nfs_socket.c revision 1.172 1 /* $NetBSD: nfs_socket.c,v 1.172 2008/09/30 14:25:15 pooka Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1991, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
35 */
36
37 /*
38 * Socket operations for use by nfs
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.172 2008/09/30 14:25:15 pooka Exp $");
43
44 #include "fs_nfs.h"
45 #include "opt_nfs.h"
46 #include "opt_nfsserver.h"
47 #include "opt_mbuftrace.h"
48 #include "opt_inet.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/evcnt.h>
53 #include <sys/callout.h>
54 #include <sys/proc.h>
55 #include <sys/mount.h>
56 #include <sys/kernel.h>
57 #include <sys/kmem.h>
58 #include <sys/mbuf.h>
59 #include <sys/vnode.h>
60 #include <sys/domain.h>
61 #include <sys/protosw.h>
62 #include <sys/socket.h>
63 #include <sys/socketvar.h>
64 #include <sys/syslog.h>
65 #include <sys/tprintf.h>
66 #include <sys/namei.h>
67 #include <sys/signal.h>
68 #include <sys/signalvar.h>
69 #include <sys/kauth.h>
70
71 #include <netinet/in.h>
72 #include <netinet/tcp.h>
73
74 #include <nfs/rpcv2.h>
75 #include <nfs/nfsproto.h>
76 #include <nfs/nfs.h>
77 #include <nfs/xdr_subs.h>
78 #include <nfs/nfsm_subs.h>
79 #include <nfs/nfsmount.h>
80 #include <nfs/nfsnode.h>
81 #include <nfs/nfsrtt.h>
82 #include <nfs/nfs_var.h>
83
84 #ifdef MBUFTRACE
85 struct mowner nfs_mowner = MOWNER_INIT("nfs","");
86 #endif
87
88 /*
89 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
90 * Use the mean and mean deviation of rtt for the appropriate type of rpc
91 * for the frequent rpcs and a default for the others.
92 * The justification for doing "other" this way is that these rpcs
93 * happen so infrequently that timer est. would probably be stale.
94 * Also, since many of these rpcs are
95 * non-idempotent, a conservative timeout is desired.
96 * getattr, lookup - A+2D
97 * read, write - A+4D
98 * other - nm_timeo
99 */
100 #define NFS_RTO(n, t) \
101 ((t) == 0 ? (n)->nm_timeo : \
102 ((t) < 3 ? \
103 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
104 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
105 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
106 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
107 /*
108 * External data, mostly RPC constants in XDR form
109 */
110 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
111 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
112 rpc_auth_kerb;
113 extern u_int32_t nfs_prog;
114 extern const int nfsv3_procid[NFS_NPROCS];
115 extern int nfs_ticks;
116
117 /*
118 * Defines which timer to use for the procnum.
119 * 0 - default
120 * 1 - getattr
121 * 2 - lookup
122 * 3 - read
123 * 4 - write
124 */
125 static const int proct[NFS_NPROCS] = {
126 [NFSPROC_NULL] = 0,
127 [NFSPROC_GETATTR] = 1,
128 [NFSPROC_SETATTR] = 0,
129 [NFSPROC_LOOKUP] = 2,
130 [NFSPROC_ACCESS] = 1,
131 [NFSPROC_READLINK] = 3,
132 [NFSPROC_READ] = 3,
133 [NFSPROC_WRITE] = 4,
134 [NFSPROC_CREATE] = 0,
135 [NFSPROC_MKDIR] = 0,
136 [NFSPROC_SYMLINK] = 0,
137 [NFSPROC_MKNOD] = 0,
138 [NFSPROC_REMOVE] = 0,
139 [NFSPROC_RMDIR] = 0,
140 [NFSPROC_RENAME] = 0,
141 [NFSPROC_LINK] = 0,
142 [NFSPROC_READDIR] = 3,
143 [NFSPROC_READDIRPLUS] = 3,
144 [NFSPROC_FSSTAT] = 0,
145 [NFSPROC_FSINFO] = 0,
146 [NFSPROC_PATHCONF] = 0,
147 [NFSPROC_COMMIT] = 0,
148 [NFSPROC_NOOP] = 0,
149 };
150
151 /*
152 * There is a congestion window for outstanding rpcs maintained per mount
153 * point. The cwnd size is adjusted in roughly the way that:
154 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
155 * SIGCOMM '88". ACM, August 1988.
156 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
157 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
158 * of rpcs is in progress.
159 * (The sent count and cwnd are scaled for integer arith.)
160 * Variants of "slow start" were tried and were found to be too much of a
161 * performance hit (ave. rtt 3 times larger),
162 * I suspect due to the large rtt that nfs rpcs have.
163 */
164 #define NFS_CWNDSCALE 256
165 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
166 static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
167 int nfsrtton = 0;
168 struct nfsrtt nfsrtt;
169 struct nfsreqhead nfs_reqq;
170 static callout_t nfs_timer_ch;
171 static struct evcnt nfs_timer_ev;
172 static struct evcnt nfs_timer_start_ev;
173 static struct evcnt nfs_timer_stop_ev;
174
175 #ifdef NFS
176 static int nfs_sndlock(struct nfsmount *, struct nfsreq *);
177 static void nfs_sndunlock(struct nfsmount *);
178 #endif
179 static int nfs_rcvlock(struct nfsmount *, struct nfsreq *);
180 static void nfs_rcvunlock(struct nfsmount *);
181
182 #if defined(NFSSERVER)
183 static void nfsrv_wakenfsd_locked(struct nfssvc_sock *);
184 #endif /* defined(NFSSERVER) */
185
186 /*
187 * Initialize sockets and congestion for a new NFS connection.
188 * We do not free the sockaddr if error.
189 */
190 int
191 nfs_connect(nmp, rep, l)
192 struct nfsmount *nmp;
193 struct nfsreq *rep;
194 struct lwp *l;
195 {
196 struct socket *so;
197 int error, rcvreserve, sndreserve;
198 struct sockaddr *saddr;
199 struct sockaddr_in *sin;
200 #ifdef INET6
201 struct sockaddr_in6 *sin6;
202 #endif
203 struct mbuf *m;
204 int val;
205
206 nmp->nm_so = (struct socket *)0;
207 saddr = mtod(nmp->nm_nam, struct sockaddr *);
208 error = socreate(saddr->sa_family, &nmp->nm_so,
209 nmp->nm_sotype, nmp->nm_soproto, l, NULL);
210 if (error)
211 goto bad;
212 so = nmp->nm_so;
213 #ifdef MBUFTRACE
214 so->so_mowner = &nfs_mowner;
215 so->so_rcv.sb_mowner = &nfs_mowner;
216 so->so_snd.sb_mowner = &nfs_mowner;
217 #endif
218 nmp->nm_soflags = so->so_proto->pr_flags;
219
220 /*
221 * Some servers require that the client port be a reserved port number.
222 */
223 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
224 val = IP_PORTRANGE_LOW;
225
226 if ((error = so_setsockopt(NULL, so, IPPROTO_IP, IP_PORTRANGE,
227 &val, sizeof(val))))
228 goto bad;
229 m = m_get(M_WAIT, MT_SONAME);
230 MCLAIM(m, so->so_mowner);
231 sin = mtod(m, struct sockaddr_in *);
232 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
233 sin->sin_family = AF_INET;
234 sin->sin_addr.s_addr = INADDR_ANY;
235 sin->sin_port = 0;
236 error = sobind(so, m, &lwp0);
237 m_freem(m);
238 if (error)
239 goto bad;
240 }
241 #ifdef INET6
242 if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) {
243 val = IPV6_PORTRANGE_LOW;
244
245 if ((error = so_setsockopt(NULL, so, IPPROTO_IPV6,
246 IPV6_PORTRANGE, &val, sizeof(val))))
247 goto bad;
248 m = m_get(M_WAIT, MT_SONAME);
249 MCLAIM(m, so->so_mowner);
250 sin6 = mtod(m, struct sockaddr_in6 *);
251 sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6);
252 sin6->sin6_family = AF_INET6;
253 sin6->sin6_addr = in6addr_any;
254 sin6->sin6_port = 0;
255 error = sobind(so, m, &lwp0);
256 m_freem(m);
257 if (error)
258 goto bad;
259 }
260 #endif
261
262 /*
263 * Protocols that do not require connections may be optionally left
264 * unconnected for servers that reply from a port other than NFS_PORT.
265 */
266 solock(so);
267 if (nmp->nm_flag & NFSMNT_NOCONN) {
268 if (nmp->nm_soflags & PR_CONNREQUIRED) {
269 sounlock(so);
270 error = ENOTCONN;
271 goto bad;
272 }
273 } else {
274 error = soconnect(so, nmp->nm_nam, l);
275 if (error) {
276 sounlock(so);
277 goto bad;
278 }
279
280 /*
281 * Wait for the connection to complete. Cribbed from the
282 * connect system call but with the wait timing out so
283 * that interruptible mounts don't hang here for a long time.
284 */
285 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
286 (void)sowait(so, 2 * hz);
287 if ((so->so_state & SS_ISCONNECTING) &&
288 so->so_error == 0 && rep &&
289 (error = nfs_sigintr(nmp, rep, rep->r_lwp)) != 0){
290 so->so_state &= ~SS_ISCONNECTING;
291 sounlock(so);
292 goto bad;
293 }
294 }
295 if (so->so_error) {
296 error = so->so_error;
297 so->so_error = 0;
298 sounlock(so);
299 goto bad;
300 }
301 }
302 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
303 so->so_rcv.sb_timeo = (5 * hz);
304 so->so_snd.sb_timeo = (5 * hz);
305 } else {
306 /*
307 * enable receive timeout to detect server crash and reconnect.
308 * otherwise, we can be stuck in soreceive forever.
309 */
310 so->so_rcv.sb_timeo = (5 * hz);
311 so->so_snd.sb_timeo = 0;
312 }
313 if (nmp->nm_sotype == SOCK_DGRAM) {
314 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
315 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
316 NFS_MAXPKTHDR) * 2;
317 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
318 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
319 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
320 NFS_MAXPKTHDR) * 2;
321 } else {
322 sounlock(so);
323 if (nmp->nm_sotype != SOCK_STREAM)
324 panic("nfscon sotype");
325 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
326 val = 1;
327 so_setsockopt(NULL, so, SOL_SOCKET, SO_KEEPALIVE, &val,
328 sizeof(val));
329 }
330 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
331 val = 1;
332 so_setsockopt(NULL, so, IPPROTO_TCP, TCP_NODELAY, &val,
333 sizeof(val));
334 }
335 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
336 sizeof (u_int32_t)) * 2;
337 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
338 sizeof (u_int32_t)) * 2;
339 solock(so);
340 }
341 error = soreserve(so, sndreserve, rcvreserve);
342 if (error) {
343 sounlock(so);
344 goto bad;
345 }
346 so->so_rcv.sb_flags |= SB_NOINTR;
347 so->so_snd.sb_flags |= SB_NOINTR;
348 sounlock(so);
349
350 /* Initialize other non-zero congestion variables */
351 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
352 NFS_TIMEO << 3;
353 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
354 nmp->nm_sdrtt[3] = 0;
355 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
356 nmp->nm_sent = 0;
357 nmp->nm_timeouts = 0;
358 return (0);
359
360 bad:
361 nfs_disconnect(nmp);
362 return (error);
363 }
364
365 /*
366 * Reconnect routine:
367 * Called when a connection is broken on a reliable protocol.
