Home | History | Annotate | Line # | Download | only in nfs
nfs_socket.c revision 1.24
      1 /*	$NetBSD: nfs_socket.c,v 1.24 1996/02/18 11:53:48 fvdl Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1989, 1991, 1993, 1995
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Rick Macklem at The University of Guelph.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the University of
     21  *	California, Berkeley and its contributors.
     22  * 4. Neither the name of the University nor the names of its contributors
     23  *    may be used to endorse or promote products derived from this software
     24  *    without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36  * SUCH DAMAGE.
     37  *
     38  *	@(#)nfs_socket.c	8.5 (Berkeley) 3/30/95
     39  */
     40 
     41 /*
     42  * Socket operations for use by nfs
     43  */
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/proc.h>
     48 #include <sys/mount.h>
     49 #include <sys/kernel.h>
     50 #include <sys/mbuf.h>
     51 #include <sys/vnode.h>
     52 #include <sys/domain.h>
     53 #include <sys/protosw.h>
     54 #include <sys/socket.h>
     55 #include <sys/socketvar.h>
     56 #include <sys/syslog.h>
     57 #include <sys/tprintf.h>
     58 #include <sys/namei.h>
     59 
     60 #include <netinet/in.h>
     61 #include <netinet/tcp.h>
     62 
     63 #include <nfs/rpcv2.h>
     64 #include <nfs/nfsproto.h>
     65 #include <nfs/nfs.h>
     66 #include <nfs/xdr_subs.h>
     67 #include <nfs/nfsm_subs.h>
     68 #include <nfs/nfsmount.h>
     69 #include <nfs/nfsnode.h>
     70 #include <nfs/nfsrtt.h>
     71 #include <nfs/nqnfs.h>
     72 #include <nfs/nfs_var.h>
     73 
     74 #define	TRUE	1
     75 #define	FALSE	0
     76 
     77 /*
     78  * Estimate rto for an nfs rpc sent via. an unreliable datagram.
     79  * Use the mean and mean deviation of rtt for the appropriate type of rpc
     80  * for the frequent rpcs and a default for the others.
     81  * The justification for doing "other" this way is that these rpcs
     82  * happen so infrequently that timer est. would probably be stale.
     83  * Also, since many of these rpcs are
     84  * non-idempotent, a conservative timeout is desired.
     85  * getattr, lookup - A+2D
     86  * read, write     - A+4D
     87  * other           - nm_timeo
     88  */
     89 #define	NFS_RTO(n, t) \
     90 	((t) == 0 ? (n)->nm_timeo : \
     91 	 ((t) < 3 ? \
     92 	  (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
     93 	  ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
     94 #define	NFS_SRTT(r)	(r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
     95 #define	NFS_SDRTT(r)	(r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
     96 /*
     97  * External data, mostly RPC constants in XDR form
     98  */
     99 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
    100 	rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
    101 	rpc_auth_kerb;
    102 extern u_int32_t nfs_prog, nqnfs_prog;
    103 extern time_t nqnfsstarttime;
    104 extern struct nfsstats nfsstats;
    105 extern int nfsv3_procid[NFS_NPROCS];
    106 extern int nfs_ticks;
    107 
    108 /*
    109  * Defines which timer to use for the procnum.
    110  * 0 - default
    111  * 1 - getattr
    112  * 2 - lookup
    113  * 3 - read
    114  * 4 - write
    115  */
    116 static int proct[NFS_NPROCS] = {
    117 	0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
    118 	0, 0, 0,
    119 };
    120 
    121 /*
    122  * There is a congestion window for outstanding rpcs maintained per mount
    123  * point. The cwnd size is adjusted in roughly the way that:
    124  * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
    125  * SIGCOMM '88". ACM, August 1988.
    126  * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
    127  * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
    128  * of rpcs is in progress.
    129  * (The sent count and cwnd are scaled for integer arith.)
    130  * Variants of "slow start" were tried and were found to be too much of a
    131  * performance hit (ave. rtt 3 times larger),
    132  * I suspect due to the large rtt that nfs rpcs have.
    133  */
    134 #define	NFS_CWNDSCALE	256
    135 #define	NFS_MAXCWND	(NFS_CWNDSCALE * 32)
    136 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
    137 int nfsrtton = 0;
    138 struct nfsrtt nfsrtt;
    139 
    140 /*
    141  * Initialize sockets and congestion for a new NFS connection.
    142  * We do not free the sockaddr if error.
    143  */
    144 int
    145 nfs_connect(nmp, rep)
    146 	register struct nfsmount *nmp;
    147 	struct nfsreq *rep;
    148 {
    149 	register struct socket *so;
    150 	int s, error, rcvreserve, sndreserve;
    151 	struct sockaddr *saddr;
    152 	struct sockaddr_in *sin;
    153 	struct mbuf *m;
    154 	u_int16_t tport;
    155 
    156 	nmp->nm_so = (struct socket *)0;
    157 	saddr = mtod(nmp->nm_nam, struct sockaddr *);
    158 	error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
    159 		nmp->nm_soproto);
    160 	if (error)
    161 		goto bad;
    162 	so = nmp->nm_so;
    163 	nmp->nm_soflags = so->so_proto->pr_flags;
    164 
    165 	/*
    166 	 * Some servers require that the client port be a reserved port number.
    167 	 */
    168 	if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
    169 		MGET(m, M_WAIT, MT_SONAME);
    170 		sin = mtod(m, struct sockaddr_in *);
    171 		sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
    172 		sin->sin_family = AF_INET;
    173 		sin->sin_addr.s_addr = INADDR_ANY;
    174 		tport = IPPORT_RESERVED - 1;
    175 		sin->sin_port = htons(tport);
    176 		while ((error = sobind(so, m)) == EADDRINUSE &&
    177 		       --tport > IPPORT_RESERVED / 2)
    178 			sin->sin_port = htons(tport);
    179 		m_freem(m);
    180 		if (error)
    181 			goto bad;
    182 	}
    183 
    184 	/*
    185 	 * Protocols that do not require connections may be optionally left
    186 	 * unconnected for servers that reply from a port other than NFS_PORT.
    187 	 */
    188 	if (nmp->nm_flag & NFSMNT_NOCONN) {
    189 		if (nmp->nm_soflags & PR_CONNREQUIRED) {
    190 			error = ENOTCONN;
    191 			goto bad;
    192 		}
    193 	} else {
    194 		error = soconnect(so, nmp->nm_nam);
    195 		if (error)
    196 			goto bad;
    197 
    198 		/*
    199 		 * Wait for the connection to complete. Cribbed from the
    200 		 * connect system call but with the wait timing out so
    201 		 * that interruptible mounts don't hang here for a long time.
    202 		 */
    203 		s = splsoftnet();
    204 		while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
    205 			(void) tsleep((caddr_t)&so->so_timeo, PSOCK,
    206 				"nfscon", 2 * hz);
    207 			if ((so->so_state & SS_ISCONNECTING) &&
    208 			    so->so_error == 0 && rep &&
    209 			    (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){
    210 				so->so_state &= ~SS_ISCONNECTING;
    211 				splx(s);
    212 				goto bad;
    213 			}
    214 		}
    215 		if (so->so_error) {
    216 			error = so->so_error;
    217 			so->so_error = 0;
    218 			splx(s);
    219 			goto bad;
    220 		}
    221 		splx(s);
    222 	}
    223 	if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
    224 		so->so_rcv.sb_timeo = (5 * hz);
    225 		so->so_snd.sb_timeo = (5 * hz);
    226 	} else {
    227 		so->so_rcv.sb_timeo = 0;
    228 		so->so_snd.sb_timeo = 0;
    229 	}
    230 	if (nmp->nm_sotype == SOCK_DGRAM) {
    231 		sndreserve = nmp->nm_wsize + NFS_MAXPKTHDR;
    232 		rcvreserve = nmp->nm_rsize + NFS_MAXPKTHDR;
    233 	} else if (nmp->nm_sotype == SOCK_SEQPACKET) {
    234 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
    235 		rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR) * 2;
    236 	} else {
    237 		if (nmp->nm_sotype != SOCK_STREAM)
    238 			panic("nfscon sotype");
    239 		if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
    240 			MGET(m, M_WAIT, MT_SOOPTS);
    241 			*mtod(m, int32_t *) = 1;
    242 			m->m_len = sizeof(int32_t);
    243 			sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
    244 		}
    245 		if (so->so_proto->pr_protocol == IPPROTO_TCP) {
    246 			MGET(m, M_WAIT, MT_SOOPTS);
    247 			*mtod(m, int32_t *) = 1;
    248 			m->m_len = sizeof(int32_t);
    249 			sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
    250 		}
    251 		sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
    252 		    sizeof (u_int32_t)) * 2;
    253 		rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
    254 		    sizeof (u_int32_t)) * 2;
    255 	}
    256 	error = soreserve(so, sndreserve, rcvreserve);
    257 	if (error)
    258 		goto bad;
    259 	so->so_rcv.sb_flags |= SB_NOINTR;
    260 	so->so_snd.sb_flags |= SB_NOINTR;
    261 
    262 	/* Initialize other non-zero congestion variables */
    263 	nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
    264 		nmp->nm_srtt[4] = (NFS_TIMEO << 3);
    265 	nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
    266 		nmp->nm_sdrtt[3] = nmp->nm_sdrtt[4] = 0;
    267 	nmp->nm_cwnd = NFS_MAXCWND / 2;	    /* Initial send window */
    268 	nmp->nm_sent = 0;
    269 	nmp->nm_timeouts = 0;
    270 	return (0);
    271 
    272 bad:
    273 	nfs_disconnect(nmp);
    274 	return (error);
    275 }
    276 
    277 /*
    278  * Reconnect routine:
    279  * Called when a connection is broken on a reliable protocol.
    280  * - clean up the old socket
    281  * - nfs_connect() again
    282  * - set R_MUSTRESEND for all outstanding requests on mount point
    283  * If this fails the mount point is DEAD!
    284  * nb: Must be called with the nfs_sndlock() set on the mount point.
