nfs_socket.c revision 1.167.6.3 1 /* $NetBSD: nfs_socket.c,v 1.167.6.3 2008/09/28 10:41:00 mjf Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1991, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
35 */
36
37 /*
38 * Socket operations for use by nfs
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.167.6.3 2008/09/28 10:41:00 mjf Exp $");
43
44 #include "fs_nfs.h"
45 #include "opt_nfs.h"
46 #include "opt_nfsserver.h"
47 #include "opt_mbuftrace.h"
48 #include "opt_inet.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/evcnt.h>
53 #include <sys/callout.h>
54 #include <sys/proc.h>
55 #include <sys/mount.h>
56 #include <sys/kernel.h>
57 #include <sys/kmem.h>
58 #include <sys/mbuf.h>
59 #include <sys/vnode.h>
60 #include <sys/domain.h>
61 #include <sys/protosw.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/syslog.h>
65 #include <sys/tprintf.h>
66 #include <sys/namei.h>
67 #include <sys/signal.h>
68 #include <sys/signalvar.h>
69 #include <sys/kauth.h>
70
71 #include <netinet/in.h>
72 #include <netinet/tcp.h>
73
74 #include <nfs/rpcv2.h>
75 #include <nfs/nfsproto.h>
76 #include <nfs/nfs.h>
77 #include <nfs/xdr_subs.h>
78 #include <nfs/nfsm_subs.h>
79 #include <nfs/nfsmount.h>
80 #include <nfs/nfsnode.h>
81 #include <nfs/nfsrtt.h>
82 #include <nfs/nfs_var.h>
83
84 #ifdef MBUFTRACE
85 struct mowner nfs_mowner = MOWNER_INIT("nfs","");
86 #endif
87
88 /*
89 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
90 * Use the mean and mean deviation of rtt for the appropriate type of rpc
91 * for the frequent rpcs and a default for the others.
92 * The justification for doing "other" this way is that these rpcs
93 * happen so infrequently that timer est. would probably be stale.
94 * Also, since many of these rpcs are
95 * non-idempotent, a conservative timeout is desired.
96 * getattr, lookup - A+2D
97 * read, write - A+4D
98 * other - nm_timeo
99 */
100 #define NFS_RTO(n, t) \
101 ((t) == 0 ? (n)->nm_timeo : \
102 ((t) < 3 ? \
103 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
104 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
105 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
106 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
107 /*
108 * External data, mostly RPC constants in XDR form
109 */
110 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
111 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
112 rpc_auth_kerb;
113 extern u_int32_t nfs_prog;
114 extern const int nfsv3_procid[NFS_NPROCS];
115 extern int nfs_ticks;
116
117 /*
118 * Defines which timer to use for the procnum.
119 * 0 - default
120 * 1 - getattr
121 * 2 - lookup
122 * 3 - read
123 * 4 - write
124 */
125 static const int proct[NFS_NPROCS] = {
126 [NFSPROC_NULL] = 0,
127 [NFSPROC_GETATTR] = 1,
128 [NFSPROC_SETATTR] = 0,
129 [NFSPROC_LOOKUP] = 2,
130 [NFSPROC_ACCESS] = 1,
131 [NFSPROC_READLINK] = 3,
132 [NFSPROC_READ] = 3,
133 [NFSPROC_WRITE] = 4,
134 [NFSPROC_CREATE] = 0,
135 [NFSPROC_MKDIR] = 0,
136 [NFSPROC_SYMLINK] = 0,
137 [NFSPROC_MKNOD] = 0,
138 [NFSPROC_REMOVE] = 0,
139 [NFSPROC_RMDIR] = 0,
140 [NFSPROC_RENAME] = 0,
141 [NFSPROC_LINK] = 0,
142 [NFSPROC_READDIR] = 3,
143 [NFSPROC_READDIRPLUS] = 3,
144 [NFSPROC_FSSTAT] = 0,
145 [NFSPROC_FSINFO] = 0,
146 [NFSPROC_PATHCONF] = 0,
147 [NFSPROC_COMMIT] = 0,
148 [NFSPROC_NOOP] = 0,
149 };
150
151 /*
152 * There is a congestion window for outstanding rpcs maintained per mount
153 * point. The cwnd size is adjusted in roughly the way that:
154 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
155 * SIGCOMM '88". ACM, August 1988.
156 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
157 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
158 * of rpcs is in progress.
159 * (The sent count and cwnd are scaled for integer arith.)
160 * Variants of "slow start" were tried and were found to be too much of a
161 * performance hit (ave. rtt 3 times larger),
162 * I suspect due to the large rtt that nfs rpcs have.
163 */
164 #define NFS_CWNDSCALE 256
165 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
166 static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
167 int nfsrtton = 0;
168 struct nfsrtt nfsrtt;
169 struct nfsreqhead nfs_reqq;
170 static callout_t nfs_timer_ch;
171 static struct evcnt nfs_timer_ev;
172 static struct evcnt nfs_timer_start_ev;
173 static struct evcnt nfs_timer_stop_ev;
174
175 static int nfs_sndlock(struct nfsmount *, struct nfsreq *);
176 static void nfs_sndunlock(struct nfsmount *);
177 static int nfs_rcvlock(struct nfsmount *, struct nfsreq *);
178 static void nfs_rcvunlock(struct nfsmount *);
179
180 #if defined(NFSSERVER)
181 static void nfsrv_wakenfsd_locked(struct nfssvc_sock *);
182 #endif /* defined(NFSSERVER) */
183
184 /*
185 * Initialize sockets and congestion for a new NFS connection.
186 * We do not free the sockaddr if error.
187 */
188 int
189 nfs_connect(nmp, rep, l)
190 struct nfsmount *nmp;
191 struct nfsreq *rep;
192 struct lwp *l;
193 {
194 struct socket *so;
195 int error, rcvreserve, sndreserve;
196 struct sockaddr *saddr;
197 struct sockaddr_in *sin;
198 #ifdef INET6
199 struct sockaddr_in6 *sin6;
200 #endif
201 struct mbuf *m;
202 int val;
203
204 nmp->nm_so = (struct socket *)0;
205 saddr = mtod(nmp->nm_nam, struct sockaddr *);
206 error = socreate(saddr->sa_family, &nmp->nm_so,
207 nmp->nm_sotype, nmp->nm_soproto, l, NULL);
208 if (error)
209 goto bad;
210 so = nmp->nm_so;
211 #ifdef MBUFTRACE
212 so->so_mowner = &nfs_mowner;
213 so->so_rcv.sb_mowner = &nfs_mowner;
214 so->so_snd.sb_mowner = &nfs_mowner;
215 #endif
216 nmp->nm_soflags = so->so_proto->pr_flags;
217
218 /*
219 * Some servers require that the client port be a reserved port number.
220 */
221 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
222 val = IP_PORTRANGE_LOW;
223
224 if ((error = so_setsockopt(NULL, so, IPPROTO_IP, IP_PORTRANGE,
225 &val, sizeof(val))))
226 goto bad;
227 m = m_get(M_WAIT, MT_SONAME);
228 MCLAIM(m, so->so_mowner);
229 sin = mtod(m, struct sockaddr_in *);
230 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
231 sin->sin_family = AF_INET;
232 sin->sin_addr.s_addr = INADDR_ANY;
233 sin->sin_port = 0;
234 error = sobind(so, m, &lwp0);
235 m_freem(m);
236 if (error)
237 goto bad;
238 }
239 #ifdef INET6
240 if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) {
241 val = IPV6_PORTRANGE_LOW;
242
243 if ((error = so_setsockopt(NULL, so, IPPROTO_IPV6,
244 IPV6_PORTRANGE, &val, sizeof(val))))
245 goto bad;
246 m = m_get(M_WAIT, MT_SONAME);
247 MCLAIM(m, so->so_mowner);
248 sin6 = mtod(m, struct sockaddr_in6 *);
249 sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6);
250 sin6->sin6_family = AF_INET6;
251 sin6->sin6_addr = in6addr_any;
252 sin6->sin6_port = 0;
253 error = sobind(so, m, &lwp0);
254 m_freem(m);
255 if (error)
256 goto bad;
257 }
258 #endif
259
260 /*
261 * Protocols that do not require connections may be optionally left
262 * unconnected for servers that reply from a port other than NFS_PORT.
263 */
264 solock(so);
265 if (nmp->nm_flag & NFSMNT_NOCONN) {
266 if (nmp->nm_soflags & PR_CONNREQUIRED) {
267 sounlock(so);
268 error = ENOTCONN;
269 goto bad;
270 }
271 } else {
272 error = soconnect(so, nmp->nm_nam, l);
273 if (error) {
274 sounlock(so);
275 goto bad;
276 }
277
278 /*
279 * Wait for the connection to complete. Cribbed from the
280 * connect system call but with the wait timing out so
281 * that interruptible mounts don't hang here for a long time.
282 */
283 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
284 (void)sowait(so, 2 * hz);
285 if ((so->so_state & SS_ISCONNECTING) &&
286 so->so_error == 0 && rep &&
287 (error = nfs_sigintr(nmp, rep, rep->r_lwp)) != 0){
288 so->so_state &= ~SS_ISCONNECTING;
289 sounlock(so);
290 goto bad;
291 }
292 }
293 if (so->so_error) {
294 error = so->so_error;
295 so->so_error = 0;
296 sounlock(so);
297 goto bad;
298 }
299 }
300 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
301 so->so_rcv.sb_timeo = (5 * hz);
302 so->so_snd.sb_timeo = (5 * hz);
303 } else {
304 /*
305 * enable receive timeout to detect server crash and reconnect.
306 * otherwise, we can be stuck in soreceive forever.
307 */
308 so->so_rcv.sb_timeo = (5 * hz);
309 so->so_snd.sb_timeo = 0;
310 }
311 if (nmp->nm_sotype == SOCK_DGRAM) {
312 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
313 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
314 NFS_MAXPKTHDR) * 2;
315 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
316 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
317 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
318 NFS_MAXPKTHDR) * 2;
319 } else {
320 sounlock(so);
321 if (nmp->nm_sotype != SOCK_STREAM)
322 panic("nfscon sotype");
323 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
324 val = 1;
325 so_setsockopt(NULL, so, SOL_SOCKET, SO_KEEPALIVE, &val,
326 sizeof(val));
327 }
328 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
329 val = 1;
330 so_setsockopt(NULL, so, IPPROTO_TCP, TCP_NODELAY, &val,
331 sizeof(val));
332 }
333 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
334 sizeof (u_int32_t)) * 2;
335 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
336 sizeof (u_int32_t)) * 2;
337 solock(so);
338 }
339 error = soreserve(so, sndreserve, rcvreserve);
340 if (error) {
341 sounlock(so);
342 goto bad;
343 }
344 so->so_rcv.sb_flags |= SB_NOINTR;
345 so->so_snd.sb_flags |= SB_NOINTR;
346 sounlock(so);
347
348 /* Initialize other non-zero congestion variables */
349 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
350 NFS_TIMEO << 3;
351 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
352 nmp->nm_sdrtt[3] = 0;
353 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
354 nmp->nm_sent = 0;
355 nmp->nm_timeouts = 0;
356 return (0);
357
358 bad:
359 nfs_disconnect(nmp);
360 return (error);
361 }
362
363 /*
364 * Reconnect routine:
365 * Called when a connection is broken on a reliable protocol.
