REPLYSIZ;
1462 if (siz >= max_datalen) {
1463 m_clget(mreq, M_WAIT);
1464 } else
1465 mreq->m_data += max_hdr;
1466 tl = mtod(mreq, u_int32_t *);
1467 mreq->m_len = 6 * NFSX_UNSIGNED;
1468 bpos = ((char *)tl) + mreq->m_len;
1469 *tl++ = txdr_unsigned(nd->nd_retxid);
1470 *tl++ = rpc_reply;
1471 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1472 *tl++ = rpc_msgdenied;
1473 if (err & NFSERR_AUTHERR) {
1474 *tl++ = rpc_autherr;
1475 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1476 mreq->m_len -= NFSX_UNSIGNED;
1477 bpos -= NFSX_UNSIGNED;
1478 } else {
1479 *tl++ = rpc_mismatch;
1480 *tl++ = txdr_unsigned(RPC_VER2);
1481 *tl = txdr_unsigned(RPC_VER2);
1482 }
1483 } else {
1484 *tl++ = rpc_msgaccepted;
1485
1486 /*
1487 * For Kerberos authentication, we must send the nickname
1488 * verifier back, otherwise just RPCAUTH_NULL.
1489 */
1490 if (nd->nd_flag & ND_KERBFULL) {
1491 struct nfsuid *nuidp;
1492 struct timeval ktvin, ktvout;
1493
1494 memset(&ktvout, 0, sizeof ktvout); /* XXX gcc */
1495
1496 LIST_FOREACH(nuidp,
1497 NUIDHASH(slp, kauth_cred_geteuid(nd->nd_cr)),
1498 nu_hash) {
1499 if (kauth_cred_geteuid(nuidp->nu_cr) ==
1500 kauth_cred_geteuid(nd->nd_cr) &&
1501 (!nd->nd_nam2 || netaddr_match(
1502 NU_NETFAM(nuidp), &nuidp->nu_haddr,
1503 nd->nd_nam2)))
1504 break;
1505 }
1506 if (nuidp) {
1507 ktvin.tv_sec =
1508 txdr_unsigned(nuidp->nu_timestamp.tv_sec
1509 - 1);
1510 ktvin.tv_usec =
1511 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1512
1513 /*
1514 * Encrypt the timestamp in ecb mode using the
1515 * session key.
1516 */
1517 #ifdef NFSKERB
1518 XXX
1519 #endif
1520
1521 *tl++ = rpc_auth_kerb;
1522 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1523 *tl = ktvout.tv_sec;
1524 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1525 *tl++ = ktvout.tv_usec;
1526 *tl++ = txdr_unsigned(
1527 kauth_cred_geteuid(nuidp->nu_cr));
1528 } else {
1529 *tl++ = 0;
1530 *tl++ = 0;
1531 }
1532 } else {
1533 *tl++ = 0;
1534 *tl++ = 0;
1535 }
1536 switch (err) {
1537 case EPROGUNAVAIL:
1538 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1539 break;
1540 case EPROGMISMATCH:
1541 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1542 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1543 *tl++ = txdr_unsigned(2);
1544 *tl = txdr_unsigned(3);
1545 break;
1546 case EPROCUNAVAIL:
1547 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1548 break;
1549 case EBADRPC:
1550 *tl = txdr_unsigned(RPC_GARBAGE);
1551 break;
1552 default:
1553 *tl = 0;
1554 if (err != NFSERR_RETVOID) {
1555 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1556 if (err)
1557 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1558 else
1559 *tl = 0;
1560 }
1561 break;
1562 };
1563 }
1564
1565 if (mrq != NULL)
1566 *mrq = mreq;
1567 *mbp = mb;
1568 *bposp = bpos;
1569 if (err != 0 && err != NFSERR_RETVOID)
1570 nfsstats.srvrpc_errs++;
1571 return (0);
1572 }
1573
1574 static void
1575 nfs_timer_schedule(void)
1576 {
1577
1578 callout_schedule(&nfs_timer_ch, nfs_ticks);
1579 }
1580
1581 void
1582 nfs_timer_start(void)
1583 {
1584
1585 if (callout_pending(&nfs_timer_ch))
1586 return;
1587
1588 nfs_timer_start_ev.ev_count++;
1589 nfs_timer_schedule();
1590 }
1591
1592 void
1593 nfs_timer_init(void)
1594 {
1595
1596 callout_init(&nfs_timer_ch, 0);
1597 callout_setfunc(&nfs_timer_ch, nfs_timer, NULL);
1598 evcnt_attach_dynamic(&nfs_timer_ev, EVCNT_TYPE_MISC, NULL,
1599 "nfs", "timer");
1600 evcnt_attach_dynamic(&nfs_timer_start_ev, EVCNT_TYPE_MISC, NULL,
1601 "nfs", "timer start");
1602 evcnt_attach_dynamic(&nfs_timer_stop_ev, EVCNT_TYPE_MISC, NULL,
1603 "nfs", "timer stop");
1604 }
1605
1606 /*
1607 * Nfs timer routine
1608 * Scan the nfsreq list and retranmit any requests that have timed out
1609 * To avoid retransmission attempts on STREAM sockets (in the future) make
1610 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1611 * A non-NULL argument means 'initialize'.