    285  */
    286 int
    287 nfs_reconnect(rep)
    288 	register struct nfsreq *rep;
    289 {
    290 	register struct nfsreq *rp;
    291 	register struct nfsmount *nmp = rep->r_nmp;
    292 	int error;
    293 
    294 	nfs_disconnect(nmp);
    295 	while ((error = nfs_connect(nmp, rep)) != 0) {
    296 		if (error == EINTR || error == ERESTART)
    297 			return (EINTR);
    298 		(void) tsleep((caddr_t)&lbolt, PSOCK, "nfscon", 0);
    299 	}
    300 
    301 	/*
    302 	 * Loop through outstanding request list and fix up all requests
    303 	 * on old socket.
    304 	 */
    305 	for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) {
    306 		if (rp->r_nmp == nmp)
    307 			rp->r_flags |= R_MUSTRESEND;
    308 	}
    309 	return (0);
    310 }
    311 
    312 /*
    313  * NFS disconnect. Clean up and unlink.
    314  */
    315 void
    316 nfs_disconnect(nmp)
    317 	register struct nfsmount *nmp;
    318 {
    319 	register struct socket *so;
    320 
    321 	if (nmp->nm_so) {
    322 		so = nmp->nm_so;
    323 		nmp->nm_so = (struct socket *)0;
    324 		soshutdown(so, 2);
    325 		soclose(so);
    326 	}
    327 }
    328 
    329 /*
    330  * This is the nfs send routine. For connection based socket types, it
    331  * must be called with an nfs_sndlock() on the socket.
    332  * "rep == NULL" indicates that it has been called from a server.
    333  * For the client side:
    334  * - return EINTR if the RPC is terminated, 0 otherwise
    335  * - set R_MUSTRESEND if the send fails for any reason
    336  * - do any cleanup required by recoverable socket errors (???)
    337  * For the server side:
    338  * - return EINTR or ERESTART if interrupted by a signal
    339  * - return EPIPE if a connection is lost for connection based sockets (TCP...)
    340  * - do any cleanup required by recoverable socket errors (???)
    341  */
    342 int
    343 nfs_send(so, nam, top, rep)
    344 	register struct socket *so;
    345 	struct mbuf *nam;
    346 	register struct mbuf *top;
    347 	struct nfsreq *rep;
    348 {
    349 	struct mbuf *sendnam;
    350 	int error, soflags, flags;
    351 
    352 	if (rep) {
    353 		if (rep->r_flags & R_SOFTTERM) {
    354 			m_freem(top);
    355 			return (EINTR);
    356 		}
    357 		if ((so = rep->r_nmp->nm_so) == NULL) {
    358 			rep->r_flags |= R_MUSTRESEND;
    359 			m_freem(top);
    360 			return (0);
    361 		}
    362 		rep->r_flags &= ~R_MUSTRESEND;
    363 		soflags = rep->r_nmp->nm_soflags;
    364 	} else
    365 		soflags = so->so_proto->pr_flags;
    366 	if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
    367 		sendnam = (struct mbuf *)0;
    368 	else
    369 		sendnam = nam;
    370 	if (so->so_type == SOCK_SEQPACKET)
    371 		flags = MSG_EOR;
    372 	else
    373 		flags = 0;
    374 
    375 	error = sosend(so, sendnam, (struct uio *)0, top,
    376 		(struct mbuf *)0, flags);
    377 	if (error) {
    378 		if (rep) {
    379 			log(LOG_INFO, "nfs send error %d for server %s\n",error,
    380 			    rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
    381 			/*
    382 			 * Deal with errors for the client side.
    383 			 */
    384 			if (rep->r_flags & R_SOFTTERM)
    385 				error = EINTR;
    386 			else
    387 				rep->r_flags |= R_MUSTRESEND;
    388 		} else
    389 			log(LOG_INFO, "nfsd send error %d\n", error);
    390 
    391 		/*
    392 		 * Handle any recoverable (soft) socket errors here. (???)
    393 		 */
    394 		if (error != EINTR && error != ERESTART &&
    395 			error != EWOULDBLOCK && error != EPIPE)
    396 			error = 0;
    397 	}
    398 	return (error);
    399 }
    400 
    401 #ifdef NFSCLIENT
    402 /*
    403  * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
    404  * done by soreceive(), but for SOCK_STREAM we must deal with the Record
    405  * Mark and consolidate the data into a new mbuf list.
    406  * nb: Sometimes TCP passes the data up to soreceive() in long lists of
    407  *     small mbufs.
    408  * For SOCK_STREAM we must be very careful to read an entire record once
    409  * we have read any of it, even if the system call has been interrupted.
    410  */
    411 int
    412 nfs_receive(rep, aname, mp)
    413 	register struct nfsreq *rep;
    414 	struct mbuf **aname;
    415 	struct mbuf **mp;
    416 {
    417 	register struct socket *so;
    418 	struct uio auio;
    419 	struct iovec aio;
    420 	register struct mbuf *m;
    421 	struct mbuf *control;
    422 	u_int32_t len;
    423 	struct mbuf **getnam;
    424 	int error, sotype, rcvflg;
    425 	struct proc *p = curproc;	/* XXX */
    426 
    427 	/*
    428 	 * Set up arguments for soreceive()
    429 	 */
    430 	*mp = (struct mbuf *)0;
    431 	*aname = (struct mbuf *)0;
    432 	sotype = rep->r_nmp->nm_sotype;
    433 
    434 	/*
    435 	 * For reliable protocols, lock against other senders/receivers
    436 	 * in case a reconnect is necessary.
    437 	 * For SOCK_STREAM, first get the Record Mark to find out how much
    438 	 * more there is to get.
    439 	 * We must lock the socket against other receivers
    440 	 * until we have an entire rpc request/reply.
    441 	 */
    442 	if (sotype != SOCK_DGRAM) {
    443 		error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
    444 		if (error)
    445 			return (error);
    446 tryagain:
    447 		/*
    448 		 * Check for fatal errors and resending request.
    449 		 */
    450 		/*
    451 		 * Ugh: If a reconnect attempt just happened, nm_so
    452 		 * would have changed. NULL indicates a failed
    453 		 * attempt that has essentially shut down this
    454 		 * mount point.
    455 		 */
    456 		if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
    457 			nfs_sndunlock(&rep->r_nmp->nm_flag);
    458 			return (EINTR);
    459 		}
    460 		so = rep->r_nmp->nm_so;
    461 		if (!so) {
    462 			error = nfs_reconnect(rep);
    463 			if (error) {
    464 				nfs_sndunlock(&rep->r_nmp->nm_flag);
    465 				return (error);
    466 			}
    467 			goto tryagain;
    468 		}
    469 		while (rep->r_flags & R_MUSTRESEND) {
    470 			m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
    471 			nfsstats.rpcretries++;
    472 			error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
    473 			if (error) {
    474 				if (error == EINTR || error == ERESTART ||
    475 				    (error = nfs_reconnect(rep)) != 0) {
    476 					nfs_sndunlock(&rep->r_nmp->nm_flag);
    477 					return (error);
    478 				}
    479 				goto tryagain;
    480 			}
    481 		}
    482 		nfs_sndunlock(&rep->r_nmp->nm_flag);
    483 		if (sotype == SOCK_STREAM) {
    484 			aio.iov_base = (caddr_t) &len;
    485 			aio.iov_len = sizeof(u_int32_t);
    486 			auio.uio_iov = &aio;
    487 			auio.uio_iovcnt = 1;
    488 			auio.uio_segflg = UIO_SYSSPACE;
    489 			auio.uio_rw = UIO_READ;
    490 			auio.uio_offset = 0;
    491 			auio.uio_resid = sizeof(u_int32_t);
    492 			auio.uio_procp = p;
    493 			do {
    494 			   rcvflg = MSG_WAITALL;
    495 			   error = soreceive(so, (struct mbuf **)0, &auio,
    496 				(struct mbuf **)0, (struct mbuf **)0, &rcvflg);
    497 			   if (error == EWOULDBLOCK && rep) {
    498 				if (rep->r_flags & R_SOFTTERM)
    499 					return (EINTR);
    500 			   }
    501 			} while (error == EWOULDBLOCK);
    502 			if (!error && auio.uio_resid > 0) {
    503 			    log(LOG_INFO,
    504 				 "short receive (%d/%d) from nfs server %s\n",
    505 				 sizeof(u_int32_t) - auio.uio_resid,
    506 				 sizeof(u_int32_t),
    507 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
    508 			    error = EPIPE;
    509 			}
    510 			if (error)
    511 				goto errout;
    512 			len = ntohl(len) & ~0x80000000;
    513 			/*
    514 			 * This is SERIOUS! We are out of sync with the sender
    515 			 * and forcing a disconnect/reconnect is all I can do.
    516 			 */
    517 			if (len > NFS_MAXPACKET) {
    518 			    log(LOG_ERR, "%s (%d) from nfs server %s\n",
    519 				"impossible packet length",
    520 				len,
    521 				rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
    522 			    error = EFBIG;
    523 			    goto errout;
    524 			}
    525 			auio.uio_resid = len;
    526 			do {
    527 			    rcvflg = MSG_WAITALL;
    528 			    error =  soreceive(so, (struct mbuf **)0,
    529 				&auio, mp, (struct mbuf **)0, &rcvflg);
    530 			} while (error == EWOULDBLOCK || error == EINTR ||
    531 				 error == ERESTART);
    532 			if (!error && auio.uio_resid > 0) {
    533 			    log(LOG_INFO,
    534 				"short receive (%d/%d) from nfs server %s\n",
    535 				len - auio.uio_resid, len,
    536 				rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
    537 			    error = EPIPE;
    538 			}
    539 		} else {
    540 			/*
    541 			 * NB: Since uio_resid is big, MSG_WAITALL is ignored
    542 			 * and soreceive() will return when it has either a
    543 			 * control msg or a data msg.
    544 			 * We have no use for control msg., but must grab them
    545 			 * and then throw them away so we know what is going
    546 			 * on.