368 * - clean up the old socket
369 * - nfs_connect() again
370 * - set R_MUSTRESEND for all outstanding requests on mount point
371 * If this fails the mount point is DEAD!
372 * nb: Must be called with the nfs_sndlock() set on the mount point.
373 */
374 int
375 nfs_reconnect(struct nfsreq *rep)
376 {
377 struct nfsreq *rp;
378 struct nfsmount *nmp = rep->r_nmp;
379 int error;
380
381 nfs_disconnect(nmp);
382 while ((error = nfs_connect(nmp, rep, &lwp0)) != 0) {
383 if (error == EINTR || error == ERESTART)
384 return (EINTR);
385 kpause("nfscn2", false, hz, NULL);
386 }
387
388 /*
389 * Loop through outstanding request list and fix up all requests
390 * on old socket.
391 */
392 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) {
393 if (rp->r_nmp == nmp) {
394 if ((rp->r_flags & R_MUSTRESEND) == 0)
395 rp->r_flags |= R_MUSTRESEND | R_REXMITTED;
396 rp->r_rexmit = 0;
397 }
398 }
399 return (0);
400 }
401
402 /*
403 * NFS disconnect. Clean up and unlink.
404 */
405 void
406 nfs_disconnect(nmp)
407 struct nfsmount *nmp;
408 {
409 struct socket *so;
410 int drain = 0;
411
412 if (nmp->nm_so) {
413 so = nmp->nm_so;
414 nmp->nm_so = (struct socket *)0;
415 solock(so);
416 soshutdown(so, SHUT_RDWR);
417 sounlock(so);
418 drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0;
419 if (drain) {
420 /*
421 * soshutdown() above should wake up the current
422 * listener.
423 * Now wake up those waiting for the receive lock, and
424 * wait for them to go away unhappy, to prevent *nmp
425 * from evaporating while they're sleeping.
426 */
427 mutex_enter(&nmp->nm_lock);
428 while (nmp->nm_waiters > 0) {
429 cv_broadcast(&nmp->nm_rcvcv);
430 cv_broadcast(&nmp->nm_sndcv);
431 cv_wait(&nmp->nm_disconcv, &nmp->nm_lock);
432 }
433 mutex_exit(&nmp->nm_lock);
434 }
435 soclose(so);
436 }
437 #ifdef DIAGNOSTIC
438 if (drain && (nmp->nm_waiters > 0))
439 panic("nfs_disconnect: waiters left after drain?");
440 #endif
441 }
442
443 void
444 nfs_safedisconnect(nmp)
445 struct nfsmount *nmp;
446 {
447 struct nfsreq dummyreq;
448
449 memset(&dummyreq, 0, sizeof(dummyreq));
450 dummyreq.r_nmp = nmp;
451 nfs_rcvlock(nmp, &dummyreq); /* XXX ignored error return */
452 nfs_disconnect(nmp);
453 nfs_rcvunlock(nmp);
454 }
455
456 /*
457 * This is the nfs send routine. For connection based socket types, it
458 * must be called with an nfs_sndlock() on the socket.
459 * "rep == NULL" indicates that it has been called from a server.
460 * For the client side:
461 * - return EINTR if the RPC is terminated, 0 otherwise
462 * - set R_MUSTRESEND if the send fails for any reason
463 * - do any cleanup required by recoverable socket errors (? ? ?)
464 * For the server side:
465 * - return EINTR or ERESTART if interrupted by a signal
466 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
467 * - do any cleanup required by recoverable socket errors (? ? ?)
468 */
469 int
470 nfs_send(so, nam, top, rep, l)
471 struct socket *so;
472 struct mbuf *nam;
473 struct mbuf *top;
474 struct nfsreq *rep;
475 struct lwp *l;
476 {
477 struct mbuf *sendnam;
478 int error, soflags, flags;
479
480 /* XXX nfs_doio()/nfs_request() calls with rep->r_lwp == NULL */
481 if (l == NULL && rep->r_lwp == NULL)
482 l = curlwp;
483
484 if (rep) {
485 if (rep->r_flags & R_SOFTTERM) {
486 m_freem(top);
487 return (EINTR);
488 }
489 if ((so = rep->r_nmp->nm_so) == NULL) {
490 rep->r_flags |= R_MUSTRESEND;
491 m_freem(top);
492 return (0);
493 }
494 rep->r_flags &= ~R_MUSTRESEND;
495 soflags = rep->r_nmp->nm_soflags;
496 } else
497 soflags = so->so_proto->pr_flags;
498 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
499 sendnam = (struct mbuf *)0;
500 else
501 sendnam = nam;
502 if (so->so_type == SOCK_SEQPACKET)
503 flags = MSG_EOR;
504 else
505 flags = 0;
506
507 error = (*so->so_send)(so, sendnam, NULL, top, NULL, flags, l);
508 if (error) {
509 if (rep) {
510 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
511 /*
512 * We're too fast for the network/driver,
513 * and UDP isn't flowcontrolled.
514 * We need to resend. This is not fatal,
515 * just try again.
516 *
517 * Could be smarter here by doing some sort
518 * of a backoff, but this is rare.
519 */
520 rep->r_flags |= R_MUSTRESEND;
521 } else {
522 if (error != EPIPE)
523 log(LOG_INFO,
524 "nfs send error %d for %s\n",
525 error,
526 rep->r_nmp->nm_mountp->
527 mnt_stat.f_mntfromname);
528 /*
529 * Deal with errors for the client side.
530 */
531 if (rep->r_flags & R_SOFTTERM)
532 error = EINTR;
533 else
534 rep->r_flags |= R_MUSTRESEND;
535 }
536 } else {
537 /*
538 * See above. This error can happen under normal
539 * circumstances and the log is too noisy.
540 * The error will still show up in nfsstat.
541 */
542 if (error != ENOBUFS || so->so_type != SOCK_DGRAM)
543 log(LOG_INFO, "nfsd send error %d\n", error);
544 }
545
546 /*
547 * Handle any recoverable (soft) socket errors here. (? ? ?)
548 */
549 if (error != EINTR && error != ERESTART &&
550 error != EWOULDBLOCK && error != EPIPE)
551 error = 0;
552 }
553 return (error);
554 }
555
556 #ifdef NFS
557 /*
558 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
559 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
560 * Mark and consolidate the data into a new mbuf list.
561 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
562 * small mbufs.
563 * For SOCK_STREAM we must be very careful to read an entire record once
564 * we have read any of it, even if the system call has been interrupted.
565 */
566 static int
567 nfs_receive(struct nfsreq *rep, struct mbuf **aname, struct mbuf **mp,
568 struct lwp *l)
569 {
570 struct socket *so;
571 struct uio auio;
572 struct iovec aio;
573 struct mbuf *m;
574 struct mbuf *control;
575 u_int32_t len;
576 struct mbuf **getnam;
577 int error, sotype, rcvflg;
578
579 /*
580 * Set up arguments for soreceive()
581 */
582 *mp = (struct mbuf *)0;
583 *aname = (struct mbuf *)0;
584 sotype = rep->r_nmp->nm_sotype;
585
586 /*
587 * For reliable protocols, lock against other senders/receivers
588 * in case a reconnect is necessary.
589 * For SOCK_STREAM, first get the Record Mark to find out how much
590 * more there is to get.
591 * We must lock the socket against other receivers
592 * until we have an entire rpc request/reply.
593 */
594 if (sotype != SOCK_DGRAM) {
595 error = nfs_sndlock(rep->r_nmp, rep);
596 if (error)
597 return (error);
598 tryagain:
599 /*
600 * Check for fatal errors and resending request.
601 */
602 /*
603 * Ugh: If a reconnect attempt just happened, nm_so
604 * would have changed. NULL indicates a failed
605 * attempt that has essentially shut down this
606 * mount point.
607 */
608 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
609 nfs_sndunlock(rep->r_nmp);
610 return (EINTR);
611 }
612 so = rep->r_nmp->nm_so;
613 if (!so) {
614 error = nfs_reconnect(rep);
615 if (error) {
616 nfs_sndunlock(rep->r_nmp);
617 return (error);
618 }
619 goto tryagain;
620 }
621 while (rep->r_flags & R_MUSTRESEND) {
622 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
623 nfsstats.rpcretries++;
624 rep->r_rtt = 0;
625 rep->r_flags &= ~R_TIMING;
626 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep, l);
627 if (error) {
628 if (error == EINTR || error == ERESTART ||
629 (error = nfs_reconnect(rep)) != 0) {
630 nfs_sndunlock(rep->r_nmp);
631 return (error);
632 }
633 goto tryagain;
634 }
635 }
636 nfs_sndunlock(rep->r_nmp);
637 if (sotype == SOCK_STREAM) {
638 aio.iov_base = (void *) &len;
639 aio.iov_len = sizeof(u_int32_t);
640 auio.uio_iov = &aio;
641 auio.uio_iovcnt = 1;
642 auio.uio_rw = UIO_READ;
643 auio.uio_offset = 0;
644 auio.uio_resid = sizeof(u_int32_t);
645 UIO_SETUP_SYSSPACE(&auio);
646 do {
647 rcvflg = MSG_WAITALL;
648 error = (*so->so_receive)(so, (struct mbuf **)0, &auio,
649 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
650 if (error == EWOULDBLOCK && rep) {
651 if (rep->r_flags & R_SOFTTERM)
652 return (EINTR);
653 /*
654 * if it seems that the server died after it
655 * received our request, set EPIPE so that
656 * we'll reconnect and retransmit requests.
657 */
658 if (rep->r_rexmit >= rep->r_nmp->nm_retry) {
659 nfsstats.rpctimeouts++;
660 error = EPIPE;
661 }
662 }
663 } while (error == EWOULDBLOCK);
664 if (!error && auio.uio_resid > 0) {
665 /*
666 * Don't log a 0 byte receive; it means
667 * that the socket has been closed, and
668 * can happen during normal operation
669 * (forcible unmount or Solaris server).
670 */
671 if (auio.uio_resid != sizeof (u_int32_t))
672 log(LOG_INFO,
673 "short receive (%lu/%lu) from nfs server %s\n",
674 (u_long)sizeof(u_int32_t) - auio.uio_resid,
675 (u_long)sizeof(u_int32_t),
676 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
677 error = EPIPE;
678 }
679 if (error)
680 goto errout;
681 len = ntohl(len) & ~0x80000000;
682 /*
683 * This is SERIOUS! We are out of sync with the sender
684 * and forcing a disconnect/reconnect is all I can do.