1612 */
1613 void
1614 nfs_timer(void *arg)
1615 {
1616 struct nfsreq *rep;
1617 struct mbuf *m;
1618 struct socket *so;
1619 struct nfsmount *nmp;
1620 int timeo;
1621 int s, error;
1622 bool more = false;
1623 #ifdef NFSSERVER
1624 struct timeval tv;
1625 struct nfssvc_sock *slp;
1626 u_quad_t cur_usec;
1627 #endif
1628
1629 nfs_timer_ev.ev_count++;
1630
1631 s = splsoftnet();
1632 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
1633 more = true;
1634 nmp = rep->r_nmp;
1635 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1636 continue;
1637 if (nfs_sigintr(nmp, rep, rep->r_lwp)) {
1638 rep->r_flags |= R_SOFTTERM;
1639 continue;
1640 }
1641 if (rep->r_rtt >= 0) {
1642 rep->r_rtt++;
1643 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1644 timeo = nmp->nm_timeo;
1645 else
1646 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1647 if (nmp->nm_timeouts > 0)
1648 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1649 if (rep->r_rtt <= timeo)
1650 continue;
1651 if (nmp->nm_timeouts <
1652 (sizeof(nfs_backoff) / sizeof(nfs_backoff[0])))
1653 nmp->nm_timeouts++;
1654 }
1655 /*
1656 * Check for server not responding
1657 */
1658 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1659 rep->r_rexmit > nmp->nm_deadthresh) {
1660 nfs_msg(rep->r_lwp,
1661 nmp->nm_mountp->mnt_stat.f_mntfromname,
1662 "not responding");
1663 rep->r_flags |= R_TPRINTFMSG;
1664 }
1665 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1666 nfsstats.rpctimeouts++;
1667 rep->r_flags |= R_SOFTTERM;
1668 continue;
1669 }
1670 if (nmp->nm_sotype != SOCK_DGRAM) {
1671 if (++rep->r_rexmit > NFS_MAXREXMIT)
1672 rep->r_rexmit = NFS_MAXREXMIT;
1673 continue;
1674 }
1675 if ((so = nmp->nm_so) == NULL)
1676 continue;
1677
1678 /*
1679 * If there is enough space and the window allows..
1680 * Resend it
1681 * Set r_rtt to -1 in case we fail to send it now.
1682 */
1683 rep->r_rtt = -1;
1684 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1685 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1686 (rep->r_flags & R_SENT) ||
1687 nmp->nm_sent < nmp->nm_cwnd) &&
1688 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1689 if (so->so_state & SS_ISCONNECTED)
1690 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1691 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1692 else
1693 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1694 nmp->nm_nam, (struct mbuf *)0, (struct lwp *)0);
1695 if (error) {
1696 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
1697 #ifdef DEBUG
1698 printf("nfs_timer: ignoring error %d\n",
1699 error);
1700 #endif
1701 so->so_error = 0;
1702 }
1703 } else {
1704 /*
1705 * Iff first send, start timing
1706 * else turn timing off, backoff timer
1707 * and divide congestion window by 2.
1708 */
1709 if (rep->r_flags & R_SENT) {
1710 rep->r_flags &= ~R_TIMING;
1711 if (++rep->r_rexmit > NFS_MAXREXMIT)
1712 rep->r_rexmit = NFS_MAXREXMIT;
1713 nmp->nm_cwnd >>= 1;
1714 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1715 nmp->nm_cwnd = NFS_CWNDSCALE;
1716 nfsstats.rpcretries++;
1717 } else {
1718 rep->r_flags |= R_SENT;
1719 nmp->nm_sent += NFS_CWNDSCALE;
1720 }
1721 rep->r_rtt = 0;
1722 }
1723 }
1724 }
1725 splx(s);
1726
1727 #ifdef NFSSERVER
1728 /*
1729 * Scan the write gathering queues for writes that need to be
1730 * completed now.
1731 */
1732 getmicrotime(&tv);
1733 cur_usec = (u_quad_t)tv.tv_sec * 1000000 + (u_quad_t)tv.tv_usec;
1734 mutex_enter(&nfsd_lock);
1735 TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1736 struct nfsrv_descript *nd;
1737
1738 nd = LIST_FIRST(&slp->ns_tq);
1739 if (nd != NULL) {
1740 if (nd->nd_time <= cur_usec) {
1741 nfsrv_wakenfsd_locked(slp);
1742 }
1743 more = true;
1744 }
1745 }
1746 mutex_exit(&nfsd_lock);
1747 #endif /* NFSSERVER */
1748 if (more) {
1749 nfs_timer_schedule();
1750 } else {
1751 nfs_timer_stop_ev.ev_count++;
1752 }
1753 }
1754
1755 /*
1756 * Test for a termination condition pending on the process.
1757 * This is used for NFSMNT_INT mounts.