    547 			 */
    548 			auio.uio_resid = len = 100000000; /* Anything Big */
    549 			auio.uio_procp = p;
    550 			do {
    551 			    rcvflg = 0;
    552 			    error =  soreceive(so, (struct mbuf **)0,
    553 				&auio, mp, &control, &rcvflg);
    554 			    if (control)
    555 				m_freem(control);
    556 			    if (error == EWOULDBLOCK && rep) {
    557 				if (rep->r_flags & R_SOFTTERM)
    558 					return (EINTR);
    559 			    }
    560 			} while (error == EWOULDBLOCK ||
    561 				 (!error && *mp == NULL && control));
    562 			if ((rcvflg & MSG_EOR) == 0)
    563 				printf("Egad!!\n");
    564 			if (!error && *mp == NULL)
    565 				error = EPIPE;
    566 			len -= auio.uio_resid;
    567 		}
    568 errout:
    569 		if (error && error != EINTR && error != ERESTART) {
    570 			m_freem(*mp);
    571 			*mp = (struct mbuf *)0;
    572 			if (error != EPIPE)
    573 				log(LOG_INFO,
    574 				    "receive error %d from nfs server %s\n",
    575 				    error,
    576 				 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
    577 			error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
    578 			if (!error)
    579 				error = nfs_reconnect(rep);
    580 			if (!error)
    581 				goto tryagain;
    582 		}
    583 	} else {
    584 		if ((so = rep->r_nmp->nm_so) == NULL)
    585 			return (EACCES);
    586 		if (so->so_state & SS_ISCONNECTED)
    587 			getnam = (struct mbuf **)0;
    588 		else
    589 			getnam = aname;
    590 		auio.uio_resid = len = 1000000;
    591 		auio.uio_procp = p;
    592 		do {
    593 			rcvflg = 0;
    594 			error =  soreceive(so, getnam, &auio, mp,
    595 				(struct mbuf **)0, &rcvflg);
    596 			if (error == EWOULDBLOCK &&
    597 			    (rep->r_flags & R_SOFTTERM))
    598 				return (EINTR);
    599 		} while (error == EWOULDBLOCK);
    600 		len -= auio.uio_resid;
    601 	}
    602 	if (error) {
    603 		m_freem(*mp);
    604 		*mp = (struct mbuf *)0;
    605 	}
    606 	/*
    607 	 * Search for any mbufs that are not a multiple of 4 bytes long
    608 	 * or with m_data not longword aligned.
    609 	 * These could cause pointer alignment problems, so copy them to
    610 	 * well aligned mbufs.
    611 	 */
    612 	nfs_realign(*mp, 5 * NFSX_UNSIGNED);
    613 	return (error);
    614 }
    615 
    616 /*
    617  * Implement receipt of reply on a socket.
    618  * We must search through the list of received datagrams matching them
    619  * with outstanding requests using the xid, until ours is found.
    620  */
    621 /* ARGSUSED */
    622 int
    623 nfs_reply(myrep)
    624 	struct nfsreq *myrep;
    625 {
    626 	register struct nfsreq *rep;
    627 	register struct nfsmount *nmp = myrep->r_nmp;
    628 	register int32_t t1;
    629 	struct mbuf *mrep, *nam, *md;
    630 	u_int32_t rxid, *tl;
    631 	caddr_t dpos, cp2;
    632 	int error;
    633 
    634 	/*
    635 	 * Loop around until we get our own reply
    636 	 */
    637 	for (;;) {
    638 		/*
    639 		 * Lock against other receivers so that I don't get stuck in
    640 		 * sbwait() after someone else has received my reply for me.
    641 		 * Also necessary for connection based protocols to avoid
    642 		 * race conditions during a reconnect.
    643 		 */
    644 		error = nfs_rcvlock(myrep);
    645 		if (error)
    646 			return (error);
    647 		/* Already received, bye bye */
    648 		if (myrep->r_mrep != NULL) {
    649 			nfs_rcvunlock(&nmp->nm_flag);
    650 			return (0);
    651 		}
    652 		/*
    653 		 * Get the next Rpc reply off the socket
    654 		 */
    655 		error = nfs_receive(myrep, &nam, &mrep);
    656 		nfs_rcvunlock(&nmp->nm_flag);
    657 		if (error) {
    658 
    659 			/*
    660 			 * Ignore routing errors on connectionless protocols??
    661 			 */
    662 			if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
    663 				nmp->nm_so->so_error = 0;
    664 				if (myrep->r_flags & R_GETONEREP)
    665 					return (0);
    666 				continue;
    667 			}
    668 			return (error);
    669 		}
    670 		if (nam)
    671 			m_freem(nam);
    672 
    673 		/*
    674 		 * Get the xid and check that it is an rpc reply
    675 		 */
    676 		md = mrep;
    677 		dpos = mtod(md, caddr_t);
    678 		nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
    679 		rxid = *tl++;
    680 		if (*tl != rpc_reply) {
    681 			if (nmp->nm_flag & NFSMNT_NQNFS) {
    682 				if (nqnfs_callback(nmp, mrep, md, dpos))
    683 					nfsstats.rpcinvalid++;
    684 			} else {
    685 				nfsstats.rpcinvalid++;
    686 				m_freem(mrep);
    687 			}
    688 nfsmout:
    689 			if (myrep->r_flags & R_GETONEREP)
    690 				return (0);
    691 			continue;
    692 		}
    693 
    694 		/*
    695 		 * Loop through the request list to match up the reply
    696 		 * Iff no match, just drop the datagram
    697 		 */
    698 		for (rep = nfs_reqq.tqh_first; rep != 0;
    699 		    rep = rep->r_chain.tqe_next) {
    700 			if (rep->r_mrep == NULL && rxid == rep->r_xid) {
    701 				/* Found it.. */
    702 				rep->r_mrep = mrep;
    703 				rep->r_md = md;
    704 				rep->r_dpos = dpos;
    705 				if (nfsrtton) {
    706 					struct rttl *rt;
    707 
    708 					rt = &nfsrtt.rttl[nfsrtt.pos];
    709 					rt->proc = rep->r_procnum;
    710 					rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
    711 					rt->sent = nmp->nm_sent;
    712 					rt->cwnd = nmp->nm_cwnd;
    713 					rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
    714 					rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
    715 					rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
    716 					rt->tstamp = time;
    717 					if (rep->r_flags & R_TIMING)
    718 						rt->rtt = rep->r_rtt;
    719 					else
    720 						rt->rtt = 1000000;
    721 					nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
    722 				}
    723 				/*
    724 				 * Update congestion window.
    725 				 * Do the additive increase of
    726 				 * one rpc/rtt.
    727 				 */
    728 				if (nmp->nm_cwnd <= nmp->nm_sent) {
    729 					nmp->nm_cwnd +=
    730 					   (NFS_CWNDSCALE * NFS_CWNDSCALE +
    731 					   (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
    732 					if (nmp->nm_cwnd > NFS_MAXCWND)
    733 						nmp->nm_cwnd = NFS_MAXCWND;
    734 				}
    735 				rep->r_flags &= ~R_SENT;
    736 				nmp->nm_sent -= NFS_CWNDSCALE;
    737 				/*
    738 				 * Update rtt using a gain of 0.125 on the mean
    739 				 * and a gain of 0.25 on the deviation.
    740 				 */
    741 				if (rep->r_flags & R_TIMING) {
    742 					/*
    743 					 * Since the timer resolution of
    744 					 * NFS_HZ is so course, it can often
    745 					 * result in r_rtt == 0. Since
    746 					 * r_rtt == N means that the actual
    747 					 * rtt is between N+dt and N+2-dt ticks,
    748 					 * add 1.
    749 					 */
    750 					t1 = rep->r_rtt + 1;
    751 					t1 -= (NFS_SRTT(rep) >> 3);
    752 					NFS_SRTT(rep) += t1;
    753 					if (t1 < 0)
    754 						t1 = -t1;
    755 					t1 -= (NFS_SDRTT(rep) >> 2);
    756 					NFS_SDRTT(rep) += t1;
    757 				}
    758 				nmp->nm_timeouts = 0;
    759 				break;
    760 			}
    761 		}
    762 		/*
    763 		 * If not matched to a request, drop it.
    764 		 * If it's mine, get out.
    765 		 */
    766 		if (rep == 0) {
    767 			nfsstats.rpcunexpected++;
    768 			m_freem(mrep);
    769 		} else if (rep == myrep) {
    770 			if (rep->r_mrep == NULL)
    771 				panic("nfsreply nil");
    772 			return (0);
    773 		}
    774 		if (myrep->r_flags & R_GETONEREP)
    775 			return (0);
    776 	}
    777 }
    778 
    779 /*
    780  * nfs_request - goes something like this
    781  *	- fill in request struct
    782  *	- links it into list
    783  *	- calls nfs_send() for first transmit
    784  *	- calls nfs_receive() to get reply
    785  *	- break down rpc header and return with nfs reply pointed to
    786  *	  by mrep or error
    787  * nb: always frees up mreq mbuf list
    788  */
    789 int
    790 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp)
    791 	struct vnode *vp;
    792 	struct mbuf *mrest;
    793 	int procnum;
    794 	struct proc *procp;
    795 	struct ucred *cred;
    796 	struct mbuf **mrp;
    797 	struct mbuf **mdp;
    798 	caddr_t *dposp;
    799 {
    800 	register struct mbuf *m, *mrep;
    801 	register struct nfsreq *rep;
    802 	register u_int32_t *tl;
    803 	register int i;
    804 	struct nfsmount *nmp;
    805 	struct mbuf *md, *mheadend;
    806 	struct nfsnode *np;
    807 	char nickv[RPCX_NICKVERF];
    808 	time_t reqtime, waituntil;
    809 	caddr_t dpos, cp2;
    810 	int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type;
    811 	int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
    812 	int verf_len, verf_type;
    813 	u_int32_t xid;
    814 	u_quad_t frev;
    815 	char *auth_str, *verf_str;
    816 	NFSKERBKEY_T key;		/* save session key */
    817 
    818 	nmp = VFSTONFS(vp->v_mount);
    819 	MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
    820 	rep->r_nmp = nmp;
    821 	rep->r_vp = vp;
    822 	rep->r_procp = procp;
    823 	rep->r_procnum = procnum;
    824 	i = 0;
    825 	m = mrest;
    826 	while (m) {
    827 		i += m->m_len;
    828 		m = m->m_next;
    829 	}
    830 	mrest_len = i;
    831 
    832 	/*
    833 	 * Get the RPC header with authorization.
    834 	 */
    835 kerbauth:
    836 	verf_str = auth_str = (char *)0;
    837 	if (nmp->nm_flag & NFSMNT_KERB) {
    838 		verf_str = nickv;
    839 		verf_len = sizeof (nickv);
    840 		auth_type = RPCAUTH_KERB4;
    841 		bzero((caddr_t)key, sizeof (key));
    842 		if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
    843 			&auth_len, verf_str, verf_len)) {
    844 			error = nfs_getauth(nmp, rep, cred, &auth_str,
    845 				&auth_len, verf_str, &verf_len, key);
    846 			if (error) {
    847 				free((caddr_t)rep, M_NFSREQ);
    848 				m_freem(mrest);
    849 				return (error);
    850 			}
    851 		}
    852 	} else {
    853 		auth_type = RPCAUTH_UNIX;
    854 		auth_len = (((cred->cr_ngroups > nmp->nm_numgrps) ?