685 */
686 if (len > NFS_MAXPACKET) {
687 log(LOG_ERR, "%s (%d) from nfs server %s\n",
688 "impossible packet length",
689 len,
690 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
691 error = EFBIG;
692 goto errout;
693 }
694 auio.uio_resid = len;
695 do {
696 rcvflg = MSG_WAITALL;
697 error = (*so->so_receive)(so, (struct mbuf **)0,
698 &auio, mp, (struct mbuf **)0, &rcvflg);
699 } while (error == EWOULDBLOCK || error == EINTR ||
700 error == ERESTART);
701 if (!error && auio.uio_resid > 0) {
702 if (len != auio.uio_resid)
703 log(LOG_INFO,
704 "short receive (%lu/%d) from nfs server %s\n",
705 (u_long)len - auio.uio_resid, len,
706 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
707 error = EPIPE;
708 }
709 } else {
710 /*
711 * NB: Since uio_resid is big, MSG_WAITALL is ignored
712 * and soreceive() will return when it has either a
713 * control msg or a data msg.
714 * We have no use for control msg., but must grab them
715 * and then throw them away so we know what is going
716 * on.
717 */
718 auio.uio_resid = len = 100000000; /* Anything Big */
719 /* not need to setup uio_vmspace */
720 do {
721 rcvflg = 0;
722 error = (*so->so_receive)(so, (struct mbuf **)0,
723 &auio, mp, &control, &rcvflg);
724 if (control)
725 m_freem(control);
726 if (error == EWOULDBLOCK && rep) {
727 if (rep->r_flags & R_SOFTTERM)
728 return (EINTR);
729 }
730 } while (error == EWOULDBLOCK ||
731 (!error && *mp == NULL && control));
732 if ((rcvflg & MSG_EOR) == 0)
733 printf("Egad!!\n");
734 if (!error && *mp == NULL)
735 error = EPIPE;
736 len -= auio.uio_resid;
737 }
738 errout:
739 if (error && error != EINTR && error != ERESTART) {
740 m_freem(*mp);
741 *mp = (struct mbuf *)0;
742 if (error != EPIPE)
743 log(LOG_INFO,
744 "receive error %d from nfs server %s\n",
745 error,
746 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
747 error = nfs_sndlock(rep->r_nmp, rep);
748 if (!error)
749 error = nfs_reconnect(rep);
750 if (!error)
751 goto tryagain;
752 else
753 nfs_sndunlock(rep->r_nmp);
754 }
755 } else {
756 if ((so = rep->r_nmp->nm_so) == NULL)
757 return (EACCES);
758 if (so->so_state & SS_ISCONNECTED)
759 getnam = (struct mbuf **)0;
760 else
761 getnam = aname;
762 auio.uio_resid = len = 1000000;
763 /* not need to setup uio_vmspace */
764 do {
765 rcvflg = 0;
766 error = (*so->so_receive)(so, getnam, &auio, mp,
767 (struct mbuf **)0, &rcvflg);
768 if (error == EWOULDBLOCK &&
769 (rep->r_flags & R_SOFTTERM))
770 return (EINTR);
771 } while (error == EWOULDBLOCK);
772 len -= auio.uio_resid;
773 if (!error && *mp == NULL)
774 error = EPIPE;
775 }
776 if (error) {
777 m_freem(*mp);
778 *mp = (struct mbuf *)0;
779 }
780 return (error);
781 }
782
783 /*
784 * Implement receipt of reply on a socket.
785 * We must search through the list of received datagrams matching them
786 * with outstanding requests using the xid, until ours is found.
787 */
788 /* ARGSUSED */
789 static int
790 nfs_reply(struct nfsreq *myrep, struct lwp *lwp)
791 {
792 struct nfsreq *rep;
793 struct nfsmount *nmp = myrep->r_nmp;
794 int32_t t1;
795 struct mbuf *mrep, *nam, *md;
796 u_int32_t rxid, *tl;
797 char *dpos, *cp2;
798 int error;
799
800 /*
801 * Loop around until we get our own reply
802 */
803 for (;;) {
804 /*
805 * Lock against other receivers so that I don't get stuck in
806 * sbwait() after someone else has received my reply for me.
807 * Also necessary for connection based protocols to avoid
808 * race conditions during a reconnect.
809 */
810 error = nfs_rcvlock(nmp, myrep);
811 if (error == EALREADY)
812 return (0);
813 if (error)
814 return (error);
815 /*
816 * Get the next Rpc reply off the socket
817 */
818
819 mutex_enter(&nmp->nm_lock);
820 nmp->nm_waiters++;
821 mutex_exit(&nmp->nm_lock);
822
823 error = nfs_receive(myrep, &nam, &mrep, lwp);
824
825 mutex_enter(&nmp->nm_lock);
826 nmp->nm_waiters--;
827 cv_signal(&nmp->nm_disconcv);
828 mutex_exit(&nmp->nm_lock);
829
830 if (error) {
831 nfs_rcvunlock(nmp);
832
833 if (nmp->nm_iflag & NFSMNT_DISMNT) {
834 /*
835 * Oops, we're going away now..
836 */
837 return error;
838 }
839 /*
840 * Ignore routing errors on connectionless protocols? ?
841 */
842 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
843 nmp->nm_so->so_error = 0;
844 #ifdef DEBUG
845 printf("nfs_reply: ignoring error %d\n", error);
846 #endif
847 continue;
848 }
849 return (error);
850 }
851 if (nam)
852 m_freem(nam);
853
854 /*
855 * Get the xid and check that it is an rpc reply
856 */
857 md = mrep;
858 dpos = mtod(md, void *);
859 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
860 rxid = *tl++;
861 if (*tl != rpc_reply) {
862 nfsstats.rpcinvalid++;
863 m_freem(mrep);
864 nfsmout:
865 nfs_rcvunlock(nmp);
866 continue;
867 }
868
869 /*
870 * Loop through the request list to match up the reply
871 * Iff no match, just drop the datagram
872 */
873 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
874 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
875 /* Found it.. */
876 rep->r_mrep = mrep;
877 rep->r_md = md;
878 rep->r_dpos = dpos;
879 if (nfsrtton) {
880 struct rttl *rt;
881
882 rt = &nfsrtt.rttl[nfsrtt.pos];
883 rt->proc = rep->r_procnum;
884 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
885 rt->sent = nmp->nm_sent;
886 rt->cwnd = nmp->nm_cwnd;
887 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
888 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
889 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsidx;
890 getmicrotime(&rt->tstamp);
891 if (rep->r_flags & R_TIMING)
892 rt->rtt = rep->r_rtt;
893 else
894 rt->rtt = 1000000;
895 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
896 }
897 /*
898 * Update congestion window.
899 * Do the additive increase of
900 * one rpc/rtt.
901 */
902 if (nmp->nm_cwnd <= nmp->nm_sent) {
903 nmp->nm_cwnd +=
904 (NFS_CWNDSCALE * NFS_CWNDSCALE +
905 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
906 if (nmp->nm_cwnd > NFS_MAXCWND)
907 nmp->nm_cwnd = NFS_MAXCWND;
908 }
909 rep->r_flags &= ~R_SENT;
910 nmp->nm_sent -= NFS_CWNDSCALE;
911 /*
912 * Update rtt using a gain of 0.125 on the mean
913 * and a gain of 0.25 on the deviation.
914 */
915 if (rep->r_flags & R_TIMING) {
916 /*
917 * Since the timer resolution of
918 * NFS_HZ is so course, it can often
919 * result in r_rtt == 0. Since
920 * r_rtt == N means that the actual
921 * rtt is between N+dt and N+2-dt ticks,
922 * add 1.
923 */
924 t1 = rep->r_rtt + 1;
925 t1 -= (NFS_SRTT(rep) >> 3);
926 NFS_SRTT(rep) += t1;
927 if (t1 < 0)
928 t1 = -t1;
929 t1 -= (NFS_SDRTT(rep) >> 2);
930 NFS_SDRTT(rep) += t1;
931 }
932 nmp->nm_timeouts = 0;
933 break;
934 }
935 }
936 nfs_rcvunlock(nmp);
937 /*
938 * If not matched to a request, drop it.
939 * If it's mine, get out.
940 */
941 if (rep == 0) {
942 nfsstats.rpcunexpected++;
943 m_freem(mrep);
944 } else if (rep == myrep) {
945 if (rep->r_mrep == NULL)
946 panic("nfsreply nil");
947 return (0);
948 }
949 }
950 }
951
952 /*
953 * nfs_request - goes something like this
954 * - fill in request struct
955 * - links it into list
956 * - calls nfs_send() for first transmit
957 * - calls nfs_receive() to get reply
958 * - break down rpc header and return with nfs reply pointed to
959 * by mrep or error
960 * nb: always frees up mreq mbuf list
961 */
962 int
963 nfs_request(np, mrest, procnum, lwp, cred, mrp, mdp, dposp, rexmitp)
964 struct nfsnode *np;
965 struct mbuf *mrest;
966 int procnum;
967 struct lwp *lwp;
968 kauth_cred_t cred;
969 struct mbuf **mrp;
970 struct mbuf **mdp;
971 char **dposp;
972 int *rexmitp;
973 {
974 struct mbuf *m, *mrep;
975 struct nfsreq *rep;
976 u_int32_t *tl;
977 int i;
978 struct nfsmount *nmp = VFSTONFS(np->n_vnode->v_mount);
979 struct mbuf *md, *mheadend;
980 char nickv[RPCX_NICKVERF];
981 time_t waituntil;
982 char *dpos, *cp2;
983 int t1, s, error = 0, mrest_len, auth_len, auth_type;
984 int trylater_delay = NFS_TRYLATERDEL, failed_auth = 0;
985 int verf_len, verf_type;
986 u_int32_t xid;
987 char *auth_str, *verf_str;
988 NFSKERBKEY_T key; /* save session key */
989 kauth_cred_t acred;
990 struct mbuf *mrest_backup = NULL;
991 kauth_cred_t origcred = NULL; /* XXX: gcc */
992 bool retry_cred = true;
993 bool use_opencred = (np->n_flag & NUSEOPENCRED) != 0;
994
995 if (rexmitp != NULL)
996 *rexmitp = 0;
997
998 acred = kauth_cred_alloc();
999
1000 tryagain_cred:
1001 KASSERT(cred != NULL);
1002 rep = kmem_alloc(sizeof(*rep), KM_SLEEP);
1003 rep->r_nmp = nmp;
1004 KASSERT(lwp == NULL || lwp == curlwp);
1005 rep->r_lwp = lwp;
1006 rep->r_procnum = procnum;
1007 i = 0;
1008 m = mrest;
1009 while (m) {
1010 i += m->m_len;
1011 m = m->m_next;
1012 }
1013 mrest_len = i;
1014
1015 /*
1016 * Get the RPC header with authorization.
