nfs_socket.c revision 1.167.6.2 1 /* $NetBSD: nfs_socket.c,v 1.167.6.2 2008/06/02 13:24:30 mjf Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1991, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
35 */
36
37 /*
38 * Socket operations for use by nfs
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.167.6.2 2008/06/02 13:24:30 mjf Exp $");
43
44 #include "fs_nfs.h"
45 #include "opt_nfs.h"
46 #include "opt_nfsserver.h"
47 #include "opt_mbuftrace.h"
48 #include "opt_inet.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/evcnt.h>
53 #include <sys/callout.h>
54 #include <sys/proc.h>
55 #include <sys/mount.h>
56 #include <sys/kernel.h>
57 #include <sys/kmem.h>
58 #include <sys/mbuf.h>
59 #include <sys/vnode.h>
60 #include <sys/domain.h>
61 #include <sys/protosw.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/syslog.h>
65 #include <sys/tprintf.h>
66 #include <sys/namei.h>
67 #include <sys/signal.h>
68 #include <sys/signalvar.h>
69 #include <sys/kauth.h>
70
71 #include <netinet/in.h>
72 #include <netinet/tcp.h>
73
74 #include <nfs/rpcv2.h>
75 #include <nfs/nfsproto.h>
76 #include <nfs/nfs.h>
77 #include <nfs/xdr_subs.h>
78 #include <nfs/nfsm_subs.h>
79 #include <nfs/nfsmount.h>
80 #include <nfs/nfsnode.h>
81 #include <nfs/nfsrtt.h>
82 #include <nfs/nfs_var.h>
83
84 #ifdef MBUFTRACE
85 struct mowner nfs_mowner = MOWNER_INIT("nfs","");
86 #endif
87
88 /*
89 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
90 * Use the mean and mean deviation of rtt for the appropriate type of rpc
91 * for the frequent rpcs and a default for the others.
92 * The justification for doing "other" this way is that these rpcs
93 * happen so infrequently that timer est. would probably be stale.
94 * Also, since many of these rpcs are
95 * non-idempotent, a conservative timeout is desired.
96 * getattr, lookup - A+2D
97 * read, write - A+4D
98 * other - nm_timeo
99 */
100 #define NFS_RTO(n, t) \
101 ((t) == 0 ? (n)->nm_timeo : \
102 ((t) < 3 ? \
103 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
104 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
105 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
106 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
107 /*
108 * External data, mostly RPC constants in XDR form
109 */
110 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
111 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
112 rpc_auth_kerb;
113 extern u_int32_t nfs_prog;
114 extern const int nfsv3_procid[NFS_NPROCS];
115 extern int nfs_ticks;
116
117 /*
118 * Defines which timer to use for the procnum.
119 * 0 - default
120 * 1 - getattr
121 * 2 - lookup
122 * 3 - read
123 * 4 - write
124 */
125 static const int proct[NFS_NPROCS] = {
126 [NFSPROC_NULL] = 0,
127 [NFSPROC_GETATTR] = 1,
128 [NFSPROC_SETATTR] = 0,
129 [NFSPROC_LOOKUP] = 2,
130 [NFSPROC_ACCESS] = 1,
131 [NFSPROC_READLINK] = 3,
132 [NFSPROC_READ] = 3,
133 [NFSPROC_WRITE] = 4,
134 [NFSPROC_CREATE] = 0,
135 [NFSPROC_MKDIR] = 0,
136 [NFSPROC_SYMLINK] = 0,
137 [NFSPROC_MKNOD] = 0,
138 [NFSPROC_REMOVE] = 0,
139 [NFSPROC_RMDIR] = 0,
140 [NFSPROC_RENAME] = 0,
141 [NFSPROC_LINK] = 0,
142 [NFSPROC_READDIR] = 3,
143 [NFSPROC_READDIRPLUS] = 3,
144 [NFSPROC_FSSTAT] = 0,
145 [NFSPROC_FSINFO] = 0,
146 [NFSPROC_PATHCONF] = 0,
147 [NFSPROC_COMMIT] = 0,
148 [NFSPROC_NOOP] = 0,
149 };
150
151 /*
152 * There is a congestion window for outstanding rpcs maintained per mount
153 * point. The cwnd size is adjusted in roughly the way that:
154 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
155 * SIGCOMM '88". ACM, August 1988.
156 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
157 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
158 * of rpcs is in progress.
159 * (The sent count and cwnd are scaled for integer arith.)
160 * Variants of "slow start" were tried and were found to be too much of a
161 * performance hit (ave. rtt 3 times larger),
162 * I suspect due to the large rtt that nfs rpcs have.
163 */
164 #define NFS_CWNDSCALE 256
165 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
166 static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
167 int nfsrtton = 0;
168 struct nfsrtt nfsrtt;
169 struct nfsreqhead nfs_reqq;
170 static callout_t nfs_timer_ch;
171 static struct evcnt nfs_timer_ev;
172 static struct evcnt nfs_timer_start_ev;
173 static struct evcnt nfs_timer_stop_ev;
174
175 static int nfs_sndlock(struct nfsmount *, struct nfsreq *);
176 static void nfs_sndunlock(struct nfsmount *);
177 static int nfs_rcvlock(struct nfsmount *, struct nfsreq *);
178 static void nfs_rcvunlock(struct nfsmount *);
179
180 #if defined(NFSSERVER)
181 static void nfsrv_wakenfsd_locked(struct nfssvc_sock *);
182 #endif /* defined(NFSSERVER) */
183
184 /*
185 * Initialize sockets and congestion for a new NFS connection.
186 * We do not free the sockaddr if error.
187 */
188 int
189 nfs_connect(nmp, rep, l)
190 struct nfsmount *nmp;
191 struct nfsreq *rep;
192 struct lwp *l;
193 {
194 struct socket *so;
195 int error, rcvreserve, sndreserve;
196 struct sockaddr *saddr;
197 struct sockaddr_in *sin;
198 #ifdef INET6
199 struct sockaddr_in6 *sin6;
200 #endif
201 struct mbuf *m;
202
203 nmp->nm_so = (struct socket *)0;
204 saddr = mtod(nmp->nm_nam, struct sockaddr *);
205 error = socreate(saddr->sa_family, &nmp->nm_so,
206 nmp->nm_sotype, nmp->nm_soproto, l, NULL);
207 if (error)
208 goto bad;
209 so = nmp->nm_so;
210 #ifdef MBUFTRACE
211 so->so_mowner = &nfs_mowner;
212 so->so_rcv.sb_mowner = &nfs_mowner;
213 so->so_snd.sb_mowner = &nfs_mowner;
214 #endif
215 nmp->nm_soflags = so->so_proto->pr_flags;
216
217 /*
218 * Some servers require that the client port be a reserved port number.
219 */
220 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
221 m = m_get(M_WAIT, MT_SOOPTS);
222 MCLAIM(m, so->so_mowner);
223 *mtod(m, int32_t *) = IP_PORTRANGE_LOW;
224 m->m_len = sizeof(int32_t);
225 if ((error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, m)))
226 goto bad;
227 m = m_get(M_WAIT, MT_SONAME);
228 MCLAIM(m, so->so_mowner);
229 sin = mtod(m, struct sockaddr_in *);
230 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
231 sin->sin_family = AF_INET;
232 sin->sin_addr.s_addr = INADDR_ANY;
233 sin->sin_port = 0;
234 error = sobind(so, m, &lwp0);
235 m_freem(m);
236 if (error)
237 goto bad;
238 }
239 #ifdef INET6
240 if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) {
241 m = m_get(M_WAIT, MT_SOOPTS);
242 MCLAIM(m, so->so_mowner);
243 *mtod(m, int32_t *) = IPV6_PORTRANGE_LOW;
244 m->m_len = sizeof(int32_t);
245 if ((error = sosetopt(so, IPPROTO_IPV6, IPV6_PORTRANGE, m)))
246 goto bad;
247 m = m_get(M_WAIT, MT_SONAME);
248 MCLAIM(m, so->so_mowner);
249 sin6 = mtod(m, struct sockaddr_in6 *);
250 sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6);
251 sin6->sin6_family = AF_INET6;
252 sin6->sin6_addr = in6addr_any;
253 sin6->sin6_port = 0;
254 error = sobind(so, m, &lwp0);
255 m_freem(m);
256 if (error)
257 goto bad;
258 }
259 #endif
260
261 /*
262 * Protocols that do not require connections may be optionally left
263 * unconnected for servers that reply from a port other than NFS_PORT.
264 */
265 solock(so);
266 if (nmp->nm_flag & NFSMNT_NOCONN) {
267 if (nmp->nm_soflags & PR_CONNREQUIRED) {
268 sounlock(so);
269 error = ENOTCONN;
270 goto bad;
271 }
272 } else {
273 error = soconnect(so, nmp->nm_nam, l);
274 if (error) {
275 sounlock(so);
276 goto bad;
277 }
278
279 /*
280 * Wait for the connection to complete. Cribbed from the
281 * connect system call but with the wait timing out so
282 * that interruptible mounts don't hang here for a long time.
283 */
284 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
285 (void)sowait(so, 2 * hz);
286 if ((so->so_state & SS_ISCONNECTING) &&
287 so->so_error == 0 && rep &&
288 (error = nfs_sigintr(nmp, rep, rep->r_lwp)) != 0){
289 so->so_state &= ~SS_ISCONNECTING;
290 sounlock(so);
291 goto bad;
292 }
293 }
294 if (so->so_error) {
295 error = so->so_error;
296 so->so_error = 0;
297 sounlock(so);
298 goto bad;
299 }
300 }
301 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
302 so->so_rcv.sb_timeo = (5 * hz);
303 so->so_snd.sb_timeo = (5 * hz);
304 } else {
305 /*
306 * enable receive timeout to detect server crash and reconnect.
307 * otherwise, we can be stuck in soreceive forever.
308 */
309 so->so_rcv.sb_timeo = (5 * hz);
310 so->so_snd.sb_timeo = 0;
311 }
312 if (nmp->nm_sotype == SOCK_DGRAM) {
313 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
314 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
315 NFS_MAXPKTHDR) * 2;
316 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
317 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
318 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
319 NFS_MAXPKTHDR) * 2;
320 } else {
321 sounlock(so);
322 if (nmp->nm_sotype != SOCK_STREAM)
323 panic("nfscon sotype");
324 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
325 m = m_get(M_WAIT, MT_SOOPTS);
326 MCLAIM(m, so->so_mowner);
327 *mtod(m, int32_t *) = 1;
328 m->m_len = sizeof(int32_t);
329 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
330 }
331 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
332 m = m_get(M_WAIT, MT_SOOPTS);
333 MCLAIM(m, so->so_mowner);
334 *mtod(m, int32_t *) = 1;
335 m->m_len = sizeof(int32_t);
336 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
337 }
338 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
339 sizeof (u_int32_t)) * 2;
340 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
341 sizeof (u_int32_t)) * 2;
342 solock(so);
343 }
344 error = soreserve(so, sndreserve, rcvreserve);
345 if (error) {
346 sounlock(so);
347 goto bad;
348 }
349 so->so_rcv.sb_flags |= SB_NOINTR;
350 so->so_snd.sb_flags |= SB_NOINTR;
351 sounlock(so);
352
353 /* Initialize other non-zero congestion variables */
354 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
355 NFS_TIMEO << 3;
356 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
357 nmp->nm_sdrtt[3] = 0;
358 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
359 nmp->nm_sent = 0;
360 nmp->nm_timeouts = 0;
361 return (0);
362
363 bad:
364 nfs_disconnect(nmp);
365 return (error);
366 }
367
368 /*
369 * Reconnect routine:
370 * Called when a connection is broken on a reliable protocol.