    855 			nmp->nm_numgrps : cred->cr_ngroups) << 2) +
    856 			5 * NFSX_UNSIGNED;
    857 	}
    858 	m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
    859 	     auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
    860 	if (auth_str)
    861 		free(auth_str, M_TEMP);
    862 
    863 	/*
    864 	 * For stream protocols, insert a Sun RPC Record Mark.
    865 	 */
    866 	if (nmp->nm_sotype == SOCK_STREAM) {
    867 		M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
    868 		*mtod(m, u_int32_t *) = htonl(0x80000000 |
    869 			 (m->m_pkthdr.len - NFSX_UNSIGNED));
    870 	}
    871 	rep->r_mreq = m;
    872 	rep->r_xid = xid;
    873 tryagain:
    874 	if (nmp->nm_flag & NFSMNT_SOFT)
    875 		rep->r_retry = nmp->nm_retry;
    876 	else
    877 		rep->r_retry = NFS_MAXREXMIT + 1;	/* past clip limit */
    878 	rep->r_rtt = rep->r_rexmit = 0;
    879 	if (proct[procnum] > 0)
    880 		rep->r_flags = R_TIMING;
    881 	else
    882 		rep->r_flags = 0;
    883 	rep->r_mrep = NULL;
    884 
    885 	/*
    886 	 * Do the client side RPC.
    887 	 */
    888 	nfsstats.rpcrequests++;
    889 	/*
    890 	 * Chain request into list of outstanding requests. Be sure
    891 	 * to put it LAST so timer finds oldest requests first.
    892 	 */
    893 	s = splsoftclock();
    894 	TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
    895 
    896 	/* Get send time for nqnfs */
    897 	reqtime = time.tv_sec;
    898 
    899 	/*
    900 	 * If backing off another request or avoiding congestion, don't
    901 	 * send this one now but let timer do it. If not timing a request,
    902 	 * do it now.
    903 	 */
    904 	if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
    905 		(nmp->nm_flag & NFSMNT_DUMBTIMR) ||
    906 		nmp->nm_sent < nmp->nm_cwnd)) {
    907 		splx(s);
    908 		if (nmp->nm_soflags & PR_CONNREQUIRED)
    909 			error = nfs_sndlock(&nmp->nm_flag, rep);
    910 		if (!error) {
    911 			m = m_copym(m, 0, M_COPYALL, M_WAIT);
    912 			error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
    913 			if (nmp->nm_soflags & PR_CONNREQUIRED)
    914 				nfs_sndunlock(&nmp->nm_flag);
    915 		}
    916 		if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
    917 			nmp->nm_sent += NFS_CWNDSCALE;
    918 			rep->r_flags |= R_SENT;
    919 		}
    920 	} else {
    921 		splx(s);
    922 		rep->r_rtt = -1;
    923 	}
    924 
    925 	/*
    926 	 * Wait for the reply from our send or the timer's.
    927 	 */
    928 	if (!error || error == EPIPE)
    929 		error = nfs_reply(rep);
    930 
    931 	/*
    932 	 * RPC done, unlink the request.
    933 	 */
    934 	s = splsoftclock();
    935 	TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
    936 	splx(s);
    937 
    938 	/*
    939 	 * Decrement the outstanding request count.
    940 	 */
    941 	if (rep->r_flags & R_SENT) {
    942 		rep->r_flags &= ~R_SENT;	/* paranoia */
    943 		nmp->nm_sent -= NFS_CWNDSCALE;
    944 	}
    945 
    946 	/*
    947 	 * If there was a successful reply and a tprintf msg.
    948 	 * tprintf a response.
    949 	 */
    950 	if (!error && (rep->r_flags & R_TPRINTFMSG))
    951 		nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
    952 		    "is alive again");
    953 	mrep = rep->r_mrep;
    954 	md = rep->r_md;
    955 	dpos = rep->r_dpos;
    956 	if (error) {
    957 		m_freem(rep->r_mreq);
    958 		free((caddr_t)rep, M_NFSREQ);
    959 		return (error);
    960 	}
    961 
    962 	/*
    963 	 * break down the rpc header and check if ok
    964 	 */
    965 	nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
    966 	if (*tl++ == rpc_msgdenied) {
    967 		if (*tl == rpc_mismatch)
    968 			error = EOPNOTSUPP;
    969 		else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
    970 			if (!failed_auth) {
    971 				failed_auth++;
    972 				mheadend->m_next = (struct mbuf *)0;
    973 				m_freem(mrep);
    974 				m_freem(rep->r_mreq);
    975 				goto kerbauth;
    976 			} else
    977 				error = EAUTH;
    978 		} else
    979 			error = EACCES;
    980 		m_freem(mrep);
    981 		m_freem(rep->r_mreq);
    982 		free((caddr_t)rep, M_NFSREQ);
    983 		return (error);
    984 	}
    985 
    986 	/*
    987 	 * Grab any Kerberos verifier, otherwise just throw it away.
    988 	 */
    989 	verf_type = fxdr_unsigned(int, *tl++);
    990 	i = fxdr_unsigned(int32_t, *tl);
    991 	if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
    992 		error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
    993 		if (error)
    994 			goto nfsmout;
    995 	} else if (i > 0)
    996 		nfsm_adv(nfsm_rndup(i));
    997 	nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
    998 	/* 0 == ok */
    999 	if (*tl == 0) {
   1000 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
   1001 		if (*tl != 0) {
   1002 			error = fxdr_unsigned(int, *tl);
   1003 			if ((nmp->nm_flag & NFSMNT_NFSV3) &&
   1004 				error == NFSERR_TRYLATER) {
   1005 				m_freem(mrep);
   1006 				error = 0;
   1007 				waituntil = time.tv_sec + trylater_delay;
   1008 				while (time.tv_sec < waituntil)
   1009 					(void) tsleep((caddr_t)&lbolt,
   1010 						PSOCK, "nqnfstry", 0);
   1011 				trylater_delay *= nfs_backoff[trylater_cnt];
   1012 				if (trylater_cnt < 7)
   1013 					trylater_cnt++;
   1014 				goto tryagain;
   1015 			}
   1016 
   1017 			/*
   1018 			 * If the File Handle was stale, invalidate the
   1019 			 * lookup cache, just in case.
   1020 			 */
   1021 			if (error == ESTALE)
   1022 				cache_purge(vp);
   1023 			if (nmp->nm_flag & NFSMNT_NFSV3) {
   1024 				*mrp = mrep;
   1025 				*mdp = md;
   1026 				*dposp = dpos;
   1027 				error |= NFSERR_RETERR;
   1028 			} else
   1029 				m_freem(mrep);
   1030 			m_freem(rep->r_mreq);
   1031 			free((caddr_t)rep, M_NFSREQ);
   1032 			return (error);
   1033 		}
   1034 
   1035 		/*
   1036 		 * For nqnfs, get any lease in reply
   1037 		 */
   1038 		if (nmp->nm_flag & NFSMNT_NQNFS) {
   1039 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
   1040 			if (*tl) {
   1041 				np = VTONFS(vp);
   1042 				nqlflag = fxdr_unsigned(int, *tl);
   1043 				nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED);
   1044 				cachable = fxdr_unsigned(int, *tl++);
   1045 				reqtime += fxdr_unsigned(int, *tl++);
   1046 				if (reqtime > time.tv_sec) {
   1047 				    fxdr_hyper(tl, &frev);
   1048 				    nqnfs_clientlease(nmp, np, nqlflag,
   1049 					cachable, reqtime, frev);
   1050 				}
   1051 			}
   1052 		}
   1053 		*mrp = mrep;
   1054 		*mdp = md;
   1055 		*dposp = dpos;
   1056 		m_freem(rep->r_mreq);
   1057 		FREE((caddr_t)rep, M_NFSREQ);
   1058 		return (0);
   1059 	}
   1060 	m_freem(mrep);
   1061 	error = EPROTONOSUPPORT;
   1062 nfsmout:
   1063 	m_freem(rep->r_mreq);
   1064 	free((caddr_t)rep, M_NFSREQ);
   1065 	return (error);
   1066 }
   1067 #endif /* NFSCLIENT */
   1068 
   1069 /*
   1070  * Generate the rpc reply header
   1071  * siz arg. is used to decide if adding a cluster is worthwhile
   1072  */
   1073 int
   1074 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
   1075 	int siz;
   1076 	struct nfsrv_descript *nd;
   1077 	struct nfssvc_sock *slp;
   1078 	int err;
   1079 	int cache;
   1080 	u_quad_t *frev;
   1081 	struct mbuf **mrq;
   1082 	struct mbuf **mbp;
   1083 	caddr_t *bposp;
   1084 {
   1085 	register u_int32_t *tl;
   1086 	register struct mbuf *mreq;
   1087 	caddr_t bpos;
   1088 	struct mbuf *mb, *mb2;
   1089 
   1090 	MGETHDR(mreq, M_WAIT, MT_DATA);
   1091 	mb = mreq;
   1092 	/*
   1093 	 * If this is a big reply, use a cluster else
   1094 	 * try and leave leading space for the lower level headers.
   1095 	 */
   1096 	siz += RPC_REPLYSIZ;
   1097 	if (siz >= MINCLSIZE) {
   1098 		MCLGET(mreq, M_WAIT);
   1099 	} else
   1100 		mreq->m_data += max_hdr;
   1101 	tl = mtod(mreq, u_int32_t *);
   1102 	mreq->m_len = 6 * NFSX_UNSIGNED;
   1103 	bpos = ((caddr_t)tl) + mreq->m_len;
   1104 	*tl++ = txdr_unsigned(nd->nd_retxid);
   1105 	*tl++ = rpc_reply;
   1106 	if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
   1107 		*tl++ = rpc_msgdenied;
   1108 		if (err & NFSERR_AUTHERR) {
   1109 			*tl++ = rpc_autherr;
   1110 			*tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
   1111 			mreq->m_len -= NFSX_UNSIGNED;
   1112 			bpos -= NFSX_UNSIGNED;
   1113 		} else {
   1114 			*tl++ = rpc_mismatch;
   1115 			*tl++ = txdr_unsigned(RPC_VER2);
   1116 			*tl = txdr_unsigned(RPC_VER2);
   1117 		}
   1118 	} else {
   1119 		*tl++ = rpc_msgaccepted;
   1120 
   1121 		/*
   1122 		 * For Kerberos authentication, we must send the nickname
   1123 		 * verifier back, otherwise just RPCAUTH_NULL.
