nfs_socket.c revision 1.26 1 /* $NetBSD: nfs_socket.c,v 1.26 1996/02/25 17:47:26 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1991, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
39 */
40
41 /*
42 * Socket operations for use by nfs
43 */
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/mount.h>
49 #include <sys/kernel.h>
50 #include <sys/mbuf.h>
51 #include <sys/vnode.h>
52 #include <sys/domain.h>
53 #include <sys/protosw.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/syslog.h>
57 #include <sys/tprintf.h>
58 #include <sys/namei.h>
59
60 #include <netinet/in.h>
61 #include <netinet/tcp.h>
62
63 #include <nfs/rpcv2.h>
64 #include <nfs/nfsproto.h>
65 #include <nfs/nfs.h>
66 #include <nfs/xdr_subs.h>
67 #include <nfs/nfsm_subs.h>
68 #include <nfs/nfsmount.h>
69 #include <nfs/nfsnode.h>
70 #include <nfs/nfsrtt.h>
71 #include <nfs/nqnfs.h>
72 #include <nfs/nfs_var.h>
73
74 #define TRUE 1
75 #define FALSE 0
76
77 /*
78 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
79 * Use the mean and mean deviation of rtt for the appropriate type of rpc
80 * for the frequent rpcs and a default for the others.
81 * The justification for doing "other" this way is that these rpcs
82 * happen so infrequently that timer est. would probably be stale.
83 * Also, since many of these rpcs are
84 * non-idempotent, a conservative timeout is desired.
85 * getattr, lookup - A+2D
86 * read, write - A+4D
87 * other - nm_timeo
88 */
89 #define NFS_RTO(n, t) \
90 ((t) == 0 ? (n)->nm_timeo : \
91 ((t) < 3 ? \
92 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
93 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
94 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
95 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
96 /*
97 * External data, mostly RPC constants in XDR form
98 */
99 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
100 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
101 rpc_auth_kerb;
102 extern u_int32_t nfs_prog, nqnfs_prog;
103 extern time_t nqnfsstarttime;
104 extern struct nfsstats nfsstats;
105 extern int nfsv3_procid[NFS_NPROCS];
106 extern int nfs_ticks;
107
108 /*
109 * Defines which timer to use for the procnum.
110 * 0 - default
111 * 1 - getattr
112 * 2 - lookup
113 * 3 - read
114 * 4 - write
115 */
116 static int proct[NFS_NPROCS] = {
117 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
118 0, 0, 0,
119 };
120
121 /*
122 * There is a congestion window for outstanding rpcs maintained per mount
123 * point. The cwnd size is adjusted in roughly the way that:
124 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
125 * SIGCOMM '88". ACM, August 1988.
126 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
127 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
128 * of rpcs is in progress.
129 * (The sent count and cwnd are scaled for integer arith.)
130 * Variants of "slow start" were tried and were found to be too much of a
131 * performance hit (ave. rtt 3 times larger),
132 * I suspect due to the large rtt that nfs rpcs have.
133 */
134 #define NFS_CWNDSCALE 256
135 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
136 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
137 int nfsrtton = 0;
138 struct nfsrtt nfsrtt;
139
140 /*
141 * Initialize sockets and congestion for a new NFS connection.
142 * We do not free the sockaddr if error.
143 */
144 int
145 nfs_connect(nmp, rep)
146 register struct nfsmount *nmp;
147 struct nfsreq *rep;
148 {
149 register struct socket *so;
150 int s, error, rcvreserve, sndreserve;
151 struct sockaddr *saddr;
152 struct sockaddr_in *sin;
153 struct mbuf *m;
154 u_int16_t tport;
155
156 nmp->nm_so = (struct socket *)0;
157 saddr = mtod(nmp->nm_nam, struct sockaddr *);
158 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
159 nmp->nm_soproto);
160 if (error)
161 goto bad;
162 so = nmp->nm_so;
163 nmp->nm_soflags = so->so_proto->pr_flags;
164
165 /*
166 * Some servers require that the client port be a reserved port number.
167 */
168 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
169 MGET(m, M_WAIT, MT_SONAME);
170 sin = mtod(m, struct sockaddr_in *);
171 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
172 sin->sin_family = AF_INET;
173 sin->sin_addr.s_addr = INADDR_ANY;
174 tport = IPPORT_RESERVED - 1;
175 sin->sin_port = htons(tport);
176 while ((error = sobind(so, m)) == EADDRINUSE &&
177 --tport > IPPORT_RESERVED / 2)
178 sin->sin_port = htons(tport);
179 m_freem(m);
180 if (error)
181 goto bad;
182 }
183
184 /*
185 * Protocols that do not require connections may be optionally left
186 * unconnected for servers that reply from a port other than NFS_PORT.
187 */
188 if (nmp->nm_flag & NFSMNT_NOCONN) {
189 if (nmp->nm_soflags & PR_CONNREQUIRED) {
190 error = ENOTCONN;
191 goto bad;
192 }
193 } else {
194 error = soconnect(so, nmp->nm_nam);
195 if (error)
196 goto bad;
197
198 /*
199 * Wait for the connection to complete. Cribbed from the
200 * connect system call but with the wait timing out so
201 * that interruptible mounts don't hang here for a long time.
202 */
203 s = splsoftnet();
204 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
205 (void) tsleep((caddr_t)&so->so_timeo, PSOCK,
206 "nfscon", 2 * hz);
207 if ((so->so_state & SS_ISCONNECTING) &&
208 so->so_error == 0 && rep &&
209 (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){
210 so->so_state &= ~SS_ISCONNECTING;
211 splx(s);
212 goto bad;
213 }
214 }
215 if (so->so_error) {
216 error = so->so_error;
217 so->so_error = 0;
218 splx(s);
219 goto bad;
220 }
221 splx(s);
222 }
223 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
224 so->so_rcv.sb_timeo = (5 * hz);
225 so->so_snd.sb_timeo = (5 * hz);
226 } else {
227 so->so_rcv.sb_timeo = 0;
228 so->so_snd.sb_timeo = 0;
229 }
230 if (nmp->nm_sotype == SOCK_DGRAM) {
231 sndreserve = nmp->nm_wsize + NFS_MAXPKTHDR;
232 rcvreserve = max(nmp->nm_rsize, nmp->nm_readdirsize) +
233 NFS_MAXPKTHDR;
234 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
235 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
236 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
237 NFS_MAXPKTHDR) * 2;
238 } else {
239 if (nmp->nm_sotype != SOCK_STREAM)
240 panic("nfscon sotype");
241 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
242 MGET(m, M_WAIT, MT_SOOPTS);
243 *mtod(m, int32_t *) = 1;
244 m->m_len = sizeof(int32_t);
245 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
246 }
247 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
248 MGET(m, M_WAIT, MT_SOOPTS);
249 *mtod(m, int32_t *) = 1;
250 m->m_len = sizeof(int32_t);
251 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
252 }
253 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
254 sizeof (u_int32_t)) * 2;
255 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
256 sizeof (u_int32_t)) * 2;
257 }
258 error = soreserve(so, sndreserve, rcvreserve);
259 if (error)
260 goto bad;
261 so->so_rcv.sb_flags |= SB_NOINTR;
262 so->so_snd.sb_flags |= SB_NOINTR;
263
264 /* Initialize other non-zero congestion variables */
265 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
266 nmp->nm_srtt[4] = (NFS_TIMEO << 3);
267 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
268 nmp->nm_sdrtt[3] = nmp->nm_sdrtt[4] = 0;
269 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
270 nmp->nm_sent = 0;
271 nmp->nm_timeouts = 0;
272 return (0);
273
274 bad:
275 nfs_disconnect(nmp);
276 return (error);
277 }
278
279 /*
280 * Reconnect routine:
281 * Called when a connection is broken on a reliable protocol.
282 * - clean up the old socket
283 * - nfs_connect() again
284 * - set R_MUSTRESEND for all outstanding requests on mount point
285 * If this fails the mount point is DEAD!
286 * nb: Must be called with the nfs_sndlock() set on the mount point.
287 */
288 int
289 nfs_reconnect(rep)
290 register struct nfsreq *rep;
291 {
292 register struct nfsreq *rp;
293 register struct nfsmount *nmp = rep->r_nmp;
294 int error;
295
296 nfs_disconnect(nmp);
297 while ((error = nfs_connect(nmp, rep)) != 0) {
298 if (error == EINTR || error == ERESTART)
299 return (EINTR);
300 (void) tsleep((caddr_t)&lbolt, PSOCK, "nfscon", 0);
301 }
302
303 /*
304 * Loop through outstanding request list and fix up all requests
305 * on old socket.