366 * - clean up the old socket
367 * - nfs_connect() again
368 * - set R_MUSTRESEND for all outstanding requests on mount point
369 * If this fails the mount point is DEAD!
370 * nb: Must be called with the nfs_sndlock() set on the mount point.
371 */
372 int
373 nfs_reconnect(struct nfsreq *rep)
374 {
375 struct nfsreq *rp;
376 struct nfsmount *nmp = rep->r_nmp;
377 int error;
378
379 nfs_disconnect(nmp);
380 while ((error = nfs_connect(nmp, rep, &lwp0)) != 0) {
381 if (error == EINTR || error == ERESTART)
382 return (EINTR);
383 kpause("nfscn2", false, hz, NULL);
384 }
385
386 /*
387 * Loop through outstanding request list and fix up all requests
388 * on old socket.
389 */
390 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) {
391 if (rp->r_nmp == nmp) {
392 if ((rp->r_flags & R_MUSTRESEND) == 0)
393 rp->r_flags |= R_MUSTRESEND | R_REXMITTED;
394 rp->r_rexmit = 0;
395 }
396 }
397 return (0);
398 }
399
400 /*
401 * NFS disconnect. Clean up and unlink.
402 */
403 void
404 nfs_disconnect(nmp)
405 struct nfsmount *nmp;
406 {
407 struct socket *so;
408 int drain = 0;
409
410 if (nmp->nm_so) {
411 so = nmp->nm_so;
412 nmp->nm_so = (struct socket *)0;
413 solock(so);
414 soshutdown(so, SHUT_RDWR);
415 sounlock(so);
416 drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0;
417 if (drain) {
418 /*
419 * soshutdown() above should wake up the current
420 * listener.
421 * Now wake up those waiting for the receive lock, and
422 * wait for them to go away unhappy, to prevent *nmp
423 * from evaporating while they're sleeping.
424 */
425 mutex_enter(&nmp->nm_lock);
426 while (nmp->nm_waiters > 0) {
427 cv_broadcast(&nmp->nm_rcvcv);
428 cv_broadcast(&nmp->nm_sndcv);
429 cv_wait(&nmp->nm_disconcv, &nmp->nm_lock);
430 }
431 mutex_exit(&nmp->nm_lock);
432 }
433 soclose(so);
434 }
435 #ifdef DIAGNOSTIC
436 if (drain && (nmp->nm_waiters > 0))
437 panic("nfs_disconnect: waiters left after drain?");
438 #endif
439 }
440
441 void
442 nfs_safedisconnect(nmp)
443 struct nfsmount *nmp;
444 {
445 struct nfsreq dummyreq;
446
447 memset(&dummyreq, 0, sizeof(dummyreq));
448 dummyreq.r_nmp = nmp;
449 nfs_rcvlock(nmp, &dummyreq); /* XXX ignored error return */
450 nfs_disconnect(nmp);
451 nfs_rcvunlock(nmp);
452 }
453
454 /*
455 * This is the nfs send routine. For connection based socket types, it
456 * must be called with an nfs_sndlock() on the socket.
457 * "rep == NULL" indicates that it has been called from a server.
458 * For the client side:
459 * - return EINTR if the RPC is terminated, 0 otherwise
460 * - set R_MUSTRESEND if the send fails for any reason
461 * - do any cleanup required by recoverable socket errors (? ? ?)
462 * For the server side:
463 * - return EINTR or ERESTART if interrupted by a signal
464 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
465 * - do any cleanup required by recoverable socket errors (? ? ?)
466 */
467 int
468 nfs_send(so, nam, top, rep, l)
469 struct socket *so;
470 struct mbuf *nam;
471 struct mbuf *top;
472 struct nfsreq *rep;
473 struct lwp *l;
474 {
475 struct mbuf *sendnam;
476 int error, soflags, flags;
477
478 /* XXX nfs_doio()/nfs_request() calls with rep->r_lwp == NULL */
479 if (l == NULL && rep->r_lwp == NULL)
480 l = curlwp;
481
482 if (rep) {
483 if (rep->r_flags & R_SOFTTERM) {
484 m_freem(top);
485 return (EINTR);
486 }
487 if ((so = rep->r_nmp->nm_so) == NULL) {
488 rep->r_flags |= R_MUSTRESEND;
489 m_freem(top);
490 return (0);
491 }
492 rep->r_flags &= ~R_MUSTRESEND;
493 soflags = rep->r_nmp->nm_soflags;
494 } else
495 soflags = so->so_proto->pr_flags;
496 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
497 sendnam = (struct mbuf *)0;
498 else
499 sendnam = nam;
500 if (so->so_type == SOCK_SEQPACKET)
501 flags = MSG_EOR;
502 else
503 flags = 0;
504
505 error = (*so->so_send)(so, sendnam, NULL, top, NULL, flags, l);
506 if (error) {
507 if (rep) {
508 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
509 /*
510 * We're too fast for the network/driver,
511 * and UDP isn't flowcontrolled.
512 * We need to resend. This is not fatal,
513 * just try again.
514 *
515 * Could be smarter here by doing some sort
516 * of a backoff, but this is rare.
517 */
518 rep->r_flags |= R_MUSTRESEND;
519 } else {
520 if (error != EPIPE)
521 log(LOG_INFO,
522 "nfs send error %d for %s\n",
523 error,
524 rep->r_nmp->nm_mountp->
525 mnt_stat.f_mntfromname);
526 /*
527 * Deal with errors for the client side.
528 */
529 if (rep->r_flags & R_SOFTTERM)
530 error = EINTR;
531 else
532 rep->r_flags |= R_MUSTRESEND;
533 }
534 } else {
535 /*
536 * See above. This error can happen under normal
537 * circumstances and the log is too noisy.
538 * The error will still show up in nfsstat.
539 */
540 if (error != ENOBUFS || so->so_type != SOCK_DGRAM)
541 log(LOG_INFO, "nfsd send error %d\n", error);
542 }
543
544 /*
545 * Handle any recoverable (soft) socket errors here. (? ? ?)
546 */
547 if (error != EINTR && error != ERESTART &&
548 error != EWOULDBLOCK && error != EPIPE)
549 error = 0;
550 }
551 return (error);
552 }
553
554 #ifdef NFS
555 /*
556 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
557 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
558 * Mark and consolidate the data into a new mbuf list.
559 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
560 * small mbufs.
561 * For SOCK_STREAM we must be very careful to read an entire record once
562 * we have read any of it, even if the system call has been interrupted.
563 */
564 static int
565 nfs_receive(struct nfsreq *rep, struct mbuf **aname, struct mbuf **mp,
566 struct lwp *l)
567 {
568 struct socket *so;
569 struct uio auio;
570 struct iovec aio;
571 struct mbuf *m;
572 struct mbuf *control;
573 u_int32_t len;
574 struct mbuf **getnam;
575 int error, sotype, rcvflg;
576
577 /*
578 * Set up arguments for soreceive()
579 */
580 *mp = (struct mbuf *)0;
581 *aname = (struct mbuf *)0;
582 sotype = rep->r_nmp->nm_sotype;
583
584 /*
585 * For reliable protocols, lock against other senders/receivers
586 * in case a reconnect is necessary.
587 * For SOCK_STREAM, first get the Record Mark to find out how much
588 * more there is to get.
589 * We must lock the socket against other receivers
590 * until we have an entire rpc request/reply.
591 */
592 if (sotype != SOCK_DGRAM) {
593 error = nfs_sndlock(rep->r_nmp, rep);
594 if (error)
595 return (error);
596 tryagain:
597 /*
598 * Check for fatal errors and resending request.
599 */
600 /*
601 * Ugh: If a reconnect attempt just happened, nm_so
602 * would have changed. NULL indicates a failed
603 * attempt that has essentially shut down this
604 * mount point.
605 */
606 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
607 nfs_sndunlock(rep->r_nmp);
608 return (EINTR);
609 }
610 so = rep->r_nmp->nm_so;
611 if (!so) {
612 error = nfs_reconnect(rep);
613 if (error) {
614 nfs_sndunlock(rep->r_nmp);
615 return (error);
616 }
617 goto tryagain;
618 }
619 while (rep->r_flags & R_MUSTRESEND) {
620 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
621 nfsstats.rpcretries++;
622 rep->r_rtt = 0;
623 rep->r_flags &= ~R_TIMING;
624 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep, l);
625 if (error) {
626 if (error == EINTR || error == ERESTART ||
627 (error = nfs_reconnect(rep)) != 0) {
628 nfs_sndunlock(rep->r_nmp);
629 return (error);
630 }
631 goto tryagain;
632 }
633 }
634 nfs_sndunlock(rep->r_nmp);
635 if (sotype == SOCK_STREAM) {
636 aio.iov_base = (void *) &len;
637 aio.iov_len = sizeof(u_int32_t);
638 auio.uio_iov = &aio;
639 auio.uio_iovcnt = 1;
640 auio.uio_rw = UIO_READ;
641 auio.uio_offset = 0;
642 auio.uio_resid = sizeof(u_int32_t);
643 UIO_SETUP_SYSSPACE(&auio);
644 do {
645 rcvflg = MSG_WAITALL;
646 error = (*so->so_receive)(so, (struct mbuf **)0, &auio,
647 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
648 if (error == EWOULDBLOCK && rep) {
649 if (rep->r_flags & R_SOFTTERM)
650 return (EINTR);
651 /*
652 * if it seems that the server died after it
653 * received our request, set EPIPE so that
654 * we'll reconnect and retransmit requests.
655 */
656 if (rep->r_rexmit >= rep->r_nmp->nm_retry) {
657 nfsstats.rpctimeouts++;
658 error = EPIPE;
659 }
660 }
661 } while (error == EWOULDBLOCK);
662 if (!error && auio.uio_resid > 0) {
663 /*
664 * Don't log a 0 byte receive; it means
665 * that the socket has been closed, and
666 * can happen during normal operation
667 * (forcible unmount or Solaris server).
668 */
669 if (auio.uio_resid != sizeof (u_int32_t))
670 log(LOG_INFO,
671 "short receive (%lu/%lu) from nfs server %s\n",
672 (u_long)sizeof(u_int32_t) - auio.uio_resid,
673 (u_long)sizeof(u_int32_t),
674 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
675 error = EPIPE;
676 }
677 if (error)
678 goto errout;
679 len = ntohl(len) & ~0x80000000;
680 /*
681 * This is SERIOUS! We are out of sync with the sender
682 * and forcing a disconnect/reconnect is all I can do.