1758 */
1759 int
1760 nfs_sigintr(nmp, rep, l)
1761 struct nfsmount *nmp;
1762 struct nfsreq *rep;
1763 struct lwp *l;
1764 {
1765 sigset_t ss;
1766
1767 if (rep && (rep->r_flags & R_SOFTTERM))
1768 return (EINTR);
1769 if (!(nmp->nm_flag & NFSMNT_INT))
1770 return (0);
1771 if (l) {
1772 sigpending1(l, &ss);
1773 #if 0
1774 sigminusset(&l->l_proc->p_sigctx.ps_sigignore, &ss);
1775 #endif
1776 if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) ||
1777 sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) ||
1778 sigismember(&ss, SIGQUIT))
1779 return (EINTR);
1780 }
1781 return (0);
1782 }
1783
1784 /*
1785 * Lock a socket against others.
1786 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1787 * and also to avoid race conditions between the processes with nfs requests
1788 * in progress when a reconnect is necessary.
1789 */
1790 static int
1791 nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep)
1792 {
1793 struct lwp *l;
1794 int timeo = 0;
1795 bool catch = false;
1796 int error = 0;
1797
1798 if (rep) {
1799 l = rep->r_lwp;
1800 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1801 catch = true;
1802 } else
1803 l = NULL;
1804 mutex_enter(&nmp->nm_lock);
1805 while ((nmp->nm_iflag & NFSMNT_SNDLOCK) != 0) {
1806 if (rep && nfs_sigintr(rep->r_nmp, rep, l)) {
1807 error = EINTR;
1808 goto quit;
1809 }
1810 if (catch) {
1811 cv_timedwait_sig(&nmp->nm_sndcv, &nmp->nm_lock, timeo);
1812 } else {
1813 cv_timedwait(&nmp->nm_sndcv, &nmp->nm_lock, timeo);
1814 }
1815 if (catch) {
1816 catch = false;
1817 timeo = 2 * hz;
1818 }
1819 }
1820 nmp->nm_iflag |= NFSMNT_SNDLOCK;
1821 quit:
1822 mutex_exit(&nmp->nm_lock);
1823 return error;
1824 }
1825
1826 /*
1827 * Unlock the stream socket for others.
1828 */
1829 static void
1830 nfs_sndunlock(struct nfsmount *nmp)
1831 {
1832
1833 mutex_enter(&nmp->nm_lock);
1834 if ((nmp->nm_iflag & NFSMNT_SNDLOCK) == 0)
1835 panic("nfs sndunlock");
1836 nmp->nm_iflag &= ~NFSMNT_SNDLOCK;
1837 cv_signal(&nmp->nm_sndcv);
1838 mutex_exit(&nmp->nm_lock);
1839 }
1840
1841 static int
1842 nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep)
1843 {
1844 int *flagp = &nmp->nm_iflag;
1845 int slptimeo = 0;
1846 bool catch;
1847 int error = 0;
1848
1849 KASSERT(nmp == rep->r_nmp);
1850
1851 catch = (nmp->nm_flag & NFSMNT_INT) != 0;
1852 mutex_enter(&nmp->nm_lock);
1853 while (/* CONSTCOND */ true) {
1854 if (*flagp & NFSMNT_DISMNT) {
1855 cv_signal(&nmp->nm_disconcv);
1856 error = EIO;
1857 break;
1858 }
1859 /* If our reply was received while we were sleeping,
1860 * then just return without taking the lock to avoid a
1861 * situation where a single iod could 'capture' the
1862 * receive lock.
1863 */
1864 if (rep->r_mrep != NULL) {
1865 error = EALREADY;
1866 break;
1867 }
1868 if (nfs_sigintr(rep->r_nmp, rep, rep->r_lwp)) {
1869 error = EINTR;
1870 break;
1871 }
1872 if ((*flagp & NFSMNT_RCVLOCK) == 0) {
1873 *flagp |= NFSMNT_RCVLOCK;
1874 break;
1875 }
1876 if (catch) {
1877 cv_timedwait_sig(&nmp->nm_rcvcv, &nmp->nm_lock,
1878 slptimeo);
1879 } else {
1880 cv_timedwait(&nmp->nm_rcvcv, &nmp->nm_lock,
1881 slptimeo);
1882 }
1883 if (catch) {
1884 catch = false;
1885 slptimeo = 2 * hz;
1886 }
1887 }
1888 mutex_exit(&nmp->nm_lock);
1889 return error;
1890 }
1891
1892 /*
1893 * Unlock the stream socket for others.
1894 */
1895 static void
1896 nfs_rcvunlock(struct nfsmount *nmp)
1897 {
1898
1899 mutex_enter(&nmp->nm_lock);
1900 if ((nmp->nm_iflag & NFSMNT_RCVLOCK) == 0)
1901 panic("nfs rcvunlock");
1902 nmp->nm_iflag &= ~NFSMNT_RCVLOCK;
1903 cv_broadcast(&nmp->nm_rcvcv);
1904 mutex_exit(&nmp->nm_lock);
1905 }
1906
1907 /*
1908 * Parse an RPC request
1909 * - verify it
1910 * - allocate and fill in the cred.