306 */
307 for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) {
308 if (rp->r_nmp == nmp)
309 rp->r_flags |= R_MUSTRESEND;
310 }
311 return (0);
312 }
313
314 /*
315 * NFS disconnect. Clean up and unlink.
316 */
317 void
318 nfs_disconnect(nmp)
319 register struct nfsmount *nmp;
320 {
321 register struct socket *so;
322
323 if (nmp->nm_so) {
324 so = nmp->nm_so;
325 nmp->nm_so = (struct socket *)0;
326 soshutdown(so, 2);
327 soclose(so);
328 }
329 }
330
331 /*
332 * This is the nfs send routine. For connection based socket types, it
333 * must be called with an nfs_sndlock() on the socket.
334 * "rep == NULL" indicates that it has been called from a server.
335 * For the client side:
336 * - return EINTR if the RPC is terminated, 0 otherwise
337 * - set R_MUSTRESEND if the send fails for any reason
338 * - do any cleanup required by recoverable socket errors (???)
339 * For the server side:
340 * - return EINTR or ERESTART if interrupted by a signal
341 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
342 * - do any cleanup required by recoverable socket errors (???)
343 */
344 int
345 nfs_send(so, nam, top, rep)
346 register struct socket *so;
347 struct mbuf *nam;
348 register struct mbuf *top;
349 struct nfsreq *rep;
350 {
351 struct mbuf *sendnam;
352 int error, soflags, flags;
353
354 if (rep) {
355 if (rep->r_flags & R_SOFTTERM) {
356 m_freem(top);
357 return (EINTR);
358 }
359 if ((so = rep->r_nmp->nm_so) == NULL) {
360 rep->r_flags |= R_MUSTRESEND;
361 m_freem(top);
362 return (0);
363 }
364 rep->r_flags &= ~R_MUSTRESEND;
365 soflags = rep->r_nmp->nm_soflags;
366 } else
367 soflags = so->so_proto->pr_flags;
368 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
369 sendnam = (struct mbuf *)0;
370 else
371 sendnam = nam;
372 if (so->so_type == SOCK_SEQPACKET)
373 flags = MSG_EOR;
374 else
375 flags = 0;
376
377 error = sosend(so, sendnam, (struct uio *)0, top,
378 (struct mbuf *)0, flags);
379 if (error) {
380 if (rep) {
381 log(LOG_INFO, "nfs send error %d for server %s\n",error,
382 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
383 /*
384 * Deal with errors for the client side.
385 */
386 if (rep->r_flags & R_SOFTTERM)
387 error = EINTR;
388 else
389 rep->r_flags |= R_MUSTRESEND;
390 } else
391 log(LOG_INFO, "nfsd send error %d\n", error);
392
393 /*
394 * Handle any recoverable (soft) socket errors here. (???)
395 */
396 if (error != EINTR && error != ERESTART &&
397 error != EWOULDBLOCK && error != EPIPE)
398 error = 0;
399 }
400 return (error);
401 }
402
403 #ifdef NFSCLIENT
404 /*
405 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
406 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
407 * Mark and consolidate the data into a new mbuf list.
408 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
409 * small mbufs.
410 * For SOCK_STREAM we must be very careful to read an entire record once
411 * we have read any of it, even if the system call has been interrupted.
412 */
413 int
414 nfs_receive(rep, aname, mp)
415 register struct nfsreq *rep;
416 struct mbuf **aname;
417 struct mbuf **mp;
418 {
419 register struct socket *so;
420 struct uio auio;
421 struct iovec aio;
422 register struct mbuf *m;
423 struct mbuf *control;
424 u_int32_t len;
425 struct mbuf **getnam;
426 int error, sotype, rcvflg;
427 struct proc *p = curproc; /* XXX */
428
429 /*
430 * Set up arguments for soreceive()
431 */
432 *mp = (struct mbuf *)0;
433 *aname = (struct mbuf *)0;
434 sotype = rep->r_nmp->nm_sotype;
435
436 /*
437 * For reliable protocols, lock against other senders/receivers
438 * in case a reconnect is necessary.
439 * For SOCK_STREAM, first get the Record Mark to find out how much
440 * more there is to get.
441 * We must lock the socket against other receivers
442 * until we have an entire rpc request/reply.
443 */
444 if (sotype != SOCK_DGRAM) {
445 error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
446 if (error)
447 return (error);
448 tryagain:
449 /*
450 * Check for fatal errors and resending request.
451 */
452 /*
453 * Ugh: If a reconnect attempt just happened, nm_so
454 * would have changed. NULL indicates a failed
455 * attempt that has essentially shut down this
456 * mount point.
457 */
458 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
459 nfs_sndunlock(&rep->r_nmp->nm_flag);
460 return (EINTR);
461 }
462 so = rep->r_nmp->nm_so;
463 if (!so) {
464 error = nfs_reconnect(rep);
465 if (error) {
466 nfs_sndunlock(&rep->r_nmp->nm_flag);
467 return (error);
468 }
469 goto tryagain;
470 }
471 while (rep->r_flags & R_MUSTRESEND) {
472 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
473 nfsstats.rpcretries++;
474 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
475 if (error) {
476 if (error == EINTR || error == ERESTART ||
477 (error = nfs_reconnect(rep)) != 0) {
478 nfs_sndunlock(&rep->r_nmp->nm_flag);
479 return (error);
480 }
481 goto tryagain;
482 }
483 }
484 nfs_sndunlock(&rep->r_nmp->nm_flag);
485 if (sotype == SOCK_STREAM) {
486 aio.iov_base = (caddr_t) &len;
487 aio.iov_len = sizeof(u_int32_t);
488 auio.uio_iov = &aio;
489 auio.uio_iovcnt = 1;
490 auio.uio_segflg = UIO_SYSSPACE;
491 auio.uio_rw = UIO_READ;
492 auio.uio_offset = 0;
493 auio.uio_resid = sizeof(u_int32_t);
494 auio.uio_procp = p;
495 do {
496 rcvflg = MSG_WAITALL;
497 error = soreceive(so, (struct mbuf **)0, &auio,
498 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
499 if (error == EWOULDBLOCK && rep) {
500 if (rep->r_flags & R_SOFTTERM)
501 return (EINTR);
502 }
503 } while (error == EWOULDBLOCK);
504 if (!error && auio.uio_resid > 0) {
505 log(LOG_INFO,
506 "short receive (%d/%d) from nfs server %s\n",
507 sizeof(u_int32_t) - auio.uio_resid,
508 sizeof(u_int32_t),
509 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
510 error = EPIPE;
511 }
512 if (error)
513 goto errout;
514 len = ntohl(len) & ~0x80000000;
515 /*
516 * This is SERIOUS! We are out of sync with the sender
517 * and forcing a disconnect/reconnect is all I can do.
518 */
519 if (len > NFS_MAXPACKET) {
520 log(LOG_ERR, "%s (%d) from nfs server %s\n",
521 "impossible packet length",
522 len,
523 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
524 error = EFBIG;
525 goto errout;
526 }
527 auio.uio_resid = len;
528 do {
529 rcvflg = MSG_WAITALL;
530 error = soreceive(so, (struct mbuf **)0,
531 &auio, mp, (struct mbuf **)0, &rcvflg);
532 } while (error == EWOULDBLOCK || error == EINTR ||
533 error == ERESTART);
534 if (!error && auio.uio_resid > 0) {
535 log(LOG_INFO,
536 "short receive (%d/%d) from nfs server %s\n",
537 len - auio.uio_resid, len,
538 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
539 error = EPIPE;
540 }
541 } else {
542 /*
543 * NB: Since uio_resid is big, MSG_WAITALL is ignored
544 * and soreceive() will return when it has either a
545 * control msg or a data msg.
546 * We have no use for control msg., but must grab them
547 * and then throw them away so we know what is going
548 * on.