683 */
684 if (len > NFS_MAXPACKET) {
685 log(LOG_ERR, "%s (%d) from nfs server %s\n",
686 "impossible packet length",
687 len,
688 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
689 error = EFBIG;
690 goto errout;
691 }
692 auio.uio_resid = len;
693 do {
694 rcvflg = MSG_WAITALL;
695 error = (*so->so_receive)(so, (struct mbuf **)0,
696 &auio, mp, (struct mbuf **)0, &rcvflg);
697 } while (error == EWOULDBLOCK || error == EINTR ||
698 error == ERESTART);
699 if (!error && auio.uio_resid > 0) {
700 if (len != auio.uio_resid)
701 log(LOG_INFO,
702 "short receive (%lu/%d) from nfs server %s\n",
703 (u_long)len - auio.uio_resid, len,
704 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
705 error = EPIPE;
706 }
707 } else {
708 /*
709 * NB: Since uio_resid is big, MSG_WAITALL is ignored
710 * and soreceive() will return when it has either a
711 * control msg or a data msg.
712 * We have no use for control msg., but must grab them
713 * and then throw them away so we know what is going
714 * on.
715 */
716 auio.uio_resid = len = 100000000; /* Anything Big */
717 /* not need to setup uio_vmspace */
718 do {
719 rcvflg = 0;
720 error = (*so->so_receive)(so, (struct mbuf **)0,
721 &auio, mp, &control, &rcvflg);
722 if (control)
723 m_freem(control);
724 if (error == EWOULDBLOCK && rep) {
725 if (rep->r_flags & R_SOFTTERM)
726 return (EINTR);
727 }
728 } while (error == EWOULDBLOCK ||
729 (!error && *mp == NULL && control));
730 if ((rcvflg & MSG_EOR) == 0)
731 printf("Egad!!\n");
732 if (!error && *mp == NULL)
733 error = EPIPE;
734 len -= auio.uio_resid;
735 }
736 errout:
737 if (error && error != EINTR && error != ERESTART) {
738 m_freem(*mp);
739 *mp = (struct mbuf *)0;
740 if (error != EPIPE)
741 log(LOG_INFO,
742 "receive error %d from nfs server %s\n",
743 error,
744 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
745 error = nfs_sndlock(rep->r_nmp, rep);
746 if (!error)
747 error = nfs_reconnect(rep);
748 if (!error)
749 goto tryagain;
750 else
751 nfs_sndunlock(rep->r_nmp);
752 }
753 } else {
754 if ((so = rep->r_nmp->nm_so) == NULL)
755 return (EACCES);
756 if (so->so_state & SS_ISCONNECTED)
757 getnam = (struct mbuf **)0;
758 else
759 getnam = aname;
760 auio.uio_resid = len = 1000000;
761 /* not need to setup uio_vmspace */
762 do {
763 rcvflg = 0;
764 error = (*so->so_receive)(so, getnam, &auio, mp,
765 (struct mbuf **)0, &rcvflg);
766 if (error == EWOULDBLOCK &&
767 (rep->r_flags & R_SOFTTERM))
768 return (EINTR);
769 } while (error == EWOULDBLOCK);
770 len -= auio.uio_resid;
771 if (!error && *mp == NULL)
772 error = EPIPE;
773 }
774 if (error) {
775 m_freem(*mp);
776 *mp = (struct mbuf *)0;
777 }
778 return (error);
779 }
780
781 /*
782 * Implement receipt of reply on a socket.
783 * We must search through the list of received datagrams matching them
784 * with outstanding requests using the xid, until ours is found.
785 */
786 /* ARGSUSED */
787 static int
788 nfs_reply(struct nfsreq *myrep, struct lwp *lwp)
789 {
790 struct nfsreq *rep;
791 struct nfsmount *nmp = myrep->r_nmp;
792 int32_t t1;
793 struct mbuf *mrep, *nam, *md;
794 u_int32_t rxid, *tl;
795 char *dpos, *cp2;
796 int error;
797
798 /*
799 * Loop around until we get our own reply
800 */
801 for (;;) {
802 /*
803 * Lock against other receivers so that I don't get stuck in
804 * sbwait() after someone else has received my reply for me.
805 * Also necessary for connection based protocols to avoid
806 * race conditions during a reconnect.
807 */
808 error = nfs_rcvlock(nmp, myrep);
809 if (error == EALREADY)
810 return (0);
811 if (error)
812 return (error);
813 /*
814 * Get the next Rpc reply off the socket
815 */
816
817 mutex_enter(&nmp->nm_lock);
818 nmp->nm_waiters++;
819 mutex_exit(&nmp->nm_lock);
820
821 error = nfs_receive(myrep, &nam, &mrep, lwp);
822
823 mutex_enter(&nmp->nm_lock);
824 nmp->nm_waiters--;
825 cv_signal(&nmp->nm_disconcv);
826 mutex_exit(&nmp->nm_lock);
827
828 if (error) {
829 nfs_rcvunlock(nmp);
830
831 if (nmp->nm_iflag & NFSMNT_DISMNT) {
832 /*
833 * Oops, we're going away now..
834 */
835 return error;
836 }
837 /*
838 * Ignore routing errors on connectionless protocols? ?
839 */
840 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
841 nmp->nm_so->so_error = 0;
842 #ifdef DEBUG
843 printf("nfs_reply: ignoring error %d\n", error);
844 #endif
845 continue;
846 }
847 return (error);
848 }
849 if (nam)
850 m_freem(nam);
851
852 /*
853 * Get the xid and check that it is an rpc reply
854 */
855 md = mrep;
856 dpos = mtod(md, void *);
857 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
858 rxid = *tl++;
859 if (*tl != rpc_reply) {
860 nfsstats.rpcinvalid++;
861 m_freem(mrep);
862 nfsmout:
863 nfs_rcvunlock(nmp);
864 continue;
865 }
866
867 /*
868 * Loop through the request list to match up the reply
869 * Iff no match, just drop the datagram
870 */
871 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
872 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
873 /* Found it.. */
874 rep->r_mrep = mrep;
875 rep->r_md = md;
876 rep->r_dpos = dpos;
877 if (nfsrtton) {
878 struct rttl *rt;
879
880 rt = &nfsrtt.rttl[nfsrtt.pos];
881 rt->proc = rep->r_procnum;
882 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
883 rt->sent = nmp->nm_sent;
884 rt->cwnd = nmp->nm_cwnd;
885 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
886 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
887 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsidx;
888 getmicrotime(&rt->tstamp);
889 if (rep->r_flags & R_TIMING)
890 rt->rtt = rep->r_rtt;
891 else
892 rt->rtt = 1000000;
893 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
894 }
895 /*
896 * Update congestion window.
897 * Do the additive increase of
898 * one rpc/rtt.
899 */
900 if (nmp->nm_cwnd <= nmp->nm_sent) {
901 nmp->nm_cwnd +=
902 (NFS_CWNDSCALE * NFS_CWNDSCALE +
903 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
904 if (nmp->nm_cwnd > NFS_MAXCWND)
905 nmp->nm_cwnd = NFS_MAXCWND;
906 }
907 rep->r_flags &= ~R_SENT;
908 nmp->nm_sent -= NFS_CWNDSCALE;
909 /*
910 * Update rtt using a gain of 0.125 on the mean
911 * and a gain of 0.25 on the deviation.
912 */
913 if (rep->r_flags & R_TIMING) {
914 /*
915 * Since the timer resolution of
916 * NFS_HZ is so course, it can often
917 * result in r_rtt == 0. Since
918 * r_rtt == N means that the actual
919 * rtt is between N+dt and N+2-dt ticks,
920 * add 1.
921 */
922 t1 = rep->r_rtt + 1;
923 t1 -= (NFS_SRTT(rep) >> 3);
924 NFS_SRTT(rep) += t1;
925 if (t1 < 0)
926 t1 = -t1;
927 t1 -= (NFS_SDRTT(rep) >> 2);
928 NFS_SDRTT(rep) += t1;
929 }
930 nmp->nm_timeouts = 0;
931 break;
932 }
933 }
934 nfs_rcvunlock(nmp);
935 /*
936 * If not matched to a request, drop it.
937 * If it's mine, get out.
938 */
939 if (rep == 0) {
940 nfsstats.rpcunexpected++;
941 m_freem(mrep);
942 } else if (rep == myrep) {
943 if (rep->r_mrep == NULL)
944 panic("nfsreply nil");
945 return (0);
946 }
947 }
948 }
949
950 /*
951 * nfs_request - goes something like this
952 * - fill in request struct
953 * - links it into list
954 * - calls nfs_send() for first transmit
955 * - calls nfs_receive() to get reply
956 * - break down rpc header and return with nfs reply pointed to
957 * by mrep or error
958 * nb: always frees up mreq mbuf list
959 */
960 int
961 nfs_request(np, mrest, procnum, lwp, cred, mrp, mdp, dposp, rexmitp)
962 struct nfsnode *np;
963 struct mbuf *mrest;
964 int procnum;
965 struct lwp *lwp;
966 kauth_cred_t cred;
967 struct mbuf **mrp;
968 struct mbuf **mdp;
969 char **dposp;
970 int *rexmitp;
971 {
972 struct mbuf *m, *mrep;
973 struct nfsreq *rep;
974 u_int32_t *tl;
975 int i;
976 struct nfsmount *nmp = VFSTONFS(np->n_vnode->v_mount);
977 struct mbuf *md, *mheadend;
978 char nickv[RPCX_NICKVERF];
979 time_t waituntil;
980 char *dpos, *cp2;
981 int t1, s, error = 0, mrest_len, auth_len, auth_type;
982 int trylater_delay = NFS_TRYLATERDEL, failed_auth = 0;
983 int verf_len, verf_type;
984 u_int32_t xid;
985 char *auth_str, *verf_str;
986 NFSKERBKEY_T key; /* save session key */
987 kauth_cred_t acred;
988 struct mbuf *mrest_backup = NULL;
989 kauth_cred_t origcred = NULL; /* XXX: gcc */
990 bool retry_cred = true;
991 bool use_opencred = (np->n_flag & NUSEOPENCRED) != 0;
992
993 if (rexmitp != NULL)
994 *rexmitp = 0;
995
996 acred = kauth_cred_alloc();
997
998 tryagain_cred:
999 KASSERT(cred != NULL);
1000 rep = kmem_alloc(sizeof(*rep), KM_SLEEP);
1001 rep->r_nmp = nmp;
1002 KASSERT(lwp == NULL || lwp == curlwp);
1003 rep->r_lwp = lwp;
1004 rep->r_procnum = procnum;
1005 i = 0;
1006 m = mrest;
1007 while (m) {
1008 i += m->m_len;
1009 m = m->m_next;
1010 }
1011 mrest_len = i;
1012
1013 /*
1014 * Get the RPC header with authorization.