1911 */
1912 int
1913 nfs_getreq(nd, nfsd, has_header)
1914 struct nfsrv_descript *nd;
1915 struct nfsd *nfsd;
1916 int has_header;
1917 {
1918 int len, i;
1919 u_int32_t *tl;
1920 int32_t t1;
1921 struct uio uio;
1922 struct iovec iov;
1923 char *dpos, *cp2, *cp;
1924 u_int32_t nfsvers, auth_type;
1925 uid_t nickuid;
1926 int error = 0, ticklen;
1927 struct mbuf *mrep, *md;
1928 struct nfsuid *nuidp;
1929 struct timeval tvin, tvout;
1930
1931 memset(&tvout, 0, sizeof tvout); /* XXX gcc */
1932
1933 KASSERT(nd->nd_cr == NULL);
1934 mrep = nd->nd_mrep;
1935 md = nd->nd_md;
1936 dpos = nd->nd_dpos;
1937 if (has_header) {
1938 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1939 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1940 if (*tl++ != rpc_call) {
1941 m_freem(mrep);
1942 return (EBADRPC);
1943 }
1944 } else
1945 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1946 nd->nd_repstat = 0;
1947 nd->nd_flag = 0;
1948 if (*tl++ != rpc_vers) {
1949 nd->nd_repstat = ERPCMISMATCH;
1950 nd->nd_procnum = NFSPROC_NOOP;
1951 return (0);
1952 }
1953 if (*tl != nfs_prog) {
1954 nd->nd_repstat = EPROGUNAVAIL;
1955 nd->nd_procnum = NFSPROC_NOOP;
1956 return (0);
1957 }
1958 tl++;
1959 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1960 if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) {
1961 nd->nd_repstat = EPROGMISMATCH;
1962 nd->nd_procnum = NFSPROC_NOOP;
1963 return (0);
1964 }
1965 if (nfsvers == NFS_VER3)
1966 nd->nd_flag = ND_NFSV3;
1967 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1968 if (nd->nd_procnum == NFSPROC_NULL)
1969 return (0);
1970 if (nd->nd_procnum > NFSPROC_COMMIT ||
1971 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1972 nd->nd_repstat = EPROCUNAVAIL;
1973 nd->nd_procnum = NFSPROC_NOOP;
1974 return (0);
1975 }
1976 if ((nd->nd_flag & ND_NFSV3) == 0)
1977 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1978 auth_type = *tl++;
1979 len = fxdr_unsigned(int, *tl++);
1980 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1981 m_freem(mrep);
1982 return (EBADRPC);
1983 }
1984
1985 nd->nd_flag &= ~ND_KERBAUTH;
1986 /*
1987 * Handle auth_unix or auth_kerb.
1988 */
1989 if (auth_type == rpc_auth_unix) {
1990 uid_t uid;
1991 gid_t gid, *grbuf;
1992
1993 nd->nd_cr = kauth_cred_alloc();
1994 len = fxdr_unsigned(int, *++tl);
1995 if (len < 0 || len > NFS_MAXNAMLEN) {
1996 m_freem(mrep);
1997 error = EBADRPC;
1998 goto errout;
1999 }
2000 nfsm_adv(nfsm_rndup(len));
2001 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2002
2003 uid = fxdr_unsigned(uid_t, *tl++);
2004 gid = fxdr_unsigned(gid_t, *tl++);
2005 kauth_cred_setuid(nd->nd_cr, uid);
2006 kauth_cred_seteuid(nd->nd_cr, uid);
2007 kauth_cred_setsvuid(nd->nd_cr, uid);
2008 kauth_cred_setgid(nd->nd_cr, gid);
2009 kauth_cred_setegid(nd->nd_cr, gid);
2010 kauth_cred_setsvgid(nd->nd_cr, gid);
2011
2012 len = fxdr_unsigned(int, *tl);
2013 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
2014 m_freem(mrep);
2015 error = EBADRPC;
2016 goto errout;
2017 }
2018 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
2019
2020 grbuf = malloc(len * sizeof(gid_t), M_TEMP, M_WAITOK);
2021 for (i = 0; i < len; i++) {
2022 if (i < NGROUPS) /* XXX elad */
2023 grbuf[i] = fxdr_unsigned(gid_t, *tl++);
2024 else
2025 tl++;
2026 }
2027 kauth_cred_setgroups(nd->nd_cr, grbuf, min(len, NGROUPS), -1,
2028 UIO_SYSSPACE);
2029 free(grbuf, M_TEMP);
2030
2031 len = fxdr_unsigned(int, *++tl);
2032 if (len < 0 || len > RPCAUTH_MAXSIZ) {
2033 m_freem(mrep);
2034 error = EBADRPC;
2035 goto errout;
2036 }
2037 if (len > 0)
2038 nfsm_adv(nfsm_rndup(len));
2039 } else if (auth_type == rpc_auth_kerb) {
2040 switch (fxdr_unsigned(int, *tl++)) {
2041 case RPCAKN_FULLNAME:
2042 ticklen = fxdr_unsigned(int, *tl);
2043 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
2044 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
2045 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
2046 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
2047 m_freem(mrep);
2048 error = EBADRPC;
2049 goto errout;
2050 }
2051 uio.uio_offset = 0;
2052 uio.uio_iov = &iov;
2053 uio.uio_iovcnt = 1;
2054 UIO_SETUP_SYSSPACE(&uio);
2055 iov.iov_base = (void *)&nfsd->nfsd_authstr[4];
2056 iov.iov_len = RPCAUTH_MAXSIZ - 4;