371 * - clean up the old socket
372 * - nfs_connect() again
373 * - set R_MUSTRESEND for all outstanding requests on mount point
374 * If this fails the mount point is DEAD!
375 * nb: Must be called with the nfs_sndlock() set on the mount point.
376 */
377 int
378 nfs_reconnect(struct nfsreq *rep)
379 {
380 struct nfsreq *rp;
381 struct nfsmount *nmp = rep->r_nmp;
382 int error;
383
384 nfs_disconnect(nmp);
385 while ((error = nfs_connect(nmp, rep, &lwp0)) != 0) {
386 if (error == EINTR || error == ERESTART)
387 return (EINTR);
388 kpause("nfscn2", false, hz, NULL);
389 }
390
391 /*
392 * Loop through outstanding request list and fix up all requests
393 * on old socket.
394 */
395 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) {
396 if (rp->r_nmp == nmp) {
397 if ((rp->r_flags & R_MUSTRESEND) == 0)
398 rp->r_flags |= R_MUSTRESEND | R_REXMITTED;
399 rp->r_rexmit = 0;
400 }
401 }
402 return (0);
403 }
404
405 /*
406 * NFS disconnect. Clean up and unlink.
407 */
408 void
409 nfs_disconnect(nmp)
410 struct nfsmount *nmp;
411 {
412 struct socket *so;
413 int drain = 0;
414
415 if (nmp->nm_so) {
416 so = nmp->nm_so;
417 nmp->nm_so = (struct socket *)0;
418 solock(so);
419 soshutdown(so, SHUT_RDWR);
420 sounlock(so);
421 drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0;
422 if (drain) {
423 /*
424 * soshutdown() above should wake up the current
425 * listener.
426 * Now wake up those waiting for the receive lock, and
427 * wait for them to go away unhappy, to prevent *nmp
428 * from evaporating while they're sleeping.
429 */
430 mutex_enter(&nmp->nm_lock);
431 while (nmp->nm_waiters > 0) {
432 cv_broadcast(&nmp->nm_rcvcv);
433 cv_broadcast(&nmp->nm_sndcv);
434 cv_wait(&nmp->nm_disconcv, &nmp->nm_lock);
435 }
436 mutex_exit(&nmp->nm_lock);
437 }
438 soclose(so);
439 }
440 #ifdef DIAGNOSTIC
441 if (drain && (nmp->nm_waiters > 0))
442 panic("nfs_disconnect: waiters left after drain?");
443 #endif
444 }
445
446 void
447 nfs_safedisconnect(nmp)
448 struct nfsmount *nmp;
449 {
450 struct nfsreq dummyreq;
451
452 memset(&dummyreq, 0, sizeof(dummyreq));
453 dummyreq.r_nmp = nmp;
454 nfs_rcvlock(nmp, &dummyreq); /* XXX ignored error return */
455 nfs_disconnect(nmp);
456 nfs_rcvunlock(nmp);
457 }
458
459 /*
460 * This is the nfs send routine. For connection based socket types, it
461 * must be called with an nfs_sndlock() on the socket.
462 * "rep == NULL" indicates that it has been called from a server.
463 * For the client side:
464 * - return EINTR if the RPC is terminated, 0 otherwise
465 * - set R_MUSTRESEND if the send fails for any reason
466 * - do any cleanup required by recoverable socket errors (? ? ?)
467 * For the server side:
468 * - return EINTR or ERESTART if interrupted by a signal
469 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
470 * - do any cleanup required by recoverable socket errors (? ? ?)
471 */
472 int
473 nfs_send(so, nam, top, rep, l)
474 struct socket *so;
475 struct mbuf *nam;
476 struct mbuf *top;
477 struct nfsreq *rep;
478 struct lwp *l;
479 {
480 struct mbuf *sendnam;
481 int error, soflags, flags;
482
483 /* XXX nfs_doio()/nfs_request() calls with rep->r_lwp == NULL */
484 if (l == NULL && rep->r_lwp == NULL)
485 l = curlwp;
486
487 if (rep) {
488 if (rep->r_flags & R_SOFTTERM) {
489 m_freem(top);
490 return (EINTR);
491 }
492 if ((so = rep->r_nmp->nm_so) == NULL) {
493 rep->r_flags |= R_MUSTRESEND;
494 m_freem(top);
495 return (0);
496 }
497 rep->r_flags &= ~R_MUSTRESEND;
498 soflags = rep->r_nmp->nm_soflags;
499 } else
500 soflags = so->so_proto->pr_flags;
501 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
502 sendnam = (struct mbuf *)0;
503 else
504 sendnam = nam;
505 if (so->so_type == SOCK_SEQPACKET)
506 flags = MSG_EOR;
507 else
508 flags = 0;
509
510 error = (*so->so_send)(so, sendnam, NULL, top, NULL, flags, l);
511 if (error) {
512 if (rep) {
513 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
514 /*
515 * We're too fast for the network/driver,
516 * and UDP isn't flowcontrolled.
517 * We need to resend. This is not fatal,
518 * just try again.
519 *
520 * Could be smarter here by doing some sort
521 * of a backoff, but this is rare.
522 */
523 rep->r_flags |= R_MUSTRESEND;
524 } else {
525 if (error != EPIPE)
526 log(LOG_INFO,
527 "nfs send error %d for %s\n",
528 error,
529 rep->r_nmp->nm_mountp->
530 mnt_stat.f_mntfromname);
531 /*
532 * Deal with errors for the client side.
533 */
534 if (rep->r_flags & R_SOFTTERM)
535 error = EINTR;
536 else
537 rep->r_flags |= R_MUSTRESEND;
538 }
539 } else {
540 /*
541 * See above. This error can happen under normal
542 * circumstances and the log is too noisy.
543 * The error will still show up in nfsstat.
544 */
545 if (error != ENOBUFS || so->so_type != SOCK_DGRAM)
546 log(LOG_INFO, "nfsd send error %d\n", error);
547 }
548
549 /*
550 * Handle any recoverable (soft) socket errors here. (? ? ?)
551 */
552 if (error != EINTR && error != ERESTART &&
553 error != EWOULDBLOCK && error != EPIPE)
554 error = 0;
555 }
556 return (error);
557 }
558
559 #ifdef NFS
560 /*
561 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
562 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
563 * Mark and consolidate the data into a new mbuf list.
564 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
565 * small mbufs.
566 * For SOCK_STREAM we must be very careful to read an entire record once
567 * we have read any of it, even if the system call has been interrupted.
568 */
569 static int
570 nfs_receive(struct nfsreq *rep, struct mbuf **aname, struct mbuf **mp,
571 struct lwp *l)
572 {
573 struct socket *so;
574 struct uio auio;
575 struct iovec aio;
576 struct mbuf *m;
577 struct mbuf *control;
578 u_int32_t len;
579 struct mbuf **getnam;
580 int error, sotype, rcvflg;
581
582 /*
583 * Set up arguments for soreceive()
584 */
585 *mp = (struct mbuf *)0;
586 *aname = (struct mbuf *)0;
587 sotype = rep->r_nmp->nm_sotype;
588
589 /*
590 * For reliable protocols, lock against other senders/receivers
591 * in case a reconnect is necessary.
592 * For SOCK_STREAM, first get the Record Mark to find out how much
593 * more there is to get.
594 * We must lock the socket against other receivers
595 * until we have an entire rpc request/reply.
596 */
597 if (sotype != SOCK_DGRAM) {
598 error = nfs_sndlock(rep->r_nmp, rep);
599 if (error)
600 return (error);
601 tryagain:
602 /*
603 * Check for fatal errors and resending request.
604 */
605 /*
606 * Ugh: If a reconnect attempt just happened, nm_so
607 * would have changed. NULL indicates a failed
608 * attempt that has essentially shut down this
609 * mount point.
610 */
611 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
612 nfs_sndunlock(rep->r_nmp);
613 return (EINTR);
614 }
615 so = rep->r_nmp->nm_so;
616 if (!so) {
617 error = nfs_reconnect(rep);
618 if (error) {
619 nfs_sndunlock(rep->r_nmp);
620 return (error);
621 }
622 goto tryagain;
623 }
624 while (rep->r_flags & R_MUSTRESEND) {
625 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
626 nfsstats.rpcretries++;
627 rep->r_rtt = 0;
628 rep->r_flags &= ~R_TIMING;
629 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep, l);
630 if (error) {
631 if (error == EINTR || error == ERESTART ||
632 (error = nfs_reconnect(rep)) != 0) {
633 nfs_sndunlock(rep->r_nmp);
634 return (error);
635 }
636 goto tryagain;
637 }
638 }
639 nfs_sndunlock(rep->r_nmp);
640 if (sotype == SOCK_STREAM) {
641 aio.iov_base = (void *) &len;
642 aio.iov_len = sizeof(u_int32_t);
643 auio.uio_iov = &aio;
644 auio.uio_iovcnt = 1;
645 auio.uio_rw = UIO_READ;
646 auio.uio_offset = 0;
647 auio.uio_resid = sizeof(u_int32_t);
648 UIO_SETUP_SYSSPACE(&auio);
649 do {
650 rcvflg = MSG_WAITALL;
651 error = (*so->so_receive)(so, (struct mbuf **)0, &auio,
652 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
653 if (error == EWOULDBLOCK && rep) {
654 if (rep->r_flags & R_SOFTTERM)
655 return (EINTR);
656 /*
657 * if it seems that the server died after it
658 * received our request, set EPIPE so that
659 * we'll reconnect and retransmit requests.
660 */
661 if (rep->r_rexmit >= rep->r_nmp->nm_retry) {
662 nfsstats.rpctimeouts++;
663 error = EPIPE;
664 }
665 }
666 } while (error == EWOULDBLOCK);
667 if (!error && auio.uio_resid > 0) {
668 /*
669 * Don't log a 0 byte receive; it means
670 * that the socket has been closed, and
671 * can happen during normal operation
672 * (forcible unmount or Solaris server).
673 */
674 if (auio.uio_resid != sizeof (u_int32_t))
675 log(LOG_INFO,
676 "short receive (%lu/%lu) from nfs server %s\n",
677 (u_long)sizeof(u_int32_t) - auio.uio_resid,
678 (u_long)sizeof(u_int32_t),
679 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
680 error = EPIPE;
681 }
682 if (error)
683 goto errout;
684 len = ntohl(len) & ~0x80000000;
685 /*
686 * This is SERIOUS! We are out of sync with the sender
687 * and forcing a disconnect/reconnect is all I can do.