1015 */
1016 kerbauth:
1017 verf_str = auth_str = (char *)0;
1018 if (nmp->nm_flag & NFSMNT_KERB) {
1019 verf_str = nickv;
1020 verf_len = sizeof (nickv);
1021 auth_type = RPCAUTH_KERB4;
1022 memset((void *)key, 0, sizeof (key));
1023 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
1024 &auth_len, verf_str, verf_len)) {
1025 error = nfs_getauth(nmp, rep, cred, &auth_str,
1026 &auth_len, verf_str, &verf_len, key);
1027 if (error) {
1028 kmem_free(rep, sizeof(*rep));
1029 m_freem(mrest);
1030 KASSERT(kauth_cred_getrefcnt(acred) == 1);
1031 kauth_cred_free(acred);
1032 return (error);
1033 }
1034 }
1035 retry_cred = false;
1036 } else {
1037 /* AUTH_UNIX */
1038 uid_t uid;
1039 gid_t gid;
1040
1041 /*
1042 * on the most unix filesystems, permission checks are
1043 * done when the file is open(2)'ed.
1044 * ie. once a file is successfully open'ed,
1045 * following i/o operations never fail with EACCES.
1046 * we try to follow the semantics as far as possible.
1047 *
1048 * note that we expect that the nfs server always grant
1049 * accesses by the file's owner.
1050 */
1051 origcred = cred;
1052 switch (procnum) {
1053 case NFSPROC_READ:
1054 case NFSPROC_WRITE:
1055 case NFSPROC_COMMIT:
1056 uid = np->n_vattr->va_uid;
1057 gid = np->n_vattr->va_gid;
1058 if (kauth_cred_geteuid(cred) == uid &&
1059 kauth_cred_getegid(cred) == gid) {
1060 retry_cred = false;
1061 break;
1062 }
1063 if (use_opencred)
1064 break;
1065 kauth_cred_setuid(acred, uid);
1066 kauth_cred_seteuid(acred, uid);
1067 kauth_cred_setsvuid(acred, uid);
1068 kauth_cred_setgid(acred, gid);
1069 kauth_cred_setegid(acred, gid);
1070 kauth_cred_setsvgid(acred, gid);
1071 cred = acred;
1072 break;
1073 default:
1074 retry_cred = false;
1075 break;
1076 }
1077 /*
1078 * backup mbuf chain if we can need it later to retry.
1079 *
1080 * XXX maybe we can keep a direct reference to
1081 * mrest without doing m_copym, but it's ...ugly.
1082 */
1083 if (retry_cred)
1084 mrest_backup = m_copym(mrest, 0, M_COPYALL, M_WAIT);
1085 auth_type = RPCAUTH_UNIX;
1086 /* XXX elad - ngroups */
1087 auth_len = (((kauth_cred_ngroups(cred) > nmp->nm_numgrps) ?
1088 nmp->nm_numgrps : kauth_cred_ngroups(cred)) << 2) +
1089 5 * NFSX_UNSIGNED;
1090 }
1091 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
1092 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
1093 if (auth_str)
1094 free(auth_str, M_TEMP);
1095
1096 /*
1097 * For stream protocols, insert a Sun RPC Record Mark.
1098 */
1099 if (nmp->nm_sotype == SOCK_STREAM) {
1100 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
1101 *mtod(m, u_int32_t *) = htonl(0x80000000 |
1102 (m->m_pkthdr.len - NFSX_UNSIGNED));
1103 }
1104 rep->r_mreq = m;
1105 rep->r_xid = xid;
1106 tryagain:
1107 if (nmp->nm_flag & NFSMNT_SOFT)
1108 rep->r_retry = nmp->nm_retry;
1109 else
1110 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
1111 rep->r_rtt = rep->r_rexmit = 0;
1112 if (proct[procnum] > 0)
1113 rep->r_flags = R_TIMING;
1114 else
1115 rep->r_flags = 0;
1116 rep->r_mrep = NULL;
1117
1118 /*
1119 * Do the client side RPC.
1120 */
1121 nfsstats.rpcrequests++;
1122 /*
1123 * Chain request into list of outstanding requests. Be sure
1124 * to put it LAST so timer finds oldest requests first.
1125 */
1126 s = splsoftnet();
1127 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
1128 nfs_timer_start();
1129
1130 /*
1131 * If backing off another request or avoiding congestion, don't
1132 * send this one now but let timer do it. If not timing a request,
1133 * do it now.
1134 */
1135 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
1136 (nmp->nm_flag & NFSMNT_DUMBTIMR) || nmp->nm_sent < nmp->nm_cwnd)) {
1137 splx(s);
1138 if (nmp->nm_soflags & PR_CONNREQUIRED)
1139 error = nfs_sndlock(nmp, rep);
1140 if (!error) {
1141 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
1142 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep, lwp);
1143 if (nmp->nm_soflags & PR_CONNREQUIRED)
1144 nfs_sndunlock(nmp);
1145 }
1146 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
1147 nmp->nm_sent += NFS_CWNDSCALE;
1148 rep->r_flags |= R_SENT;
1149 }
1150 } else {
1151 splx(s);
1152 rep->r_rtt = -1;
1153 }
1154
1155 /*
1156 * Wait for the reply from our send or the timer's.
1157 */
1158 if (!error || error == EPIPE)
1159 error = nfs_reply(rep, lwp);
1160
1161 /*
1162 * RPC done, unlink the request.
1163 */
1164 s = splsoftnet();
1165 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
1166 splx(s);
1167
1168 /*
1169 * Decrement the outstanding request count.
1170 */
1171 if (rep->r_flags & R_SENT) {
1172 rep->r_flags &= ~R_SENT; /* paranoia */
1173 nmp->nm_sent -= NFS_CWNDSCALE;
1174 }
1175
1176 if (rexmitp != NULL) {
1177 int rexmit;
1178
1179 if (nmp->nm_sotype != SOCK_DGRAM)
1180 rexmit = (rep->r_flags & R_REXMITTED) != 0;
1181 else
1182 rexmit = rep->r_rexmit;
1183 *rexmitp = rexmit;
1184 }
1185
1186 /*
1187 * If there was a successful reply and a tprintf msg.
1188 * tprintf a response.
1189 */
1190 if (!error && (rep->r_flags & R_TPRINTFMSG))
1191 nfs_msg(rep->r_lwp, nmp->nm_mountp->mnt_stat.f_mntfromname,
1192 "is alive again");
1193 mrep = rep->r_mrep;
1194 md = rep->r_md;
1195 dpos = rep->r_dpos;
1196 if (error)
1197 goto nfsmout;
1198
1199 /*
1200 * break down the rpc header and check if ok
1201 */
1202 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1203 if (*tl++ == rpc_msgdenied) {
1204 if (*tl == rpc_mismatch)
1205 error = EOPNOTSUPP;
1206 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
1207 if (!failed_auth) {
1208 failed_auth++;
1209 mheadend->m_next = (struct mbuf *)0;
1210 m_freem(mrep);
1211 m_freem(rep->r_mreq);
1212 goto kerbauth;
1213 } else
1214 error = EAUTH;
1215 } else
1216 error = EACCES;
1217 m_freem(mrep);
1218 goto nfsmout;
1219 }
1220
1221 /*
1222 * Grab any Kerberos verifier, otherwise just throw it away.
1223 */
1224 verf_type = fxdr_unsigned(int, *tl++);
1225 i = fxdr_unsigned(int32_t, *tl);
1226 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1227 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1228 if (error)
1229 goto nfsmout;
1230 } else if (i > 0)
1231 nfsm_adv(nfsm_rndup(i));
1232 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1233 /* 0 == ok */
1234 if (*tl == 0) {
1235 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1236 if (*tl != 0) {
1237 error = fxdr_unsigned(int, *tl);
1238 switch (error) {
1239 case NFSERR_PERM:
1240 error = EPERM;
1241 break;
1242
1243 case NFSERR_NOENT:
1244 error = ENOENT;
1245 break;
1246
1247 case NFSERR_IO:
1248 error = EIO;
1249 break;
1250
1251 case NFSERR_NXIO:
1252 error = ENXIO;
1253 break;
1254
1255 case NFSERR_ACCES:
1256 error = EACCES;
1257 if (!retry_cred)
1258 break;
1259 m_freem(mrep);
1260 m_freem(rep->r_mreq);
1261 kmem_free(rep, sizeof(*rep));
1262 use_opencred = !use_opencred;
1263 if (mrest_backup == NULL) {
1264 /* m_copym failure */
1265 KASSERT(
1266 kauth_cred_getrefcnt(acred) == 1);
1267 kauth_cred_free(acred);
1268 return ENOMEM;
1269 }
1270 mrest = mrest_backup;
1271 mrest_backup = NULL;
1272 cred = origcred;
1273 error = 0;
1274 retry_cred = false;
1275 goto tryagain_cred;
1276
1277 case NFSERR_EXIST:
1278 error = EEXIST;
1279 break;
1280
1281 case NFSERR_XDEV:
1282 error = EXDEV;
1283 break;
1284
1285 case NFSERR_NODEV:
1286 error = ENODEV;
1287 break;
1288
1289 case NFSERR_NOTDIR:
1290 error = ENOTDIR;
1291 break;
1292
1293 case NFSERR_ISDIR:
1294 error = EISDIR;
1295 break;
1296
1297 case NFSERR_INVAL:
1298 error = EINVAL;
1299 break;
1300
1301 case NFSERR_FBIG:
1302 error = EFBIG;
1303 break;
1304
1305 case NFSERR_NOSPC:
1306 error = ENOSPC;
1307 break;
1308
1309 case NFSERR_ROFS:
1310 error = EROFS;
1311 break;
1312
1313 case NFSERR_MLINK:
1314 error = EMLINK;
1315 break;
1316
1317 case NFSERR_TIMEDOUT:
1318 error = ETIMEDOUT;
1319 break;
1320
1321 case NFSERR_NAMETOL:
1322 error = ENAMETOOLONG;
1323 break;
1324
1325 case NFSERR_NOTEMPTY:
1326 error = ENOTEMPTY;
1327 break;
1328
1329 case NFSERR_DQUOT:
1330 error = EDQUOT;
1331 break;
1332
1333 case NFSERR_STALE:
1334 /*
1335 * If the File Handle was stale, invalidate the
1336 * lookup cache, just in case.