   1124 		 */
   1125 		if (nd->nd_flag & ND_KERBFULL) {
   1126 		    register struct nfsuid *nuidp;
   1127 		    struct timeval ktvin, ktvout;
   1128 
   1129 		    for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
   1130 			nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
   1131 			if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
   1132 			    (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
   1133 			     &nuidp->nu_haddr, nd->nd_nam2)))
   1134 			    break;
   1135 		    }
   1136 		    if (nuidp) {
   1137 			ktvin.tv_sec =
   1138 			    txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
   1139 			ktvin.tv_usec =
   1140 			    txdr_unsigned(nuidp->nu_timestamp.tv_usec);
   1141 
   1142 			/*
   1143 			 * Encrypt the timestamp in ecb mode using the
   1144 			 * session key.
   1145 			 */
   1146 #ifdef NFSKERB
   1147 			XXX
   1148 #endif
   1149 
   1150 			*tl++ = rpc_auth_kerb;
   1151 			*tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
   1152 			*tl = ktvout.tv_sec;
   1153 			nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
   1154 			*tl++ = ktvout.tv_usec;
   1155 			*tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
   1156 		    } else {
   1157 			*tl++ = 0;
   1158 			*tl++ = 0;
   1159 		    }
   1160 		} else {
   1161 			*tl++ = 0;
   1162 			*tl++ = 0;
   1163 		}
   1164 		switch (err) {
   1165 		case EPROGUNAVAIL:
   1166 			*tl = txdr_unsigned(RPC_PROGUNAVAIL);
   1167 			break;
   1168 		case EPROGMISMATCH:
   1169 			*tl = txdr_unsigned(RPC_PROGMISMATCH);
   1170 			nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
   1171 			if (nd->nd_flag & ND_NQNFS) {
   1172 				*tl++ = txdr_unsigned(3);
   1173 				*tl = txdr_unsigned(3);
   1174 			} else {
   1175 				*tl++ = txdr_unsigned(2);
   1176 				*tl = txdr_unsigned(3);
   1177 			}
   1178 			break;
   1179 		case EPROCUNAVAIL:
   1180 			*tl = txdr_unsigned(RPC_PROCUNAVAIL);
   1181 			break;
   1182 		case EBADRPC:
   1183 			*tl = txdr_unsigned(RPC_GARBAGE);
   1184 			break;
   1185 		default:
   1186 			*tl = 0;
   1187 			if (err != NFSERR_RETVOID) {
   1188 				nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
   1189 				if (err)
   1190 				    *tl = txdr_unsigned(nfsrv_errmap(nd, err));
   1191 				else
   1192 				    *tl = 0;
   1193 			}
   1194 			break;
   1195 		};
   1196 	}
   1197 
   1198 	/*
   1199 	 * For nqnfs, piggyback lease as requested.
   1200 	 */
   1201 	if ((nd->nd_flag & ND_NQNFS) && err == 0) {
   1202 		if (nd->nd_flag & ND_LEASE) {
   1203 			nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
   1204 			*tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE);
   1205 			*tl++ = txdr_unsigned(cache);
   1206 			*tl++ = txdr_unsigned(nd->nd_duration);
   1207 			txdr_hyper(frev, tl);
   1208 		} else {
   1209 			nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
   1210 			*tl = 0;
   1211 		}
   1212 	}
   1213 	*mrq = mreq;
   1214 	*mbp = mb;
   1215 	*bposp = bpos;
   1216 	if (err != 0 && err != NFSERR_RETVOID)
   1217 		nfsstats.srvrpc_errs++;
   1218 	return (0);
   1219 }
   1220 
   1221 /*
   1222  * Nfs timer routine
   1223  * Scan the nfsreq list and retranmit any requests that have timed out
   1224  * To avoid retransmission attempts on STREAM sockets (in the future) make
   1225  * sure to set the r_retry field to 0 (implies nm_retry == 0).
   1226  */
   1227 void
   1228 nfs_timer(arg)
   1229 	void *arg;	/* never used */
   1230 {
   1231 	register struct nfsreq *rep;
   1232 	register struct mbuf *m;
   1233 	register struct socket *so;
   1234 	register struct nfsmount *nmp;
   1235 	register int timeo;
   1236 	register struct nfssvc_sock *slp;
   1237 #ifdef NFSSERVER
   1238 	static long lasttime = 0;
   1239 #endif
   1240 	int s, error;
   1241 	u_quad_t cur_usec;
   1242 
   1243 	s = splsoftnet();
   1244 	for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) {
   1245 		nmp = rep->r_nmp;
   1246 		if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
   1247 			continue;
   1248 		if (nfs_sigintr(nmp, rep, rep->r_procp)) {
   1249 			rep->r_flags |= R_SOFTTERM;
   1250 			continue;
   1251 		}
   1252 		if (rep->r_rtt >= 0) {
   1253 			rep->r_rtt++;
   1254 			if (nmp->nm_flag & NFSMNT_DUMBTIMR)
   1255 				timeo = nmp->nm_timeo;
   1256 			else
   1257 				timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
   1258 			if (nmp->nm_timeouts > 0)
   1259 				timeo *= nfs_backoff[nmp->nm_timeouts - 1];
   1260 			if (rep->r_rtt <= timeo)
   1261 				continue;
   1262 			if (nmp->nm_timeouts < 8)
   1263 				nmp->nm_timeouts++;
   1264 		}
   1265 		/*
   1266 		 * Check for server not responding
   1267 		 */
   1268 		if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
   1269 		     rep->r_rexmit > nmp->nm_deadthresh) {
   1270 			nfs_msg(rep->r_procp,
   1271 			    nmp->nm_mountp->mnt_stat.f_mntfromname,
   1272 			    "not responding");
   1273 			rep->r_flags |= R_TPRINTFMSG;
   1274 		}
   1275 		if (rep->r_rexmit >= rep->r_retry) {	/* too many */
   1276 			nfsstats.rpctimeouts++;
   1277 			rep->r_flags |= R_SOFTTERM;
   1278 			continue;
   1279 		}
   1280 		if (nmp->nm_sotype != SOCK_DGRAM) {
   1281 			if (++rep->r_rexmit > NFS_MAXREXMIT)
   1282 				rep->r_rexmit = NFS_MAXREXMIT;
   1283 			continue;
   1284 		}
   1285 		if ((so = nmp->nm_so) == NULL)
   1286 			continue;
   1287 
   1288 		/*
   1289 		 * If there is enough space and the window allows..
   1290 		 *	Resend it
   1291 		 * Set r_rtt to -1 in case we fail to send it now.
   1292 		 */
   1293 		rep->r_rtt = -1;
   1294 		if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
   1295 		   ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
   1296 		    (rep->r_flags & R_SENT) ||
   1297 		    nmp->nm_sent < nmp->nm_cwnd) &&
   1298 		   (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
   1299 			if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
   1300 			    error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
   1301 			    (struct mbuf *)0, (struct mbuf *)0);
   1302 			else
   1303 			    error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
   1304 			    nmp->nm_nam, (struct mbuf *)0);
   1305 			if (error) {
   1306 				if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
   1307 					so->so_error = 0;
   1308 			} else {
   1309 				/*
   1310 				 * Iff first send, start timing
   1311 				 * else turn timing off, backoff timer
   1312 				 * and divide congestion window by 2.
   1313 				 */
   1314 				if (rep->r_flags & R_SENT) {
   1315 					rep->r_flags &= ~R_TIMING;
   1316 					if (++rep->r_rexmit > NFS_MAXREXMIT)
   1317 						rep->r_rexmit = NFS_MAXREXMIT;
   1318 					nmp->nm_cwnd >>= 1;
   1319 					if (nmp->nm_cwnd < NFS_CWNDSCALE)
   1320 						nmp->nm_cwnd = NFS_CWNDSCALE;
   1321 					nfsstats.rpcretries++;
   1322 				} else {
   1323 					rep->r_flags |= R_SENT;
   1324 					nmp->nm_sent += NFS_CWNDSCALE;
   1325 				}
   1326 				rep->r_rtt = 0;
   1327 			}
   1328 		}
   1329 	}
   1330 
   1331 #ifdef NFSSERVER
   1332 	/*
   1333 	 * Call the nqnfs server timer once a second to handle leases.
   1334 	 */
   1335 	if (lasttime != time.tv_sec) {
   1336 		lasttime = time.tv_sec;
   1337 		nqnfs_serverd();
   1338 	}
   1339 
   1340 	/*
   1341 	 * Scan the write gathering queues for writes that need to be
   1342 	 * completed now.
   1343 	 */
   1344 	cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec;
   1345 	for (slp = nfssvc_sockhead.tqh_first; slp != 0;
   1346 	    slp = slp->ns_chain.tqe_next) {
   1347 	    if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
   1348 		nfsrv_wakenfsd(slp);
   1349 	}
   1350 #endif /* NFSSERVER */
   1351 	splx(s);
   1352 	timeout(nfs_timer, (void *)0, nfs_ticks);
   1353 }
   1354 
   1355 /*
   1356  * Test for a termination condition pending on the process.
   1357  * This is used for NFSMNT_INT mounts.
   1358  */
   1359 int
   1360 nfs_sigintr(nmp, rep, p)
   1361 	struct nfsmount *nmp;
   1362 	struct nfsreq *rep;
   1363 	register struct proc *p;
   1364 {
   1365 
   1366 	if (rep && (rep->r_flags & R_SOFTTERM))
   1367 		return (EINTR);
   1368 	if (!(nmp->nm_flag & NFSMNT_INT))
   1369 		return (0);
   1370 	if (p && p->p_siglist &&
   1371 	    (((p->p_siglist & ~p->p_sigmask) & ~p->p_sigignore) &
   1372 	    NFSINT_SIGMASK))
   1373 		return (EINTR);
   1374 	return (0);
   1375 }
   1376 
   1377 /*
   1378  * Lock a socket against others.