688 */
689 if (len > NFS_MAXPACKET) {
690 log(LOG_ERR, "%s (%d) from nfs server %s\n",
691 "impossible packet length",
692 len,
693 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
694 error = EFBIG;
695 goto errout;
696 }
697 auio.uio_resid = len;
698 do {
699 rcvflg = MSG_WAITALL;
700 error = (*so->so_receive)(so, (struct mbuf **)0,
701 &auio, mp, (struct mbuf **)0, &rcvflg);
702 } while (error == EWOULDBLOCK || error == EINTR ||
703 error == ERESTART);
704 if (!error && auio.uio_resid > 0) {
705 if (len != auio.uio_resid)
706 log(LOG_INFO,
707 "short receive (%lu/%d) from nfs server %s\n",
708 (u_long)len - auio.uio_resid, len,
709 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
710 error = EPIPE;
711 }
712 } else {
713 /*
714 * NB: Since uio_resid is big, MSG_WAITALL is ignored
715 * and soreceive() will return when it has either a
716 * control msg or a data msg.
717 * We have no use for control msg., but must grab them
718 * and then throw them away so we know what is going
719 * on.
720 */
721 auio.uio_resid = len = 100000000; /* Anything Big */
722 /* not need to setup uio_vmspace */
723 do {
724 rcvflg = 0;
725 error = (*so->so_receive)(so, (struct mbuf **)0,
726 &auio, mp, &control, &rcvflg);
727 if (control)
728 m_freem(control);
729 if (error == EWOULDBLOCK && rep) {
730 if (rep->r_flags & R_SOFTTERM)
731 return (EINTR);
732 }
733 } while (error == EWOULDBLOCK ||
734 (!error && *mp == NULL && control));
735 if ((rcvflg & MSG_EOR) == 0)
736 printf("Egad!!\n");
737 if (!error && *mp == NULL)
738 error = EPIPE;
739 len -= auio.uio_resid;
740 }
741 errout:
742 if (error && error != EINTR && error != ERESTART) {
743 m_freem(*mp);
744 *mp = (struct mbuf *)0;
745 if (error != EPIPE)
746 log(LOG_INFO,
747 "receive error %d from nfs server %s\n",
748 error,
749 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
750 error = nfs_sndlock(rep->r_nmp, rep);
751 if (!error)
752 error = nfs_reconnect(rep);
753 if (!error)
754 goto tryagain;
755 else
756 nfs_sndunlock(rep->r_nmp);
757 }
758 } else {
759 if ((so = rep->r_nmp->nm_so) == NULL)
760 return (EACCES);
761 if (so->so_state & SS_ISCONNECTED)
762 getnam = (struct mbuf **)0;
763 else
764 getnam = aname;
765 auio.uio_resid = len = 1000000;
766 /* not need to setup uio_vmspace */
767 do {
768 rcvflg = 0;
769 error = (*so->so_receive)(so, getnam, &auio, mp,
770 (struct mbuf **)0, &rcvflg);
771 if (error == EWOULDBLOCK &&
772 (rep->r_flags & R_SOFTTERM))
773 return (EINTR);
774 } while (error == EWOULDBLOCK);
775 len -= auio.uio_resid;
776 if (!error && *mp == NULL)
777 error = EPIPE;
778 }
779 if (error) {
780 m_freem(*mp);
781 *mp = (struct mbuf *)0;
782 }
783 return (error);
784 }
785
786 /*
787 * Implement receipt of reply on a socket.
788 * We must search through the list of received datagrams matching them
789 * with outstanding requests using the xid, until ours is found.
790 */
791 /* ARGSUSED */
792 static int
793 nfs_reply(struct nfsreq *myrep, struct lwp *lwp)
794 {
795 struct nfsreq *rep;
796 struct nfsmount *nmp = myrep->r_nmp;
797 int32_t t1;
798 struct mbuf *mrep, *nam, *md;
799 u_int32_t rxid, *tl;
800 char *dpos, *cp2;
801 int error;
802
803 /*
804 * Loop around until we get our own reply
805 */
806 for (;;) {
807 /*
808 * Lock against other receivers so that I don't get stuck in
809 * sbwait() after someone else has received my reply for me.
810 * Also necessary for connection based protocols to avoid
811 * race conditions during a reconnect.
812 */
813 error = nfs_rcvlock(nmp, myrep);
814 if (error == EALREADY)
815 return (0);
816 if (error)
817 return (error);
818 /*
819 * Get the next Rpc reply off the socket
820 */
821
822 mutex_enter(&nmp->nm_lock);
823 nmp->nm_waiters++;
824 mutex_exit(&nmp->nm_lock);
825
826 error = nfs_receive(myrep, &nam, &mrep, lwp);
827
828 mutex_enter(&nmp->nm_lock);
829 nmp->nm_waiters--;
830 cv_signal(&nmp->nm_disconcv);
831 mutex_exit(&nmp->nm_lock);
832
833 if (error) {
834 nfs_rcvunlock(nmp);
835
836 if (nmp->nm_iflag & NFSMNT_DISMNT) {
837 /*
838 * Oops, we're going away now..
839 */
840 return error;
841 }
842 /*
843 * Ignore routing errors on connectionless protocols? ?
844 */
845 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
846 nmp->nm_so->so_error = 0;
847 #ifdef DEBUG
848 printf("nfs_reply: ignoring error %d\n", error);
849 #endif
850 continue;
851 }
852 return (error);
853 }
854 if (nam)
855 m_freem(nam);
856
857 /*
858 * Get the xid and check that it is an rpc reply
859 */
860 md = mrep;
861 dpos = mtod(md, void *);
862 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
863 rxid = *tl++;
864 if (*tl != rpc_reply) {
865 nfsstats.rpcinvalid++;
866 m_freem(mrep);
867 nfsmout:
868 nfs_rcvunlock(nmp);
869 continue;
870 }
871
872 /*
873 * Loop through the request list to match up the reply
874 * Iff no match, just drop the datagram
875 */
876 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
877 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
878 /* Found it.. */
879 rep->r_mrep = mrep;
880 rep->r_md = md;
881 rep->r_dpos = dpos;
882 if (nfsrtton) {
883 struct rttl *rt;
884
885 rt = &nfsrtt.rttl[nfsrtt.pos];
886 rt->proc = rep->r_procnum;
887 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
888 rt->sent = nmp->nm_sent;
889 rt->cwnd = nmp->nm_cwnd;
890 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
891 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
892 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsidx;
893 getmicrotime(&rt->tstamp);
894 if (rep->r_flags & R_TIMING)
895 rt->rtt = rep->r_rtt;
896 else
897 rt->rtt = 1000000;
898 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
899 }
900 /*
901 * Update congestion window.
902 * Do the additive increase of
903 * one rpc/rtt.
904 */
905 if (nmp->nm_cwnd <= nmp->nm_sent) {
906 nmp->nm_cwnd +=
907 (NFS_CWNDSCALE * NFS_CWNDSCALE +
908 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
909 if (nmp->nm_cwnd > NFS_MAXCWND)
910 nmp->nm_cwnd = NFS_MAXCWND;
911 }
912 rep->r_flags &= ~R_SENT;
913 nmp->nm_sent -= NFS_CWNDSCALE;
914 /*
915 * Update rtt using a gain of 0.125 on the mean
916 * and a gain of 0.25 on the deviation.
917 */
918 if (rep->r_flags & R_TIMING) {
919 /*
920 * Since the timer resolution of
921 * NFS_HZ is so course, it can often
922 * result in r_rtt == 0. Since
923 * r_rtt == N means that the actual
924 * rtt is between N+dt and N+2-dt ticks,
925 * add 1.
926 */
927 t1 = rep->r_rtt + 1;
928 t1 -= (NFS_SRTT(rep) >> 3);
929 NFS_SRTT(rep) += t1;
930 if (t1 < 0)
931 t1 = -t1;
932 t1 -= (NFS_SDRTT(rep) >> 2);
933 NFS_SDRTT(rep) += t1;
934 }
935 nmp->nm_timeouts = 0;
936 break;
937 }
938 }
939 nfs_rcvunlock(nmp);
940 /*
941 * If not matched to a request, drop it.
942 * If it's mine, get out.
943 */
944 if (rep == 0) {
945 nfsstats.rpcunexpected++;
946 m_freem(mrep);
947 } else if (rep == myrep) {
948 if (rep->r_mrep == NULL)
949 panic("nfsreply nil");
950 return (0);
951 }
952 }
953 }
954
955 /*
956 * nfs_request - goes something like this
957 * - fill in request struct
958 * - links it into list
959 * - calls nfs_send() for first transmit
960 * - calls nfs_receive() to get reply
961 * - break down rpc header and return with nfs reply pointed to
962 * by mrep or error
963 * nb: always frees up mreq mbuf list
964 */
965 int
966 nfs_request(np, mrest, procnum, lwp, cred, mrp, mdp, dposp, rexmitp)
967 struct nfsnode *np;
968 struct mbuf *mrest;
969 int procnum;
970 struct lwp *lwp;
971 kauth_cred_t cred;
972 struct mbuf **mrp;
973 struct mbuf **mdp;
974 char **dposp;
975 int *rexmitp;
976 {
977 struct mbuf *m, *mrep;
978 struct nfsreq *rep;
979 u_int32_t *tl;
980 int i;
981 struct nfsmount *nmp = VFSTONFS(np->n_vnode->v_mount);
982 struct mbuf *md, *mheadend;
983 char nickv[RPCX_NICKVERF];
984 time_t waituntil;
985 char *dpos, *cp2;
986 int t1, s, error = 0, mrest_len, auth_len, auth_type;
987 int trylater_delay = NFS_TRYLATERDEL, failed_auth = 0;
988 int verf_len, verf_type;
989 u_int32_t xid;
990 char *auth_str, *verf_str;
991 NFSKERBKEY_T key; /* save session key */
992 kauth_cred_t acred;
993 struct mbuf *mrest_backup = NULL;
994 kauth_cred_t origcred = NULL; /* XXX: gcc */
995 bool retry_cred = true;
996 bool use_opencred = (np->n_flag & NUSEOPENCRED) != 0;
997
998 if (rexmitp != NULL)
999 *rexmitp = 0;
1000
1001 acred = kauth_cred_alloc();
1002
1003 tryagain_cred:
1004 KASSERT(cred != NULL);
1005 rep = kmem_alloc(sizeof(*rep), KM_SLEEP);
1006 rep->r_nmp = nmp;
1007 KASSERT(lwp == NULL || lwp == curlwp);
1008 rep->r_lwp = lwp;
1009 rep->r_procnum = procnum;
1010 i = 0;
1011 m = mrest;
1012 while (m) {
1013 i += m->m_len;
1014 m = m->m_next;
1015 }
1016 mrest_len = i;
1017
1018 /*
1019 * Get the RPC header with authorization.