1337 */
1338 error = ESTALE;
1339 cache_purge(NFSTOV(np));
1340 break;
1341
1342 case NFSERR_REMOTE:
1343 error = EREMOTE;
1344 break;
1345
1346 case NFSERR_WFLUSH:
1347 case NFSERR_BADHANDLE:
1348 case NFSERR_NOT_SYNC:
1349 case NFSERR_BAD_COOKIE:
1350 error = EINVAL;
1351 break;
1352
1353 case NFSERR_NOTSUPP:
1354 error = ENOTSUP;
1355 break;
1356
1357 case NFSERR_TOOSMALL:
1358 case NFSERR_SERVERFAULT:
1359 case NFSERR_BADTYPE:
1360 error = EINVAL;
1361 break;
1362
1363 case NFSERR_TRYLATER:
1364 if ((nmp->nm_flag & NFSMNT_NFSV3) == 0)
1365 break;
1366 m_freem(mrep);
1367 error = 0;
1368 waituntil = time_second + trylater_delay;
1369 while (time_second < waituntil) {
1370 kpause("nfstrylater", false, hz, NULL);
1371 }
1372 trylater_delay *= NFS_TRYLATERDELMUL;
1373 if (trylater_delay > NFS_TRYLATERDELMAX)
1374 trylater_delay = NFS_TRYLATERDELMAX;
1375 /*
1376 * RFC1813:
1377 * The client should wait and then try
1378 * the request with a new RPC transaction ID.
1379 */
1380 nfs_renewxid(rep);
1381 goto tryagain;
1382
1383 default:
1384 #ifdef DIAGNOSTIC
1385 printf("Invalid rpc error code %d\n", error);
1386 #endif
1387 error = EINVAL;
1388 break;
1389 }
1390
1391 if (nmp->nm_flag & NFSMNT_NFSV3) {
1392 *mrp = mrep;
1393 *mdp = md;
1394 *dposp = dpos;
1395 error |= NFSERR_RETERR;
1396 } else
1397 m_freem(mrep);
1398 goto nfsmout;
1399 }
1400
1401 /*
1402 * note which credential worked to minimize number of retries.
1403 */
1404 if (use_opencred)
1405 np->n_flag |= NUSEOPENCRED;
1406 else
1407 np->n_flag &= ~NUSEOPENCRED;
1408
1409 *mrp = mrep;
1410 *mdp = md;
1411 *dposp = dpos;
1412
1413 KASSERT(error == 0);
1414 goto nfsmout;
1415 }
1416 m_freem(mrep);
1417 error = EPROTONOSUPPORT;
1418 nfsmout:
1419 KASSERT(kauth_cred_getrefcnt(acred) == 1);
1420 kauth_cred_free(acred);
1421 m_freem(rep->r_mreq);
1422 kmem_free(rep, sizeof(*rep));
1423 m_freem(mrest_backup);
1424 return (error);
1425 }
1426 #endif /* NFS */
1427
1428 /*
1429 * Generate the rpc reply header
1430 * siz arg. is used to decide if adding a cluster is worthwhile
1431 */
1432 int
1433 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1434 int siz;
1435 struct nfsrv_descript *nd;
1436 struct nfssvc_sock *slp;
1437 int err;
1438 int cache;
1439 u_quad_t *frev;
1440 struct mbuf **mrq;
1441 struct mbuf **mbp;
1442 char **bposp;
1443 {
1444 u_int32_t *tl;
1445 struct mbuf *mreq;
1446 char *bpos;
1447 struct mbuf *mb;
1448
1449 mreq = m_gethdr(M_WAIT, MT_DATA);
1450 MCLAIM(mreq, &nfs_mowner);
1451 mb = mreq;
1452 /*
1453 * If this is a big reply, use a cluster else
1454 * try and leave leading space for the lower level headers.
1455 */
1456 siz += RPC_REPLYSIZ;
1457 if (siz >= max_datalen) {
1458 m_clget(mreq, M_WAIT);
1459 } else
1460 mreq->m_data += max_hdr;
1461 tl = mtod(mreq, u_int32_t *);
1462 mreq->m_len = 6 * NFSX_UNSIGNED;
1463 bpos = ((char *)tl) + mreq->m_len;
1464 *tl++ = txdr_unsigned(nd->nd_retxid);
1465 *tl++ = rpc_reply;
1466 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1467 *tl++ = rpc_msgdenied;
1468 if (err & NFSERR_AUTHERR) {
1469 *tl++ = rpc_autherr;
1470 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1471 mreq->m_len -= NFSX_UNSIGNED;
1472 bpos -= NFSX_UNSIGNED;
1473 } else {
1474 *tl++ = rpc_mismatch;
1475 *tl++ = txdr_unsigned(RPC_VER2);
1476 *tl = txdr_unsigned(RPC_VER2);
1477 }
1478 } else {
1479 *tl++ = rpc_msgaccepted;
1480
1481 /*
1482 * For Kerberos authentication, we must send the nickname
1483 * verifier back, otherwise just RPCAUTH_NULL.
1484 */
1485 if (nd->nd_flag & ND_KERBFULL) {
1486 struct nfsuid *nuidp;
1487 struct timeval ktvin, ktvout;
1488
1489 memset(&ktvout, 0, sizeof ktvout); /* XXX gcc */
1490
1491 LIST_FOREACH(nuidp,
1492 NUIDHASH(slp, kauth_cred_geteuid(nd->nd_cr)),
1493 nu_hash) {
1494 if (kauth_cred_geteuid(nuidp->nu_cr) ==
1495 kauth_cred_geteuid(nd->nd_cr) &&
1496 (!nd->nd_nam2 || netaddr_match(
1497 NU_NETFAM(nuidp), &nuidp->nu_haddr,
1498 nd->nd_nam2)))
1499 break;
1500 }
1501 if (nuidp) {
1502 ktvin.tv_sec =
1503 txdr_unsigned(nuidp->nu_timestamp.tv_sec
1504 - 1);
1505 ktvin.tv_usec =
1506 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1507
1508 /*
1509 * Encrypt the timestamp in ecb mode using the
1510 * session key.
1511 */
1512 #ifdef NFSKERB
1513 XXX
1514 #endif
1515
1516 *tl++ = rpc_auth_kerb;
1517 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1518 *tl = ktvout.tv_sec;
1519 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1520 *tl++ = ktvout.tv_usec;
1521 *tl++ = txdr_unsigned(
1522 kauth_cred_geteuid(nuidp->nu_cr));
1523 } else {
1524 *tl++ = 0;
1525 *tl++ = 0;
1526 }
1527 } else {
1528 *tl++ = 0;
1529 *tl++ = 0;
1530 }
1531 switch (err) {
1532 case EPROGUNAVAIL:
1533 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1534 break;
1535 case EPROGMISMATCH:
1536 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1537 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1538 *tl++ = txdr_unsigned(2);
1539 *tl = txdr_unsigned(3);
1540 break;
1541 case EPROCUNAVAIL:
1542 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1543 break;
1544 case EBADRPC:
1545 *tl = txdr_unsigned(RPC_GARBAGE);
1546 break;
1547 default:
1548 *tl = 0;
1549 if (err != NFSERR_RETVOID) {
1550 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1551 if (err)
1552 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1553 else
1554 *tl = 0;
1555 }
1556 break;
1557 };
1558 }
1559
1560 if (mrq != NULL)
1561 *mrq = mreq;
1562 *mbp = mb;
1563 *bposp = bpos;
1564 if (err != 0 && err != NFSERR_RETVOID)
1565 nfsstats.srvrpc_errs++;
1566 return (0);
1567 }
1568
1569 static void
1570 nfs_timer_schedule(void)
1571 {
1572
1573 callout_schedule(&nfs_timer_ch, nfs_ticks);
1574 }
1575
1576 void
1577 nfs_timer_start(void)
1578 {
1579
1580 if (callout_pending(&nfs_timer_ch))
1581 return;
1582
1583 nfs_timer_start_ev.ev_count++;
1584 nfs_timer_schedule();
1585 }
1586
1587 void
1588 nfs_timer_init(void)
1589 {
1590
1591 callout_init(&nfs_timer_ch, 0);
1592 callout_setfunc(&nfs_timer_ch, nfs_timer, NULL);
1593 evcnt_attach_dynamic(&nfs_timer_ev, EVCNT_TYPE_MISC, NULL,
1594 "nfs", "timer");
1595 evcnt_attach_dynamic(&nfs_timer_start_ev, EVCNT_TYPE_MISC, NULL,
1596 "nfs", "timer start");
1597 evcnt_attach_dynamic(&nfs_timer_stop_ev, EVCNT_TYPE_MISC, NULL,
1598 "nfs", "timer stop");
1599 }
1600
1601 /*
1602 * Nfs timer routine
1603 * Scan the nfsreq list and retranmit any requests that have timed out
1604 * To avoid retransmission attempts on STREAM sockets (in the future) make
1605 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1606 * A non-NULL argument means 'initialize'.
1607 */
1608 void
1609 nfs_timer(void *arg)
1610 {
1611 struct nfsreq *rep;
1612 struct mbuf *m;
1613 struct socket *so;
1614 struct nfsmount *nmp;
1615 int timeo;
1616 int s, error;
1617 bool more = false;
1618 #ifdef NFSSERVER
1619 struct timeval tv;
1620 struct nfssvc_sock *slp;
1621 u_quad_t cur_usec;
1622 #endif
1623
1624 nfs_timer_ev.ev_count++;
1625
1626 s = splsoftnet();
1627 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
1628 more = true;
1629 nmp = rep->r_nmp;
1630 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1631 continue;
1632 if (nfs_sigintr(nmp, rep, rep->r_lwp)) {
1633 rep->r_flags |= R_SOFTTERM;
1634 continue;
1635 }
1636 if (rep->r_rtt >= 0) {
1637 rep->r_rtt++;
1638 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1639 timeo = nmp->nm_timeo;
1640 else
1641 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1642 if (nmp->nm_timeouts > 0)
1643 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1644 if (rep->r_rtt <= timeo)
1645 continue;
1646 if (nmp->nm_timeouts <
1647 (sizeof(nfs_backoff) / sizeof(nfs_backoff[0])))
1648 nmp->nm_timeouts++;
1649 }
1650 /*
1651 * Check for server not responding
1652 */
1653 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1654 rep->r_rexmit > nmp->nm_deadthresh) {
1655 nfs_msg(rep->r_lwp,
1656 nmp->nm_mountp->mnt_stat.f_mntfromname,
1657 "not responding");
1658 rep->r_flags |= R_TPRINTFMSG;
1659 }
1660 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1661 nfsstats.rpctimeouts++;
1662 rep->r_flags |= R_SOFTTERM;
1663 continue;
1664 }
1665 if (nmp->nm_sotype != SOCK_DGRAM) {
1666 if (++rep->r_rexmit > NFS_MAXREXMIT)
1667 rep->r_rexmit = NFS_MAXREXMIT;
1668 continue;
1669 }
1670 if ((so = nmp->nm_so) == NULL)
1671 continue;
1672
1673 /*
1674 * If there is enough space and the window allows..
1675 * Resend it
1676 * Set r_rtt to -1 in case we fail to send it now.
1677 */
1678 solock(so);
1679 rep->r_rtt = -1;
1680 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1681 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1682 (rep->r_flags & R_SENT) ||
1683 nmp->nm_sent < nmp->nm_cwnd) &&
1684 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1685 if (so->so_state & SS_ISCONNECTED)
1686 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1687 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1688 else
1689 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1690 nmp->nm_nam, (struct mbuf *)0, (struct lwp *)0);
1691 if (error) {
1692 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
1693 #ifdef DEBUG
1694 printf("nfs_timer: ignoring error %d\n",
1695 error);
1696 #endif
1697 so->so_error = 0;
1698 }
1699 } else {
1700 /*
1701 * Iff first send, start timing
1702 * else turn timing off, backoff timer
1703 * and divide congestion window by 2.