1017 */
1018 kerbauth:
1019 verf_str = auth_str = (char *)0;
1020 if (nmp->nm_flag & NFSMNT_KERB) {
1021 verf_str = nickv;
1022 verf_len = sizeof (nickv);
1023 auth_type = RPCAUTH_KERB4;
1024 memset((void *)key, 0, sizeof (key));
1025 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
1026 &auth_len, verf_str, verf_len)) {
1027 error = nfs_getauth(nmp, rep, cred, &auth_str,
1028 &auth_len, verf_str, &verf_len, key);
1029 if (error) {
1030 kmem_free(rep, sizeof(*rep));
1031 m_freem(mrest);
1032 KASSERT(kauth_cred_getrefcnt(acred) == 1);
1033 kauth_cred_free(acred);
1034 return (error);
1035 }
1036 }
1037 retry_cred = false;
1038 } else {
1039 /* AUTH_UNIX */
1040 uid_t uid;
1041 gid_t gid;
1042
1043 /*
1044 * on the most unix filesystems, permission checks are
1045 * done when the file is open(2)'ed.
1046 * ie. once a file is successfully open'ed,
1047 * following i/o operations never fail with EACCES.
1048 * we try to follow the semantics as far as possible.
1049 *
1050 * note that we expect that the nfs server always grant
1051 * accesses by the file's owner.
1052 */
1053 origcred = cred;
1054 switch (procnum) {
1055 case NFSPROC_READ:
1056 case NFSPROC_WRITE:
1057 case NFSPROC_COMMIT:
1058 uid = np->n_vattr->va_uid;
1059 gid = np->n_vattr->va_gid;
1060 if (kauth_cred_geteuid(cred) == uid &&
1061 kauth_cred_getegid(cred) == gid) {
1062 retry_cred = false;
1063 break;
1064 }
1065 if (use_opencred)
1066 break;
1067 kauth_cred_setuid(acred, uid);
1068 kauth_cred_seteuid(acred, uid);
1069 kauth_cred_setsvuid(acred, uid);
1070 kauth_cred_setgid(acred, gid);
1071 kauth_cred_setegid(acred, gid);
1072 kauth_cred_setsvgid(acred, gid);
1073 cred = acred;
1074 break;
1075 default:
1076 retry_cred = false;
1077 break;
1078 }
1079 /*
1080 * backup mbuf chain if we can need it later to retry.
1081 *
1082 * XXX maybe we can keep a direct reference to
1083 * mrest without doing m_copym, but it's ...ugly.
1084 */
1085 if (retry_cred)
1086 mrest_backup = m_copym(mrest, 0, M_COPYALL, M_WAIT);
1087 auth_type = RPCAUTH_UNIX;
1088 /* XXX elad - ngroups */
1089 auth_len = (((kauth_cred_ngroups(cred) > nmp->nm_numgrps) ?
1090 nmp->nm_numgrps : kauth_cred_ngroups(cred)) << 2) +
1091 5 * NFSX_UNSIGNED;
1092 }
1093 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
1094 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
1095 if (auth_str)
1096 free(auth_str, M_TEMP);
1097
1098 /*
1099 * For stream protocols, insert a Sun RPC Record Mark.
1100 */
1101 if (nmp->nm_sotype == SOCK_STREAM) {
1102 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
1103 *mtod(m, u_int32_t *) = htonl(0x80000000 |
1104 (m->m_pkthdr.len - NFSX_UNSIGNED));
1105 }
1106 rep->r_mreq = m;
1107 rep->r_xid = xid;
1108 tryagain:
1109 if (nmp->nm_flag & NFSMNT_SOFT)
1110 rep->r_retry = nmp->nm_retry;
1111 else
1112 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
1113 rep->r_rtt = rep->r_rexmit = 0;
1114 if (proct[procnum] > 0)
1115 rep->r_flags = R_TIMING;
1116 else
1117 rep->r_flags = 0;
1118 rep->r_mrep = NULL;
1119
1120 /*
1121 * Do the client side RPC.
1122 */
1123 nfsstats.rpcrequests++;
1124 /*
1125 * Chain request into list of outstanding requests. Be sure
1126 * to put it LAST so timer finds oldest requests first.
1127 */
1128 s = splsoftnet();
1129 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
1130 nfs_timer_start();
1131
1132 /*
1133 * If backing off another request or avoiding congestion, don't
1134 * send this one now but let timer do it. If not timing a request,
1135 * do it now.
1136 */
1137 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
1138 (nmp->nm_flag & NFSMNT_DUMBTIMR) || nmp->nm_sent < nmp->nm_cwnd)) {
1139 splx(s);
1140 if (nmp->nm_soflags & PR_CONNREQUIRED)
1141 error = nfs_sndlock(nmp, rep);
1142 if (!error) {
1143 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
1144 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep, lwp);
1145 if (nmp->nm_soflags & PR_CONNREQUIRED)
1146 nfs_sndunlock(nmp);
1147 }
1148 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
1149 nmp->nm_sent += NFS_CWNDSCALE;
1150 rep->r_flags |= R_SENT;
1151 }
1152 } else {
1153 splx(s);
1154 rep->r_rtt = -1;
1155 }
1156
1157 /*
1158 * Wait for the reply from our send or the timer's.
1159 */
1160 if (!error || error == EPIPE)
1161 error = nfs_reply(rep, lwp);
1162
1163 /*
1164 * RPC done, unlink the request.
1165 */
1166 s = splsoftnet();
1167 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
1168 splx(s);
1169
1170 /*
1171 * Decrement the outstanding request count.
1172 */
1173 if (rep->r_flags & R_SENT) {
1174 rep->r_flags &= ~R_SENT; /* paranoia */
1175 nmp->nm_sent -= NFS_CWNDSCALE;
1176 }
1177
1178 if (rexmitp != NULL) {
1179 int rexmit;
1180
1181 if (nmp->nm_sotype != SOCK_DGRAM)
1182 rexmit = (rep->r_flags & R_REXMITTED) != 0;
1183 else
1184 rexmit = rep->r_rexmit;
1185 *rexmitp = rexmit;
1186 }
1187
1188 /*
1189 * If there was a successful reply and a tprintf msg.
1190 * tprintf a response.
1191 */
1192 if (!error && (rep->r_flags & R_TPRINTFMSG))
1193 nfs_msg(rep->r_lwp, nmp->nm_mountp->mnt_stat.f_mntfromname,
1194 "is alive again");
1195 mrep = rep->r_mrep;
1196 md = rep->r_md;
1197 dpos = rep->r_dpos;
1198 if (error)
1199 goto nfsmout;
1200
1201 /*
1202 * break down the rpc header and check if ok
1203 */
1204 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1205 if (*tl++ == rpc_msgdenied) {
1206 if (*tl == rpc_mismatch)
1207 error = EOPNOTSUPP;
1208 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
1209 if (!failed_auth) {
1210 failed_auth++;
1211 mheadend->m_next = (struct mbuf *)0;
1212 m_freem(mrep);
1213 m_freem(rep->r_mreq);
1214 goto kerbauth;
1215 } else
1216 error = EAUTH;
1217 } else
1218 error = EACCES;
1219 m_freem(mrep);
1220 goto nfsmout;
1221 }
1222
1223 /*
1224 * Grab any Kerberos verifier, otherwise just throw it away.
1225 */
1226 verf_type = fxdr_unsigned(int, *tl++);
1227 i = fxdr_unsigned(int32_t, *tl);
1228 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1229 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1230 if (error)
1231 goto nfsmout;
1232 } else if (i > 0)
1233 nfsm_adv(nfsm_rndup(i));
1234 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1235 /* 0 == ok */
1236 if (*tl == 0) {
1237 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1238 if (*tl != 0) {
1239 error = fxdr_unsigned(int, *tl);
1240 switch (error) {
1241 case NFSERR_PERM:
1242 error = EPERM;
1243 break;
1244
1245 case NFSERR_NOENT:
1246 error = ENOENT;
1247 break;
1248
1249 case NFSERR_IO:
1250 error = EIO;
1251 break;
1252
1253 case NFSERR_NXIO:
1254 error = ENXIO;
1255 break;
1256
1257 case NFSERR_ACCES:
1258 error = EACCES;
1259 if (!retry_cred)
1260 break;
1261 m_freem(mrep);
1262 m_freem(rep->r_mreq);
1263 kmem_free(rep, sizeof(*rep));
1264 use_opencred = !use_opencred;
1265 if (mrest_backup == NULL) {
1266 /* m_copym failure */
1267 KASSERT(
1268 kauth_cred_getrefcnt(acred) == 1);
1269 kauth_cred_free(acred);
1270 return ENOMEM;
1271 }
1272 mrest = mrest_backup;
1273 mrest_backup = NULL;
1274 cred = origcred;
1275 error = 0;
1276 retry_cred = false;
1277 goto tryagain_cred;
1278
1279 case NFSERR_EXIST:
1280 error = EEXIST;
1281 break;
1282
1283 case NFSERR_XDEV:
1284 error = EXDEV;
1285 break;
1286
1287 case NFSERR_NODEV:
1288 error = ENODEV;
1289 break;
1290
1291 case NFSERR_NOTDIR:
1292 error = ENOTDIR;
1293 break;
1294
1295 case NFSERR_ISDIR:
1296 error = EISDIR;
1297 break;
1298
1299 case NFSERR_INVAL:
1300 error = EINVAL;
1301 break;
1302
1303 case NFSERR_FBIG:
1304 error = EFBIG;
1305 break;
1306
1307 case NFSERR_NOSPC:
1308 error = ENOSPC;
1309 break;
1310
1311 case NFSERR_ROFS:
1312 error = EROFS;
1313 break;
1314
1315 case NFSERR_MLINK:
1316 error = EMLINK;
1317 break;
1318
1319 case NFSERR_TIMEDOUT:
1320 error = ETIMEDOUT;
1321 break;
1322
1323 case NFSERR_NAMETOL:
1324 error = ENAMETOOLONG;
1325 break;
1326
1327 case NFSERR_NOTEMPTY:
1328 error = ENOTEMPTY;
1329 break;
1330
1331 case NFSERR_DQUOT:
1332 error = EDQUOT;
1333 break;
1334
1335 case NFSERR_STALE:
1336 /*
1337 * If the File Handle was stale, invalidate the
1338 * lookup cache, just in case.