1020 */
1021 kerbauth:
1022 verf_str = auth_str = (char *)0;
1023 if (nmp->nm_flag & NFSMNT_KERB) {
1024 verf_str = nickv;
1025 verf_len = sizeof (nickv);
1026 auth_type = RPCAUTH_KERB4;
1027 memset((void *)key, 0, sizeof (key));
1028 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
1029 &auth_len, verf_str, verf_len)) {
1030 error = nfs_getauth(nmp, rep, cred, &auth_str,
1031 &auth_len, verf_str, &verf_len, key);
1032 if (error) {
1033 kmem_free(rep, sizeof(*rep));
1034 m_freem(mrest);
1035 KASSERT(kauth_cred_getrefcnt(acred) == 1);
1036 kauth_cred_free(acred);
1037 return (error);
1038 }
1039 }
1040 retry_cred = false;
1041 } else {
1042 /* AUTH_UNIX */
1043 uid_t uid;
1044 gid_t gid;
1045
1046 /*
1047 * on the most unix filesystems, permission checks are
1048 * done when the file is open(2)'ed.
1049 * ie. once a file is successfully open'ed,
1050 * following i/o operations never fail with EACCES.
1051 * we try to follow the semantics as far as possible.
1052 *
1053 * note that we expect that the nfs server always grant
1054 * accesses by the file's owner.
1055 */
1056 origcred = cred;
1057 switch (procnum) {
1058 case NFSPROC_READ:
1059 case NFSPROC_WRITE:
1060 case NFSPROC_COMMIT:
1061 uid = np->n_vattr->va_uid;
1062 gid = np->n_vattr->va_gid;
1063 if (kauth_cred_geteuid(cred) == uid &&
1064 kauth_cred_getegid(cred) == gid) {
1065 retry_cred = false;
1066 break;
1067 }
1068 if (use_opencred)
1069 break;
1070 kauth_cred_setuid(acred, uid);
1071 kauth_cred_seteuid(acred, uid);
1072 kauth_cred_setsvuid(acred, uid);
1073 kauth_cred_setgid(acred, gid);
1074 kauth_cred_setegid(acred, gid);
1075 kauth_cred_setsvgid(acred, gid);
1076 cred = acred;
1077 break;
1078 default:
1079 retry_cred = false;
1080 break;
1081 }
1082 /*
1083 * backup mbuf chain if we can need it later to retry.
1084 *
1085 * XXX maybe we can keep a direct reference to
1086 * mrest without doing m_copym, but it's ...ugly.
1087 */
1088 if (retry_cred)
1089 mrest_backup = m_copym(mrest, 0, M_COPYALL, M_WAIT);
1090 auth_type = RPCAUTH_UNIX;
1091 /* XXX elad - ngroups */
1092 auth_len = (((kauth_cred_ngroups(cred) > nmp->nm_numgrps) ?
1093 nmp->nm_numgrps : kauth_cred_ngroups(cred)) << 2) +
1094 5 * NFSX_UNSIGNED;
1095 }
1096 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
1097 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
1098 if (auth_str)
1099 free(auth_str, M_TEMP);
1100
1101 /*
1102 * For stream protocols, insert a Sun RPC Record Mark.
1103 */
1104 if (nmp->nm_sotype == SOCK_STREAM) {
1105 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
1106 *mtod(m, u_int32_t *) = htonl(0x80000000 |
1107 (m->m_pkthdr.len - NFSX_UNSIGNED));
1108 }
1109 rep->r_mreq = m;
1110 rep->r_xid = xid;
1111 tryagain:
1112 if (nmp->nm_flag & NFSMNT_SOFT)
1113 rep->r_retry = nmp->nm_retry;
1114 else
1115 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
1116 rep->r_rtt = rep->r_rexmit = 0;
1117 if (proct[procnum] > 0)
1118 rep->r_flags = R_TIMING;
1119 else
1120 rep->r_flags = 0;
1121 rep->r_mrep = NULL;
1122
1123 /*
1124 * Do the client side RPC.
1125 */
1126 nfsstats.rpcrequests++;
1127 /*
1128 * Chain request into list of outstanding requests. Be sure
1129 * to put it LAST so timer finds oldest requests first.
1130 */
1131 s = splsoftnet();
1132 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
1133 nfs_timer_start();
1134
1135 /*
1136 * If backing off another request or avoiding congestion, don't
1137 * send this one now but let timer do it. If not timing a request,
1138 * do it now.
1139 */
1140 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
1141 (nmp->nm_flag & NFSMNT_DUMBTIMR) || nmp->nm_sent < nmp->nm_cwnd)) {
1142 splx(s);
1143 if (nmp->nm_soflags & PR_CONNREQUIRED)
1144 error = nfs_sndlock(nmp, rep);
1145 if (!error) {
1146 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
1147 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep, lwp);
1148 if (nmp->nm_soflags & PR_CONNREQUIRED)
1149 nfs_sndunlock(nmp);
1150 }
1151 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
1152 nmp->nm_sent += NFS_CWNDSCALE;
1153 rep->r_flags |= R_SENT;
1154 }
1155 } else {
1156 splx(s);
1157 rep->r_rtt = -1;
1158 }
1159
1160 /*
1161 * Wait for the reply from our send or the timer's.
1162 */
1163 if (!error || error == EPIPE)
1164 error = nfs_reply(rep, lwp);
1165
1166 /*
1167 * RPC done, unlink the request.
1168 */
1169 s = splsoftnet();
1170 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
1171 splx(s);
1172
1173 /*
1174 * Decrement the outstanding request count.
1175 */
1176 if (rep->r_flags & R_SENT) {
1177 rep->r_flags &= ~R_SENT; /* paranoia */
1178 nmp->nm_sent -= NFS_CWNDSCALE;
1179 }
1180
1181 if (rexmitp != NULL) {
1182 int rexmit;
1183
1184 if (nmp->nm_sotype != SOCK_DGRAM)
1185 rexmit = (rep->r_flags & R_REXMITTED) != 0;
1186 else
1187 rexmit = rep->r_rexmit;
1188 *rexmitp = rexmit;
1189 }
1190
1191 /*
1192 * If there was a successful reply and a tprintf msg.
1193 * tprintf a response.
1194 */
1195 if (!error && (rep->r_flags & R_TPRINTFMSG))
1196 nfs_msg(rep->r_lwp, nmp->nm_mountp->mnt_stat.f_mntfromname,
1197 "is alive again");
1198 mrep = rep->r_mrep;
1199 md = rep->r_md;
1200 dpos = rep->r_dpos;
1201 if (error)
1202 goto nfsmout;
1203
1204 /*
1205 * break down the rpc header and check if ok
1206 */
1207 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1208 if (*tl++ == rpc_msgdenied) {
1209 if (*tl == rpc_mismatch)
1210 error = EOPNOTSUPP;
1211 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
1212 if (!failed_auth) {
1213 failed_auth++;
1214 mheadend->m_next = (struct mbuf *)0;
1215 m_freem(mrep);
1216 m_freem(rep->r_mreq);
1217 goto kerbauth;
1218 } else
1219 error = EAUTH;
1220 } else
1221 error = EACCES;
1222 m_freem(mrep);
1223 goto nfsmout;
1224 }
1225
1226 /*
1227 * Grab any Kerberos verifier, otherwise just throw it away.
1228 */
1229 verf_type = fxdr_unsigned(int, *tl++);
1230 i = fxdr_unsigned(int32_t, *tl);
1231 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1232 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1233 if (error)
1234 goto nfsmout;
1235 } else if (i > 0)
1236 nfsm_adv(nfsm_rndup(i));
1237 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1238 /* 0 == ok */
1239 if (*tl == 0) {
1240 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1241 if (*tl != 0) {
1242 error = fxdr_unsigned(int, *tl);
1243 switch (error) {
1244 case NFSERR_PERM:
1245 error = EPERM;
1246 break;
1247
1248 case NFSERR_NOENT:
1249 error = ENOENT;
1250 break;
1251
1252 case NFSERR_IO:
1253 error = EIO;
1254 break;
1255
1256 case NFSERR_NXIO:
1257 error = ENXIO;
1258 break;
1259
1260 case NFSERR_ACCES:
1261 error = EACCES;
1262 if (!retry_cred)
1263 break;
1264 m_freem(mrep);
1265 m_freem(rep->r_mreq);
1266 kmem_free(rep, sizeof(*rep));
1267 use_opencred = !use_opencred;
1268 if (mrest_backup == NULL) {
1269 /* m_copym failure */
1270 KASSERT(
1271 kauth_cred_getrefcnt(acred) == 1);
1272 kauth_cred_free(acred);
1273 return ENOMEM;
1274 }
1275 mrest = mrest_backup;
1276 mrest_backup = NULL;
1277 cred = origcred;
1278 error = 0;
1279 retry_cred = false;
1280 goto tryagain_cred;
1281
1282 case NFSERR_EXIST:
1283 error = EEXIST;
1284 break;
1285
1286 case NFSERR_XDEV:
1287 error = EXDEV;
1288 break;
1289
1290 case NFSERR_NODEV:
1291 error = ENODEV;
1292 break;
1293
1294 case NFSERR_NOTDIR:
1295 error = ENOTDIR;
1296 break;
1297
1298 case NFSERR_ISDIR:
1299 error = EISDIR;
1300 break;
1301
1302 case NFSERR_INVAL:
1303 error = EINVAL;
1304 break;
1305
1306 case NFSERR_FBIG:
1307 error = EFBIG;
1308 break;
1309
1310 case NFSERR_NOSPC:
1311 error = ENOSPC;
1312 break;
1313
1314 case NFSERR_ROFS:
1315 error = EROFS;
1316 break;
1317
1318 case NFSERR_MLINK:
1319 error = EMLINK;
1320 break;
1321
1322 case NFSERR_TIMEDOUT:
1323 error = ETIMEDOUT;
1324 break;
1325
1326 case NFSERR_NAMETOL:
1327 error = ENAMETOOLONG;
1328 break;
1329
1330 case NFSERR_NOTEMPTY:
1331 error = ENOTEMPTY;
1332 break;
1333
1334 case NFSERR_DQUOT:
1335 error = EDQUOT;
1336 break;
1337
1338 case NFSERR_STALE:
1339 /*
1340 * If the File Handle was stale, invalidate the
1341 * lookup cache, just in case.