549 */
550 auio.uio_resid = len = 100000000; /* Anything Big */
551 auio.uio_procp = p;
552 do {
553 rcvflg = 0;
554 error = soreceive(so, (struct mbuf **)0,
555 &auio, mp, &control, &rcvflg);
556 if (control)
557 m_freem(control);
558 if (error == EWOULDBLOCK && rep) {
559 if (rep->r_flags & R_SOFTTERM)
560 return (EINTR);
561 }
562 } while (error == EWOULDBLOCK ||
563 (!error && *mp == NULL && control));
564 if ((rcvflg & MSG_EOR) == 0)
565 printf("Egad!!\n");
566 if (!error && *mp == NULL)
567 error = EPIPE;
568 len -= auio.uio_resid;
569 }
570 errout:
571 if (error && error != EINTR && error != ERESTART) {
572 m_freem(*mp);
573 *mp = (struct mbuf *)0;
574 if (error != EPIPE)
575 log(LOG_INFO,
576 "receive error %d from nfs server %s\n",
577 error,
578 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
579 error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
580 if (!error)
581 error = nfs_reconnect(rep);
582 if (!error)
583 goto tryagain;
584 }
585 } else {
586 if ((so = rep->r_nmp->nm_so) == NULL)
587 return (EACCES);
588 if (so->so_state & SS_ISCONNECTED)
589 getnam = (struct mbuf **)0;
590 else
591 getnam = aname;
592 auio.uio_resid = len = 1000000;
593 auio.uio_procp = p;
594 do {
595 rcvflg = 0;
596 error = soreceive(so, getnam, &auio, mp,
597 (struct mbuf **)0, &rcvflg);
598 if (error == EWOULDBLOCK &&
599 (rep->r_flags & R_SOFTTERM))
600 return (EINTR);
601 } while (error == EWOULDBLOCK);
602 len -= auio.uio_resid;
603 }
604 if (error) {
605 m_freem(*mp);
606 *mp = (struct mbuf *)0;
607 }
608 /*
609 * Search for any mbufs that are not a multiple of 4 bytes long
610 * or with m_data not longword aligned.
611 * These could cause pointer alignment problems, so copy them to
612 * well aligned mbufs.
613 */
614 nfs_realign(*mp, 5 * NFSX_UNSIGNED);
615 return (error);
616 }
617
618 /*
619 * Implement receipt of reply on a socket.
620 * We must search through the list of received datagrams matching them
621 * with outstanding requests using the xid, until ours is found.
622 */
623 /* ARGSUSED */
624 int
625 nfs_reply(myrep)
626 struct nfsreq *myrep;
627 {
628 register struct nfsreq *rep;
629 register struct nfsmount *nmp = myrep->r_nmp;
630 register int32_t t1;
631 struct mbuf *mrep, *nam, *md;
632 u_int32_t rxid, *tl;
633 caddr_t dpos, cp2;
634 int error;
635
636 /*
637 * Loop around until we get our own reply
638 */
639 for (;;) {
640 /*
641 * Lock against other receivers so that I don't get stuck in
642 * sbwait() after someone else has received my reply for me.
643 * Also necessary for connection based protocols to avoid
644 * race conditions during a reconnect.
645 */
646 error = nfs_rcvlock(myrep);
647 if (error)
648 return (error);
649 /* Already received, bye bye */
650 if (myrep->r_mrep != NULL) {
651 nfs_rcvunlock(&nmp->nm_flag);
652 return (0);
653 }
654 /*
655 * Get the next Rpc reply off the socket
656 */
657 error = nfs_receive(myrep, &nam, &mrep);
658 nfs_rcvunlock(&nmp->nm_flag);
659 if (error) {
660
661 /*
662 * Ignore routing errors on connectionless protocols??
663 */
664 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
665 nmp->nm_so->so_error = 0;
666 if (myrep->r_flags & R_GETONEREP)
667 return (0);
668 continue;
669 }
670 return (error);
671 }
672 if (nam)
673 m_freem(nam);
674
675 /*
676 * Get the xid and check that it is an rpc reply
677 */
678 md = mrep;
679 dpos = mtod(md, caddr_t);
680 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
681 rxid = *tl++;
682 if (*tl != rpc_reply) {
683 if (nmp->nm_flag & NFSMNT_NQNFS) {
684 if (nqnfs_callback(nmp, mrep, md, dpos))
685 nfsstats.rpcinvalid++;
686 } else {
687 nfsstats.rpcinvalid++;
688 m_freem(mrep);
689 }
690 nfsmout:
691 if (myrep->r_flags & R_GETONEREP)
692 return (0);
693 continue;
694 }
695
696 /*
697 * Loop through the request list to match up the reply
698 * Iff no match, just drop the datagram
699 */
700 for (rep = nfs_reqq.tqh_first; rep != 0;
701 rep = rep->r_chain.tqe_next) {
702 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
703 /* Found it.. */
704 rep->r_mrep = mrep;
705 rep->r_md = md;
706 rep->r_dpos = dpos;
707 if (nfsrtton) {
708 struct rttl *rt;
709
710 rt = &nfsrtt.rttl[nfsrtt.pos];
711 rt->proc = rep->r_procnum;
712 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
713 rt->sent = nmp->nm_sent;
714 rt->cwnd = nmp->nm_cwnd;
715 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
716 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
717 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
718 rt->tstamp = time;
719 if (rep->r_flags & R_TIMING)
720 rt->rtt = rep->r_rtt;
721 else
722 rt->rtt = 1000000;
723 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
724 }
725 /*
726 * Update congestion window.
727 * Do the additive increase of
728 * one rpc/rtt.
729 */
730 if (nmp->nm_cwnd <= nmp->nm_sent) {
731 nmp->nm_cwnd +=
732 (NFS_CWNDSCALE * NFS_CWNDSCALE +
733 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
734 if (nmp->nm_cwnd > NFS_MAXCWND)
735 nmp->nm_cwnd = NFS_MAXCWND;
736 }
737 rep->r_flags &= ~R_SENT;
738 nmp->nm_sent -= NFS_CWNDSCALE;
739 /*
740 * Update rtt using a gain of 0.125 on the mean
741 * and a gain of 0.25 on the deviation.
742 */
743 if (rep->r_flags & R_TIMING) {
744 /*
745 * Since the timer resolution of
746 * NFS_HZ is so course, it can often
747 * result in r_rtt == 0. Since
748 * r_rtt == N means that the actual
749 * rtt is between N+dt and N+2-dt ticks,
750 * add 1.
751 */
752 t1 = rep->r_rtt + 1;
753 t1 -= (NFS_SRTT(rep) >> 3);
754 NFS_SRTT(rep) += t1;
755 if (t1 < 0)
756 t1 = -t1;
757 t1 -= (NFS_SDRTT(rep) >> 2);
758 NFS_SDRTT(rep) += t1;
759 }
760 nmp->nm_timeouts = 0;
761 break;
762 }
763 }
764 /*
765 * If not matched to a request, drop it.
766 * If it's mine, get out.
767 */
768 if (rep == 0) {
769 nfsstats.rpcunexpected++;
770 m_freem(mrep);
771 } else if (rep == myrep) {
772 if (rep->r_mrep == NULL)
773 panic("nfsreply nil");
774 return (0);
775 }
776 if (myrep->r_flags & R_GETONEREP)
777 return (0);
778 }
779 }
780
781 /*
782 * nfs_request - goes something like this
783 * - fill in request struct
784 * - links it into list
785 * - calls nfs_send() for first transmit
786 * - calls nfs_receive() to get reply
787 * - break down rpc header and return with nfs reply pointed to
788 * by mrep or error
789 * nb: always frees up mreq mbuf list
790 */
791 int
792 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp)
793 struct vnode *vp;
794 struct mbuf *mrest;
795 int procnum;
796 struct proc *procp;
797 struct ucred *cred;
798 struct mbuf **mrp;
799 struct mbuf **mdp;
800 caddr_t *dposp;
801 {
802 register struct mbuf *m, *mrep;
803 register struct nfsreq *rep;
804 register u_int32_t *tl;
805 register int i;
806 struct nfsmount *nmp;
807 struct mbuf *md, *mheadend;
808 struct nfsnode *np;
809 char nickv[RPCX_NICKVERF];
810 time_t reqtime, waituntil;
811 caddr_t dpos, cp2;
812 int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type;
813 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
814 int verf_len, verf_type;
815 u_int32_t xid;
816 u_quad_t frev;
817 char *auth_str, *verf_str;
818 NFSKERBKEY_T key; /* save session key */
819
820 nmp = VFSTONFS(vp->v_mount);
821 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
822 rep->r_nmp = nmp;
823 rep->r_vp = vp;
824 rep->r_procp = procp;
825 rep->r_procnum = procnum;
826 i = 0;
827 m = mrest;
828 while (m) {
829 i += m->m_len;
830 m = m->m_next;
831 }
832 mrest_len = i;
833
834 /*
835 * Get the RPC header with authorization.