1339 */
1340 error = ESTALE;
1341 cache_purge(NFSTOV(np));
1342 break;
1343
1344 case NFSERR_REMOTE:
1345 error = EREMOTE;
1346 break;
1347
1348 case NFSERR_WFLUSH:
1349 case NFSERR_BADHANDLE:
1350 case NFSERR_NOT_SYNC:
1351 case NFSERR_BAD_COOKIE:
1352 error = EINVAL;
1353 break;
1354
1355 case NFSERR_NOTSUPP:
1356 error = ENOTSUP;
1357 break;
1358
1359 case NFSERR_TOOSMALL:
1360 case NFSERR_SERVERFAULT:
1361 case NFSERR_BADTYPE:
1362 error = EINVAL;
1363 break;
1364
1365 case NFSERR_TRYLATER:
1366 if ((nmp->nm_flag & NFSMNT_NFSV3) == 0)
1367 break;
1368 m_freem(mrep);
1369 error = 0;
1370 waituntil = time_second + trylater_delay;
1371 while (time_second < waituntil) {
1372 kpause("nfstrylater", false, hz, NULL);
1373 }
1374 trylater_delay *= NFS_TRYLATERDELMUL;
1375 if (trylater_delay > NFS_TRYLATERDELMAX)
1376 trylater_delay = NFS_TRYLATERDELMAX;
1377 /*
1378 * RFC1813:
1379 * The client should wait and then try
1380 * the request with a new RPC transaction ID.
1381 */
1382 nfs_renewxid(rep);
1383 goto tryagain;
1384
1385 default:
1386 #ifdef DIAGNOSTIC
1387 printf("Invalid rpc error code %d\n", error);
1388 #endif
1389 error = EINVAL;
1390 break;
1391 }
1392
1393 if (nmp->nm_flag & NFSMNT_NFSV3) {
1394 *mrp = mrep;
1395 *mdp = md;
1396 *dposp = dpos;
1397 error |= NFSERR_RETERR;
1398 } else
1399 m_freem(mrep);
1400 goto nfsmout;
1401 }
1402
1403 /*
1404 * note which credential worked to minimize number of retries.
1405 */
1406 if (use_opencred)
1407 np->n_flag |= NUSEOPENCRED;
1408 else
1409 np->n_flag &= ~NUSEOPENCRED;
1410
1411 *mrp = mrep;
1412 *mdp = md;
1413 *dposp = dpos;
1414
1415 KASSERT(error == 0);
1416 goto nfsmout;
1417 }
1418 m_freem(mrep);
1419 error = EPROTONOSUPPORT;
1420 nfsmout:
1421 KASSERT(kauth_cred_getrefcnt(acred) == 1);
1422 kauth_cred_free(acred);
1423 m_freem(rep->r_mreq);
1424 kmem_free(rep, sizeof(*rep));
1425 m_freem(mrest_backup);
1426 return (error);
1427 }
1428 #endif /* NFS */
1429
1430 /*
1431 * Generate the rpc reply header
1432 * siz arg. is used to decide if adding a cluster is worthwhile
1433 */
1434 int
1435 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1436 int siz;
1437 struct nfsrv_descript *nd;
1438 struct nfssvc_sock *slp;
1439 int err;
1440 int cache;
1441 u_quad_t *frev;
1442 struct mbuf **mrq;
1443 struct mbuf **mbp;
1444 char **bposp;
1445 {
1446 u_int32_t *tl;
1447 struct mbuf *mreq;
1448 char *bpos;
1449 struct mbuf *mb;
1450
1451 mreq = m_gethdr(M_WAIT, MT_DATA);
1452 MCLAIM(mreq, &nfs_mowner);
1453 mb = mreq;
1454 /*
1455 * If this is a big reply, use a cluster else
1456 * try and leave leading space for the lower level headers.
1457 */
1458 siz += RPC_REPLYSIZ;
1459 if (siz >= max_datalen) {
1460 m_clget(mreq, M_WAIT);
1461 } else
1462 mreq->m_data += max_hdr;
1463 tl = mtod(mreq, u_int32_t *);
1464 mreq->m_len = 6 * NFSX_UNSIGNED;
1465 bpos = ((char *)tl) + mreq->m_len;
1466 *tl++ = txdr_unsigned(nd->nd_retxid);
1467 *tl++ = rpc_reply;
1468 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1469 *tl++ = rpc_msgdenied;
1470 if (err & NFSERR_AUTHERR) {
1471 *tl++ = rpc_autherr;
1472 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1473 mreq->m_len -= NFSX_UNSIGNED;
1474 bpos -= NFSX_UNSIGNED;
1475 } else {
1476 *tl++ = rpc_mismatch;
1477 *tl++ = txdr_unsigned(RPC_VER2);
1478 *tl = txdr_unsigned(RPC_VER2);
1479 }
1480 } else {
1481 *tl++ = rpc_msgaccepted;
1482
1483 /*
1484 * For Kerberos authentication, we must send the nickname
1485 * verifier back, otherwise just RPCAUTH_NULL.
1486 */
1487 if (nd->nd_flag & ND_KERBFULL) {
1488 struct nfsuid *nuidp;
1489 struct timeval ktvin, ktvout;
1490
1491 memset(&ktvout, 0, sizeof ktvout); /* XXX gcc */
1492
1493 LIST_FOREACH(nuidp,
1494 NUIDHASH(slp, kauth_cred_geteuid(nd->nd_cr)),
1495 nu_hash) {
1496 if (kauth_cred_geteuid(nuidp->nu_cr) ==
1497 kauth_cred_geteuid(nd->nd_cr) &&
1498 (!nd->nd_nam2 || netaddr_match(
1499 NU_NETFAM(nuidp), &nuidp->nu_haddr,
1500 nd->nd_nam2)))
1501 break;
1502 }
1503 if (nuidp) {
1504 ktvin.tv_sec =
1505 txdr_unsigned(nuidp->nu_timestamp.tv_sec
1506 - 1);
1507 ktvin.tv_usec =
1508 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1509
1510 /*
1511 * Encrypt the timestamp in ecb mode using the
1512 * session key.
1513 */
1514 #ifdef NFSKERB
1515 XXX
1516 #endif
1517
1518 *tl++ = rpc_auth_kerb;
1519 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1520 *tl = ktvout.tv_sec;
1521 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1522 *tl++ = ktvout.tv_usec;
1523 *tl++ = txdr_unsigned(
1524 kauth_cred_geteuid(nuidp->nu_cr));
1525 } else {
1526 *tl++ = 0;
1527 *tl++ = 0;
1528 }
1529 } else {
1530 *tl++ = 0;
1531 *tl++ = 0;
1532 }
1533 switch (err) {
1534 case EPROGUNAVAIL:
1535 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1536 break;
1537 case EPROGMISMATCH:
1538 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1539 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1540 *tl++ = txdr_unsigned(2);
1541 *tl = txdr_unsigned(3);
1542 break;
1543 case EPROCUNAVAIL:
1544 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1545 break;
1546 case EBADRPC:
1547 *tl = txdr_unsigned(RPC_GARBAGE);
1548 break;
1549 default:
1550 *tl = 0;
1551 if (err != NFSERR_RETVOID) {
1552 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1553 if (err)
1554 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1555 else
1556 *tl = 0;
1557 }
1558 break;
1559 };
1560 }
1561
1562 if (mrq != NULL)
1563 *mrq = mreq;
1564 *mbp = mb;
1565 *bposp = bpos;
1566 if (err != 0 && err != NFSERR_RETVOID)
1567 nfsstats.srvrpc_errs++;
1568 return (0);
1569 }
1570
1571 static void
1572 nfs_timer_schedule(void)
1573 {
1574
1575 callout_schedule(&nfs_timer_ch, nfs_ticks);
1576 }
1577
1578 void
1579 nfs_timer_start(void)
1580 {
1581
1582 if (callout_pending(&nfs_timer_ch))
1583 return;
1584
1585 nfs_timer_start_ev.ev_count++;
1586 nfs_timer_schedule();
1587 }
1588
1589 void
1590 nfs_timer_init(void)
1591 {
1592
1593 callout_init(&nfs_timer_ch, 0);
1594 callout_setfunc(&nfs_timer_ch, nfs_timer, NULL);
1595 evcnt_attach_dynamic(&nfs_timer_ev, EVCNT_TYPE_MISC, NULL,
1596 "nfs", "timer");
1597 evcnt_attach_dynamic(&nfs_timer_start_ev, EVCNT_TYPE_MISC, NULL,
1598 "nfs", "timer start");
1599 evcnt_attach_dynamic(&nfs_timer_stop_ev, EVCNT_TYPE_MISC, NULL,
1600 "nfs", "timer stop");
1601 }
1602
1603 /*
1604 * Nfs timer routine
1605 * Scan the nfsreq list and retranmit any requests that have timed out
1606 * To avoid retransmission attempts on STREAM sockets (in the future) make
1607 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1608 * A non-NULL argument means 'initialize'.
1609 */
1610 void
1611 nfs_timer(void *arg)
1612 {
1613 struct nfsreq *rep;
1614 struct mbuf *m;
1615 struct socket *so;
1616 struct nfsmount *nmp;
1617 int timeo;
1618 int s, error;
1619 bool more = false;
1620 #ifdef NFSSERVER
1621 struct timeval tv;
1622 struct nfssvc_sock *slp;
1623 u_quad_t cur_usec;
1624 #endif
1625
1626 nfs_timer_ev.ev_count++;
1627
1628 s = splsoftnet();
1629 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
1630 more = true;
1631 nmp = rep->r_nmp;
1632 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1633 continue;
1634 if (nfs_sigintr(nmp, rep, rep->r_lwp)) {
1635 rep->r_flags |= R_SOFTTERM;
1636 continue;
1637 }
1638 if (rep->r_rtt >= 0) {
1639 rep->r_rtt++;
1640 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1641 timeo = nmp->nm_timeo;
1642 else
1643 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1644 if (nmp->nm_timeouts > 0)
1645 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1646 if (rep->r_rtt <= timeo)
1647 continue;
1648 if (nmp->nm_timeouts <
1649 (sizeof(nfs_backoff) / sizeof(nfs_backoff[0])))
1650 nmp->nm_timeouts++;
1651 }
1652 /*
1653 * Check for server not responding
1654 */
1655 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1656 rep->r_rexmit > nmp->nm_deadthresh) {
1657 nfs_msg(rep->r_lwp,
1658 nmp->nm_mountp->mnt_stat.f_mntfromname,
1659 "not responding");
1660 rep->r_flags |= R_TPRINTFMSG;
1661 }
1662 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1663 nfsstats.rpctimeouts++;
1664 rep->r_flags |= R_SOFTTERM;
1665 continue;
1666 }
1667 if (nmp->nm_sotype != SOCK_DGRAM) {
1668 if (++rep->r_rexmit > NFS_MAXREXMIT)
1669 rep->r_rexmit = NFS_MAXREXMIT;
1670 continue;
1671 }
1672 if ((so = nmp->nm_so) == NULL)
1673 continue;
1674
1675 /*
1676 * If there is enough space and the window allows..
1677 * Resend it
1678 * Set r_rtt to -1 in case we fail to send it now.
1679 */
1680 solock(so);
1681 rep->r_rtt = -1;
1682 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1683 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1684 (rep->r_flags & R_SENT) ||
1685 nmp->nm_sent < nmp->nm_cwnd) &&
1686 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1687 if (so->so_state & SS_ISCONNECTED)
1688 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1689 (struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
1690 else
1691 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1692 nmp->nm_nam, (struct mbuf *)0, (struct lwp *)0);
1693 if (error) {
1694 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
1695 #ifdef DEBUG
1696 printf("nfs_timer: ignoring error %d\n",
1697 error);
1698 #endif
1699 so->so_error = 0;
1700 }
1701 } else {
1702 /*
1703 * Iff first send, start timing
1704 * else turn timing off, backoff timer
1705 * and divide congestion window by 2.