   1379  * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
   1380  * and also to avoid race conditions between the processes with nfs requests
   1381  * in progress when a reconnect is necessary.
   1382  */
   1383 int
   1384 nfs_sndlock(flagp, rep)
   1385 	register int *flagp;
   1386 	struct nfsreq *rep;
   1387 {
   1388 	struct proc *p;
   1389 	int slpflag = 0, slptimeo = 0;
   1390 
   1391 	if (rep) {
   1392 		p = rep->r_procp;
   1393 		if (rep->r_nmp->nm_flag & NFSMNT_INT)
   1394 			slpflag = PCATCH;
   1395 	} else
   1396 		p = (struct proc *)0;
   1397 	while (*flagp & NFSMNT_SNDLOCK) {
   1398 		if (nfs_sigintr(rep->r_nmp, rep, p))
   1399 			return (EINTR);
   1400 		*flagp |= NFSMNT_WANTSND;
   1401 		(void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck",
   1402 			slptimeo);
   1403 		if (slpflag == PCATCH) {
   1404 			slpflag = 0;
   1405 			slptimeo = 2 * hz;
   1406 		}
   1407 	}
   1408 	*flagp |= NFSMNT_SNDLOCK;
   1409 	return (0);
   1410 }
   1411 
   1412 /*
   1413  * Unlock the stream socket for others.
   1414  */
   1415 void
   1416 nfs_sndunlock(flagp)
   1417 	register int *flagp;
   1418 {
   1419 
   1420 	if ((*flagp & NFSMNT_SNDLOCK) == 0)
   1421 		panic("nfs sndunlock");
   1422 	*flagp &= ~NFSMNT_SNDLOCK;
   1423 	if (*flagp & NFSMNT_WANTSND) {
   1424 		*flagp &= ~NFSMNT_WANTSND;
   1425 		wakeup((caddr_t)flagp);
   1426 	}
   1427 }
   1428 
   1429 int
   1430 nfs_rcvlock(rep)
   1431 	register struct nfsreq *rep;
   1432 {
   1433 	register int *flagp = &rep->r_nmp->nm_flag;
   1434 	int slpflag, slptimeo = 0;
   1435 
   1436 	if (*flagp & NFSMNT_INT)
   1437 		slpflag = PCATCH;
   1438 	else
   1439 		slpflag = 0;
   1440 	while (*flagp & NFSMNT_RCVLOCK) {
   1441 		if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
   1442 			return (EINTR);
   1443 		*flagp |= NFSMNT_WANTRCV;
   1444 		(void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk",
   1445 			slptimeo);
   1446 		if (slpflag == PCATCH) {
   1447 			slpflag = 0;
   1448 			slptimeo = 2 * hz;
   1449 		}
   1450 	}
   1451 	*flagp |= NFSMNT_RCVLOCK;
   1452 	return (0);
   1453 }
   1454 
   1455 /*
   1456  * Unlock the stream socket for others.
   1457  */
   1458 void
   1459 nfs_rcvunlock(flagp)
   1460 	register int *flagp;
   1461 {
   1462 
   1463 	if ((*flagp & NFSMNT_RCVLOCK) == 0)
   1464 		panic("nfs rcvunlock");
   1465 	*flagp &= ~NFSMNT_RCVLOCK;
   1466 	if (*flagp & NFSMNT_WANTRCV) {
   1467 		*flagp &= ~NFSMNT_WANTRCV;
   1468 		wakeup((caddr_t)flagp);
   1469 	}
   1470 }
   1471 
   1472 /*
   1473  * Check for badly aligned mbuf data areas and
   1474  * realign data in an mbuf list by copying the data areas up, as required.
   1475  */
   1476 void
   1477 nfs_realign(m, hsiz)
   1478 	register struct mbuf *m;
   1479 	int hsiz;
   1480 {
   1481 	register struct mbuf *m2;
   1482 	register int siz, mlen, olen;
   1483 	register caddr_t tcp, fcp;
   1484 	struct mbuf *mnew;
   1485 
   1486 	while (m) {
   1487 	    /*
   1488 	     * This never happens for UDP, rarely happens for TCP
   1489 	     * but frequently happens for iso transport.
   1490 	     */
   1491 	    if ((m->m_len & 0x3) || (mtod(m, long) & 0x3)) {
   1492 		olen = m->m_len;
   1493 		fcp = mtod(m, caddr_t);
   1494 		if ((long)fcp & 0x3) {
   1495 			m->m_flags &= ~M_PKTHDR;
   1496 			if (m->m_flags & M_EXT)
   1497 				m->m_data = m->m_ext.ext_buf +
   1498 					((m->m_ext.ext_size - olen) & ~0x3);
   1499 			else
   1500 				m->m_data = m->m_dat;
   1501 		}
   1502 		m->m_len = 0;
   1503 		tcp = mtod(m, caddr_t);
   1504 		mnew = m;
   1505 		m2 = m->m_next;
   1506 
   1507 		/*
   1508 		 * If possible, only put the first invariant part
   1509 		 * of the RPC header in the first mbuf.
   1510 		 */
   1511 		mlen = M_TRAILINGSPACE(m);
   1512 		if (olen <= hsiz && mlen > hsiz)
   1513 			mlen = hsiz;
   1514 
   1515 		/*
   1516 		 * Loop through the mbuf list consolidating data.
   1517 		 */
   1518 		while (m) {
   1519 			while (olen > 0) {
   1520 				if (mlen == 0) {
   1521 					m2->m_flags &= ~M_PKTHDR;
   1522 					if (m2->m_flags & M_EXT)
   1523 						m2->m_data = m2->m_ext.ext_buf;
   1524 					else
   1525 						m2->m_data = m2->m_dat;
   1526 					m2->m_len = 0;
   1527 					mlen = M_TRAILINGSPACE(m2);
   1528 					tcp = mtod(m2, caddr_t);
   1529 					mnew = m2;
   1530 					m2 = m2->m_next;
   1531 				}
   1532 				siz = min(mlen, olen);
   1533 				if (tcp != fcp)
   1534 					bcopy(fcp, tcp, siz);
   1535 				mnew->m_len += siz;
   1536 				mlen -= siz;
   1537 				olen -= siz;
   1538 				tcp += siz;
   1539 				fcp += siz;
   1540 			}
   1541 			m = m->m_next;
   1542 			if (m) {
   1543 				olen = m->m_len;
   1544 				fcp = mtod(m, caddr_t);
   1545 			}
   1546 		}
   1547 
   1548 		/*
   1549 		 * Finally, set m_len == 0 for any trailing mbufs that have
   1550 		 * been copied out of.
   1551 		 */
   1552 		while (m2) {
   1553 			m2->m_len = 0;
   1554 			m2 = m2->m_next;
   1555 		}
   1556 		return;
   1557 	    }
   1558 	    m = m->m_next;
   1559 	}
   1560 }
   1561 
   1562 /*
   1563  * Parse an RPC request
   1564  * - verify it
   1565  * - fill in the cred struct.
   1566  */
   1567 int
   1568 nfs_getreq(nd, nfsd, has_header)
   1569 	register struct nfsrv_descript *nd;
   1570 	struct nfsd *nfsd;
   1571 	int has_header;
   1572 {
   1573 	register int len, i;
   1574 	register u_int32_t *tl;
   1575 	register int32_t t1;
   1576 	struct uio uio;
   1577 	struct iovec iov;
   1578 	caddr_t dpos, cp2, cp;
   1579 	u_int32_t nfsvers, auth_type;
   1580 	uid_t nickuid;
   1581 	int error = 0, nqnfs = 0, ticklen;
   1582 	struct mbuf *mrep, *md;
   1583 	register struct nfsuid *nuidp;
   1584 	struct timeval tvin, tvout;
   1585 
   1586 	mrep = nd->nd_mrep;
   1587 	md = nd->nd_md;
   1588 	dpos = nd->nd_dpos;
   1589 	if (has_header) {
   1590 		nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
   1591 		nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
   1592 		if (*tl++ != rpc_call) {
   1593 			m_freem(mrep);
   1594 			return (EBADRPC);
   1595 		}
   1596 	} else
   1597 		nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
   1598 	nd->nd_repstat = 0;
   1599 	nd->nd_flag = 0;
   1600 	if (*tl++ != rpc_vers) {
   1601 		nd->nd_repstat = ERPCMISMATCH;
   1602 		nd->nd_procnum = NFSPROC_NOOP;
   1603 		return (0);
   1604 	}
   1605 	if (*tl != nfs_prog) {
   1606 		if (*tl == nqnfs_prog)
   1607 			nqnfs++;
   1608 		else {
   1609 			nd->nd_repstat = EPROGUNAVAIL;
   1610 			nd->nd_procnum = NFSPROC_NOOP;
   1611 			return (0);
   1612 		}
   1613 	}
   1614 	tl++;
   1615 	nfsvers = fxdr_unsigned(u_int32_t, *tl++);
   1616 	if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) ||
   1617 		(nfsvers != NQNFS_VER3 && nqnfs)) {
   1618 		nd->nd_repstat = EPROGMISMATCH;
   1619 		nd->nd_procnum = NFSPROC_NOOP;
   1620 		return (0);
   1621 	}
   1622 	if (nqnfs)
   1623 		nd->nd_flag = (ND_NFSV3 | ND_NQNFS);
   1624 	else if (nfsvers == NFS_VER3)
   1625 		nd->nd_flag = ND_NFSV3;
   1626 	nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
   1627 	if (nd->nd_procnum == NFSPROC_NULL)
   1628 		return (0);
   1629 	if (nd->nd_procnum >= NFS_NPROCS ||
   1630 		(!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
   1631 		(!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
   1632 		nd->nd_repstat = EPROCUNAVAIL;
   1633 		nd->nd_procnum = NFSPROC_NOOP;
   1634 		return (0);
   1635 	}
   1636 	if ((nd->nd_flag & ND_NFSV3) == 0)
   1637 		nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
   1638 	auth_type = *tl++;
   1639 	len = fxdr_unsigned(int, *tl++);
   1640 	if (len < 0 || len > RPCAUTH_MAXSIZ) {
   1641 		m_freem(mrep);
   1642 		return (EBADRPC);
   1643 	}
   1644 
   1645 	nd->nd_flag &= ~ND_KERBAUTH;
   1646 	/*
   1647 	 * Handle auth_unix or auth_kerb.