836 */
837 kerbauth:
838 verf_str = auth_str = (char *)0;
839 if (nmp->nm_flag & NFSMNT_KERB) {
840 verf_str = nickv;
841 verf_len = sizeof (nickv);
842 auth_type = RPCAUTH_KERB4;
843 bzero((caddr_t)key, sizeof (key));
844 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
845 &auth_len, verf_str, verf_len)) {
846 error = nfs_getauth(nmp, rep, cred, &auth_str,
847 &auth_len, verf_str, &verf_len, key);
848 if (error) {
849 free((caddr_t)rep, M_NFSREQ);
850 m_freem(mrest);
851 return (error);
852 }
853 }
854 } else {
855 auth_type = RPCAUTH_UNIX;
856 auth_len = (((cred->cr_ngroups > nmp->nm_numgrps) ?
857 nmp->nm_numgrps : cred->cr_ngroups) << 2) +
858 5 * NFSX_UNSIGNED;
859 }
860 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
861 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
862 if (auth_str)
863 free(auth_str, M_TEMP);
864
865 /*
866 * For stream protocols, insert a Sun RPC Record Mark.
867 */
868 if (nmp->nm_sotype == SOCK_STREAM) {
869 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
870 *mtod(m, u_int32_t *) = htonl(0x80000000 |
871 (m->m_pkthdr.len - NFSX_UNSIGNED));
872 }
873 rep->r_mreq = m;
874 rep->r_xid = xid;
875 tryagain:
876 if (nmp->nm_flag & NFSMNT_SOFT)
877 rep->r_retry = nmp->nm_retry;
878 else
879 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
880 rep->r_rtt = rep->r_rexmit = 0;
881 if (proct[procnum] > 0)
882 rep->r_flags = R_TIMING;
883 else
884 rep->r_flags = 0;
885 rep->r_mrep = NULL;
886
887 /*
888 * Do the client side RPC.
889 */
890 nfsstats.rpcrequests++;
891 /*
892 * Chain request into list of outstanding requests. Be sure
893 * to put it LAST so timer finds oldest requests first.
894 */
895 s = splsoftclock();
896 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
897
898 /* Get send time for nqnfs */
899 reqtime = time.tv_sec;
900
901 /*
902 * If backing off another request or avoiding congestion, don't
903 * send this one now but let timer do it. If not timing a request,
904 * do it now.
905 */
906 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
907 (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
908 nmp->nm_sent < nmp->nm_cwnd)) {
909 splx(s);
910 if (nmp->nm_soflags & PR_CONNREQUIRED)
911 error = nfs_sndlock(&nmp->nm_flag, rep);
912 if (!error) {
913 m = m_copym(m, 0, M_COPYALL, M_WAIT);
914 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
915 if (nmp->nm_soflags & PR_CONNREQUIRED)
916 nfs_sndunlock(&nmp->nm_flag);
917 }
918 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
919 nmp->nm_sent += NFS_CWNDSCALE;
920 rep->r_flags |= R_SENT;
921 }
922 } else {
923 splx(s);
924 rep->r_rtt = -1;
925 }
926
927 /*
928 * Wait for the reply from our send or the timer's.
929 */
930 if (!error || error == EPIPE)
931 error = nfs_reply(rep);
932
933 /*
934 * RPC done, unlink the request.
935 */
936 s = splsoftclock();
937 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
938 splx(s);
939
940 /*
941 * Decrement the outstanding request count.
942 */
943 if (rep->r_flags & R_SENT) {
944 rep->r_flags &= ~R_SENT; /* paranoia */
945 nmp->nm_sent -= NFS_CWNDSCALE;
946 }
947
948 /*
949 * If there was a successful reply and a tprintf msg.
950 * tprintf a response.
951 */
952 if (!error && (rep->r_flags & R_TPRINTFMSG))
953 nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
954 "is alive again");
955 mrep = rep->r_mrep;
956 md = rep->r_md;
957 dpos = rep->r_dpos;
958 if (error) {
959 m_freem(rep->r_mreq);
960 free((caddr_t)rep, M_NFSREQ);
961 return (error);
962 }
963
964 /*
965 * break down the rpc header and check if ok
966 */
967 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
968 if (*tl++ == rpc_msgdenied) {
969 if (*tl == rpc_mismatch)
970 error = EOPNOTSUPP;
971 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
972 if (!failed_auth) {
973 failed_auth++;
974 mheadend->m_next = (struct mbuf *)0;
975 m_freem(mrep);
976 m_freem(rep->r_mreq);
977 goto kerbauth;
978 } else
979 error = EAUTH;
980 } else
981 error = EACCES;
982 m_freem(mrep);
983 m_freem(rep->r_mreq);
984 free((caddr_t)rep, M_NFSREQ);
985 return (error);
986 }
987
988 /*
989 * Grab any Kerberos verifier, otherwise just throw it away.
990 */
991 verf_type = fxdr_unsigned(int, *tl++);
992 i = fxdr_unsigned(int32_t, *tl);
993 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
994 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
995 if (error)
996 goto nfsmout;
997 } else if (i > 0)
998 nfsm_adv(nfsm_rndup(i));
999 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1000 /* 0 == ok */
1001 if (*tl == 0) {
1002 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1003 if (*tl != 0) {
1004 error = fxdr_unsigned(int, *tl);
1005 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1006 error == NFSERR_TRYLATER) {
1007 m_freem(mrep);
1008 error = 0;
1009 waituntil = time.tv_sec + trylater_delay;
1010 while (time.tv_sec < waituntil)
1011 (void) tsleep((caddr_t)&lbolt,
1012 PSOCK, "nqnfstry", 0);
1013 trylater_delay *= nfs_backoff[trylater_cnt];
1014 if (trylater_cnt < 7)
1015 trylater_cnt++;
1016 goto tryagain;
1017 }
1018
1019 /*
1020 * If the File Handle was stale, invalidate the
1021 * lookup cache, just in case.
1022 */
1023 if (error == ESTALE)
1024 cache_purge(vp);
1025 if (nmp->nm_flag & NFSMNT_NFSV3) {
1026 *mrp = mrep;
1027 *mdp = md;
1028 *dposp = dpos;
1029 error |= NFSERR_RETERR;
1030 } else
1031 m_freem(mrep);
1032 m_freem(rep->r_mreq);
1033 free((caddr_t)rep, M_NFSREQ);
1034 return (error);
1035 }
1036
1037 /*
1038 * For nqnfs, get any lease in reply
1039 */
1040 if (nmp->nm_flag & NFSMNT_NQNFS) {
1041 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1042 if (*tl) {
1043 np = VTONFS(vp);
1044 nqlflag = fxdr_unsigned(int, *tl);
1045 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED);
1046 cachable = fxdr_unsigned(int, *tl++);
1047 reqtime += fxdr_unsigned(int, *tl++);
1048 if (reqtime > time.tv_sec) {
1049 fxdr_hyper(tl, &frev);
1050 nqnfs_clientlease(nmp, np, nqlflag,
1051 cachable, reqtime, frev);
1052 }
1053 }
1054 }
1055 *mrp = mrep;
1056 *mdp = md;
1057 *dposp = dpos;
1058 m_freem(rep->r_mreq);
1059 FREE((caddr_t)rep, M_NFSREQ);
1060 return (0);
1061 }
1062 m_freem(mrep);
1063 error = EPROTONOSUPPORT;
1064 nfsmout:
1065 m_freem(rep->r_mreq);
1066 free((caddr_t)rep, M_NFSREQ);
1067 return (error);
1068 }
1069 #endif /* NFSCLIENT */
1070
1071 /*
1072 * Generate the rpc reply header
1073 * siz arg. is used to decide if adding a cluster is worthwhile
1074 */
1075 int
1076 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1077 int siz;
1078 struct nfsrv_descript *nd;
1079 struct nfssvc_sock *slp;
1080 int err;
1081 int cache;
1082 u_quad_t *frev;
1083 struct mbuf **mrq;
1084 struct mbuf **mbp;
1085 caddr_t *bposp;
1086 {
1087 register u_int32_t *tl;
1088 register struct mbuf *mreq;
1089 caddr_t bpos;
1090 struct mbuf *mb, *mb2;
1091
1092 MGETHDR(mreq, M_WAIT, MT_DATA);
1093 mb = mreq;
1094 /*
1095 * If this is a big reply, use a cluster else
1096 * try and leave leading space for the lower level headers.