1706 */
1707 if (rep->r_flags & R_SENT) {
1708 rep->r_flags &= ~R_TIMING;
1709 if (++rep->r_rexmit > NFS_MAXREXMIT)
1710 rep->r_rexmit = NFS_MAXREXMIT;
1711 nmp->nm_cwnd >>= 1;
1712 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1713 nmp->nm_cwnd = NFS_CWNDSCALE;
1714 nfsstats.rpcretries++;
1715 } else {
1716 rep->r_flags |= R_SENT;
1717 nmp->nm_sent += NFS_CWNDSCALE;
1718 }
1719 rep->r_rtt = 0;
1720 }
1721 }
1722 sounlock(so);
1723 }
1724 splx(s);
1725
1726 #ifdef NFSSERVER
1727 /*
1728 * Scan the write gathering queues for writes that need to be
1729 * completed now.
1730 */
1731 getmicrotime(&tv);
1732 cur_usec = (u_quad_t)tv.tv_sec * 1000000 + (u_quad_t)tv.tv_usec;
1733 mutex_enter(&nfsd_lock);
1734 TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1735 struct nfsrv_descript *nd;
1736
1737 nd = LIST_FIRST(&slp->ns_tq);
1738 if (nd != NULL) {
1739 if (nd->nd_time <= cur_usec) {
1740 nfsrv_wakenfsd_locked(slp);
1741 }
1742 more = true;
1743 }
1744 }
1745 mutex_exit(&nfsd_lock);
1746 #endif /* NFSSERVER */
1747 if (more) {
1748 nfs_timer_schedule();
1749 } else {
1750 nfs_timer_stop_ev.ev_count++;
1751 }
1752 }
1753
1754 /*
1755 * Test for a termination condition pending on the process.
1756 * This is used for NFSMNT_INT mounts.
1757 */
1758 int
1759 nfs_sigintr(nmp, rep, l)
1760 struct nfsmount *nmp;
1761 struct nfsreq *rep;
1762 struct lwp *l;
1763 {
1764 sigset_t ss;
1765
1766 if (rep && (rep->r_flags & R_SOFTTERM))
1767 return (EINTR);
1768 if (!(nmp->nm_flag & NFSMNT_INT))
1769 return (0);
1770 if (l) {
1771 sigpending1(l, &ss);
1772 #if 0
1773 sigminusset(&l->l_proc->p_sigctx.ps_sigignore, &ss);
1774 #endif
1775 if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) ||
1776 sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) ||
1777 sigismember(&ss, SIGQUIT))
1778 return (EINTR);
1779 }
1780 return (0);
1781 }
1782
1783 #ifdef NFS
1784 /*
1785 * Lock a socket against others.
1786 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1787 * and also to avoid race conditions between the processes with nfs requests
1788 * in progress when a reconnect is necessary.
1789 */
1790 static int
1791 nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep)
1792 {
1793 struct lwp *l;
1794 int timeo = 0;
1795 bool catch = false;
1796 int error = 0;
1797
1798 if (rep) {
1799 l = rep->r_lwp;
1800 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1801 catch = true;
1802 } else
1803 l = NULL;
1804 mutex_enter(&nmp->nm_lock);
1805 while ((nmp->nm_iflag & NFSMNT_SNDLOCK) != 0) {
1806 if (rep && nfs_sigintr(rep->r_nmp, rep, l)) {
1807 error = EINTR;
1808 goto quit;
1809 }
1810 if (catch) {
1811 cv_timedwait_sig(&nmp->nm_sndcv, &nmp->nm_lock, timeo);
1812 } else {
1813 cv_timedwait(&nmp->nm_sndcv, &nmp->nm_lock, timeo);
1814 }
1815 if (catch) {
1816 catch = false;
1817 timeo = 2 * hz;
1818 }
1819 }
1820 nmp->nm_iflag |= NFSMNT_SNDLOCK;
1821 quit:
1822 mutex_exit(&nmp->nm_lock);
1823 return error;
1824 }
1825
1826 /*
1827 * Unlock the stream socket for others.
1828 */
1829 static void
1830 nfs_sndunlock(struct nfsmount *nmp)
1831 {
1832
1833 mutex_enter(&nmp->nm_lock);
1834 if ((nmp->nm_iflag & NFSMNT_SNDLOCK) == 0)
1835 panic("nfs sndunlock");
1836 nmp->nm_iflag &= ~NFSMNT_SNDLOCK;
1837 cv_signal(&nmp->nm_sndcv);
1838 mutex_exit(&nmp->nm_lock);
1839 }
1840 #endif /* NFS */
1841
1842 static int
1843 nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep)
1844 {
1845 int *flagp = &nmp->nm_iflag;
1846 int slptimeo = 0;
1847 bool catch;
1848 int error = 0;
1849
1850 KASSERT(nmp == rep->r_nmp);
1851
1852 catch = (nmp->nm_flag & NFSMNT_INT) != 0;
1853 mutex_enter(&nmp->nm_lock);
1854 while (/* CONSTCOND */ true) {
1855 if (*flagp & NFSMNT_DISMNT) {
1856 cv_signal(&nmp->nm_disconcv);
1857 error = EIO;
1858 break;
1859 }
1860 /* If our reply was received while we were sleeping,
1861 * then just return without taking the lock to avoid a
1862 * situation where a single iod could 'capture' the
1863 * receive lock.
1864 */
1865 if (rep->r_mrep != NULL) {
1866 error = EALREADY;
1867 break;
1868 }
1869 if (nfs_sigintr(rep->r_nmp, rep, rep->r_lwp)) {
1870 error = EINTR;
1871 break;
1872 }
1873 if ((*flagp & NFSMNT_RCVLOCK) == 0) {
1874 *flagp |= NFSMNT_RCVLOCK;
1875 break;
1876 }
1877 if (catch) {
1878 cv_timedwait_sig(&nmp->nm_rcvcv, &nmp->nm_lock,
1879 slptimeo);
1880 } else {
1881 cv_timedwait(&nmp->nm_rcvcv, &nmp->nm_lock,
1882 slptimeo);
1883 }
1884 if (catch) {
1885 catch = false;
1886 slptimeo = 2 * hz;
1887 }
1888 }
1889 mutex_exit(&nmp->nm_lock);
1890 return error;
1891 }
1892
1893 /*
1894 * Unlock the stream socket for others.
1895 */
1896 static void
1897 nfs_rcvunlock(struct nfsmount *nmp)
1898 {
1899
1900 mutex_enter(&nmp->nm_lock);
1901 if ((nmp->nm_iflag & NFSMNT_RCVLOCK) == 0)
1902 panic("nfs rcvunlock");
1903 nmp->nm_iflag &= ~NFSMNT_RCVLOCK;
1904 cv_broadcast(&nmp->nm_rcvcv);
1905 mutex_exit(&nmp->nm_lock);
1906 }
1907
1908 /*
1909 * Parse an RPC request
1910 * - verify it
1911 * - allocate and fill in the cred.
1912 */
1913 int
1914 nfs_getreq(nd, nfsd, has_header)
1915 struct nfsrv_descript *nd;
1916 struct nfsd *nfsd;
1917 int has_header;
1918 {
1919 int len, i;
1920 u_int32_t *tl;
1921 int32_t t1;
1922 struct uio uio;
1923 struct iovec iov;
1924 char *dpos, *cp2, *cp;
1925 u_int32_t nfsvers, auth_type;
1926 uid_t nickuid;
1927 int error = 0, ticklen;
1928 struct mbuf *mrep, *md;
1929 struct nfsuid *nuidp;
1930 struct timeval tvin, tvout;
1931
1932 memset(&tvout, 0, sizeof tvout); /* XXX gcc */
1933
1934 KASSERT(nd->nd_cr == NULL);
1935 mrep = nd->nd_mrep;
1936 md = nd->nd_md;
1937 dpos = nd->nd_dpos;
1938 if (has_header) {
1939 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1940 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1941 if (*tl++ != rpc_call) {
1942 m_freem(mrep);
1943 return (EBADRPC);
1944 }
1945 } else
1946 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1947 nd->nd_repstat = 0;
1948 nd->nd_flag = 0;
1949 if (*tl++ != rpc_vers) {
1950 nd->nd_repstat = ERPCMISMATCH;
1951 nd->nd_procnum = NFSPROC_NOOP;
1952 return (0);
1953 }
1954 if (*tl != nfs_prog) {
1955 nd->nd_repstat = EPROGUNAVAIL;
1956 nd->nd_procnum = NFSPROC_NOOP;
1957 return (0);
1958 }
1959 tl++;
1960 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1961 if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) {
1962 nd->nd_repstat = EPROGMISMATCH;
1963 nd->nd_procnum = NFSPROC_NOOP;
1964 return (0);
1965 }
1966 if (nfsvers == NFS_VER3)
1967 nd->nd_flag = ND_NFSV3;
1968 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1969 if (nd->nd_procnum == NFSPROC_NULL)
1970 return (0);
1971 if (nd->nd_procnum > NFSPROC_COMMIT ||
1972 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1973 nd->nd_repstat = EPROCUNAVAIL;
1974 nd->nd_procnum = NFSPROC_NOOP;
1975 return (0);
1976 }
1977 if ((nd->nd_flag & ND_NFSV3) == 0)
1978 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1979 auth_type = *tl++;
1980 len = fxdr_unsigned(int, *tl++);
1981 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1982 m_freem(mrep);
1983 return (EBADRPC);
1984 }
1985
1986 nd->nd_flag &= ~ND_KERBAUTH;
1987 /*
1988 * Handle auth_unix or auth_kerb.