1704 */
1705 if (rep->r_flags & R_SENT) {
1706 rep->r_flags &= ~R_TIMING;
1707 if (++rep->r_rexmit > NFS_MAXREXMIT)
1708 rep->r_rexmit = NFS_MAXREXMIT;
1709 nmp->nm_cwnd >>= 1;
1710 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1711 nmp->nm_cwnd = NFS_CWNDSCALE;
1712 nfsstats.rpcretries++;
1713 } else {
1714 rep->r_flags |= R_SENT;
1715 nmp->nm_sent += NFS_CWNDSCALE;
1716 }
1717 rep->r_rtt = 0;
1718 }
1719 }
1720 sounlock(so);
1721 }
1722 splx(s);
1723
1724 #ifdef NFSSERVER
1725 /*
1726 * Scan the write gathering queues for writes that need to be
1727 * completed now.
1728 */
1729 getmicrotime(&tv);
1730 cur_usec = (u_quad_t)tv.tv_sec * 1000000 + (u_quad_t)tv.tv_usec;
1731 mutex_enter(&nfsd_lock);
1732 TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1733 struct nfsrv_descript *nd;
1734
1735 nd = LIST_FIRST(&slp->ns_tq);
1736 if (nd != NULL) {
1737 if (nd->nd_time <= cur_usec) {
1738 nfsrv_wakenfsd_locked(slp);
1739 }
1740 more = true;
1741 }
1742 }
1743 mutex_exit(&nfsd_lock);
1744 #endif /* NFSSERVER */
1745 if (more) {
1746 nfs_timer_schedule();
1747 } else {
1748 nfs_timer_stop_ev.ev_count++;
1749 }
1750 }
1751
1752 /*
1753 * Test for a termination condition pending on the process.
1754 * This is used for NFSMNT_INT mounts.
1755 */
1756 int
1757 nfs_sigintr(nmp, rep, l)
1758 struct nfsmount *nmp;
1759 struct nfsreq *rep;
1760 struct lwp *l;
1761 {
1762 sigset_t ss;
1763
1764 if (rep && (rep->r_flags & R_SOFTTERM))
1765 return (EINTR);
1766 if (!(nmp->nm_flag & NFSMNT_INT))
1767 return (0);
1768 if (l) {
1769 sigpending1(l, &ss);
1770 #if 0
1771 sigminusset(&l->l_proc->p_sigctx.ps_sigignore, &ss);
1772 #endif
1773 if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) ||
1774 sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) ||
1775 sigismember(&ss, SIGQUIT))
1776 return (EINTR);
1777 }
1778 return (0);
1779 }
1780
1781 /*
1782 * Lock a socket against others.
1783 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1784 * and also to avoid race conditions between the processes with nfs requests
1785 * in progress when a reconnect is necessary.
1786 */
1787 static int
1788 nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep)
1789 {
1790 struct lwp *l;
1791 int timeo = 0;
1792 bool catch = false;
1793 int error = 0;
1794
1795 if (rep) {
1796 l = rep->r_lwp;
1797 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1798 catch = true;
1799 } else
1800 l = NULL;
1801 mutex_enter(&nmp->nm_lock);
1802 while ((nmp->nm_iflag & NFSMNT_SNDLOCK) != 0) {
1803 if (rep && nfs_sigintr(rep->r_nmp, rep, l)) {
1804 error = EINTR;
1805 goto quit;
1806 }
1807 if (catch) {
1808 cv_timedwait_sig(&nmp->nm_sndcv, &nmp->nm_lock, timeo);
1809 } else {
1810 cv_timedwait(&nmp->nm_sndcv, &nmp->nm_lock, timeo);
1811 }
1812 if (catch) {
1813 catch = false;
1814 timeo = 2 * hz;
1815 }
1816 }
1817 nmp->nm_iflag |= NFSMNT_SNDLOCK;
1818 quit:
1819 mutex_exit(&nmp->nm_lock);
1820 return error;
1821 }
1822
1823 /*
1824 * Unlock the stream socket for others.
1825 */
1826 static void
1827 nfs_sndunlock(struct nfsmount *nmp)
1828 {
1829
1830 mutex_enter(&nmp->nm_lock);
1831 if ((nmp->nm_iflag & NFSMNT_SNDLOCK) == 0)
1832 panic("nfs sndunlock");
1833 nmp->nm_iflag &= ~NFSMNT_SNDLOCK;
1834 cv_signal(&nmp->nm_sndcv);
1835 mutex_exit(&nmp->nm_lock);
1836 }
1837
1838 static int
1839 nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep)
1840 {
1841 int *flagp = &nmp->nm_iflag;
1842 int slptimeo = 0;
1843 bool catch;
1844 int error = 0;
1845
1846 KASSERT(nmp == rep->r_nmp);
1847
1848 catch = (nmp->nm_flag & NFSMNT_INT) != 0;
1849 mutex_enter(&nmp->nm_lock);
1850 while (/* CONSTCOND */ true) {
1851 if (*flagp & NFSMNT_DISMNT) {
1852 cv_signal(&nmp->nm_disconcv);
1853 error = EIO;
1854 break;
1855 }
1856 /* If our reply was received while we were sleeping,
1857 * then just return without taking the lock to avoid a
1858 * situation where a single iod could 'capture' the
1859 * receive lock.
1860 */
1861 if (rep->r_mrep != NULL) {
1862 error = EALREADY;
1863 break;
1864 }
1865 if (nfs_sigintr(rep->r_nmp, rep, rep->r_lwp)) {
1866 error = EINTR;
1867 break;
1868 }
1869 if ((*flagp & NFSMNT_RCVLOCK) == 0) {
1870 *flagp |= NFSMNT_RCVLOCK;
1871 break;
1872 }
1873 if (catch) {
1874 cv_timedwait_sig(&nmp->nm_rcvcv, &nmp->nm_lock,
1875 slptimeo);
1876 } else {
1877 cv_timedwait(&nmp->nm_rcvcv, &nmp->nm_lock,
1878 slptimeo);
1879 }
1880 if (catch) {
1881 catch = false;
1882 slptimeo = 2 * hz;
1883 }
1884 }
1885 mutex_exit(&nmp->nm_lock);
1886 return error;
1887 }
1888
1889 /*
1890 * Unlock the stream socket for others.
1891 */
1892 static void
1893 nfs_rcvunlock(struct nfsmount *nmp)
1894 {
1895
1896 mutex_enter(&nmp->nm_lock);
1897 if ((nmp->nm_iflag & NFSMNT_RCVLOCK) == 0)
1898 panic("nfs rcvunlock");
1899 nmp->nm_iflag &= ~NFSMNT_RCVLOCK;
1900 cv_broadcast(&nmp->nm_rcvcv);
1901 mutex_exit(&nmp->nm_lock);
1902 }
1903
1904 /*
1905 * Parse an RPC request
1906 * - verify it
1907 * - allocate and fill in the cred.
1908 */
1909 int
1910 nfs_getreq(nd, nfsd, has_header)
1911 struct nfsrv_descript *nd;
1912 struct nfsd *nfsd;
1913 int has_header;
1914 {
1915 int len, i;
1916 u_int32_t *tl;
1917 int32_t t1;
1918 struct uio uio;
1919 struct iovec iov;
1920 char *dpos, *cp2, *cp;
1921 u_int32_t nfsvers, auth_type;
1922 uid_t nickuid;
1923 int error = 0, ticklen;
1924 struct mbuf *mrep, *md;
1925 struct nfsuid *nuidp;
1926 struct timeval tvin, tvout;
1927
1928 memset(&tvout, 0, sizeof tvout); /* XXX gcc */
1929
1930 KASSERT(nd->nd_cr == NULL);
1931 mrep = nd->nd_mrep;
1932 md = nd->nd_md;
1933 dpos = nd->nd_dpos;
1934 if (has_header) {
1935 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1936 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1937 if (*tl++ != rpc_call) {
1938 m_freem(mrep);
1939 return (EBADRPC);
1940 }
1941 } else
1942 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1943 nd->nd_repstat = 0;
1944 nd->nd_flag = 0;
1945 if (*tl++ != rpc_vers) {
1946 nd->nd_repstat = ERPCMISMATCH;
1947 nd->nd_procnum = NFSPROC_NOOP;
1948 return (0);
1949 }
1950 if (*tl != nfs_prog) {
1951 nd->nd_repstat = EPROGUNAVAIL;
1952 nd->nd_procnum = NFSPROC_NOOP;
1953 return (0);
1954 }
1955 tl++;
1956 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1957 if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) {
1958 nd->nd_repstat = EPROGMISMATCH;
1959 nd->nd_procnum = NFSPROC_NOOP;
1960 return (0);
1961 }
1962 if (nfsvers == NFS_VER3)
1963 nd->nd_flag = ND_NFSV3;
1964 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1965 if (nd->nd_procnum == NFSPROC_NULL)
1966 return (0);
1967 if (nd->nd_procnum > NFSPROC_COMMIT ||
1968 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1969 nd->nd_repstat = EPROCUNAVAIL;
1970 nd->nd_procnum = NFSPROC_NOOP;
1971 return (0);
1972 }
1973 if ((nd->nd_flag & ND_NFSV3) == 0)
1974 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1975 auth_type = *tl++;
1976 len = fxdr_unsigned(int, *tl++);
1977 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1978 m_freem(mrep);
1979 return (EBADRPC);
1980 }
1981
1982 nd->nd_flag &= ~ND_KERBAUTH;
1983 /*
1984 * Handle auth_unix or auth_kerb.