1097 */
1098 siz += RPC_REPLYSIZ;
1099 if (siz >= MINCLSIZE) {
1100 MCLGET(mreq, M_WAIT);
1101 } else
1102 mreq->m_data += max_hdr;
1103 tl = mtod(mreq, u_int32_t *);
1104 mreq->m_len = 6 * NFSX_UNSIGNED;
1105 bpos = ((caddr_t)tl) + mreq->m_len;
1106 *tl++ = txdr_unsigned(nd->nd_retxid);
1107 *tl++ = rpc_reply;
1108 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1109 *tl++ = rpc_msgdenied;
1110 if (err & NFSERR_AUTHERR) {
1111 *tl++ = rpc_autherr;
1112 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1113 mreq->m_len -= NFSX_UNSIGNED;
1114 bpos -= NFSX_UNSIGNED;
1115 } else {
1116 *tl++ = rpc_mismatch;
1117 *tl++ = txdr_unsigned(RPC_VER2);
1118 *tl = txdr_unsigned(RPC_VER2);
1119 }
1120 } else {
1121 *tl++ = rpc_msgaccepted;
1122
1123 /*
1124 * For Kerberos authentication, we must send the nickname
1125 * verifier back, otherwise just RPCAUTH_NULL.
1126 */
1127 if (nd->nd_flag & ND_KERBFULL) {
1128 register struct nfsuid *nuidp;
1129 struct timeval ktvin, ktvout;
1130
1131 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1132 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1133 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1134 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1135 &nuidp->nu_haddr, nd->nd_nam2)))
1136 break;
1137 }
1138 if (nuidp) {
1139 ktvin.tv_sec =
1140 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1141 ktvin.tv_usec =
1142 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1143
1144 /*
1145 * Encrypt the timestamp in ecb mode using the
1146 * session key.
1147 */
1148 #ifdef NFSKERB
1149 XXX
1150 #endif
1151
1152 *tl++ = rpc_auth_kerb;
1153 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1154 *tl = ktvout.tv_sec;
1155 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1156 *tl++ = ktvout.tv_usec;
1157 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1158 } else {
1159 *tl++ = 0;
1160 *tl++ = 0;
1161 }
1162 } else {
1163 *tl++ = 0;
1164 *tl++ = 0;
1165 }
1166 switch (err) {
1167 case EPROGUNAVAIL:
1168 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1169 break;
1170 case EPROGMISMATCH:
1171 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1172 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1173 if (nd->nd_flag & ND_NQNFS) {
1174 *tl++ = txdr_unsigned(3);
1175 *tl = txdr_unsigned(3);
1176 } else {
1177 *tl++ = txdr_unsigned(2);
1178 *tl = txdr_unsigned(3);
1179 }
1180 break;
1181 case EPROCUNAVAIL:
1182 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1183 break;
1184 case EBADRPC:
1185 *tl = txdr_unsigned(RPC_GARBAGE);
1186 break;
1187 default:
1188 *tl = 0;
1189 if (err != NFSERR_RETVOID) {
1190 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1191 if (err)
1192 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1193 else
1194 *tl = 0;
1195 }
1196 break;
1197 };
1198 }
1199
1200 /*
1201 * For nqnfs, piggyback lease as requested.
1202 */
1203 if ((nd->nd_flag & ND_NQNFS) && err == 0) {
1204 if (nd->nd_flag & ND_LEASE) {
1205 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1206 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE);
1207 *tl++ = txdr_unsigned(cache);
1208 *tl++ = txdr_unsigned(nd->nd_duration);
1209 txdr_hyper(frev, tl);
1210 } else {
1211 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1212 *tl = 0;
1213 }
1214 }
1215 *mrq = mreq;
1216 *mbp = mb;
1217 *bposp = bpos;
1218 if (err != 0 && err != NFSERR_RETVOID)
1219 nfsstats.srvrpc_errs++;
1220 return (0);
1221 }
1222
1223 /*
1224 * Nfs timer routine
1225 * Scan the nfsreq list and retranmit any requests that have timed out
1226 * To avoid retransmission attempts on STREAM sockets (in the future) make
1227 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1228 */
1229 void
1230 nfs_timer(arg)
1231 void *arg; /* never used */
1232 {
1233 register struct nfsreq *rep;
1234 register struct mbuf *m;
1235 register struct socket *so;
1236 register struct nfsmount *nmp;
1237 register int timeo;
1238 register struct nfssvc_sock *slp;
1239 #ifdef NFSSERVER
1240 static long lasttime = 0;
1241 #endif
1242 int s, error;
1243 u_quad_t cur_usec;
1244
1245 s = splsoftnet();
1246 for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) {
1247 nmp = rep->r_nmp;
1248 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1249 continue;
1250 if (nfs_sigintr(nmp, rep, rep->r_procp)) {
1251 rep->r_flags |= R_SOFTTERM;
1252 continue;
1253 }
1254 if (rep->r_rtt >= 0) {
1255 rep->r_rtt++;
1256 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1257 timeo = nmp->nm_timeo;
1258 else
1259 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1260 if (nmp->nm_timeouts > 0)
1261 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1262 if (rep->r_rtt <= timeo)
1263 continue;
1264 if (nmp->nm_timeouts < 8)
1265 nmp->nm_timeouts++;
1266 }
1267 /*
1268 * Check for server not responding
1269 */
1270 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1271 rep->r_rexmit > nmp->nm_deadthresh) {
1272 nfs_msg(rep->r_procp,
1273 nmp->nm_mountp->mnt_stat.f_mntfromname,
1274 "not responding");
1275 rep->r_flags |= R_TPRINTFMSG;
1276 }
1277 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1278 nfsstats.rpctimeouts++;
1279 rep->r_flags |= R_SOFTTERM;
1280 continue;
1281 }
1282 if (nmp->nm_sotype != SOCK_DGRAM) {
1283 if (++rep->r_rexmit > NFS_MAXREXMIT)
1284 rep->r_rexmit = NFS_MAXREXMIT;
1285 continue;
1286 }
1287 if ((so = nmp->nm_so) == NULL)
1288 continue;
1289
1290 /*
1291 * If there is enough space and the window allows..
1292 * Resend it
1293 * Set r_rtt to -1 in case we fail to send it now.
1294 */
1295 rep->r_rtt = -1;
1296 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1297 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1298 (rep->r_flags & R_SENT) ||
1299 nmp->nm_sent < nmp->nm_cwnd) &&
1300 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1301 if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1302 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1303 (struct mbuf *)0, (struct mbuf *)0);
1304 else
1305 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1306 nmp->nm_nam, (struct mbuf *)0);
1307 if (error) {
1308 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error))
1309 so->so_error = 0;
1310 } else {
1311 /*
1312 * Iff first send, start timing
1313 * else turn timing off, backoff timer
1314 * and divide congestion window by 2.
1315 */
1316 if (rep->r_flags & R_SENT) {
1317 rep->r_flags &= ~R_TIMING;
1318 if (++rep->r_rexmit > NFS_MAXREXMIT)
1319 rep->r_rexmit = NFS_MAXREXMIT;
1320 nmp->nm_cwnd >>= 1;
1321 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1322 nmp->nm_cwnd = NFS_CWNDSCALE;
1323 nfsstats.rpcretries++;
1324 } else {
1325 rep->r_flags |= R_SENT;
1326 nmp->nm_sent += NFS_CWNDSCALE;
1327 }
1328 rep->r_rtt = 0;
1329 }
1330 }
1331 }
1332
1333 #ifdef NFSSERVER
1334 /*
1335 * Call the nqnfs server timer once a second to handle leases.
1336 */
1337 if (lasttime != time.tv_sec) {
1338 lasttime = time.tv_sec;
1339 nqnfs_serverd();
1340 }
1341
1342 /*
1343 * Scan the write gathering queues for writes that need to be
1344 * completed now.