1989 */
1990 if (auth_type == rpc_auth_unix) {
1991 uid_t uid;
1992 gid_t gid;
1993
1994 nd->nd_cr = kauth_cred_alloc();
1995 len = fxdr_unsigned(int, *++tl);
1996 if (len < 0 || len > NFS_MAXNAMLEN) {
1997 m_freem(mrep);
1998 error = EBADRPC;
1999 goto errout;
2000 }
2001 nfsm_adv(nfsm_rndup(len));
2002 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2003
2004 uid = fxdr_unsigned(uid_t, *tl++);
2005 gid = fxdr_unsigned(gid_t, *tl++);
2006 kauth_cred_setuid(nd->nd_cr, uid);
2007 kauth_cred_seteuid(nd->nd_cr, uid);
2008 kauth_cred_setsvuid(nd->nd_cr, uid);
2009 kauth_cred_setgid(nd->nd_cr, gid);
2010 kauth_cred_setegid(nd->nd_cr, gid);
2011 kauth_cred_setsvgid(nd->nd_cr, gid);
2012
2013 len = fxdr_unsigned(int, *tl);
2014 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
2015 m_freem(mrep);
2016 error = EBADRPC;
2017 goto errout;
2018 }
2019 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
2020
2021 if (len > 0) {
2022 size_t grbuf_size = min(len, NGROUPS) * sizeof(gid_t);
2023 gid_t *grbuf = kmem_alloc(grbuf_size, KM_SLEEP);
2024
2025 for (i = 0; i < len; i++) {
2026 if (i < NGROUPS) /* XXX elad */
2027 grbuf[i] = fxdr_unsigned(gid_t, *tl++);
2028 else
2029 tl++;
2030 }
2031 kauth_cred_setgroups(nd->nd_cr, grbuf,
2032 min(len, NGROUPS), -1, UIO_SYSSPACE);
2033 kmem_free(grbuf, grbuf_size);
2034 }
2035
2036 len = fxdr_unsigned(int, *++tl);
2037 if (len < 0 || len > RPCAUTH_MAXSIZ) {
2038 m_freem(mrep);
2039 error = EBADRPC;
2040 goto errout;
2041 }
2042 if (len > 0)
2043 nfsm_adv(nfsm_rndup(len));
2044 } else if (auth_type == rpc_auth_kerb) {
2045 switch (fxdr_unsigned(int, *tl++)) {
2046 case RPCAKN_FULLNAME:
2047 ticklen = fxdr_unsigned(int, *tl);
2048 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
2049 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
2050 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
2051 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
2052 m_freem(mrep);
2053 error = EBADRPC;
2054 goto errout;
2055 }
2056 uio.uio_offset = 0;
2057 uio.uio_iov = &iov;
2058 uio.uio_iovcnt = 1;
2059 UIO_SETUP_SYSSPACE(&uio);
2060 iov.iov_base = (void *)&nfsd->nfsd_authstr[4];
2061 iov.iov_len = RPCAUTH_MAXSIZ - 4;
2062 nfsm_mtouio(&uio, uio.uio_resid);
2063 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2064 if (*tl++ != rpc_auth_kerb ||
2065 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
2066 printf("Bad kerb verifier\n");
2067 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2068 nd->nd_procnum = NFSPROC_NOOP;
2069 return (0);
2070 }
2071 nfsm_dissect(cp, void *, 4 * NFSX_UNSIGNED);
2072 tl = (u_int32_t *)cp;
2073 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
2074 printf("Not fullname kerb verifier\n");
2075 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2076 nd->nd_procnum = NFSPROC_NOOP;
2077 return (0);
2078 }
2079 cp += NFSX_UNSIGNED;
2080 memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED);
2081 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
2082 nd->nd_flag |= ND_KERBFULL;
2083 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
2084 break;
2085 case RPCAKN_NICKNAME:
2086 if (len != 2 * NFSX_UNSIGNED) {
2087 printf("Kerb nickname short\n");
2088 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
2089 nd->nd_procnum = NFSPROC_NOOP;
2090 return (0);
2091 }
2092 nickuid = fxdr_unsigned(uid_t, *tl);
2093 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
2094 if (*tl++ != rpc_auth_kerb ||
2095 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
2096 printf("Kerb nick verifier bad\n");
2097 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
2098 nd->nd_procnum = NFSPROC_NOOP;
2099 return (0);
2100 }
2101 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
2102 tvin.tv_sec = *tl++;
2103 tvin.tv_usec = *tl;
2104
2105 LIST_FOREACH(nuidp, NUIDHASH(nfsd->nfsd_slp, nickuid),
2106 nu_hash) {
2107 if (kauth_cred_geteuid(nuidp->nu_cr) == nickuid &&
2108 (!nd->nd_nam2 ||
2109 netaddr_match(NU_NETFAM(nuidp),
2110 &nuidp->nu_haddr, nd->nd_nam2)))
2111 break;
2112 }
2113 if (!nuidp) {
2114 nd->nd_repstat =
2115 (NFSERR_AUTHERR|AUTH_REJECTCRED);
2116 nd->nd_procnum = NFSPROC_NOOP;
2117 return (0);
2118 }
2119
2120 /*
2121 * Now, decrypt the timestamp using the session key
2122 * and validate it.
2123 */
2124 #ifdef NFSKERB
2125 XXX
2126 #endif
2127
2128 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
2129 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
2130 if (nuidp->nu_expire < time_second ||
2131 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
2132 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
2133 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
2134 nuidp->nu_expire = 0;
2135 nd->nd_repstat =
2136 (NFSERR_AUTHERR|AUTH_REJECTVERF);
2137 nd->nd_procnum = NFSPROC_NOOP;
2138 return (0);
2139 }
2140 kauth_cred_hold(nuidp->nu_cr);
2141 nd->nd_cr = nuidp->nu_cr;
2142 nd->nd_flag |= ND_KERBNICK;
2143 }
2144 } else {
2145 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
2146 nd->nd_procnum = NFSPROC_NOOP;
2147 return (0);
2148 }
2149
2150 nd->nd_md = md;
2151 nd->nd_dpos = dpos;
2152 KASSERT((nd->nd_cr == NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) != 0)
2153 || (nd->nd_cr != NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) == 0));
2154 return (0);
2155 nfsmout:
2156 errout:
2157 KASSERT(error != 0);
2158 if (nd->nd_cr != NULL) {
2159 kauth_cred_free(nd->nd_cr);
2160 nd->nd_cr = NULL;
2161 }
2162 return (error);
2163 }
2164
2165 int
2166 nfs_msg(l, server, msg)
2167 struct lwp *l;
2168 const char *server, *msg;
2169 {
2170 tpr_t tpr;
2171
2172 if (l)
2173 tpr = tprintf_open(l->l_proc);
2174 else
2175 tpr = NULL;
2176 tprintf(tpr, "nfs server %s: %s\n", server, msg);
2177 tprintf_close(tpr);
2178 return (0);
2179 }
2180
2181 #ifdef NFSSERVER
2182 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
2183 struct nfssvc_sock *, struct lwp *,
2184 struct mbuf **)) = {
2185 nfsrv_null,
2186 nfsrv_getattr,
2187 nfsrv_setattr,
2188 nfsrv_lookup,
2189 nfsrv3_access,
2190 nfsrv_readlink,
2191 nfsrv_read,
2192 nfsrv_write,
2193 nfsrv_create,
2194 nfsrv_mkdir,
2195 nfsrv_symlink,
2196 nfsrv_mknod,
2197 nfsrv_remove,
2198 nfsrv_rmdir,
2199 nfsrv_rename,
2200 nfsrv_link,
2201 nfsrv_readdir,
2202 nfsrv_readdirplus,
2203 nfsrv_statfs,
2204 nfsrv_fsinfo,
2205 nfsrv_pathconf,
2206 nfsrv_commit,
2207 nfsrv_noop
2208 };
2209
2210 /*
2211 * Socket upcall routine for the nfsd sockets.
2212 * The void *arg is a pointer to the "struct nfssvc_sock".
2213 */
2214 void
2215 nfsrv_soupcall(struct socket *so, void *arg, int waitflag)
2216 {
2217 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
2218
2219 nfsdsock_setbits(slp, SLP_A_NEEDQ);
2220 nfsrv_wakenfsd(slp);
2221 }
2222
2223 void
2224 nfsrv_rcv(struct nfssvc_sock *slp)
2225 {
2226 struct socket *so;
2227 struct mbuf *m;
2228 struct mbuf *mp, *nam;
2229 struct uio auio;
2230 int flags;
2231 int error;
2232 int setflags = 0;
2233
2234 error = nfsdsock_lock(slp, true);
2235 if (error) {
2236 setflags |= SLP_A_NEEDQ;
2237 goto dorecs_unlocked;
2238 }
2239
2240 nfsdsock_clearbits(slp, SLP_A_NEEDQ);
2241
2242 so = slp->ns_so;
2243 if (so->so_type == SOCK_STREAM) {
2244 /*
2245 * Do soreceive().
2246 */
2247 auio.uio_resid = 1000000000;
2248 /* not need to setup uio_vmspace */
2249 flags = MSG_DONTWAIT;
2250 error = (*so->so_receive)(so, &nam, &auio, &mp, NULL, &flags);
2251 if (error || mp == NULL) {
2252 if (error == EWOULDBLOCK)
2253 setflags |= SLP_A_NEEDQ;
2254 else
2255 setflags |= SLP_A_DISCONN;
2256 goto dorecs;
2257 }
2258 m = mp;
2259 m_claimm(m, &nfs_mowner);
2260 if (slp->ns_rawend) {
2261 slp->ns_rawend->m_next = m;
2262 slp->ns_cc += 1000000000 - auio.uio_resid;
2263 } else {
2264 slp->ns_raw = m;
2265 slp->ns_cc = 1000000000 - auio.uio_resid;
2266 }
2267 while (m->m_next)
2268 m = m->m_next;
2269 slp->ns_rawend = m;
2270
2271 /*
2272 * Now try and parse record(s) out of the raw stream data.
2273 */
2274 error = nfsrv_getstream(slp, M_WAIT);
2275 if (error) {
2276 if (error == EPERM)
2277 setflags |= SLP_A_DISCONN;
2278 else
2279 setflags |= SLP_A_NEEDQ;
2280 }
2281 } else {
2282 do {
2283 auio.uio_resid = 1000000000;
2284 /* not need to setup uio_vmspace */
2285 flags = MSG_DONTWAIT;
2286 error = (*so->so_receive)(so, &nam, &auio, &mp, NULL,
2287 &flags);
2288 if (mp) {
2289 if (nam) {
2290 m = nam;
2291 m->m_next = mp;
2292 } else
2293 m = mp;
2294 m_claimm(m, &nfs_mowner);
2295 if (slp->ns_recend)
2296 slp->ns_recend->m_nextpkt = m;
2297 else
2298 slp->ns_rec = m;
2299 slp->ns_recend = m;
2300 m->m_nextpkt = (struct mbuf *)0;
2301 }
2302 if (error) {
2303 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2304 && error != EWOULDBLOCK) {
2305 setflags |= SLP_A_DISCONN;
2306 goto dorecs;
2307 }
2308 }
2309 } while (mp);
2310 }
2311 dorecs:
2312 nfsdsock_unlock(slp);
2313
2314 dorecs_unlocked:
2315 if (setflags) {
2316 nfsdsock_setbits(slp, setflags);
2317 }
2318 }
2319
2320 int
2321 nfsdsock_lock(struct nfssvc_sock *slp, bool waitok)
2322 {
2323
2324 mutex_enter(&slp->ns_lock);
2325 while ((~slp->ns_flags & (SLP_BUSY|SLP_VALID)) == 0) {
2326 if (!waitok) {
2327 mutex_exit(&slp->ns_lock);
2328 return EWOULDBLOCK;
2329 }
2330 cv_wait(&slp->ns_cv, &slp->ns_lock);
2331 }
2332 if ((slp->ns_flags & SLP_VALID) == 0) {
2333 mutex_exit(&slp->ns_lock);
2334 return EINVAL;
2335 }
2336 KASSERT((slp->ns_flags & SLP_BUSY) == 0);
2337 slp->ns_flags |= SLP_BUSY;
2338 mutex_exit(&slp->ns_lock);
2339
2340 return 0;
2341 }
2342
2343 void
2344 nfsdsock_unlock(struct nfssvc_sock *slp)
2345 {
2346
2347 mutex_enter(&slp->ns_lock);
2348 KASSERT((slp->ns_flags & SLP_BUSY) != 0);
2349 cv_broadcast(&slp->ns_cv);
2350 slp->ns_flags &= ~SLP_BUSY;
2351 mutex_exit(&slp->ns_lock);
2352 }
2353
2354 int
2355 nfsdsock_drain(struct nfssvc_sock *slp)
2356 {
2357 int error = 0;
2358
2359 mutex_enter(&slp->ns_lock);
2360 if ((slp->ns_flags & SLP_VALID) == 0) {
2361 error = EINVAL;
2362 goto done;
2363 }
2364 slp->ns_flags &= ~SLP_VALID;
2365 while ((slp->ns_flags & SLP_BUSY) != 0) {
2366 cv_wait(&slp->ns_cv, &slp->ns_lock);
2367 }
2368 done:
2369 mutex_exit(&slp->ns_lock);
2370
2371 return error;
2372 }
2373
2374 /*
2375 * Try and extract an RPC request from the mbuf data list received on a
2376 * stream socket. The "waitflag" argument indicates whether or not it
2377 * can sleep.