   1648 	 */
   1649 	if (auth_type == rpc_auth_unix) {
   1650 		len = fxdr_unsigned(int, *++tl);
   1651 		if (len < 0 || len > NFS_MAXNAMLEN) {
   1652 			m_freem(mrep);
   1653 			return (EBADRPC);
   1654 		}
   1655 		nfsm_adv(nfsm_rndup(len));
   1656 		nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
   1657 		bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
   1658 		nd->nd_cr.cr_ref = 1;
   1659 		nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
   1660 		nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
   1661 		len = fxdr_unsigned(int, *tl);
   1662 		if (len < 0 || len > RPCAUTH_UNIXGIDS) {
   1663 			m_freem(mrep);
   1664 			return (EBADRPC);
   1665 		}
   1666 		nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
   1667 		for (i = 0; i < len; i++)
   1668 		    if (i < NGROUPS)
   1669 			nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
   1670 		    else
   1671 			tl++;
   1672 		nd->nd_cr.cr_ngroups = (len > NGROUPS) ? NGROUPS : len;
   1673 		if (nd->nd_cr.cr_ngroups > 1)
   1674 		    nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
   1675 		len = fxdr_unsigned(int, *++tl);
   1676 		if (len < 0 || len > RPCAUTH_MAXSIZ) {
   1677 			m_freem(mrep);
   1678 			return (EBADRPC);
   1679 		}
   1680 		if (len > 0)
   1681 			nfsm_adv(nfsm_rndup(len));
   1682 	} else if (auth_type == rpc_auth_kerb) {
   1683 		switch (fxdr_unsigned(int, *tl++)) {
   1684 		case RPCAKN_FULLNAME:
   1685 			ticklen = fxdr_unsigned(int, *tl);
   1686 			*((u_int32_t *)nfsd->nfsd_authstr) = *tl;
   1687 			uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
   1688 			nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
   1689 			if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
   1690 				m_freem(mrep);
   1691 				return (EBADRPC);
   1692 			}
   1693 			uio.uio_offset = 0;
   1694 			uio.uio_iov = &iov;
   1695 			uio.uio_iovcnt = 1;
   1696 			uio.uio_segflg = UIO_SYSSPACE;
   1697 			iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
   1698 			iov.iov_len = RPCAUTH_MAXSIZ - 4;
   1699 			nfsm_mtouio(&uio, uio.uio_resid);
   1700 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
   1701 			if (*tl++ != rpc_auth_kerb ||
   1702 				fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
   1703 				printf("Bad kerb verifier\n");
   1704 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
   1705 				nd->nd_procnum = NFSPROC_NOOP;
   1706 				return (0);
   1707 			}
   1708 			nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
   1709 			tl = (u_int32_t *)cp;
   1710 			if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
   1711 				printf("Not fullname kerb verifier\n");
   1712 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
   1713 				nd->nd_procnum = NFSPROC_NOOP;
   1714 				return (0);
   1715 			}
   1716 			cp += NFSX_UNSIGNED;
   1717 			bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
   1718 			nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
   1719 			nd->nd_flag |= ND_KERBFULL;
   1720 			nfsd->nfsd_flag |= NFSD_NEEDAUTH;
   1721 			break;
   1722 		case RPCAKN_NICKNAME:
   1723 			if (len != 2 * NFSX_UNSIGNED) {
   1724 				printf("Kerb nickname short\n");
   1725 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
   1726 				nd->nd_procnum = NFSPROC_NOOP;
   1727 				return (0);
   1728 			}
   1729 			nickuid = fxdr_unsigned(uid_t, *tl);
   1730 			nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
   1731 			if (*tl++ != rpc_auth_kerb ||
   1732 				fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
   1733 				printf("Kerb nick verifier bad\n");
   1734 				nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
   1735 				nd->nd_procnum = NFSPROC_NOOP;
   1736 				return (0);
   1737 			}
   1738 			nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
   1739 			tvin.tv_sec = *tl++;
   1740 			tvin.tv_usec = *tl;
   1741 
   1742 			for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
   1743 			    nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
   1744 				if (nuidp->nu_cr.cr_uid == nickuid &&
   1745 				    (!nd->nd_nam2 ||
   1746 				     netaddr_match(NU_NETFAM(nuidp),
   1747 				      &nuidp->nu_haddr, nd->nd_nam2)))
   1748 					break;
   1749 			}
   1750 			if (!nuidp) {
   1751 				nd->nd_repstat =
   1752 					(NFSERR_AUTHERR|AUTH_REJECTCRED);
   1753 				nd->nd_procnum = NFSPROC_NOOP;
   1754 				return (0);
   1755 			}
   1756 
   1757 			/*
   1758 			 * Now, decrypt the timestamp using the session key
   1759 			 * and validate it.
   1760 			 */
   1761 #ifdef NFSKERB
   1762 			XXX
   1763 #endif
   1764 
   1765 			tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
   1766 			tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
   1767 			if (nuidp->nu_expire < time.tv_sec ||
   1768 			    nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
   1769 			    (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
   1770 			     nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
   1771 				nuidp->nu_expire = 0;
   1772 				nd->nd_repstat =
   1773 				    (NFSERR_AUTHERR|AUTH_REJECTVERF);
   1774 				nd->nd_procnum = NFSPROC_NOOP;
   1775 				return (0);
   1776 			}
   1777 			nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
   1778 			nd->nd_flag |= ND_KERBNICK;
   1779 		};
   1780 	} else {
   1781 		nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
   1782 		nd->nd_procnum = NFSPROC_NOOP;
   1783 		return (0);
   1784 	}
   1785 
   1786 	/*
   1787 	 * For nqnfs, get piggybacked lease request.
   1788 	 */
   1789 	if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
   1790 		nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
   1791 		nd->nd_flag |= fxdr_unsigned(int, *tl);
   1792 		if (nd->nd_flag & ND_LEASE) {
   1793 			nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
   1794 			nd->nd_duration = fxdr_unsigned(u_int32_t, *tl);
   1795 		} else
   1796 			nd->nd_duration = NQ_MINLEASE;
   1797 	} else
   1798 		nd->nd_duration = NQ_MINLEASE;
   1799 	nd->nd_md = md;
   1800 	nd->nd_dpos = dpos;
   1801 	return (0);
   1802 nfsmout:
   1803 	return (error);
   1804 }
   1805 
   1806 int
   1807 nfs_msg(p, server, msg)
   1808 	struct proc *p;
   1809 	char *server, *msg;
   1810 {
   1811 	tpr_t tpr;
   1812 
   1813 	if (p)
   1814 		tpr = tprintf_open(p);
   1815 	else
   1816 		tpr = NULL;
   1817 	tprintf(tpr, "nfs server %s: %s\n", server, msg);
   1818 	tprintf_close(tpr);
   1819 	return (0);
   1820 }
   1821 
   1822 #ifdef NFSSERVER
   1823 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
   1824 				    struct nfssvc_sock *, struct proc *,
   1825 				    struct mbuf **)) = {
   1826 	nfsrv_null,
   1827 	nfsrv_getattr,
   1828 	nfsrv_setattr,
   1829 	nfsrv_lookup,
   1830 	nfsrv3_access,
   1831 	nfsrv_readlink,
   1832 	nfsrv_read,
   1833 	nfsrv_write,
   1834 	nfsrv_create,
   1835 	nfsrv_mkdir,
   1836 	nfsrv_symlink,
   1837 	nfsrv_mknod,
   1838 	nfsrv_remove,
   1839 	nfsrv_rmdir,
   1840 	nfsrv_rename,
   1841 	nfsrv_link,
   1842 	nfsrv_readdir,
   1843 	nfsrv_readdirplus,
   1844 	nfsrv_statfs,
   1845 	nfsrv_fsinfo,
   1846 	nfsrv_pathconf,
   1847 	nfsrv_commit,
   1848 	nqnfsrv_getlease,
   1849 	nqnfsrv_vacated,
   1850 	nfsrv_noop,
   1851 	nfsrv_noop
   1852 };
   1853 
   1854 /*
   1855  * Socket upcall routine for the nfsd sockets.
   1856  * The caddr_t arg is a pointer to the "struct nfssvc_sock".
   1857  * Essentially do as much as possible non-blocking, else punt and it will
   1858  * be called with M_WAIT from an nfsd.
   1859  */
   1860 void
   1861 nfsrv_rcv(so, arg, waitflag)
   1862 	struct socket *so;
   1863 	caddr_t arg;
   1864 	int waitflag;
   1865 {
   1866 	register struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
   1867 	register struct mbuf *m;
   1868 	struct mbuf *mp, *nam;
   1869 	struct uio auio;
   1870 	int flags, error;
   1871 
   1872 	if ((slp->ns_flag & SLP_VALID) == 0)
   1873 		return;
   1874 #ifdef notdef
   1875 	/*
   1876 	 * Define this to test for nfsds handling this under heavy load.
   1877 	 */
   1878 	if (waitflag == M_DONTWAIT) {
   1879 		slp->ns_flag |= SLP_NEEDQ; goto dorecs;
   1880 	}
   1881 #endif
   1882 	auio.uio_procp = NULL;
   1883 	if (so->so_type == SOCK_STREAM) {
   1884 		/*
   1885 		 * If there are already records on the queue, defer soreceive()
   1886 		 * to an nfsd so that there is feedback to the TCP layer that
   1887 		 * the nfs servers are heavily loaded.
   1888 		 */
   1889 		if (slp->ns_rec && waitflag == M_DONTWAIT) {
   1890 			slp->ns_flag |= SLP_NEEDQ;
   1891 			goto dorecs;
   1892 		}
   1893 
   1894 		/*
   1895 		 * Do soreceive().
   1896 		 */
   1897 		auio.uio_resid = 1000000000;
   1898 		flags = MSG_DONTWAIT;
   1899 		error = soreceive(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
   1900 		if (error || mp == (struct mbuf *)0) {
   1901 			if (error == EWOULDBLOCK)
   1902 				slp->ns_flag |= SLP_NEEDQ;
   1903 			else
   1904 				slp->ns_flag |= SLP_DISCONN;
   1905 			goto dorecs;
   1906 		}
   1907 		m = mp;
   1908 		if (slp->ns_rawend) {
   1909 			slp->ns_rawend->m_next = m;
   1910 			slp->ns_cc += 1000000000 - auio.uio_resid;
   1911 		} else {
   1912 			slp->ns_raw = m;
   1913 			slp->ns_cc = 1000000000 - auio.uio_resid;
   1914 		}
   1915 		while (m->m_next)
   1916 			m = m->m_next;
   1917 		slp->ns_rawend = m;
   1918 
   1919 		/*
   1920 		 * Now try and parse record(s) out of the raw stream data.