1985 */
1986 if (auth_type == rpc_auth_unix) {
1987 uid_t uid;
1988 gid_t gid;
1989
1990 nd->nd_cr = kauth_cred_alloc();
1991 len = fxdr_unsigned(int, *++tl);
1992 if (len < 0 || len > NFS_MAXNAMLEN) {
1993 m_freem(mrep);
1994 error = EBADRPC;
1995 goto errout;
1996 }
1997 nfsm_adv(nfsm_rndup(len));
1998 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1999
2000 uid = fxdr_unsigned(uid_t, *tl++);
2001 gid = fxdr_unsigned(gid_t, *tl++);
2002 kauth_cred_setuid(nd->nd_cr, uid);
2003 kauth_cred_seteuid(nd->nd_cr, uid);
2004 kauth_cred_setsvuid(nd->nd_cr, uid);
2005 kauth_cred_setgid(nd->nd_cr, gid);
2006 kauth_cred_setegid(nd->nd_cr, gid);
2007 kauth_cred_setsvgid(nd->nd_cr, gid);
2008
2009 len = fxdr_unsigned(int, *tl);
2010 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
2011 m_freem(mrep);
2012 error = EBADRPC;
2013 goto errout;
2014 }
2015 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
2016
2017 if (len > 0) {
2018 size_t grbuf_size = min(len, NGROUPS) * sizeof(gid_t);
2019 gid_t *grbuf = kmem_alloc(grbuf_size, KM_SLEEP);
2020
2021 for (i = 0; i < len; i++) {
2022 if (i < NGROUPS) /* XXX elad */
2023 grbuf[i] = fxdr_unsigned(gid_t, *tl++);
2024 else
2025 tl++;
2026 }
2027 kauth_cred_setgroups(nd->nd_cr, grbuf,
2028 min(len, NGROUPS), -1, UIO_SYSSPACE);
2029 kmem_free(grbuf, grbuf_size);
2030 }
2031
2032 len = fxdr_unsigned(int, *++tl);
2033 if (len < 0 || len > RPCAUTH_MAXSIZ) {
2034 m_freem(mrep);
2035 error = EBADRPC;
2036 goto errout;
2037 }
2038 if (len > 0)
2039 nfsm_adv(nfsm_rndup(len));
2040 } else if (auth_type == rpc_auth_kerb) {
2041 switch (fxdr_unsigned(int, *tl++)) {
2042 case RPCAKN_FULLNAME:
2043 ticklen = fxdr_unsigned(int, *tl);
2044 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
2045 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
2046 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
2047 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
2048 m_freem(mrep);
2049 error = EBADRPC;
2050 goto errout;
2051 }
2052 uio.uio_offset = 0;
2053 uio.uio_iov = &iov;
2054 uio.uio_iovcnt = 1;
2055 UIO_SETUP_SYSSPACE(&uio);
2056 iov.iov_base = (void *)&nfsd->nfsd_authstr[4];
2057 iov.iov_len = RPCAUTH_MAXSIZ - 4;
2058 nfsm_mtouio(&uio, uio.uio_resid);
2059 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2060 if (*tl++ != rpc_auth_kerb ||
2061 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
2062 printf("Bad kerb verifier\n");
2063 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2064 nd->nd_procnum = NFSPROC_NOOP;
2065 return (0);
2066 }
2067 nfsm_dissect(cp, void *, 4 * NFSX_UNSIGNED);
2068 tl = (u_int32_t *)cp;
2069 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
2070 printf("Not fullname kerb verifier\n");
2071 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2072 nd->nd_procnum = NFSPROC_NOOP;
2073 return (0);
2074 }
2075 cp += NFSX_UNSIGNED;
2076 memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED);
2077 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
2078 nd->nd_flag |= ND_KERBFULL;
2079 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
2080 break;
2081 case RPCAKN_NICKNAME:
2082 if (len != 2 * NFSX_UNSIGNED) {
2083 printf("Kerb nickname short\n");
2084 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
2085 nd->nd_procnum = NFSPROC_NOOP;
2086 return (0);
2087 }
2088 nickuid = fxdr_unsigned(uid_t, *tl);
2089 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2090 if (*tl++ != rpc_auth_kerb ||
2091 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
2092 printf("Kerb nick verifier bad\n");
2093 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2094 nd->nd_procnum = NFSPROC_NOOP;
2095 return (0);
2096 }
2097 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2098 tvin.tv_sec = *tl++;
2099 tvin.tv_usec = *tl;
2100
2101 LIST_FOREACH(nuidp, NUIDHASH(nfsd->nfsd_slp, nickuid),
2102 nu_hash) {
2103 if (kauth_cred_geteuid(nuidp->nu_cr) == nickuid &&
2104 (!nd->nd_nam2 ||
2105 netaddr_match(NU_NETFAM(nuidp),
2106 &nuidp->nu_haddr, nd->nd_nam2)))
2107 break;
2108 }
2109 if (!nuidp) {
2110 nd->nd_repstat =
2111 (NFSERR_AUTHERR|AUTH_REJECTCRED);
2112 nd->nd_procnum = NFSPROC_NOOP;
2113 return (0);
2114 }
2115
2116 /*
2117 * Now, decrypt the timestamp using the session key
2118 * and validate it.
2119 */
2120 #ifdef NFSKERB
2121 XXX
2122 #endif
2123
2124 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
2125 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
2126 if (nuidp->nu_expire < time_second ||
2127 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
2128 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
2129 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
2130 nuidp->nu_expire = 0;
2131 nd->nd_repstat =
2132 (NFSERR_AUTHERR|AUTH_REJECTVERF);
2133 nd->nd_procnum = NFSPROC_NOOP;
2134 return (0);
2135 }
2136 kauth_cred_hold(nuidp->nu_cr);
2137 nd->nd_cr = nuidp->nu_cr;
2138 nd->nd_flag |= ND_KERBNICK;
2139 }
2140 } else {
2141 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
2142 nd->nd_procnum = NFSPROC_NOOP;
2143 return (0);
2144 }
2145
2146 nd->nd_md = md;
2147 nd->nd_dpos = dpos;
2148 KASSERT((nd->nd_cr == NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) != 0)
2149 || (nd->nd_cr != NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) == 0));
2150 return (0);
2151 nfsmout:
2152 errout:
2153 KASSERT(error != 0);
2154 if (nd->nd_cr != NULL) {
2155 kauth_cred_free(nd->nd_cr);
2156 nd->nd_cr = NULL;
2157 }
2158 return (error);
2159 }
2160
2161 int
2162 nfs_msg(l, server, msg)
2163 struct lwp *l;
2164 const char *server, *msg;
2165 {
2166 tpr_t tpr;
2167
2168 if (l)
2169 tpr = tprintf_open(l->l_proc);
2170 else
2171 tpr = NULL;
2172 tprintf(tpr, "nfs server %s: %s\n", server, msg);
2173 tprintf_close(tpr);
2174 return (0);
2175 }
2176
2177 #ifdef NFSSERVER
2178 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
2179 struct nfssvc_sock *, struct lwp *,
2180 struct mbuf **)) = {
2181 nfsrv_null,
2182 nfsrv_getattr,
2183 nfsrv_setattr,
2184 nfsrv_lookup,
2185 nfsrv3_access,
2186 nfsrv_readlink,
2187 nfsrv_read,
2188 nfsrv_write,
2189 nfsrv_create,
2190 nfsrv_mkdir,
2191 nfsrv_symlink,
2192 nfsrv_mknod,
2193 nfsrv_remove,
2194 nfsrv_rmdir,
2195 nfsrv_rename,
2196 nfsrv_link,
2197 nfsrv_readdir,
2198 nfsrv_readdirplus,
2199 nfsrv_statfs,
2200 nfsrv_fsinfo,
2201 nfsrv_pathconf,
2202 nfsrv_commit,
2203 nfsrv_noop
2204 };
2205
2206 /*
2207 * Socket upcall routine for the nfsd sockets.
2208 * The void *arg is a pointer to the "struct nfssvc_sock".
2209 */
2210 void
2211 nfsrv_soupcall(struct socket *so, void *arg, int waitflag)
2212 {
2213 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2214
2215 nfsdsock_setbits(slp, SLP_A_NEEDQ);
2216 nfsrv_wakenfsd(slp);
2217 }
2218
2219 void
2220 nfsrv_rcv(struct nfssvc_sock *slp)
2221 {
2222 struct socket *so;
2223 struct mbuf *m;
2224 struct mbuf *mp, *nam;
2225 struct uio auio;
2226 int flags;
2227 int error;
2228 int setflags = 0;
2229
2230 error = nfsdsock_lock(slp, true);
2231 if (error) {
2232 setflags |= SLP_A_NEEDQ;
2233 goto dorecs_unlocked;
2234 }
2235
2236 nfsdsock_clearbits(slp, SLP_A_NEEDQ);
2237
2238 so = slp->ns_so;
2239 if (so->so_type == SOCK_STREAM) {
2240 /*
2241 * Do soreceive().
2242 */
2243 auio.uio_resid = 1000000000;
2244 /* not need to setup uio_vmspace */
2245 flags = MSG_DONTWAIT;
2246 error = (*so->so_receive)(so, &nam, &auio, &mp, NULL, &flags);
2247 if (error || mp == NULL) {
2248 if (error == EWOULDBLOCK)
2249 setflags |= SLP_A_NEEDQ;
2250 else
2251 setflags |= SLP_A_DISCONN;
2252 goto dorecs;
2253 }
2254 m = mp;
2255 m_claimm(m, &nfs_mowner);
2256 if (slp->ns_rawend) {
2257 slp->ns_rawend->m_next = m;
2258 slp->ns_cc += 1000000000 - auio.uio_resid;
2259 } else {
2260 slp->ns_raw = m;
2261 slp->ns_cc = 1000000000 - auio.uio_resid;
2262 }
2263 while (m->m_next)
2264 m = m->m_next;
2265 slp->ns_rawend = m;
2266
2267 /*
2268 * Now try and parse record(s) out of the raw stream data.
2269 */
2270 error = nfsrv_getstream(slp, M_WAIT);
2271 if (error) {
2272 if (error == EPERM)
2273 setflags |= SLP_A_DISCONN;
2274 else
2275 setflags |= SLP_A_NEEDQ;
2276 }
2277 } else {
2278 do {
2279 auio.uio_resid = 1000000000;
2280 /* not need to setup uio_vmspace */
2281 flags = MSG_DONTWAIT;
2282 error = (*so->so_receive)(so, &nam, &auio, &mp, NULL,
2283 &flags);
2284 if (mp) {
2285 if (nam) {
2286 m = nam;
2287 m->m_next = mp;
2288 } else
2289 m = mp;
2290 m_claimm(m, &nfs_mowner);
2291 if (slp->ns_recend)
2292 slp->ns_recend->m_nextpkt = m;
2293 else
2294 slp->ns_rec = m;
2295 slp->ns_recend = m;
2296 m->m_nextpkt = (struct mbuf *)0;
2297 }
2298 if (error) {
2299 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2300 && error != EWOULDBLOCK) {
2301 setflags |= SLP_A_DISCONN;
2302 goto dorecs;
2303 }
2304 }
2305 } while (mp);
2306 }
2307 dorecs:
2308 nfsdsock_unlock(slp);
2309
2310 dorecs_unlocked:
2311 if (setflags) {
2312 nfsdsock_setbits(slp, setflags);
2313 }
2314 }
2315
2316 int
2317 nfsdsock_lock(struct nfssvc_sock *slp, bool waitok)
2318 {
2319
2320 mutex_enter(&slp->ns_lock);
2321 while ((~slp->ns_flags & (SLP_BUSY|SLP_VALID)) == 0) {
2322 if (!waitok) {
2323 mutex_exit(&slp->ns_lock);
2324 return EWOULDBLOCK;
2325 }
2326 cv_wait(&slp->ns_cv, &slp->ns_lock);
2327 }
2328 if ((slp->ns_flags & SLP_VALID) == 0) {
2329 mutex_exit(&slp->ns_lock);
2330 return EINVAL;
2331 }
2332 KASSERT((slp->ns_flags & SLP_BUSY) == 0);
2333 slp->ns_flags |= SLP_BUSY;
2334 mutex_exit(&slp->ns_lock);
2335
2336 return 0;
2337 }
2338
2339 void
2340 nfsdsock_unlock(struct nfssvc_sock *slp)
2341 {
2342
2343 mutex_enter(&slp->ns_lock);
2344 KASSERT((slp->ns_flags & SLP_BUSY) != 0);
2345 cv_broadcast(&slp->ns_cv);
2346 slp->ns_flags &= ~SLP_BUSY;
2347 mutex_exit(&slp->ns_lock);
2348 }
2349
2350 int
2351 nfsdsock_drain(struct nfssvc_sock *slp)
2352 {
2353 int error = 0;
2354
2355 mutex_enter(&slp->ns_lock);
2356 if ((slp->ns_flags & SLP_VALID) == 0) {
2357 error = EINVAL;
2358 goto done;
2359 }
2360 slp->ns_flags &= ~SLP_VALID;
2361 while ((slp->ns_flags & SLP_BUSY) != 0) {
2362 cv_wait(&slp->ns_cv, &slp->ns_lock);
2363 }
2364 done:
2365 mutex_exit(&slp->ns_lock);
2366
2367 return error;
2368 }
2369
2370 /*
2371 * Try and extract an RPC request from the mbuf data list received on a
2372 * stream socket. The "waitflag" argument indicates whether or not it
2373 * can sleep.