2378 */
2379 int
2380 nfsrv_getstream(slp, waitflag)
2381 struct nfssvc_sock *slp;
2382 int waitflag;
2383 {
2384 struct mbuf *m, **mpp;
2385 struct mbuf *recm;
2386 u_int32_t recmark;
2387 int error = 0;
2388
2389 KASSERT((slp->ns_flags & SLP_BUSY) != 0);
2390 for (;;) {
2391 if (slp->ns_reclen == 0) {
2392 if (slp->ns_cc < NFSX_UNSIGNED) {
2393 break;
2394 }
2395 m = slp->ns_raw;
2396 m_copydata(m, 0, NFSX_UNSIGNED, (void *)&recmark);
2397 m_adj(m, NFSX_UNSIGNED);
2398 slp->ns_cc -= NFSX_UNSIGNED;
2399 recmark = ntohl(recmark);
2400 slp->ns_reclen = recmark & ~0x80000000;
2401 if (recmark & 0x80000000)
2402 slp->ns_sflags |= SLP_S_LASTFRAG;
2403 else
2404 slp->ns_sflags &= ~SLP_S_LASTFRAG;
2405 if (slp->ns_reclen > NFS_MAXPACKET) {
2406 error = EPERM;
2407 break;
2408 }
2409 }
2410
2411 /*
2412 * Now get the record part.
2413 *
2414 * Note that slp->ns_reclen may be 0. Linux sometimes
2415 * generates 0-length records.
2416 */
2417 if (slp->ns_cc == slp->ns_reclen) {
2418 recm = slp->ns_raw;
2419 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
2420 slp->ns_cc = slp->ns_reclen = 0;
2421 } else if (slp->ns_cc > slp->ns_reclen) {
2422 recm = slp->ns_raw;
2423 m = m_split(recm, slp->ns_reclen, waitflag);
2424 if (m == NULL) {
2425 error = EWOULDBLOCK;
2426 break;
2427 }
2428 m_claimm(recm, &nfs_mowner);
2429 slp->ns_raw = m;
2430 if (m->m_next == NULL)
2431 slp->ns_rawend = m;
2432 slp->ns_cc -= slp->ns_reclen;
2433 slp->ns_reclen = 0;
2434 } else {
2435 break;
2436 }
2437
2438 /*
2439 * Accumulate the fragments into a record.
2440 */
2441 mpp = &slp->ns_frag;
2442 while (*mpp)
2443 mpp = &((*mpp)->m_next);
2444 *mpp = recm;
2445 if (slp->ns_sflags & SLP_S_LASTFRAG) {
2446 if (slp->ns_recend)
2447 slp->ns_recend->m_nextpkt = slp->ns_frag;
2448 else
2449 slp->ns_rec = slp->ns_frag;
2450 slp->ns_recend = slp->ns_frag;
2451 slp->ns_frag = NULL;
2452 }
2453 }
2454
2455 return error;
2456 }
2457
2458 /*
2459 * Parse an RPC header.
2460 */
2461 int
2462 nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
2463 struct nfsrv_descript **ndp, bool *more)
2464 {
2465 struct mbuf *m, *nam;
2466 struct nfsrv_descript *nd;
2467 int error;
2468
2469 *ndp = NULL;
2470 *more = false;
2471
2472 if (nfsdsock_lock(slp, true)) {
2473 return ENOBUFS;
2474 }
2475 m = slp->ns_rec;
2476 if (m == NULL) {
2477 nfsdsock_unlock(slp);
2478 return ENOBUFS;
2479 }
2480 slp->ns_rec = m->m_nextpkt;
2481 if (slp->ns_rec) {
2482 m->m_nextpkt = NULL;
2483 *more = true;
2484 } else {
2485 slp->ns_recend = NULL;
2486 }
2487 nfsdsock_unlock(slp);
2488
2489 if (m->m_type == MT_SONAME) {
2490 nam = m;
2491 m = m->m_next;
2492 nam->m_next = NULL;
2493 } else
2494 nam = NULL;
2495 nd = nfsdreq_alloc();
2496 nd->nd_md = nd->nd_mrep = m;
2497 nd->nd_nam2 = nam;
2498 nd->nd_dpos = mtod(m, void *);
2499 error = nfs_getreq(nd, nfsd, true);
2500 if (error) {
2501 m_freem(nam);
2502 nfsdreq_free(nd);
2503 return (error);
2504 }
2505 *ndp = nd;
2506 nfsd->nfsd_nd = nd;
2507 return (0);
2508 }
2509
2510 /*
2511 * Search for a sleeping nfsd and wake it up.
2512 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2513 * running nfsds will go look for the work in the nfssvc_sock list.
2514 */
2515 static void
2516 nfsrv_wakenfsd_locked(struct nfssvc_sock *slp)
2517 {
2518 struct nfsd *nd;
2519
2520 KASSERT(mutex_owned(&nfsd_lock));
2521
2522 if ((slp->ns_flags & SLP_VALID) == 0)
2523 return;
2524 if (slp->ns_gflags & SLP_G_DOREC)
2525 return;
2526 nd = SLIST_FIRST(&nfsd_idle_head);
2527 if (nd) {
2528 SLIST_REMOVE_HEAD(&nfsd_idle_head, nfsd_idle);
2529 if (nd->nfsd_slp)
2530 panic("nfsd wakeup");
2531 slp->ns_sref++;
2532 KASSERT(slp->ns_sref > 0);
2533 nd->nfsd_slp = slp;
2534 cv_signal(&nd->nfsd_cv);
2535 } else {
2536 slp->ns_gflags |= SLP_G_DOREC;
2537 nfsd_head_flag |= NFSD_CHECKSLP;
2538 TAILQ_INSERT_TAIL(&nfssvc_sockpending, slp, ns_pending);
2539 }
2540 }
2541
2542 void
2543 nfsrv_wakenfsd(struct nfssvc_sock *slp)
2544 {
2545
2546 mutex_enter(&nfsd_lock);
2547 nfsrv_wakenfsd_locked(slp);
2548 mutex_exit(&nfsd_lock);
2549 }
2550
2551 int
2552 nfsdsock_sendreply(struct nfssvc_sock *slp, struct nfsrv_descript *nd)
2553 {
2554 int error;
2555
2556 if (nd->nd_mrep != NULL) {
2557 m_freem(nd->nd_mrep);
2558 nd->nd_mrep = NULL;
2559 }
2560
2561 mutex_enter(&slp->ns_lock);
2562 if ((slp->ns_flags & SLP_SENDING) != 0) {
2563 SIMPLEQ_INSERT_TAIL(&slp->ns_sendq, nd, nd_sendq);
2564 mutex_exit(&slp->ns_lock);
2565 return 0;
2566 }
2567 KASSERT(SIMPLEQ_EMPTY(&slp->ns_sendq));
2568 slp->ns_flags |= SLP_SENDING;
2569 mutex_exit(&slp->ns_lock);
2570
2571 again:
2572 error = nfs_send(slp->ns_so, nd->nd_nam2, nd->nd_mreq, NULL, curlwp);
2573 if (nd->nd_nam2) {
2574 m_free(nd->nd_nam2);
2575 }
2576 nfsdreq_free(nd);
2577
2578 mutex_enter(&slp->ns_lock);
2579 KASSERT((slp->ns_flags & SLP_SENDING) != 0);
2580 nd = SIMPLEQ_FIRST(&slp->ns_sendq);
2581 if (nd != NULL) {
2582 SIMPLEQ_REMOVE_HEAD(&slp->ns_sendq, nd_sendq);
2583 mutex_exit(&slp->ns_lock);
2584 goto again;
2585 }
2586 slp->ns_flags &= ~SLP_SENDING;
2587 mutex_exit(&slp->ns_lock);
2588
2589 return error;
2590 }
2591
2592 void
2593 nfsdsock_setbits(struct nfssvc_sock *slp, int bits)
2594 {
2595
2596 mutex_enter(&slp->ns_alock);
2597 slp->ns_aflags |= bits;
2598 mutex_exit(&slp->ns_alock);
2599 }
2600
2601 void
2602 nfsdsock_clearbits(struct nfssvc_sock *slp, int bits)
2603 {
2604
2605 mutex_enter(&slp->ns_alock);
2606 slp->ns_aflags &= ~bits;
2607 mutex_exit(&slp->ns_alock);
2608 }
2609
2610 bool
2611 nfsdsock_testbits(struct nfssvc_sock *slp, int bits)
2612 {
2613
2614 return (slp->ns_aflags & bits);
2615 }
2616 #endif /* NFSSERVER */
2617
2618 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
2619 static struct pool nfs_srvdesc_pool;
2620
2621 void
2622 nfsdreq_init(void)
2623 {
2624
2625 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
2626 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr, IPL_NONE);
2627 }
2628
2629 struct nfsrv_descript *
2630 nfsdreq_alloc(void)
2631 {
2632 struct nfsrv_descript *nd;
2633
2634 nd = pool_get(&nfs_srvdesc_pool, PR_WAITOK);
2635 nd->nd_cr = NULL;
2636 return nd;
2637 }
2638
2639 void
2640 nfsdreq_free(struct nfsrv_descript *nd)
2641 {
2642 kauth_cred_t cr;
2643
2644 cr = nd->nd_cr;
2645 if (cr != NULL) {
2646 kauth_cred_free(cr);
2647 }
2648 pool_put(&nfs_srvdesc_pool, nd);
2649 }
2650 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
2651