1342 */
1343 error = ESTALE;
1344 cache_purge(NFSTOV(np));
1345 break;
1346
1347 case NFSERR_REMOTE:
1348 error = EREMOTE;
1349 break;
1350
1351 case NFSERR_WFLUSH:
1352 case NFSERR_BADHANDLE:
1353 case NFSERR_NOT_SYNC:
1354 case NFSERR_BAD_COOKIE:
1355 error = EINVAL;
1356 break;
1357
1358 case NFSERR_NOTSUPP:
1359 error = ENOTSUP;
1360 break;
1361
1362 case NFSERR_TOOSMALL:
1363 case NFSERR_SERVERFAULT:
1364 case NFSERR_BADTYPE:
1365 error = EINVAL;
1366 break;
1367
1368 case NFSERR_TRYLATER:
1369 if ((nmp->nm_flag & NFSMNT_NFSV3) == 0)
1370 break;
1371 m_freem(mrep);
1372 error = 0;
1373 waituntil = time_second + trylater_delay;
1374 while (time_second < waituntil) {
1375 kpause("nfstrylater", false, hz, NULL);
1376 }
1377 trylater_delay *= NFS_TRYLATERDELMUL;
1378 if (trylater_delay > NFS_TRYLATERDELMAX)
1379 trylater_delay = NFS_TRYLATERDELMAX;
1380 /*
1381 * RFC1813:
1382 * The client should wait and then try
1383 * the request with a new RPC transaction ID.
1384 */
1385 nfs_renewxid(rep);
1386 goto tryagain;
1387
1388 default:
1389 #ifdef DIAGNOSTIC
1390 printf("Invalid rpc error code %d\n", error);
1391 #endif
1392 error = EINVAL;
1393 break;
1394 }
1395
1396 if (nmp->nm_flag & NFSMNT_NFSV3) {
1397 *mrp = mrep;
1398 *mdp = md;
1399 *dposp = dpos;
1400 error |= NFSERR_RETERR;
1401 } else
1402 m_freem(mrep);
1403 goto nfsmout;
1404 }
1405
1406 /*
1407 * note which credential worked to minimize number of retries.
1408 */
1409 if (use_opencred)
1410 np->n_flag |= NUSEOPENCRED;
1411 else
1412 np->n_flag &= ~NUSEOPENCRED;
1413
1414 *mrp = mrep;
1415 *mdp = md;
1416 *dposp = dpos;
1417
1418 KASSERT(error == 0);
1419 goto nfsmout;
1420 }
1421 m_freem(mrep);
1422 error = EPROTONOSUPPORT;
1423 nfsmout:
1424 KASSERT(kauth_cred_getrefcnt(acred) == 1);
1425 kauth_cred_free(acred);
1426 m_freem(rep->r_mreq);
1427 kmem_free(rep, sizeof(*rep));
1428 m_freem(mrest_backup);
1429 return (error);
1430 }
1431 #endif /* NFS */
1432
1433 /*
1434 * Generate the rpc reply header
1435 * siz arg. is used to decide if adding a cluster is worthwhile
1436 */
1437 int
1438 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1439 int siz;
1440 struct nfsrv_descript *nd;
1441 struct nfssvc_sock *slp;
1442 int err;
1443 int cache;
1444 u_quad_t *frev;
1445 struct mbuf **mrq;
1446 struct mbuf **mbp;
1447 char **bposp;
1448 {
1449 u_int32_t *tl;
1450 struct mbuf *mreq;
1451 char *bpos;
1452 struct mbuf *mb;
1453
1454 mreq = m_gethdr(M_WAIT, MT_DATA);
1455 MCLAIM(mreq, &nfs_mowner);
1456 mb = mreq;
1457 /*
1458 * If this is a big reply, use a cluster else
1459 * try and leave leading space for the lower level headers.
1460 */
1461 siz += RPC_REPLYSIZ;
1462 if (siz >= max_datalen) {
1463 m_clget(mreq, M_WAIT);
1464 } else
1465 mreq->m_data += max_hdr;
1466 tl = mtod(mreq, u_int32_t *);
1467 mreq->m_len = 6 * NFSX_UNSIGNED;
1468 bpos = ((char *)tl) + mreq->m_len;
1469 *tl++ = txdr_unsigned(nd->nd_retxid);
1470 *tl++ = rpc_reply;
1471 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1472 *tl++ = rpc_msgdenied;
1473 if (err & NFSERR_AUTHERR) {
1474 *tl++ = rpc_autherr;
1475 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1476 mreq->m_len -= NFSX_UNSIGNED;
1477 bpos -= NFSX_UNSIGNED;
1478 } else {
1479 *tl++ = rpc_mismatch;
1480 *tl++ = txdr_unsigned(RPC_VER2);
1481 *tl = txdr_unsigned(RPC_VER2);
1482 }
1483 } else {
1484 *tl++ = rpc_msgaccepted;
1485
1486 /*
1487 * For Kerberos authentication, we must send the nickname
1488 * verifier back, otherwise just RPCAUTH_NULL.
1489 */
1490 if (nd->nd_flag & ND_KERBFULL) {
1491 struct nfsuid *nuidp;
1492 struct timeval ktvin, ktvout;
1493
1494 memset(&ktvout, 0, sizeof ktvout); /* XXX gcc */
1495
1496 LIST_FOREACH(nuidp,
1497 NUIDHASH(slp, kauth_cred_geteuid(nd->nd_cr)),
1498 nu_hash) {
1499 if (kauth_cred_geteuid(nuidp->nu_cr) ==
1500 kauth_cred_geteuid(nd->nd_cr) &&
1501 (!nd->nd_nam2 || netaddr_match(
1502 NU_NETFAM(nuidp), &nuidp->nu_haddr,
1503 nd->nd_nam2)))
1504 break;
1505 }
1506 if (nuidp) {
1507 ktvin.tv_sec =
1508 txdr_unsigned(nuidp->nu_timestamp.tv_sec
1509 - 1);
1510 ktvin.tv_usec =
1511 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1512
1513 /*
1514 * Encrypt the timestamp in ecb mode using the
1515 * session key.
1516 */
1517 #ifdef NFSKERB
1518 XXX
1519 #endif
1520
1521 *tl++ = rpc_auth_kerb;
1522 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1523 *tl = ktvout.tv_sec;
1524 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1525 *tl++ = ktvout.tv_usec;
1526 *tl++ = txdr_unsigned(
1527 kauth_cred_geteuid(nuidp->nu_cr));
1528 } else {
1529 *tl++ = 0;
1530 *tl++ = 0;
1531 }
1532 } else {
1533 *tl++ = 0;
1534 *tl++ = 0;
1535 }
1536 switch (err) {
1537 case EPROGUNAVAIL:
1538 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1539 break;
1540 case EPROGMISMATCH:
1541 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1542 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1543 *tl++ = txdr_unsigned(2);
1544 *tl = txdr_unsigned(3);
1545 break;
1546 case EPROCUNAVAIL:
1547 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1548 break;
1549 case EBADRPC:
1550 *tl = txdr_unsigned(RPC_GARBAGE);
1551 break;
1552 default:
1553 *tl = 0;
1554 if (err != NFSERR_RETVOID) {
1555 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1556 if (err)
1557 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1558 else
1559 *tl = 0;
1560 }
1561 break;
1562 };
1563 }
1564
1565 if (mrq != NULL)
1566 *mrq = mreq;
1567 *mbp = mb;
1568 *bposp = bpos;
1569 if (err != 0 && err != NFSERR_RETVOID)
1570 nfsstats.srvrpc_errs++;
1571 return (0);
1572 }
1573
1574 static void
1575 nfs_timer_schedule(void)
1576 {
1577
1578 callout_schedule(&nfs_timer_ch, nfs_ticks);
1579 }
1580
1581 void
1582 nfs_timer_start(void)
1583 {
1584
1585 if (callout_pending(&nfs_timer_ch))
1586 return;
1587
1588 nfs_timer_start_ev.ev_count++;
1589 nfs_timer_schedule();
1590 }
1591
1592 void
1593 nfs_timer_init(void)
1594 {
1595
1596 callout_init(&nfs_timer_ch, 0);
1597 callout_setfunc(&nfs_timer_ch, nfs_timer, NULL);
1598 evcnt_attach_dynamic(&nfs_timer_ev, EVCNT_TYPE_MISC, NULL,
1599 "nfs", "timer");
1600 evcnt_attach_dynamic(&nfs_timer_start_ev, EVCNT_TYPE_MISC, NULL,
1601 "nfs", "timer start");
1602 evcnt_attach_dynamic(&nfs_timer_stop_ev, EVCNT_TYPE_MISC, NULL,
1603 "nfs", "timer stop");
1604 }
1605
1606 /*
1607 * Nfs timer routine
1608 * Scan the nfsreq list and retranmit any requests that have timed out
1609 * To avoid retransmission attempts on STREAM sockets (in the future) make
1610 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1611 * A non-NULL argument means 'initialize'.
1612 */
1613 void
1614 nfs_timer(void *arg)
1615 {
1616 struct nfsreq *rep;
1617 struct mbuf *m;
1618 struct socket *so;
1619 struct nfsmount *nmp;
1620 int timeo;
1621 int s, error;
1622 bool more = false;
1623 #ifdef NFSSERVER
1624 struct timeval tv;
1625 struct nfssvc_sock *slp;
1626 u_quad_t cur_usec;
1627 #endif
1628
1629 nfs_timer_ev.ev_count++;
1630
1631 s = splsoftnet();
1632 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
1633 more = true;
1634 nmp = rep->r_nmp;
1635 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1636 continue;
1637 if (nfs_sigintr(nmp, rep, rep->r_lwp)) {
1638 rep->r_flags |= R_SOFTTERM;
1639 continue;
1640 }
1641 if (rep->r_rtt >= 0) {
1642 rep->r_rtt++;
1643 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1644 timeo = nmp->nm_timeo;
1645 else
1646 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1647 if (nmp->nm_timeouts > 0)
1648 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1649 if (rep->r_rtt <= timeo)
1650 continue;
1651 if (nmp->nm_timeouts <
1652 (sizeof(nfs_backoff) / sizeof(nfs_backoff[0])))
1653 nmp->nm_timeouts++;
1654 }
1655 /*
1656 * Check for server not responding
1657 */
1658 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1659 rep->r_rexmit > nmp->nm_deadthresh) {
1660 nfs_msg(rep->r_lwp,
1661 nmp->nm_mountp->mnt_stat.f_mntfromname,
1662 "not responding");
1663 rep->r_flags |= R_TPRINTFMSG;
1664 }
1665 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1666 nfsstats.rpctimeouts++;
1667 rep->r_flags |= R_SOFTTERM;
1668 continue;
1669 }
1670 if (nmp->nm_sotype != SOCK_DGRAM) {
1671 if (++rep->r_rexmit > NFS_MAXREXMIT)
1672 rep->r_rexmit = NFS_MAXREXMIT;
1673 continue;
1674 }
1675 if ((so = nmp->nm_so) == NULL)
1676 continue;
1677
1678 /*
1679 * If there is enough space and the window allows..
1680 * Resend it
1681 * Set r_rtt to -1 in case we fail to send it now.