2057 nfsm_mtouio(&uio, uio.uio_resid);
2058 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2059 if (*tl++ != rpc_auth_kerb ||
2060 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
2061 printf("Bad kerb verifier\n");
2062 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2063 nd->nd_procnum = NFSPROC_NOOP;
2064 return (0);
2065 }
2066 nfsm_dissect(cp, void *, 4 * NFSX_UNSIGNED);
2067 tl = (u_int32_t *)cp;
2068 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
2069 printf("Not fullname kerb verifier\n");
2070 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2071 nd->nd_procnum = NFSPROC_NOOP;
2072 return (0);
2073 }
2074 cp += NFSX_UNSIGNED;
2075 memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED);
2076 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
2077 nd->nd_flag |= ND_KERBFULL;
2078 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
2079 break;
2080 case RPCAKN_NICKNAME:
2081 if (len != 2 * NFSX_UNSIGNED) {
2082 printf("Kerb nickname short\n");
2083 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
2084 nd->nd_procnum = NFSPROC_NOOP;
2085 return (0);
2086 }
2087 nickuid = fxdr_unsigned(uid_t, *tl);
2088 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2089 if (*tl++ != rpc_auth_kerb ||
2090 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
2091 printf("Kerb nick verifier bad\n");
2092 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2093 nd->nd_procnum = NFSPROC_NOOP;
2094 return (0);
2095 }
2096 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2097 tvin.tv_sec = *tl++;
2098 tvin.tv_usec = *tl;
2099
2100 LIST_FOREACH(nuidp, NUIDHASH(nfsd->nfsd_slp, nickuid),
2101 nu_hash) {
2102 if (kauth_cred_geteuid(nuidp->nu_cr) == nickuid &&
2103 (!nd->nd_nam2 ||
2104 netaddr_match(NU_NETFAM(nuidp),
2105 &nuidp->nu_haddr, nd->nd_nam2)))
2106 break;
2107 }
2108 if (!nuidp) {
2109 nd->nd_repstat =
2110 (NFSERR_AUTHERR|AUTH_REJECTCRED);
2111 nd->nd_procnum = NFSPROC_NOOP;
2112 return (0);
2113 }
2114
2115 /*
2116 * Now, decrypt the timestamp using the session key
2117 * and validate it.
2118 */
2119 #ifdef NFSKERB
2120 XXX
2121 #endif
2122
2123 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
2124 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
2125 if (nuidp->nu_expire < time_second ||
2126 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
2127 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
2128 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
2129 nuidp->nu_expire = 0;
2130 nd->nd_repstat =
2131 (NFSERR_AUTHERR|AUTH_REJECTVERF);
2132 nd->nd_procnum = NFSPROC_NOOP;
2133 return (0);
2134 }
2135 kauth_cred_hold(nuidp->nu_cr);
2136 nd->nd_cr = nuidp->nu_cr;
2137 nd->nd_flag |= ND_KERBNICK;
2138 }
2139 } else {
2140 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
2141 nd->nd_procnum = NFSPROC_NOOP;
2142 return (0);
2143 }
2144
2145 nd->nd_md = md;
2146 nd->nd_dpos = dpos;
2147 KASSERT((nd->nd_cr == NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) != 0)
2148 || (nd->nd_cr != NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) == 0));
2149 return (0);
2150 nfsmout:
2151 errout:
2152 KASSERT(error != 0);
2153 if (nd->nd_cr != NULL) {
2154 kauth_cred_free(nd->nd_cr);
2155 nd->nd_cr = NULL;
2156 }
2157 return (error);
2158 }
2159
2160 int
2161 nfs_msg(l, server, msg)
2162 struct lwp *l;
2163 const char *server, *msg;
2164 {
2165 tpr_t tpr;
2166
2167 if (l)
2168 tpr = tprintf_open(l->l_proc);
2169 else
2170 tpr = NULL;
2171 tprintf(tpr, "nfs server %s: %s\n", server, msg);
2172 tprintf_close(tpr);
2173 return (0);
2174 }
2175
2176 #ifdef NFSSERVER
2177 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
2178 struct nfssvc_sock *, struct lwp *,
2179 struct mbuf **)) = {
2180 nfsrv_null,
2181 nfsrv_getattr,
2182 nfsrv_setattr,
2183 nfsrv_lookup,
2184 nfsrv3_access,
2185 nfsrv_readlink,
2186 nfsrv_read,
2187 nfsrv_write,
2188 nfsrv_create,
2189 nfsrv_mkdir,
2190 nfsrv_symlink,
2191 nfsrv_mknod,
2192 nfsrv_remove,
2193 nfsrv_rmdir,
2194 nfsrv_rename,
2195 nfsrv_link,
2196 nfsrv_readdir,
2197 nfsrv_readdirplus,
2198 nfsrv_statfs,
2199 nfsrv_fsinfo,
2200 nfsrv_pathconf,
2201 nfsrv_commit,
2202 nfsrv_noop
2203 };
2204
2205 /*
2206 * Socket upcall routine for the nfsd sockets.