1345 */
1346 cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec;
1347 for (slp = nfssvc_sockhead.tqh_first; slp != 0;
1348 slp = slp->ns_chain.tqe_next) {
1349 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
1350 nfsrv_wakenfsd(slp);
1351 }
1352 #endif /* NFSSERVER */
1353 splx(s);
1354 timeout(nfs_timer, (void *)0, nfs_ticks);
1355 }
1356
1357 /*
1358 * Test for a termination condition pending on the process.
1359 * This is used for NFSMNT_INT mounts.
1360 */
1361 int
1362 nfs_sigintr(nmp, rep, p)
1363 struct nfsmount *nmp;
1364 struct nfsreq *rep;
1365 register struct proc *p;
1366 {
1367
1368 if (rep && (rep->r_flags & R_SOFTTERM))
1369 return (EINTR);
1370 if (!(nmp->nm_flag & NFSMNT_INT))
1371 return (0);
1372 if (p && p->p_siglist &&
1373 (((p->p_siglist & ~p->p_sigmask) & ~p->p_sigignore) &
1374 NFSINT_SIGMASK))
1375 return (EINTR);
1376 return (0);
1377 }
1378
1379 /*
1380 * Lock a socket against others.
1381 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1382 * and also to avoid race conditions between the processes with nfs requests
1383 * in progress when a reconnect is necessary.
1384 */
1385 int
1386 nfs_sndlock(flagp, rep)
1387 register int *flagp;
1388 struct nfsreq *rep;
1389 {
1390 struct proc *p;
1391 int slpflag = 0, slptimeo = 0;
1392
1393 if (rep) {
1394 p = rep->r_procp;
1395 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1396 slpflag = PCATCH;
1397 } else
1398 p = (struct proc *)0;
1399 while (*flagp & NFSMNT_SNDLOCK) {
1400 if (nfs_sigintr(rep->r_nmp, rep, p))
1401 return (EINTR);
1402 *flagp |= NFSMNT_WANTSND;
1403 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck",
1404 slptimeo);
1405 if (slpflag == PCATCH) {
1406 slpflag = 0;
1407 slptimeo = 2 * hz;
1408 }
1409 }
1410 *flagp |= NFSMNT_SNDLOCK;
1411 return (0);
1412 }
1413
1414 /*
1415 * Unlock the stream socket for others.
1416 */
1417 void
1418 nfs_sndunlock(flagp)
1419 register int *flagp;
1420 {
1421
1422 if ((*flagp & NFSMNT_SNDLOCK) == 0)
1423 panic("nfs sndunlock");
1424 *flagp &= ~NFSMNT_SNDLOCK;
1425 if (*flagp & NFSMNT_WANTSND) {
1426 *flagp &= ~NFSMNT_WANTSND;
1427 wakeup((caddr_t)flagp);
1428 }
1429 }
1430
1431 int
1432 nfs_rcvlock(rep)
1433 register struct nfsreq *rep;
1434 {
1435 register int *flagp = &rep->r_nmp->nm_flag;
1436 int slpflag, slptimeo = 0;
1437
1438 if (*flagp & NFSMNT_INT)
1439 slpflag = PCATCH;
1440 else
1441 slpflag = 0;
1442 while (*flagp & NFSMNT_RCVLOCK) {
1443 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
1444 return (EINTR);
1445 *flagp |= NFSMNT_WANTRCV;
1446 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk",
1447 slptimeo);
1448 if (slpflag == PCATCH) {
1449 slpflag = 0;
1450 slptimeo = 2 * hz;
1451 }
1452 }
1453 *flagp |= NFSMNT_RCVLOCK;
1454 return (0);
1455 }
1456
1457 /*
1458 * Unlock the stream socket for others.
1459 */
1460 void
1461 nfs_rcvunlock(flagp)
1462 register int *flagp;
1463 {
1464
1465 if ((*flagp & NFSMNT_RCVLOCK) == 0)
1466 panic("nfs rcvunlock");
1467 *flagp &= ~NFSMNT_RCVLOCK;
1468 if (*flagp & NFSMNT_WANTRCV) {
1469 *flagp &= ~NFSMNT_WANTRCV;
1470 wakeup((caddr_t)flagp);
1471 }
1472 }
1473
1474 /*
1475 * Check for badly aligned mbuf data areas and
1476 * realign data in an mbuf list by copying the data areas up, as required.
1477 */
1478 void
1479 nfs_realign(m, hsiz)
1480 register struct mbuf *m;
1481 int hsiz;
1482 {
1483 register struct mbuf *m2;
1484 register int siz, mlen, olen;
1485 register caddr_t tcp, fcp;
1486 struct mbuf *mnew;
1487
1488 while (m) {
1489 /*
1490 * This never happens for UDP, rarely happens for TCP
1491 * but frequently happens for iso transport.
1492 */
1493 if ((m->m_len & 0x3) || (mtod(m, long) & 0x3)) {
1494 olen = m->m_len;
1495 fcp = mtod(m, caddr_t);
1496 if ((long)fcp & 0x3) {
1497 m->m_flags &= ~M_PKTHDR;
1498 if (m->m_flags & M_EXT)
1499 m->m_data = m->m_ext.ext_buf +
1500 ((m->m_ext.ext_size - olen) & ~0x3);
1501 else
1502 m->m_data = m->m_dat;
1503 }
1504 m->m_len = 0;
1505 tcp = mtod(m, caddr_t);
1506 mnew = m;
1507 m2 = m->m_next;
1508
1509 /*
1510 * If possible, only put the first invariant part
1511 * of the RPC header in the first mbuf.
1512 */
1513 mlen = M_TRAILINGSPACE(m);
1514 if (olen <= hsiz && mlen > hsiz)
1515 mlen = hsiz;
1516
1517 /*
1518 * Loop through the mbuf list consolidating data.
1519 */
1520 while (m) {
1521 while (olen > 0) {
1522 if (mlen == 0) {
1523 m2->m_flags &= ~M_PKTHDR;
1524 if (m2->m_flags & M_EXT)
1525 m2->m_data = m2->m_ext.ext_buf;
1526 else
1527 m2->m_data = m2->m_dat;
1528 m2->m_len = 0;
1529 mlen = M_TRAILINGSPACE(m2);
1530 tcp = mtod(m2, caddr_t);
1531 mnew = m2;
1532 m2 = m2->m_next;
1533 }
1534 siz = min(mlen, olen);
1535 if (tcp != fcp)
1536 bcopy(fcp, tcp, siz);
1537 mnew->m_len += siz;
1538 mlen -= siz;
1539 olen -= siz;
1540 tcp += siz;
1541 fcp += siz;
1542 }
1543 m = m->m_next;
1544 if (m) {
1545 olen = m->m_len;
1546 fcp = mtod(m, caddr_t);
1547 }
1548 }
1549
1550 /*
1551 * Finally, set m_len == 0 for any trailing mbufs that have
1552 * been copied out of.
1553 */
1554 while (m2) {
1555 m2->m_len = 0;
1556 m2 = m2->m_next;
1557 }
1558 return;
1559 }
1560 m = m->m_next;
1561 }
1562 }
1563
1564 /*
1565 * Parse an RPC request
1566 * - verify it
1567 * - fill in the cred struct.