1682 */
1683 solock(so);
1684 rep->r_rtt = -1;
1685 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1686 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1687 (rep->r_flags & R_SENT) ||
1688 nmp->nm_sent < nmp->nm_cwnd) &&
1689 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1690 if (so->so_state & SS_ISCONNECTED)
1691 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1692 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1693 else
1694 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1695 nmp->nm_nam, (struct mbuf *)0, (struct lwp *)0);
1696 if (error) {
1697 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
1698 #ifdef DEBUG
1699 printf("nfs_timer: ignoring error %d\n",
1700 error);
1701 #endif
1702 so->so_error = 0;
1703 }
1704 } else {
1705 /*
1706 * Iff first send, start timing
1707 * else turn timing off, backoff timer
1708 * and divide congestion window by 2.
1709 */
1710 if (rep->r_flags & R_SENT) {
1711 rep->r_flags &= ~R_TIMING;
1712 if (++rep->r_rexmit > NFS_MAXREXMIT)
1713 rep->r_rexmit = NFS_MAXREXMIT;
1714 nmp->nm_cwnd >>= 1;
1715 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1716 nmp->nm_cwnd = NFS_CWNDSCALE;
1717 nfsstats.rpcretries++;
1718 } else {
1719 rep->r_flags |= R_SENT;
1720 nmp->nm_sent += NFS_CWNDSCALE;
1721 }
1722 rep->r_rtt = 0;
1723 }
1724 }
1725 sounlock(so);
1726 }
1727 splx(s);
1728
1729 #ifdef NFSSERVER
1730 /*
1731 * Scan the write gathering queues for writes that need to be
1732 * completed now.
1733 */
1734 getmicrotime(&tv);
1735 cur_usec = (u_quad_t)tv.tv_sec * 1000000 + (u_quad_t)tv.tv_usec;
1736 mutex_enter(&nfsd_lock);
1737 TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1738 struct nfsrv_descript *nd;
1739
1740 nd = LIST_FIRST(&slp->ns_tq);
1741 if (nd != NULL) {
1742 if (nd->nd_time <= cur_usec) {
1743 nfsrv_wakenfsd_locked(slp);
1744 }
1745 more = true;
1746 }
1747 }
1748 mutex_exit(&nfsd_lock);
1749 #endif /* NFSSERVER */
1750 if (more) {
1751 nfs_timer_schedule();
1752 } else {
1753 nfs_timer_stop_ev.ev_count++;
1754 }
1755 }
1756
1757 /*
1758 * Test for a termination condition pending on the process.
1759 * This is used for NFSMNT_INT mounts.
1760 */
1761 int
1762 nfs_sigintr(nmp, rep, l)
1763 struct nfsmount *nmp;
1764 struct nfsreq *rep;
1765 struct lwp *l;
1766 {
1767 sigset_t ss;
1768
1769 if (rep && (rep->r_flags & R_SOFTTERM))
1770 return (EINTR);
1771 if (!(nmp->nm_flag & NFSMNT_INT))
1772 return (0);
1773 if (l) {
1774 sigpending1(l, &ss);
1775 #if 0
1776 sigminusset(&l->l_proc->p_sigctx.ps_sigignore, &ss);
1777 #endif
1778 if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) ||
1779 sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) ||
1780 sigismember(&ss, SIGQUIT))
1781 return (EINTR);
1782 }
1783 return (0);
1784 }
1785
1786 /*
1787 * Lock a socket against others.
1788 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1789 * and also to avoid race conditions between the processes with nfs requests
1790 * in progress when a reconnect is necessary.
1791 */
1792 static int
1793 nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep)
1794 {
1795 struct lwp *l;
1796 int timeo = 0;
1797 bool catch = false;
1798 int error = 0;
1799
1800 if (rep) {
1801 l = rep->r_lwp;
1802 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1803 catch = true;
1804 } else
1805 l = NULL;
1806 mutex_enter(&nmp->nm_lock);
1807 while ((nmp->nm_iflag & NFSMNT_SNDLOCK) != 0) {
1808 if (rep && nfs_sigintr(rep->r_nmp, rep, l)) {
1809 error = EINTR;
1810 goto quit;
1811 }
1812 if (catch) {
1813 cv_timedwait_sig(&nmp->nm_sndcv, &nmp->nm_lock, timeo);
1814 } else {
1815 cv_timedwait(&nmp->nm_sndcv, &nmp->nm_lock, timeo);
1816 }
1817 if (catch) {
1818 catch = false;
1819 timeo = 2 * hz;
1820 }
1821 }
1822 nmp->nm_iflag |= NFSMNT_SNDLOCK;
1823 quit:
1824 mutex_exit(&nmp->nm_lock);
1825 return error;
1826 }
1827
1828 /*
1829 * Unlock the stream socket for others.
1830 */
1831 static void
1832 nfs_sndunlock(struct nfsmount *nmp)
1833 {
1834
1835 mutex_enter(&nmp->nm_lock);
1836 if ((nmp->nm_iflag & NFSMNT_SNDLOCK) == 0)
1837 panic("nfs sndunlock");
1838 nmp->nm_iflag &= ~NFSMNT_SNDLOCK;
1839 cv_signal(&nmp->nm_sndcv);
1840 mutex_exit(&nmp->nm_lock);
1841 }
1842
1843 static int
1844 nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep)
1845 {
1846 int *flagp = &nmp->nm_iflag;
1847 int slptimeo = 0;
1848 bool catch;
1849 int error = 0;
1850
1851 KASSERT(nmp == rep->r_nmp);
1852
1853 catch = (nmp->nm_flag & NFSMNT_INT) != 0;
1854 mutex_enter(&nmp->nm_lock);
1855 while (/* CONSTCOND */ true) {
1856 if (*flagp & NFSMNT_DISMNT) {
1857 cv_signal(&nmp->nm_disconcv);
1858 error = EIO;
1859 break;
1860 }
1861 /* If our reply was received while we were sleeping,
1862 * then just return without taking the lock to avoid a
1863 * situation where a single iod could 'capture' the
1864 * receive lock.
1865 */
1866 if (rep->r_mrep != NULL) {
1867 error = EALREADY;
1868 break;
1869 }
1870 if (nfs_sigintr(rep->r_nmp, rep, rep->r_lwp)) {
1871 error = EINTR;
1872 break;
1873 }
1874 if ((*flagp & NFSMNT_RCVLOCK) == 0) {
1875 *flagp |= NFSMNT_RCVLOCK;
1876 break;
1877 }
1878 if (catch) {
1879 cv_timedwait_sig(&nmp->nm_rcvcv, &nmp->nm_lock,
1880 slptimeo);
1881 } else {
1882 cv_timedwait(&nmp->nm_rcvcv, &nmp->nm_lock,
1883 slptimeo);
1884 }
1885 if (catch) {
1886 catch = false;
1887 slptimeo = 2 * hz;
1888 }
1889 }
1890 mutex_exit(&nmp->nm_lock);
1891 return error;
1892 }
1893
1894 /*
1895 * Unlock the stream socket for others.
1896 */
1897 static void
1898 nfs_rcvunlock(struct nfsmount *nmp)
1899 {
1900
1901 mutex_enter(&nmp->nm_lock);
1902 if ((nmp->nm_iflag & NFSMNT_RCVLOCK) == 0)
1903 panic("nfs rcvunlock");
1904 nmp->nm_iflag &= ~NFSMNT_RCVLOCK;
1905 cv_broadcast(&nmp->nm_rcvcv);
1906 mutex_exit(&nmp->nm_lock);
1907 }
1908
1909 /*
1910 * Parse an RPC request
1911 * - verify it
1912 * - allocate and fill in the cred.
1913 */
1914 int
1915 nfs_getreq(nd, nfsd, has_header)
1916 struct nfsrv_descript *nd;
1917 struct nfsd *nfsd;
1918 int has_header;
1919 {
1920 int len, i;
1921 u_int32_t *tl;
1922 int32_t t1;
1923 struct uio uio;
1924 struct iovec iov;
1925 char *dpos, *cp2, *cp;
1926 u_int32_t nfsvers, auth_type;
1927 uid_t nickuid;
1928 int error = 0, ticklen;
1929 struct mbuf *mrep, *md;
1930 struct nfsuid *nuidp;
1931 struct timeval tvin, tvout;
1932
1933 memset(&tvout, 0, sizeof tvout); /* XXX gcc */
1934
1935 KASSERT(nd->nd_cr == NULL);
1936 mrep = nd->nd_mrep;
1937 md = nd->nd_md;
1938 dpos = nd->nd_dpos;
1939 if (has_header) {
1940 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1941 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1942 if (*tl++ != rpc_call) {
1943 m_freem(mrep);
1944 return (EBADRPC);
1945 }
1946 } else
1947 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1948 nd->nd_repstat = 0;
1949 nd->nd_flag = 0;
1950 if (*tl++ != rpc_vers) {
1951 nd->nd_repstat = ERPCMISMATCH;
1952 nd->nd_procnum = NFSPROC_NOOP;
1953 return (0);
1954 }
1955 if (*tl != nfs_prog) {
1956 nd->nd_repstat = EPROGUNAVAIL;
1957 nd->nd_procnum = NFSPROC_NOOP;
1958 return (0);
1959 }
1960 tl++;
1961 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1962 if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) {
1963 nd->nd_repstat = EPROGMISMATCH;
1964 nd->nd_procnum = NFSPROC_NOOP;
1965 return (0);
1966 }
1967 if (nfsvers == NFS_VER3)
1968 nd->nd_flag = ND_NFSV3;
1969 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1970 if (nd->nd_procnum == NFSPROC_NULL)
1971 return (0);
1972 if (nd->nd_procnum > NFSPROC_COMMIT ||
1973 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1974 nd->nd_repstat = EPROCUNAVAIL;
1975 nd->nd_procnum = NFSPROC_NOOP;
1976 return (0);
1977 }
1978 if ((nd->nd_flag & ND_NFSV3) == 0)
1979 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1980 auth_type = *tl++;
1981 len = fxdr_unsigned(int, *tl++);
1982 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1983 m_freem(mrep);
1984 return (EBADRPC);
1985 }
1986
1987 nd->nd_flag &= ~ND_KERBAUTH;
1988 /*
1989 * Handle auth_unix or auth_kerb.