2207 * The void *arg is a pointer to the "struct nfssvc_sock".
2208 */
2209 void
2210 nfsrv_soupcall(struct socket *so, void *arg, int waitflag)
2211 {
2212 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2213
2214 nfsdsock_setbits(slp, SLP_A_NEEDQ);
2215 nfsrv_wakenfsd(slp);
2216 }
2217
2218 void
2219 nfsrv_rcv(struct nfssvc_sock *slp)
2220 {
2221 struct socket *so;
2222 struct mbuf *m;
2223 struct mbuf *mp, *nam;
2224 struct uio auio;
2225 int flags;
2226 int error;
2227 int setflags = 0;
2228
2229 error = nfsdsock_lock(slp, true);
2230 if (error) {
2231 setflags |= SLP_A_NEEDQ;
2232 goto dorecs_unlocked;
2233 }
2234
2235 nfsdsock_clearbits(slp, SLP_A_NEEDQ);
2236
2237 so = slp->ns_so;
2238 if (so->so_type == SOCK_STREAM) {
2239 /*
2240 * Do soreceive().
2241 */
2242 auio.uio_resid = 1000000000;
2243 /* not need to setup uio_vmspace */
2244 flags = MSG_DONTWAIT;
2245 error = (*so->so_receive)(so, &nam, &auio, &mp, NULL, &flags);
2246 if (error || mp == NULL) {
2247 if (error == EWOULDBLOCK)
2248 setflags |= SLP_A_NEEDQ;
2249 else
2250 setflags |= SLP_A_DISCONN;
2251 goto dorecs;
2252 }
2253 m = mp;
2254 m_claimm(m, &nfs_mowner);
2255 if (slp->ns_rawend) {
2256 slp->ns_rawend->m_next = m;
2257 slp->ns_cc += 1000000000 - auio.uio_resid;
2258 } else {
2259 slp->ns_raw = m;
2260 slp->ns_cc = 1000000000 - auio.uio_resid;
2261 }
2262 while (m->m_next)
2263 m = m->m_next;
2264 slp->ns_rawend = m;
2265
2266 /*
2267 * Now try and parse record(s) out of the raw stream data.
2268 */
2269 error = nfsrv_getstream(slp, M_WAIT);
2270 if (error) {
2271 if (error == EPERM)
2272 setflags |= SLP_A_DISCONN;
2273 else
2274 setflags |= SLP_A_NEEDQ;
2275 }
2276 } else {
2277 do {
2278 auio.uio_resid = 1000000000;
2279 /* not need to setup uio_vmspace */
2280 flags = MSG_DONTWAIT;
2281 error = (*so->so_receive)(so, &nam, &auio, &mp, NULL,
2282 &flags);
2283 if (mp) {
2284 if (nam) {
2285 m = nam;
2286 m->m_next = mp;
2287 } else
2288 m = mp;
2289 m_claimm(m, &nfs_mowner);
2290 if (slp->ns_recend)
2291 slp->ns_recend->m_nextpkt = m;
2292 else
2293 slp->ns_rec = m;
2294 slp->ns_recend = m;
2295 m->m_nextpkt = (struct mbuf *)0;
2296 }
2297 if (error) {
2298 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2299 && error != EWOULDBLOCK) {
2300 setflags |= SLP_A_DISCONN;
2301 goto dorecs;
2302 }
2303 }
2304 } while (mp);
2305 }
2306 dorecs:
2307 nfsdsock_unlock(slp);
2308
2309 dorecs_unlocked:
2310 if (setflags) {
2311 nfsdsock_setbits(slp, setflags);
2312 }
2313 }
2314
2315 int
2316 nfsdsock_lock(struct nfssvc_sock *slp, bool waitok)
2317 {
2318
2319 mutex_enter(&slp->ns_lock);
2320 while ((~slp->ns_flags & (SLP_BUSY|SLP_VALID)) == 0) {
2321 if (!waitok) {
2322 mutex_exit(&slp->ns_lock);
2323 return EWOULDBLOCK;
2324 }
2325 cv_wait(&slp->ns_cv, &slp->ns_lock);
2326 }
2327 if ((slp->ns_flags & SLP_VALID) == 0) {
2328 mutex_exit(&slp->ns_lock);
2329 return EINVAL;
2330 }
2331 KASSERT((slp->ns_flags & SLP_BUSY) == 0);
2332 slp->ns_flags |= SLP_BUSY;
2333 mutex_exit(&slp->ns_lock);
2334
2335 return 0;
2336 }
2337
2338 void
2339 nfsdsock_unlock(struct nfssvc_sock *slp)
2340 {
2341
2342 mutex_enter(&slp->ns_lock);
2343 KASSERT((slp->ns_flags & SLP_BUSY) != 0);
2344 cv_broadcast(&slp->ns_cv);
2345 slp->ns_flags &= ~SLP_BUSY;
2346 mutex_exit(&slp->ns_lock);
2347 }
2348
2349 int
2350 nfsdsock_drain(struct nfssvc_sock *slp)
2351 {
2352 int error = 0;
2353
2354 mutex_enter(&slp->ns_lock);
2355 if ((slp->ns_flags & SLP_VALID) == 0) {
2356 error = EINVAL;
2357 goto done;
2358 }
2359 slp->ns_flags &= ~SLP_VALID;
2360 while ((slp->ns_flags & SLP_BUSY) != 0) {
2361 cv_wait(&slp->ns_cv, &slp->ns_lock);
2362 }
2363 done:
2364 mutex_exit(&slp->ns_lock);
2365
2366 return error;
2367 }
2368
2369 /*
2370 * Try and extract an RPC request from the mbuf data list received on a
2371 * stream socket. The "waitflag" argument indicates whether or not it
2372 * can sleep.