   1921 		 */
   1922 		error = nfsrv_getstream(slp, waitflag);
   1923 		if (error) {
   1924 			if (error == EPERM)
   1925 				slp->ns_flag |= SLP_DISCONN;
   1926 			else
   1927 				slp->ns_flag |= SLP_NEEDQ;
   1928 		}
   1929 	} else {
   1930 		do {
   1931 			auio.uio_resid = 1000000000;
   1932 			flags = MSG_DONTWAIT;
   1933 			error = soreceive(so, &nam, &auio, &mp,
   1934 						(struct mbuf **)0, &flags);
   1935 			if (mp) {
   1936 				nfs_realign(mp, 10 * NFSX_UNSIGNED);
   1937 				if (nam) {
   1938 					m = nam;
   1939 					m->m_next = mp;
   1940 				} else
   1941 					m = mp;
   1942 				if (slp->ns_recend)
   1943 					slp->ns_recend->m_nextpkt = m;
   1944 				else
   1945 					slp->ns_rec = m;
   1946 				slp->ns_recend = m;
   1947 				m->m_nextpkt = (struct mbuf *)0;
   1948 			}
   1949 			if (error) {
   1950 				if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
   1951 					&& error != EWOULDBLOCK) {
   1952 					slp->ns_flag |= SLP_DISCONN;
   1953 					goto dorecs;
   1954 				}
   1955 			}
   1956 		} while (mp);
   1957 	}
   1958 
   1959 	/*
   1960 	 * Now try and process the request records, non-blocking.
   1961 	 */
   1962 dorecs:
   1963 	if (waitflag == M_DONTWAIT &&
   1964 		(slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
   1965 		nfsrv_wakenfsd(slp);
   1966 }
   1967 
   1968 /*
   1969  * Try and extract an RPC request from the mbuf data list received on a
   1970  * stream socket. The "waitflag" argument indicates whether or not it
   1971  * can sleep.
   1972  */
   1973 int
   1974 nfsrv_getstream(slp, waitflag)
   1975 	register struct nfssvc_sock *slp;
   1976 	int waitflag;
   1977 {
   1978 	register struct mbuf *m, **mpp;
   1979 	register char *cp1, *cp2;
   1980 	register int len;
   1981 	struct mbuf *om, *m2, *recm = NULL;
   1982 	u_int32_t recmark;
   1983 
   1984 	if (slp->ns_flag & SLP_GETSTREAM)
   1985 		panic("nfs getstream");
   1986 	slp->ns_flag |= SLP_GETSTREAM;
   1987 	for (;;) {
   1988 	    if (slp->ns_reclen == 0) {
   1989 		if (slp->ns_cc < NFSX_UNSIGNED) {
   1990 			slp->ns_flag &= ~SLP_GETSTREAM;
   1991 			return (0);
   1992 		}
   1993 		m = slp->ns_raw;
   1994 		if (m->m_len >= NFSX_UNSIGNED) {
   1995 			bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
   1996 			m->m_data += NFSX_UNSIGNED;
   1997 			m->m_len -= NFSX_UNSIGNED;
   1998 		} else {
   1999 			cp1 = (caddr_t)&recmark;
   2000 			cp2 = mtod(m, caddr_t);
   2001 			while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
   2002 				while (m->m_len == 0) {
   2003 					m = m->m_next;
   2004 					cp2 = mtod(m, caddr_t);
   2005 				}
   2006 				*cp1++ = *cp2++;
   2007 				m->m_data++;
   2008 				m->m_len--;
   2009 			}
   2010 		}
   2011 		slp->ns_cc -= NFSX_UNSIGNED;
   2012 		recmark = ntohl(recmark);
   2013 		slp->ns_reclen = recmark & ~0x80000000;
   2014 		if (recmark & 0x80000000)
   2015 			slp->ns_flag |= SLP_LASTFRAG;
   2016 		else
   2017 			slp->ns_flag &= ~SLP_LASTFRAG;
   2018 		if (slp->ns_reclen < NFS_MINPACKET || slp->ns_reclen > NFS_MAXPACKET) {
   2019 			slp->ns_flag &= ~SLP_GETSTREAM;
   2020 			return (EPERM);
   2021 		}
   2022 	    }
   2023 
   2024 	    /*
   2025 	     * Now get the record part.
   2026 	     */
   2027 	    if (slp->ns_cc == slp->ns_reclen) {
   2028 		recm = slp->ns_raw;
   2029 		slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
   2030 		slp->ns_cc = slp->ns_reclen = 0;
   2031 	    } else if (slp->ns_cc > slp->ns_reclen) {
   2032 		len = 0;
   2033 		m = slp->ns_raw;
   2034 		om = (struct mbuf *)0;
   2035 		while (len < slp->ns_reclen) {
   2036 			if ((len + m->m_len) > slp->ns_reclen) {
   2037 				m2 = m_copym(m, 0, slp->ns_reclen - len,
   2038 					waitflag);
   2039 				if (m2) {
   2040 					if (om) {
   2041 						om->m_next = m2;
   2042 						recm = slp->ns_raw;
   2043 					} else
   2044 						recm = m2;
   2045 					m->m_data += slp->ns_reclen - len;
   2046 					m->m_len -= slp->ns_reclen - len;
   2047 					len = slp->ns_reclen;
   2048 				} else {
   2049 					slp->ns_flag &= ~SLP_GETSTREAM;
   2050 					return (EWOULDBLOCK);
   2051 				}
   2052 			} else if ((len + m->m_len) == slp->ns_reclen) {
   2053 				om = m;
   2054 				len += m->m_len;
   2055 				m = m->m_next;
   2056 				recm = slp->ns_raw;
   2057 				om->m_next = (struct mbuf *)0;
   2058 			} else {
   2059 				om = m;
   2060 				len += m->m_len;
   2061 				m = m->m_next;
   2062 			}
   2063 		}
   2064 		slp->ns_raw = m;
   2065 		slp->ns_cc -= len;
   2066 		slp->ns_reclen = 0;
   2067 	    } else {
   2068 		slp->ns_flag &= ~SLP_GETSTREAM;
   2069 		return (0);
   2070 	    }
   2071 
   2072 	    /*
   2073 	     * Accumulate the fragments into a record.
   2074 	     */
   2075 	    mpp = &slp->ns_frag;
   2076 	    while (*mpp)
   2077 		mpp = &((*mpp)->m_next);
   2078 	    *mpp = recm;
   2079 	    if (slp->ns_flag & SLP_LASTFRAG) {
   2080 		nfs_realign(slp->ns_frag, 10 * NFSX_UNSIGNED);
   2081 		if (slp->ns_recend)
   2082 		    slp->ns_recend->m_nextpkt = slp->ns_frag;
   2083 		else
   2084 		    slp->ns_rec = slp->ns_frag;
   2085 		slp->ns_recend = slp->ns_frag;
   2086 		slp->ns_frag = (struct mbuf *)0;
   2087 	    }
   2088 	}
   2089 }
   2090 
   2091 /*
   2092  * Parse an RPC header.
   2093  */
   2094 int
   2095 nfsrv_dorec(slp, nfsd, ndp)
   2096 	register struct nfssvc_sock *slp;
   2097 	struct nfsd *nfsd;
   2098 	struct nfsrv_descript **ndp;
   2099 {
   2100 	register struct mbuf *m, *nam;
   2101 	register struct nfsrv_descript *nd;
   2102 	int error;
   2103 
   2104 	*ndp = NULL;
   2105 	if ((slp->ns_flag & SLP_VALID) == 0 ||
   2106 	    (m = slp->ns_rec) == (struct mbuf *)0)
   2107 		return (ENOBUFS);
   2108 	slp->ns_rec = m->m_nextpkt;
   2109 	if (slp->ns_rec)
   2110 		m->m_nextpkt = (struct mbuf *)0;
   2111 	else
   2112 		slp->ns_recend = (struct mbuf *)0;
   2113 	if (m->m_type == MT_SONAME) {
   2114 		nam = m;
   2115 		m = m->m_next;
   2116 		nam->m_next = NULL;
   2117 	} else
   2118 		nam = NULL;
   2119 	MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
   2120 		M_NFSRVDESC, M_WAITOK);
   2121 	nd->nd_md = nd->nd_mrep = m;
   2122 	nd->nd_nam2 = nam;
   2123 	nd->nd_dpos = mtod(m, caddr_t);
   2124 	error = nfs_getreq(nd, nfsd, TRUE);
   2125 	if (error) {
   2126 		m_freem(nam);
   2127 		free((caddr_t)nd, M_NFSRVDESC);
   2128 		return (error);
   2129 	}
   2130 	*ndp = nd;
   2131 	nfsd->nfsd_nd = nd;
   2132 	return (0);
   2133 }
   2134 
   2135 
   2136 /*
   2137  * Search for a sleeping nfsd and wake it up.
   2138  * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
   2139  * running nfsds will go look for the work in the nfssvc_sock list.
   2140  */
   2141 void
   2142 nfsrv_wakenfsd(slp)
   2143 	struct nfssvc_sock *slp;
   2144 {
   2145 	register struct nfsd *nd;
   2146 
   2147 	if ((slp->ns_flag & SLP_VALID) == 0)
   2148 		return;
   2149 	for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) {
   2150 		if (nd->nfsd_flag & NFSD_WAITING) {
   2151 			nd->nfsd_flag &= ~NFSD_WAITING;
   2152 			if (nd->nfsd_slp)
   2153 				panic("nfsd wakeup");
   2154 			slp->ns_sref++;
   2155 			nd->nfsd_slp = slp;
   2156 			wakeup((caddr_t)nd);
   2157 			return;
   2158 		}
   2159 	}
   2160 	slp->ns_flag |= SLP_DOREC;
   2161 	nfsd_head_flag |= NFSD_CHECKSLP;
   2162 }
   2163 #endif /* NFSSERVER */
   2164