1990 */
1991 if (auth_type == rpc_auth_unix) {
1992 uid_t uid;
1993 gid_t gid;
1994
1995 nd->nd_cr = kauth_cred_alloc();
1996 len = fxdr_unsigned(int, *++tl);
1997 if (len < 0 || len > NFS_MAXNAMLEN) {
1998 m_freem(mrep);
1999 error = EBADRPC;
2000 goto errout;
2001 }
2002 nfsm_adv(nfsm_rndup(len));
2003 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2004
2005 uid = fxdr_unsigned(uid_t, *tl++);
2006 gid = fxdr_unsigned(gid_t, *tl++);
2007 kauth_cred_setuid(nd->nd_cr, uid);
2008 kauth_cred_seteuid(nd->nd_cr, uid);
2009 kauth_cred_setsvuid(nd->nd_cr, uid);
2010 kauth_cred_setgid(nd->nd_cr, gid);
2011 kauth_cred_setegid(nd->nd_cr, gid);
2012 kauth_cred_setsvgid(nd->nd_cr, gid);
2013
2014 len = fxdr_unsigned(int, *tl);
2015 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
2016 m_freem(mrep);
2017 error = EBADRPC;
2018 goto errout;
2019 }
2020 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
2021
2022 if (len > 0) {
2023 size_t grbuf_size = min(len, NGROUPS) * sizeof(gid_t);
2024 gid_t *grbuf = kmem_alloc(grbuf_size, KM_SLEEP);
2025
2026 for (i = 0; i < len; i++) {
2027 if (i < NGROUPS) /* XXX elad */
2028 grbuf[i] = fxdr_unsigned(gid_t, *tl++);
2029 else
2030 tl++;
2031 }
2032 kauth_cred_setgroups(nd->nd_cr, grbuf,
2033 min(len, NGROUPS), -1, UIO_SYSSPACE);
2034 kmem_free(grbuf, grbuf_size);
2035 }
2036
2037 len = fxdr_unsigned(int, *++tl);
2038 if (len < 0 || len > RPCAUTH_MAXSIZ) {
2039 m_freem(mrep);
2040 error = EBADRPC;
2041 goto errout;
2042 }
2043 if (len > 0)
2044 nfsm_adv(nfsm_rndup(len));
2045 } else if (auth_type == rpc_auth_kerb) {
2046 switch (fxdr_unsigned(int, *tl++)) {
2047 case RPCAKN_FULLNAME:
2048 ticklen = fxdr_unsigned(int, *tl);
2049 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
2050 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
2051 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
2052 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
2053 m_freem(mrep);
2054 error = EBADRPC;
2055 goto errout;
2056 }
2057 uio.uio_offset = 0;
2058 uio.uio_iov = &iov;
2059 uio.uio_iovcnt = 1;
2060 UIO_SETUP_SYSSPACE(&uio);
2061 iov.iov_base = (void *)&nfsd->nfsd_authstr[4];
2062 iov.iov_len = RPCAUTH_MAXSIZ - 4;
2063 nfsm_mtouio(&uio, uio.uio_resid);
2064 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2065 if (*tl++ != rpc_auth_kerb ||
2066 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
2067 printf("Bad kerb verifier\n");
2068 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2069 nd->nd_procnum = NFSPROC_NOOP;
2070 return (0);
2071 }
2072 nfsm_dissect(cp, void *, 4 * NFSX_UNSIGNED);
2073 tl = (u_int32_t *)cp;
2074 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
2075 printf("Not fullname kerb verifier\n");
2076 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2077 nd->nd_procnum = NFSPROC_NOOP;
2078 return (0);
2079 }
2080 cp += NFSX_UNSIGNED;
2081 memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED);
2082 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
2083 nd->nd_flag |= ND_KERBFULL;
2084 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
2085 break;
2086 case RPCAKN_NICKNAME:
2087 if (len != 2 * NFSX_UNSIGNED) {
2088 printf("Kerb nickname short\n");
2089 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
2090 nd->nd_procnum = NFSPROC_NOOP;
2091 return (0);
2092 }
2093 nickuid = fxdr_unsigned(uid_t, *tl);
2094 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2095 if (*tl++ != rpc_auth_kerb ||
2096 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
2097 printf("Kerb nick verifier bad\n");
2098 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2099 nd->nd_procnum = NFSPROC_NOOP;
2100 return (0);
2101 }
2102 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2103 tvin.tv_sec = *tl++;
2104 tvin.tv_usec = *tl;
2105
2106 LIST_FOREACH(nuidp, NUIDHASH(nfsd->nfsd_slp, nickuid),
2107 nu_hash) {
2108 if (kauth_cred_geteuid(nuidp->nu_cr) == nickuid &&
2109 (!nd->nd_nam2 ||
2110 netaddr_match(NU_NETFAM(nuidp),
2111 &nuidp->nu_haddr, nd->nd_nam2)))
2112 break;
2113 }
2114 if (!nuidp) {
2115 nd->nd_repstat =
2116 (NFSERR_AUTHERR|AUTH_REJECTCRED);
2117 nd->nd_procnum = NFSPROC_NOOP;
2118 return (0);
2119 }
2120
2121 /*
2122 * Now, decrypt the timestamp using the session key
2123 * and validate it.
2124 */
2125 #ifdef NFSKERB
2126 XXX
2127 #endif
2128
2129 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
2130 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
2131 if (nuidp->nu_expire < time_second ||
2132 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
2133 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
2134 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
2135 nuidp->nu_expire = 0;
2136 nd->nd_repstat =
2137 (NFSERR_AUTHERR|AUTH_REJECTVERF);
2138 nd->nd_procnum = NFSPROC_NOOP;
2139 return (0);
2140 }
2141 kauth_cred_hold(nuidp->nu_cr);
2142 nd->nd_cr = nuidp->nu_cr;
2143 nd->nd_flag |= ND_KERBNICK;
2144 }
2145 } else {
2146 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
2147 nd->nd_procnum = NFSPROC_NOOP;
2148 return (0);
2149 }
2150
2151 nd->nd_md = md;
2152 nd->nd_dpos = dpos;
2153 KASSERT((nd->nd_cr == NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) != 0)
2154 || (nd->nd_cr != NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) == 0));
2155 return (0);
2156 nfsmout:
2157 errout:
2158 KASSERT(error != 0);
2159 if (nd->nd_cr != NULL) {
2160 kauth_cred_free(nd->nd_cr);
2161 nd->nd_cr = NULL;
2162 }
2163 return (error);
2164 }
2165
2166 int
2167 nfs_msg(l, server, msg)
2168 struct lwp *l;
2169 const char *server, *msg;
2170 {
2171 tpr_t tpr;
2172
2173 if (l)
2174 tpr = tprintf_open(l->l_proc);
2175 else
2176 tpr = NULL;
2177 tprintf(tpr, "nfs server %s: %s\n", server, msg);
2178 tprintf_close(tpr);
2179 return (0);
2180 }
2181
2182 #ifdef NFSSERVER
2183 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
2184 struct nfssvc_sock *, struct lwp *,
2185 struct mbuf **)) = {
2186 nfsrv_null,
2187 nfsrv_getattr,
2188 nfsrv_setattr,
2189 nfsrv_lookup,
2190 nfsrv3_access,
2191 nfsrv_readlink,
2192 nfsrv_read,
2193 nfsrv_write,
2194 nfsrv_create,
2195 nfsrv_mkdir,
2196 nfsrv_symlink,
2197 nfsrv_mknod,
2198 nfsrv_remove,
2199 nfsrv_rmdir,
2200 nfsrv_rename,
2201 nfsrv_link,
2202 nfsrv_readdir,
2203 nfsrv_readdirplus,
2204 nfsrv_statfs,
2205 nfsrv_fsinfo,
2206 nfsrv_pathconf,
2207 nfsrv_commit,
2208 nfsrv_noop
2209 };
2210
2211 /*
2212 * Socket upcall routine for the nfsd sockets.
2213 * The void *arg is a pointer to the "struct nfssvc_sock".
2214 */
2215 void
2216 nfsrv_soupcall(struct socket *so, void *arg, int waitflag)
2217 {
2218 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2219
2220 nfsdsock_setbits(slp, SLP_A_NEEDQ);
2221 nfsrv_wakenfsd(slp);
2222 }
2223
2224 void
2225 nfsrv_rcv(struct nfssvc_sock *slp)
2226 {
2227 struct socket *so;
2228 struct mbuf *m;
2229 struct mbuf *mp, *nam;
2230 struct uio auio;
2231 int flags;
2232 int error;
2233 int setflags = 0;
2234
2235 error = nfsdsock_lock(slp, true);
2236 if (error) {
2237 setflags |= SLP_A_NEEDQ;
2238 goto dorecs_unlocked;
2239 }
2240
2241 nfsdsock_clearbits(slp, SLP_A_NEEDQ);
2242
2243 so = slp->ns_so;
2244 if (so->so_type == SOCK_STREAM) {
2245 /*
2246 * Do soreceive().
2247 */
2248 auio.uio_resid = 1000000000;
2249 /* not need to setup uio_vmspace */
2250 flags = MSG_DONTWAIT;
2251 error = (*so->so_receive)(so, &nam, &auio, &mp, NULL, &flags);
2252 if (error || mp == NULL) {
2253 if (error == EWOULDBLOCK)
2254 setflags |= SLP_A_NEEDQ;
2255 else
2256 setflags |= SLP_A_DISCONN;
2257 goto dorecs;
2258 }
2259 m = mp;
2260 m_claimm(m, &nfs_mowner);
2261 if (slp->ns_rawend) {
2262 slp->ns_rawend->m_next = m;
2263 slp->ns_cc += 1000000000 - auio.uio_resid;
2264 } else {
2265 slp->ns_raw = m;
2266 slp->ns_cc = 1000000000 - auio.uio_resid;
2267 }
2268 while (m->m_next)
2269 m = m->m_next;
2270 slp->ns_rawend = m;
2271
2272 /*
2273 * Now try and parse record(s) out of the raw stream data.
2274 */
2275 error = nfsrv_getstream(slp, M_WAIT);
2276 if (error) {
2277 if (error == EPERM)
2278 setflags |= SLP_A_DISCONN;
2279 else
2280 setflags |= SLP_A_NEEDQ;
2281 }
2282 } else {
2283 do {
2284 auio.uio_resid = 1000000000;
2285 /* not need to setup uio_vmspace */
2286 flags = MSG_DONTWAIT;
2287 error = (*so->so_receive)(so, &nam, &auio, &mp, NULL,
2288 &flags);
2289 if (mp) {
2290 if (nam) {
2291 m = nam;
2292 m->m_next = mp;
2293 } else
2294 m = mp;
2295 m_claimm(m, &nfs_mowner);
2296 if (slp->ns_recend)
2297 slp->ns_recend->m_nextpkt = m;
2298 else
2299 slp->ns_rec = m;
2300 slp->ns_recend = m;
2301 m->m_nextpkt = (struct mbuf *)0;
2302 }
2303 if (error) {
2304 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2305 && error != EWOULDBLOCK) {
2306 setflags |= SLP_A_DISCONN;
2307 goto dorecs;
2308 }
2309 }
2310 } while (mp);
2311 }
2312 dorecs:
2313 nfsdsock_unlock(slp);
2314
2315 dorecs_unlocked:
2316 if (setflags) {
2317 nfsdsock_setbits(slp, setflags);
2318 }
2319 }
2320
2321 int
2322 nfsdsock_lock(struct nfssvc_sock *slp, bool waitok)
2323 {
2324
2325 mutex_enter(&slp->ns_lock);
2326 while ((~slp->ns_flags & (SLP_BUSY|SLP_VALID)) == 0) {
2327 if (!waitok) {
2328 mutex_exit(&slp->ns_lock);
2329 return EWOULDBLOCK;
2330 }
2331 cv_wait(&slp->ns_cv, &slp->ns_lock);
2332 }
2333 if ((slp->ns_flags & SLP_VALID) == 0) {
2334 mutex_exit(&slp->ns_lock);
2335 return EINVAL;
2336 }
2337 KASSERT((slp->ns_flags & SLP_BUSY) == 0);
2338 slp->ns_flags |= SLP_BUSY;
2339 mutex_exit(&slp->ns_lock);
2340
2341 return 0;
2342 }
2343
2344 void
2345 nfsdsock_unlock(struct nfssvc_sock *slp)
2346 {
2347
2348 mutex_enter(&slp->ns_lock);
2349 KASSERT((slp->ns_flags & SLP_BUSY) != 0);
2350 cv_broadcast(&slp->ns_cv);
2351 slp->ns_flags &= ~SLP_BUSY;
2352 mutex_exit(&slp->ns_lock);
2353 }
2354
2355 int
2356 nfsdsock_drain(struct nfssvc_sock *slp)
2357 {
2358 int error = 0;
2359
2360 mutex_enter(&slp->ns_lock);
2361 if ((slp->ns_flags & SLP_VALID) == 0) {
2362 error = EINVAL;
2363 goto done;
2364 }
2365 slp->ns_flags &= ~SLP_VALID;
2366 while ((slp->ns_flags & SLP_BUSY) != 0) {
2367 cv_wait(&slp->ns_cv, &slp->ns_lock);
2368 }
2369 done:
2370 mutex_exit(&slp->ns_lock);
2371
2372 return error;
2373 }
2374
2375 /*
2376 * Try and extract an RPC request from the mbuf data list received on a
2377 * stream socket. The "waitflag" argument indicates whether or not it
2378 * can sleep.