2373 */
2374 int
2375 nfsrv_getstream(slp, waitflag)
2376 struct nfssvc_sock *slp;
2377 int waitflag;
2378 {
2379 struct mbuf *m, **mpp;
2380 struct mbuf *recm;
2381 u_int32_t recmark;
2382 int error = 0;
2383
2384 KASSERT((slp->ns_flags & SLP_BUSY) != 0);
2385 for (;;) {
2386 if (slp->ns_reclen == 0) {
2387 if (slp->ns_cc < NFSX_UNSIGNED) {
2388 break;
2389 }
2390 m = slp->ns_raw;
2391 m_copydata(m, 0, NFSX_UNSIGNED, (void *)&recmark);
2392 m_adj(m, NFSX_UNSIGNED);
2393 slp->ns_cc -= NFSX_UNSIGNED;
2394 recmark = ntohl(recmark);
2395 slp->ns_reclen = recmark & ~0x80000000;
2396 if (recmark & 0x80000000)
2397 slp->ns_sflags |= SLP_S_LASTFRAG;
2398 else
2399 slp->ns_sflags &= ~SLP_S_LASTFRAG;
2400 if (slp->ns_reclen > NFS_MAXPACKET) {
2401 error = EPERM;
2402 break;
2403 }
2404 }
2405
2406 /*
2407 * Now get the record part.
2408 *
2409 * Note that slp->ns_reclen may be 0. Linux sometimes
2410 * generates 0-length records.
2411 */
2412 if (slp->ns_cc == slp->ns_reclen) {
2413 recm = slp->ns_raw;
2414 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
2415 slp->ns_cc = slp->ns_reclen = 0;
2416 } else if (slp->ns_cc > slp->ns_reclen) {
2417 recm = slp->ns_raw;
2418 m = m_split(recm, slp->ns_reclen, waitflag);
2419 if (m == NULL) {
2420 error = EWOULDBLOCK;
2421 break;
2422 }
2423 m_claimm(recm, &nfs_mowner);
2424 slp->ns_raw = m;
2425 if (m->m_next == NULL)
2426 slp->ns_rawend = m;
2427 slp->ns_cc -= slp->ns_reclen;
2428 slp->ns_reclen = 0;
2429 } else {
2430 break;
2431 }
2432
2433 /*
2434 * Accumulate the fragments into a record.
2435 */
2436 mpp = &slp->ns_frag;
2437 while (*mpp)
2438 mpp = &((*mpp)->m_next);
2439 *mpp = recm;
2440 if (slp->ns_sflags & SLP_S_LASTFRAG) {
2441 if (slp->ns_recend)
2442 slp->ns_recend->m_nextpkt = slp->ns_frag;
2443 else
2444 slp->ns_rec = slp->ns_frag;
2445 slp->ns_recend = slp->ns_frag;
2446 slp->ns_frag = NULL;
2447 }
2448 }
2449
2450 return error;
2451 }
2452
2453 /*
2454 * Parse an RPC header.
2455 */
2456 int
2457 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
2458 struct nfsrv_descript **ndp, bool *more)
2459 {
2460 struct mbuf *m, *nam;
2461 struct nfsrv_descript *nd;
2462 int error;
2463
2464 *ndp = NULL;
2465 *more = false;
2466
2467 if (nfsdsock_lock(slp, true)) {
2468 return ENOBUFS;
2469 }
2470 m = slp->ns_rec;
2471 if (m == NULL) {
2472 nfsdsock_unlock(slp);
2473 return ENOBUFS;
2474 }
2475 slp->ns_rec = m->m_nextpkt;
2476 if (slp->ns_rec) {
2477 m->m_nextpkt = NULL;
2478 *more = true;
2479 } else {
2480 slp->ns_recend = NULL;
2481 }
2482 nfsdsock_unlock(slp);
2483
2484 if (m->m_type == MT_SONAME) {
2485 nam = m;
2486 m = m->m_next;
2487 nam->m_next = NULL;
2488 } else
2489 nam = NULL;
2490 nd = nfsdreq_alloc();
2491 nd->nd_md = nd->nd_mrep = m;
2492 nd->nd_nam2 = nam;
2493 nd->nd_dpos = mtod(m, void *);
2494 error = nfs_getreq(nd, nfsd, true);
2495 if (error) {
2496 m_freem(nam);
2497 nfsdreq_free(nd);
2498 return (error);
2499 }
2500 *ndp = nd;
2501 nfsd->nfsd_nd = nd;
2502 return (0);
2503 }
2504
2505 /*
2506 * Search for a sleeping nfsd and wake it up.