1568 */
1569 int
1570 nfs_getreq(nd, nfsd, has_header)
1571 register struct nfsrv_descript *nd;
1572 struct nfsd *nfsd;
1573 int has_header;
1574 {
1575 register int len, i;
1576 register u_int32_t *tl;
1577 register int32_t t1;
1578 struct uio uio;
1579 struct iovec iov;
1580 caddr_t dpos, cp2, cp;
1581 u_int32_t nfsvers, auth_type;
1582 uid_t nickuid;
1583 int error = 0, nqnfs = 0, ticklen;
1584 struct mbuf *mrep, *md;
1585 register struct nfsuid *nuidp;
1586 struct timeval tvin, tvout;
1587
1588 mrep = nd->nd_mrep;
1589 md = nd->nd_md;
1590 dpos = nd->nd_dpos;
1591 if (has_header) {
1592 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1593 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1594 if (*tl++ != rpc_call) {
1595 m_freem(mrep);
1596 return (EBADRPC);
1597 }
1598 } else
1599 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1600 nd->nd_repstat = 0;
1601 nd->nd_flag = 0;
1602 if (*tl++ != rpc_vers) {
1603 nd->nd_repstat = ERPCMISMATCH;
1604 nd->nd_procnum = NFSPROC_NOOP;
1605 return (0);
1606 }
1607 if (*tl != nfs_prog) {
1608 if (*tl == nqnfs_prog)
1609 nqnfs++;
1610 else {
1611 nd->nd_repstat = EPROGUNAVAIL;
1612 nd->nd_procnum = NFSPROC_NOOP;
1613 return (0);
1614 }
1615 }
1616 tl++;
1617 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1618 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) ||
1619 (nfsvers != NQNFS_VER3 && nqnfs)) {
1620 nd->nd_repstat = EPROGMISMATCH;
1621 nd->nd_procnum = NFSPROC_NOOP;
1622 return (0);
1623 }
1624 if (nqnfs)
1625 nd->nd_flag = (ND_NFSV3 | ND_NQNFS);
1626 else if (nfsvers == NFS_VER3)
1627 nd->nd_flag = ND_NFSV3;
1628 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1629 if (nd->nd_procnum == NFSPROC_NULL)
1630 return (0);
1631 if (nd->nd_procnum >= NFS_NPROCS ||
1632 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
1633 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1634 nd->nd_repstat = EPROCUNAVAIL;
1635 nd->nd_procnum = NFSPROC_NOOP;
1636 return (0);
1637 }
1638 if ((nd->nd_flag & ND_NFSV3) == 0)
1639 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1640 auth_type = *tl++;
1641 len = fxdr_unsigned(int, *tl++);
1642 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1643 m_freem(mrep);
1644 return (EBADRPC);
1645 }
1646
1647 nd->nd_flag &= ~ND_KERBAUTH;
1648 /*
1649 * Handle auth_unix or auth_kerb.
1650 */
1651 if (auth_type == rpc_auth_unix) {
1652 len = fxdr_unsigned(int, *++tl);
1653 if (len < 0 || len > NFS_MAXNAMLEN) {
1654 m_freem(mrep);
1655 return (EBADRPC);
1656 }
1657 nfsm_adv(nfsm_rndup(len));
1658 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1659 bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
1660 nd->nd_cr.cr_ref = 1;
1661 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
1662 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
1663 len = fxdr_unsigned(int, *tl);
1664 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
1665 m_freem(mrep);
1666 return (EBADRPC);
1667 }
1668 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
1669 for (i = 0; i < len; i++)
1670 if (i < NGROUPS)
1671 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
1672 else
1673 tl++;
1674 nd->nd_cr.cr_ngroups = (len > NGROUPS) ? NGROUPS : len;
1675 if (nd->nd_cr.cr_ngroups > 1)
1676 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
1677 len = fxdr_unsigned(int, *++tl);
1678 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1679 m_freem(mrep);
1680 return (EBADRPC);
1681 }
1682 if (len > 0)
1683 nfsm_adv(nfsm_rndup(len));
1684 } else if (auth_type == rpc_auth_kerb) {
1685 switch (fxdr_unsigned(int, *tl++)) {
1686 case RPCAKN_FULLNAME:
1687 ticklen = fxdr_unsigned(int, *tl);
1688 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
1689 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
1690 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
1691 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
1692 m_freem(mrep);
1693 return (EBADRPC);
1694 }
1695 uio.uio_offset = 0;
1696 uio.uio_iov = &iov;
1697 uio.uio_iovcnt = 1;
1698 uio.uio_segflg = UIO_SYSSPACE;
1699 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
1700 iov.iov_len = RPCAUTH_MAXSIZ - 4;
1701 nfsm_mtouio(&uio, uio.uio_resid);
1702 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1703 if (*tl++ != rpc_auth_kerb ||
1704 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
1705 printf("Bad kerb verifier\n");
1706 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1707 nd->nd_procnum = NFSPROC_NOOP;
1708 return (0);
1709 }
1710 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
1711 tl = (u_int32_t *)cp;
1712 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
1713 printf("Not fullname kerb verifier\n");
1714 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1715 nd->nd_procnum = NFSPROC_NOOP;
1716 return (0);
1717 }
1718 cp += NFSX_UNSIGNED;
1719 bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
1720 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
1721 nd->nd_flag |= ND_KERBFULL;
1722 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
1723 break;
1724 case RPCAKN_NICKNAME:
1725 if (len != 2 * NFSX_UNSIGNED) {
1726 printf("Kerb nickname short\n");
1727 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
1728 nd->nd_procnum = NFSPROC_NOOP;
1729 return (0);
1730 }
1731 nickuid = fxdr_unsigned(uid_t, *tl);
1732 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1733 if (*tl++ != rpc_auth_kerb ||
1734 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
1735 printf("Kerb nick verifier bad\n");
1736 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1737 nd->nd_procnum = NFSPROC_NOOP;
1738 return (0);
1739 }
1740 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1741 tvin.tv_sec = *tl++;
1742 tvin.tv_usec = *tl;
1743
1744 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
1745 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1746 if (nuidp->nu_cr.cr_uid == nickuid &&
1747 (!nd->nd_nam2 ||
1748 netaddr_match(NU_NETFAM(nuidp),
1749 &nuidp->nu_haddr, nd->nd_nam2)))
1750 break;
1751 }
1752 if (!nuidp) {
1753 nd->nd_repstat =
1754 (NFSERR_AUTHERR|AUTH_REJECTCRED);
1755 nd->nd_procnum = NFSPROC_NOOP;
1756 return (0);
1757 }
1758
1759 /*
1760 * Now, decrypt the timestamp using the session key
1761 * and validate it.
1762 */
1763 #ifdef NFSKERB
1764 XXX
1765 #endif
1766
1767 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
1768 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
1769 if (nuidp->nu_expire < time.tv_sec ||
1770 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
1771 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
1772 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
1773 nuidp->nu_expire = 0;
1774 nd->nd_repstat =
1775 (NFSERR_AUTHERR|AUTH_REJECTVERF);
1776 nd->nd_procnum = NFSPROC_NOOP;
1777 return (0);
1778 }
1779 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
1780 nd->nd_flag |= ND_KERBNICK;
1781 };
1782 } else {
1783 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
1784 nd->nd_procnum = NFSPROC_NOOP;
1785 return (0);
1786 }
1787
1788 /*
1789 * For nqnfs, get piggybacked lease request.
1790 */
1791 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
1792 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1793 nd->nd_flag |= fxdr_unsigned(int, *tl);
1794 if (nd->nd_flag & ND_LEASE) {
1795 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1796 nd->nd_duration = fxdr_unsigned(u_int32_t, *tl);
1797 } else
1798 nd->nd_duration = NQ_MINLEASE;
1799 } else
1800 nd->nd_duration = NQ_MINLEASE;
1801 nd->nd_md = md;
1802 nd->nd_dpos = dpos;
1803 return (0);
1804 nfsmout:
1805 return (error);
1806 }
1807
1808 int
1809 nfs_msg(p, server, msg)
1810 struct proc *p;
1811 char *server, *msg;
1812 {
1813 tpr_t tpr;
1814
1815 if (p)
1816 tpr = tprintf_open(p);
1817 else
1818 tpr = NULL;
1819 tprintf(tpr, "nfs server %s: %s\n", server, msg);
1820 tprintf_close(tpr);
1821 return (0);
1822 }
1823
1824 #ifdef NFSSERVER
1825 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
1826 struct nfssvc_sock *, struct proc *,
1827 struct mbuf **)) = {
1828 nfsrv_null,
1829 nfsrv_getattr,
1830 nfsrv_setattr,
1831 nfsrv_lookup,
1832 nfsrv3_access,
1833 nfsrv_readlink,
1834 nfsrv_read,
1835 nfsrv_write,
1836 nfsrv_create,
1837 nfsrv_mkdir,
1838 nfsrv_symlink,
1839 nfsrv_mknod,
1840 nfsrv_remove,
1841 nfsrv_rmdir,
1842 nfsrv_rename,
1843 nfsrv_link,
1844 nfsrv_readdir,
1845 nfsrv_readdirplus,
1846 nfsrv_statfs,
1847 nfsrv_fsinfo,
1848 nfsrv_pathconf,
1849 nfsrv_commit,
1850 nqnfsrv_getlease,
1851 nqnfsrv_vacated,
1852 nfsrv_noop,
1853 nfsrv_noop
1854 };
1855
1856 /*
1857 * Socket upcall routine for the nfsd sockets.