2379 */
2380 int
2381 nfsrv_getstream(slp, waitflag)
2382 struct nfssvc_sock *slp;
2383 int waitflag;
2384 {
2385 struct mbuf *m, **mpp;
2386 struct mbuf *recm;
2387 u_int32_t recmark;
2388 int error = 0;
2389
2390 KASSERT((slp->ns_flags & SLP_BUSY) != 0);
2391 for (;;) {
2392 if (slp->ns_reclen == 0) {
2393 if (slp->ns_cc < NFSX_UNSIGNED) {
2394 break;
2395 }
2396 m = slp->ns_raw;
2397 m_copydata(m, 0, NFSX_UNSIGNED, (void *)&recmark);
2398 m_adj(m, NFSX_UNSIGNED);
2399 slp->ns_cc -= NFSX_UNSIGNED;
2400 recmark = ntohl(recmark);
2401 slp->ns_reclen = recmark & ~0x80000000;
2402 if (recmark & 0x80000000)
2403 slp->ns_sflags |= SLP_S_LASTFRAG;
2404 else
2405 slp->ns_sflags &= ~SLP_S_LASTFRAG;
2406 if (slp->ns_reclen > NFS_MAXPACKET) {
2407 error = EPERM;
2408 break;
2409 }
2410 }
2411
2412 /*
2413 * Now get the record part.
2414 *
2415 * Note that slp->ns_reclen may be 0. Linux sometimes
2416 * generates 0-length records.
2417 */
2418 if (slp->ns_cc == slp->ns_reclen) {
2419 recm = slp->ns_raw;
2420 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
2421 slp->ns_cc = slp->ns_reclen = 0;
2422 } else if (slp->ns_cc > slp->ns_reclen) {
2423 recm = slp->ns_raw;
2424 m = m_split(recm, slp->ns_reclen, waitflag);
2425 if (m == NULL) {
2426 error = EWOULDBLOCK;
2427 break;
2428 }
2429 m_claimm(recm, &nfs_mowner);
2430 slp->ns_raw = m;
2431 if (m->m_next == NULL)
2432 slp->ns_rawend = m;
2433 slp->ns_cc -= slp->ns_reclen;
2434 slp->ns_reclen = 0;
2435 } else {
2436 break;
2437 }
2438
2439 /*
2440 * Accumulate the fragments into a record.
2441 */
2442 mpp = &slp->ns_frag;
2443 while (*mpp)
2444 mpp = &((*mpp)->m_next);
2445 *mpp = recm;
2446 if (slp->ns_sflags & SLP_S_LASTFRAG) {
2447 if (slp->ns_recend)
2448 slp->ns_recend->m_nextpkt = slp->ns_frag;
2449 else
2450 slp->ns_rec = slp->ns_frag;
2451 slp->ns_recend = slp->ns_frag;
2452 slp->ns_frag = NULL;
2453 }
2454 }
2455
2456 return error;
2457 }
2458
2459 /*
2460 * Parse an RPC header.
2461 */
2462 int
2463 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
2464 struct nfsrv_descript **ndp, bool *more)
2465 {
2466 struct mbuf *m, *nam;
2467 struct nfsrv_descript *nd;
2468 int error;
2469
2470 *ndp = NULL;
2471 *more = false;
2472
2473 if (nfsdsock_lock(slp, true)) {
2474 return ENOBUFS;
2475 }
2476 m = slp->ns_rec;
2477 if (m == NULL) {
2478 nfsdsock_unlock(slp);
2479 return ENOBUFS;
2480 }
2481 slp->ns_rec = m->m_nextpkt;
2482 if (slp->ns_rec) {
2483 m->m_nextpkt = NULL;
2484 *more = true;
2485 } else {
2486 slp->ns_recend = NULL;
2487 }
2488 nfsdsock_unlock(slp);
2489
2490 if (m->m_type == MT_SONAME) {
2491 nam = m;
2492 m = m->m_next;
2493 nam->m_next = NULL;
2494 } else
2495 nam = NULL;
2496 nd = nfsdreq_alloc();
2497 nd->nd_md = nd->nd_mrep = m;
2498 nd->nd_nam2 = nam;
2499 nd->nd_dpos = mtod(m, void *);
2500 error = nfs_getreq(nd, nfsd, true);
2501 if (error) {
2502 m_freem(nam);
2503 nfsdreq_free(nd);
2504 return (error);
2505 }
2506 *ndp = nd;
2507 nfsd->nfsd_nd = nd;
2508 return (0);
2509 }
2510
2511 /*
2512 * Search for a sleeping nfsd and wake it up.
2513 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2514 * running nfsds will go look for the work in the nfssvc_sock list.
2515 */
2516 static void
2517 nfsrv_wakenfsd_locked(struct nfssvc_sock *slp)
2518 {
2519 struct nfsd *nd;
2520
2521 KASSERT(mutex_owned(&nfsd_lock));
2522
2523 if ((slp->ns_flags & SLP_VALID) == 0)
2524 return;
2525 if (slp->ns_gflags & SLP_G_DOREC)
2526 return;
2527 nd = SLIST_FIRST(&nfsd_idle_head);
2528 if (nd) {
2529 SLIST_REMOVE_HEAD(&nfsd_idle_head, nfsd_idle);
2530 if (nd->nfsd_slp)
2531 panic("nfsd wakeup");
2532 slp->ns_sref++;
2533 KASSERT(slp->ns_sref > 0);
2534 nd->nfsd_slp = slp;
2535 cv_signal(&nd->nfsd_cv);
2536 } else {
2537 slp->ns_gflags |= SLP_G_DOREC;
2538 nfsd_head_flag |= NFSD_CHECKSLP;
2539 TAILQ_INSERT_TAIL(&nfssvc_sockpending, slp, ns_pending);
2540 }
2541 }
2542
2543 void
2544 nfsrv_wakenfsd(struct nfssvc_sock *slp)
2545 {
2546
2547 mutex_enter(&nfsd_lock);
2548 nfsrv_wakenfsd_locked(slp);
2549 mutex_exit(&nfsd_lock);
2550 }
2551
2552 int
2553 nfsdsock_sendreply(struct nfssvc_sock *slp, struct nfsrv_descript *nd)
2554 {
2555 int error;
2556
2557 if (nd->nd_mrep != NULL) {
2558 m_freem(nd->nd_mrep);
2559 nd->nd_mrep = NULL;
2560 }
2561
2562 mutex_enter(&slp->ns_lock);
2563 if ((slp->ns_flags & SLP_SENDING) != 0) {
2564 SIMPLEQ_INSERT_TAIL(&slp->ns_sendq, nd, nd_sendq);
2565 mutex_exit(&slp->ns_lock);
2566 return 0;
2567 }
2568 KASSERT(SIMPLEQ_EMPTY(&slp->ns_sendq));
2569 slp->ns_flags |= SLP_SENDING;
2570 mutex_exit(&slp->ns_lock);
2571
2572 again:
2573 error = nfs_send(slp->ns_so, nd->nd_nam2, nd->nd_mreq, NULL, curlwp);
2574 if (nd->nd_nam2) {
2575 m_free(nd->nd_nam2);
2576 }
2577 nfsdreq_free(nd);
2578
2579 mutex_enter(&slp->ns_lock);
2580 KASSERT((slp->ns_flags & SLP_SENDING) != 0);
2581 nd = SIMPLEQ_FIRST(&slp->ns_sendq);
2582 if (nd != NULL) {
2583 SIMPLEQ_REMOVE_HEAD(&slp->ns_sendq, nd_sendq);
2584 mutex_exit(&slp->ns_lock);
2585 goto again;
2586 }
2587 slp->ns_flags &= ~SLP_SENDING;
2588 mutex_exit(&slp->ns_lock);
2589
2590 return error;
2591 }
2592
2593 void
2594 nfsdsock_setbits(struct nfssvc_sock *slp, int bits)
2595 {
2596
2597 mutex_enter(&slp->ns_alock);
2598 slp->ns_aflags |= bits;
2599 mutex_exit(&slp->ns_alock);
2600 }
2601
2602 void
2603 nfsdsock_clearbits(struct nfssvc_sock *slp, int bits)
2604 {
2605
2606 mutex_enter(&slp->ns_alock);
2607 slp->ns_aflags &= ~bits;
2608 mutex_exit(&slp->ns_alock);
2609 }
2610
2611 bool
2612 nfsdsock_testbits(struct nfssvc_sock *slp, int bits)
2613 {
2614
2615 return (slp->ns_aflags & bits);
2616 }
2617 #endif /* NFSSERVER */
2618
2619 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
2620 static struct pool nfs_srvdesc_pool;
2621
2622 void
2623 nfsdreq_init(void)
2624 {
2625
2626 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
2627 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr, IPL_NONE);
2628 }
2629
2630 struct nfsrv_descript *
2631 nfsdreq_alloc(void)
2632 {
2633 struct nfsrv_descript *nd;
2634
2635 nd = pool_get(&nfs_srvdesc_pool, PR_WAITOK);
2636 nd->nd_cr = NULL;
2637 return nd;
2638 }
2639
2640 void
2641 nfsdreq_free(struct nfsrv_descript *nd)
2642 {
2643 kauth_cred_t cr;
2644
2645 cr = nd->nd_cr;
2646 if (cr != NULL) {
2647 kauth_cred_free(cr);
2648 }
2649 pool_put(&nfs_srvdesc_pool, nd);
2650 }
2651 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
2652