2507 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2508 * running nfsds will go look for the work in the nfssvc_sock list.
2509 */
2510 static void
2511 nfsrv_wakenfsd_locked(struct nfssvc_sock *slp)
2512 {
2513 struct nfsd *nd;
2514
2515 KASSERT(mutex_owned(&nfsd_lock));
2516
2517 if ((slp->ns_flags & SLP_VALID) == 0)
2518 return;
2519 if (slp->ns_gflags & SLP_G_DOREC)
2520 return;
2521 nd = SLIST_FIRST(&nfsd_idle_head);
2522 if (nd) {
2523 SLIST_REMOVE_HEAD(&nfsd_idle_head, nfsd_idle);
2524 if (nd->nfsd_slp)
2525 panic("nfsd wakeup");
2526 slp->ns_sref++;
2527 KASSERT(slp->ns_sref > 0);
2528 nd->nfsd_slp = slp;
2529 cv_signal(&nd->nfsd_cv);
2530 } else {
2531 slp->ns_gflags |= SLP_G_DOREC;
2532 nfsd_head_flag |= NFSD_CHECKSLP;
2533 TAILQ_INSERT_TAIL(&nfssvc_sockpending, slp, ns_pending);
2534 }
2535 }
2536
2537 void
2538 nfsrv_wakenfsd(struct nfssvc_sock *slp)
2539 {
2540
2541 mutex_enter(&nfsd_lock);
2542 nfsrv_wakenfsd_locked(slp);
2543 mutex_exit(&nfsd_lock);
2544 }
2545
2546 int
2547 nfsdsock_sendreply(struct nfssvc_sock *slp, struct nfsrv_descript *nd)
2548 {
2549 int error;
2550
2551 if (nd->nd_mrep != NULL) {
2552 m_freem(nd->nd_mrep);
2553 nd->nd_mrep = NULL;
2554 }
2555
2556 mutex_enter(&slp->ns_lock);
2557 if ((slp->ns_flags & SLP_SENDING) != 0) {
2558 SIMPLEQ_INSERT_TAIL(&slp->ns_sendq, nd, nd_sendq);
2559 mutex_exit(&slp->ns_lock);
2560 return 0;
2561 }
2562 KASSERT(SIMPLEQ_EMPTY(&slp->ns_sendq));
2563 slp->ns_flags |= SLP_SENDING;
2564 mutex_exit(&slp->ns_lock);
2565
2566 again:
2567 error = nfs_send(slp->ns_so, nd->nd_nam2, nd->nd_mreq, NULL, curlwp);
2568 if (nd->nd_nam2) {
2569 m_free(nd->nd_nam2);
2570 }
2571 nfsdreq_free(nd);
2572
2573 mutex_enter(&slp->ns_lock);
2574 KASSERT((slp->ns_flags & SLP_SENDING) != 0);
2575 nd = SIMPLEQ_FIRST(&slp->ns_sendq);
2576 if (nd != NULL) {
2577 SIMPLEQ_REMOVE_HEAD(&slp->ns_sendq, nd_sendq);
2578 mutex_exit(&slp->ns_lock);
2579 goto again;
2580 }
2581 slp->ns_flags &= ~SLP_SENDING;
2582 mutex_exit(&slp->ns_lock);
2583
2584 return error;
2585 }
2586
2587 void
2588 nfsdsock_setbits(struct nfssvc_sock *slp, int bits)
2589 {
2590
2591 mutex_enter(&slp->ns_alock);
2592 slp->ns_aflags |= bits;
2593 mutex_exit(&slp->ns_alock);
2594 }
2595
2596 void
2597 nfsdsock_clearbits(struct nfssvc_sock *slp, int bits)
2598 {
2599
2600 mutex_enter(&slp->ns_alock);
2601 slp->ns_aflags &= ~bits;
2602 mutex_exit(&slp->ns_alock);
2603 }
2604
2605 bool
2606 nfsdsock_testbits(struct nfssvc_sock *slp, int bits)
2607 {
2608
2609 return (slp->ns_aflags & bits);
2610 }
2611 #endif /* NFSSERVER */
2612
2613 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
2614 static struct pool nfs_srvdesc_pool;
2615
2616 void
2617 nfsdreq_init(void)
2618 {
2619
2620 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
2621 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr, IPL_NONE);
2622 }
2623
2624 struct nfsrv_descript *
2625 nfsdreq_alloc(void)
2626 {
2627 struct nfsrv_descript *nd;
2628
2629 nd = pool_get(&nfs_srvdesc_pool, PR_WAITOK);
2630 nd->nd_cr = NULL;
2631 return nd;
2632 }
2633
2634 void
2635 nfsdreq_free(struct nfsrv_descript *nd)
2636 {
2637 kauth_cred_t cr;
2638
2639 cr = nd->nd_cr;
2640 if (cr != NULL) {
2641 kauth_cred_free(cr);
2642 }
2643 pool_put(&nfs_srvdesc_pool, nd);
2644 }
2645 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
2646