2374 */
2375 int
2376 nfsrv_getstream(slp, waitflag)
2377 struct nfssvc_sock *slp;
2378 int waitflag;
2379 {
2380 struct mbuf *m, **mpp;
2381 struct mbuf *recm;
2382 u_int32_t recmark;
2383 int error = 0;
2384
2385 KASSERT((slp->ns_flags & SLP_BUSY) != 0);
2386 for (;;) {
2387 if (slp->ns_reclen == 0) {
2388 if (slp->ns_cc < NFSX_UNSIGNED) {
2389 break;
2390 }
2391 m = slp->ns_raw;
2392 m_copydata(m, 0, NFSX_UNSIGNED, (void *)&recmark);
2393 m_adj(m, NFSX_UNSIGNED);
2394 slp->ns_cc -= NFSX_UNSIGNED;
2395 recmark = ntohl(recmark);
2396 slp->ns_reclen = recmark & ~0x80000000;
2397 if (recmark & 0x80000000)
2398 slp->ns_sflags |= SLP_S_LASTFRAG;
2399 else
2400 slp->ns_sflags &= ~SLP_S_LASTFRAG;
2401 if (slp->ns_reclen > NFS_MAXPACKET) {
2402 error = EPERM;
2403 break;
2404 }
2405 }
2406
2407 /*
2408 * Now get the record part.
2409 *
2410 * Note that slp->ns_reclen may be 0. Linux sometimes
2411 * generates 0-length records.
2412 */
2413 if (slp->ns_cc == slp->ns_reclen) {
2414 recm = slp->ns_raw;
2415 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
2416 slp->ns_cc = slp->ns_reclen = 0;
2417 } else if (slp->ns_cc > slp->ns_reclen) {
2418 recm = slp->ns_raw;
2419 m = m_split(recm, slp->ns_reclen, waitflag);
2420 if (m == NULL) {
2421 error = EWOULDBLOCK;
2422 break;
2423 }
2424 m_claimm(recm, &nfs_mowner);
2425 slp->ns_raw = m;
2426 if (m->m_next == NULL)
2427 slp->ns_rawend = m;
2428 slp->ns_cc -= slp->ns_reclen;
2429 slp->ns_reclen = 0;
2430 } else {
2431 break;
2432 }
2433
2434 /*
2435 * Accumulate the fragments into a record.
2436 */
2437 mpp = &slp->ns_frag;
2438 while (*mpp)
2439 mpp = &((*mpp)->m_next);
2440 *mpp = recm;
2441 if (slp->ns_sflags & SLP_S_LASTFRAG) {
2442 if (slp->ns_recend)
2443 slp->ns_recend->m_nextpkt = slp->ns_frag;
2444 else
2445 slp->ns_rec = slp->ns_frag;
2446 slp->ns_recend = slp->ns_frag;
2447 slp->ns_frag = NULL;
2448 }
2449 }
2450
2451 return error;
2452 }
2453
2454 /*
2455 * Parse an RPC header.
2456 */
2457 int
2458 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
2459 struct nfsrv_descript **ndp, bool *more)
2460 {
2461 struct mbuf *m, *nam;
2462 struct nfsrv_descript *nd;
2463 int error;
2464
2465 *ndp = NULL;
2466 *more = false;
2467
2468 if (nfsdsock_lock(slp, true)) {
2469 return ENOBUFS;
2470 }
2471 m = slp->ns_rec;
2472 if (m == NULL) {
2473 nfsdsock_unlock(slp);
2474 return ENOBUFS;
2475 }
2476 slp->ns_rec = m->m_nextpkt;
2477 if (slp->ns_rec) {
2478 m->m_nextpkt = NULL;
2479 *more = true;
2480 } else {
2481 slp->ns_recend = NULL;
2482 }
2483 nfsdsock_unlock(slp);
2484
2485 if (m->m_type == MT_SONAME) {
2486 nam = m;
2487 m = m->m_next;
2488 nam->m_next = NULL;
2489 } else
2490 nam = NULL;
2491 nd = nfsdreq_alloc();
2492 nd->nd_md = nd->nd_mrep = m;
2493 nd->nd_nam2 = nam;
2494 nd->nd_dpos = mtod(m, void *);
2495 error = nfs_getreq(nd, nfsd, true);
2496 if (error) {
2497 m_freem(nam);
2498 nfsdreq_free(nd);
2499 return (error);
2500 }
2501 *ndp = nd;
2502 nfsd->nfsd_nd = nd;
2503 return (0);
2504 }
2505
2506 /*
2507 * Search for a sleeping nfsd and wake it up.
2508 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2509 * running nfsds will go look for the work in the nfssvc_sock list.
2510 */
2511 static void
2512 nfsrv_wakenfsd_locked(struct nfssvc_sock *slp)
2513 {
2514 struct nfsd *nd;
2515
2516 KASSERT(mutex_owned(&nfsd_lock));
2517
2518 if ((slp->ns_flags & SLP_VALID) == 0)
2519 return;
2520 if (slp->ns_gflags & SLP_G_DOREC)
2521 return;
2522 nd = SLIST_FIRST(&nfsd_idle_head);
2523 if (nd) {
2524 SLIST_REMOVE_HEAD(&nfsd_idle_head, nfsd_idle);
2525 if (nd->nfsd_slp)
2526 panic("nfsd wakeup");
2527 slp->ns_sref++;
2528 KASSERT(slp->ns_sref > 0);
2529 nd->nfsd_slp = slp;
2530 cv_signal(&nd->nfsd_cv);
2531 } else {
2532 slp->ns_gflags |= SLP_G_DOREC;
2533 nfsd_head_flag |= NFSD_CHECKSLP;
2534 TAILQ_INSERT_TAIL(&nfssvc_sockpending, slp, ns_pending);
2535 }
2536 }
2537
2538 void
2539 nfsrv_wakenfsd(struct nfssvc_sock *slp)
2540 {
2541
2542 mutex_enter(&nfsd_lock);
2543 nfsrv_wakenfsd_locked(slp);
2544 mutex_exit(&nfsd_lock);
2545 }
2546
2547 int
2548 nfsdsock_sendreply(struct nfssvc_sock *slp, struct nfsrv_descript *nd)
2549 {
2550 int error;
2551
2552 if (nd->nd_mrep != NULL) {
2553 m_freem(nd->nd_mrep);
2554 nd->nd_mrep = NULL;
2555 }
2556
2557 mutex_enter(&slp->ns_lock);
2558 if ((slp->ns_flags & SLP_SENDING) != 0) {
2559 SIMPLEQ_INSERT_TAIL(&slp->ns_sendq, nd, nd_sendq);
2560 mutex_exit(&slp->ns_lock);
2561 return 0;
2562 }
2563 KASSERT(SIMPLEQ_EMPTY(&slp->ns_sendq));
2564 slp->ns_flags |= SLP_SENDING;
2565 mutex_exit(&slp->ns_lock);
2566
2567 again:
2568 error = nfs_send(slp->ns_so, nd->nd_nam2, nd->nd_mreq, NULL, curlwp);
2569 if (nd->nd_nam2) {
2570 m_free(nd->nd_nam2);
2571 }
2572 nfsdreq_free(nd);
2573
2574 mutex_enter(&slp->ns_lock);
2575 KASSERT((slp->ns_flags & SLP_SENDING) != 0);
2576 nd = SIMPLEQ_FIRST(&slp->ns_sendq);
2577 if (nd != NULL) {
2578 SIMPLEQ_REMOVE_HEAD(&slp->ns_sendq, nd_sendq);
2579 mutex_exit(&slp->ns_lock);
2580 goto again;
2581 }
2582 slp->ns_flags &= ~SLP_SENDING;
2583 mutex_exit(&slp->ns_lock);
2584
2585 return error;
2586 }
2587
2588 void
2589 nfsdsock_setbits(struct nfssvc_sock *slp, int bits)
2590 {
2591
2592 mutex_enter(&slp->ns_alock);
2593 slp->ns_aflags |= bits;
2594 mutex_exit(&slp->ns_alock);
2595 }
2596
2597 void
2598 nfsdsock_clearbits(struct nfssvc_sock *slp, int bits)
2599 {
2600
2601 mutex_enter(&slp->ns_alock);
2602 slp->ns_aflags &= ~bits;
2603 mutex_exit(&slp->ns_alock);
2604 }
2605
2606 bool
2607 nfsdsock_testbits(struct nfssvc_sock *slp, int bits)
2608 {
2609
2610 return (slp->ns_aflags & bits);
2611 }
2612 #endif /* NFSSERVER */
2613
2614 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
2615 static struct pool nfs_srvdesc_pool;
2616
2617 void
2618 nfsdreq_init(void)
2619 {
2620
2621 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
2622 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr, IPL_NONE);
2623 }
2624
2625 struct nfsrv_descript *
2626 nfsdreq_alloc(void)
2627 {
2628 struct nfsrv_descript *nd;
2629
2630 nd = pool_get(&nfs_srvdesc_pool, PR_WAITOK);
2631 nd->nd_cr = NULL;
2632 return nd;
2633 }
2634
2635 void
2636 nfsdreq_free(struct nfsrv_descript *nd)
2637 {
2638 kauth_cred_t cr;
2639
2640 cr = nd->nd_cr;
2641 if (cr != NULL) {
2642 kauth_cred_free(cr);
2643 }
2644 pool_put(&nfs_srvdesc_pool, nd);
2645 }
2646 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
2647