1858 * The caddr_t arg is a pointer to the "struct nfssvc_sock".
1859 * Essentially do as much as possible non-blocking, else punt and it will
1860 * be called with M_WAIT from an nfsd.
1861 */
1862 void
1863 nfsrv_rcv(so, arg, waitflag)
1864 struct socket *so;
1865 caddr_t arg;
1866 int waitflag;
1867 {
1868 register struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
1869 register struct mbuf *m;
1870 struct mbuf *mp, *nam;
1871 struct uio auio;
1872 int flags, error;
1873
1874 if ((slp->ns_flag & SLP_VALID) == 0)
1875 return;
1876 #ifdef notdef
1877 /*
1878 * Define this to test for nfsds handling this under heavy load.
1879 */
1880 if (waitflag == M_DONTWAIT) {
1881 slp->ns_flag |= SLP_NEEDQ; goto dorecs;
1882 }
1883 #endif
1884 auio.uio_procp = NULL;
1885 if (so->so_type == SOCK_STREAM) {
1886 /*
1887 * If there are already records on the queue, defer soreceive()
1888 * to an nfsd so that there is feedback to the TCP layer that
1889 * the nfs servers are heavily loaded.
1890 */
1891 if (slp->ns_rec && waitflag == M_DONTWAIT) {
1892 slp->ns_flag |= SLP_NEEDQ;
1893 goto dorecs;
1894 }
1895
1896 /*
1897 * Do soreceive().
1898 */
1899 auio.uio_resid = 1000000000;
1900 flags = MSG_DONTWAIT;
1901 error = soreceive(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
1902 if (error || mp == (struct mbuf *)0) {
1903 if (error == EWOULDBLOCK)
1904 slp->ns_flag |= SLP_NEEDQ;
1905 else
1906 slp->ns_flag |= SLP_DISCONN;
1907 goto dorecs;
1908 }
1909 m = mp;
1910 if (slp->ns_rawend) {
1911 slp->ns_rawend->m_next = m;
1912 slp->ns_cc += 1000000000 - auio.uio_resid;
1913 } else {
1914 slp->ns_raw = m;
1915 slp->ns_cc = 1000000000 - auio.uio_resid;
1916 }
1917 while (m->m_next)
1918 m = m->m_next;
1919 slp->ns_rawend = m;
1920
1921 /*
1922 * Now try and parse record(s) out of the raw stream data.
1923 */
1924 error = nfsrv_getstream(slp, waitflag);
1925 if (error) {
1926 if (error == EPERM)
1927 slp->ns_flag |= SLP_DISCONN;
1928 else
1929 slp->ns_flag |= SLP_NEEDQ;
1930 }
1931 } else {
1932 do {
1933 auio.uio_resid = 1000000000;
1934 flags = MSG_DONTWAIT;
1935 error = soreceive(so, &nam, &auio, &mp,
1936 (struct mbuf **)0, &flags);
1937 if (mp) {
1938 nfs_realign(mp, 10 * NFSX_UNSIGNED);
1939 if (nam) {
1940 m = nam;
1941 m->m_next = mp;
1942 } else
1943 m = mp;
1944 if (slp->ns_recend)
1945 slp->ns_recend->m_nextpkt = m;
1946 else
1947 slp->ns_rec = m;
1948 slp->ns_recend = m;
1949 m->m_nextpkt = (struct mbuf *)0;
1950 }
1951 if (error) {
1952 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
1953 && error != EWOULDBLOCK) {
1954 slp->ns_flag |= SLP_DISCONN;
1955 goto dorecs;
1956 }
1957 }
1958 } while (mp);
1959 }
1960
1961 /*
1962 * Now try and process the request records, non-blocking.
1963 */
1964 dorecs:
1965 if (waitflag == M_DONTWAIT &&
1966 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
1967 nfsrv_wakenfsd(slp);
1968 }
1969
1970 /*
1971 * Try and extract an RPC request from the mbuf data list received on a
1972 * stream socket. The "waitflag" argument indicates whether or not it
1973 * can sleep.
1974 */
1975 int
1976 nfsrv_getstream(slp, waitflag)
1977 register struct nfssvc_sock *slp;
1978 int waitflag;
1979 {
1980 register struct mbuf *m, **mpp;
1981 register char *cp1, *cp2;
1982 register int len;
1983 struct mbuf *om, *m2, *recm = NULL;
1984 u_int32_t recmark;
1985
1986 if (slp->ns_flag & SLP_GETSTREAM)
1987 panic("nfs getstream");
1988 slp->ns_flag |= SLP_GETSTREAM;
1989 for (;;) {
1990 if (slp->ns_reclen == 0) {
1991 if (slp->ns_cc < NFSX_UNSIGNED) {
1992 slp->ns_flag &= ~SLP_GETSTREAM;
1993 return (0);
1994 }
1995 m = slp->ns_raw;
1996 if (m->m_len >= NFSX_UNSIGNED) {
1997 bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
1998 m->m_data += NFSX_UNSIGNED;
1999 m->m_len -= NFSX_UNSIGNED;
2000 } else {
2001 cp1 = (caddr_t)&recmark;
2002 cp2 = mtod(m, caddr_t);
2003 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
2004 while (m->m_len == 0) {
2005 m = m->m_next;
2006 cp2 = mtod(m, caddr_t);
2007 }
2008 *cp1++ = *cp2++;
2009 m->m_data++;
2010 m->m_len--;
2011 }
2012 }
2013 slp->ns_cc -= NFSX_UNSIGNED;
2014 recmark = ntohl(recmark);
2015 slp->ns_reclen = recmark & ~0x80000000;
2016 if (recmark & 0x80000000)
2017 slp->ns_flag |= SLP_LASTFRAG;
2018 else
2019 slp->ns_flag &= ~SLP_LASTFRAG;
2020 if (slp->ns_reclen < NFS_MINPACKET || slp->ns_reclen > NFS_MAXPACKET) {
2021 slp->ns_flag &= ~SLP_GETSTREAM;
2022 return (EPERM);
2023 }
2024 }
2025
2026 /*
2027 * Now get the record part.
2028 */
2029 if (slp->ns_cc == slp->ns_reclen) {
2030 recm = slp->ns_raw;
2031 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
2032 slp->ns_cc = slp->ns_reclen = 0;
2033 } else if (slp->ns_cc > slp->ns_reclen) {
2034 len = 0;
2035 m = slp->ns_raw;
2036 om = (struct mbuf *)0;
2037 while (len < slp->ns_reclen) {
2038 if ((len + m->m_len) > slp->ns_reclen) {
2039 m2 = m_copym(m, 0, slp->ns_reclen - len,
2040 waitflag);
2041 if (m2) {
2042 if (om) {
2043 om->m_next = m2;
2044 recm = slp->ns_raw;
2045 } else
2046 recm = m2;
2047 m->m_data += slp->ns_reclen - len;
2048 m->m_len -= slp->ns_reclen - len;
2049 len = slp->ns_reclen;
2050 } else {
2051 slp->ns_flag &= ~SLP_GETSTREAM;
2052 return (EWOULDBLOCK);
2053 }
2054 } else if ((len + m->m_len) == slp->ns_reclen) {
2055 om = m;
2056 len += m->m_len;
2057 m = m->m_next;
2058 recm = slp->ns_raw;
2059 om->m_next = (struct mbuf *)0;
2060 } else {
2061 om = m;
2062 len += m->m_len;
2063 m = m->m_next;
2064 }
2065 }
2066 slp->ns_raw = m;
2067 slp->ns_cc -= len;
2068 slp->ns_reclen = 0;
2069 } else {
2070 slp->ns_flag &= ~SLP_GETSTREAM;
2071 return (0);
2072 }
2073
2074 /*
2075 * Accumulate the fragments into a record.
2076 */
2077 mpp = &slp->ns_frag;
2078 while (*mpp)
2079 mpp = &((*mpp)->m_next);
2080 *mpp = recm;
2081 if (slp->ns_flag & SLP_LASTFRAG) {
2082 nfs_realign(slp->ns_frag, 10 * NFSX_UNSIGNED);
2083 if (slp->ns_recend)
2084 slp->ns_recend->m_nextpkt = slp->ns_frag;
2085 else
2086 slp->ns_rec = slp->ns_frag;
2087 slp->ns_recend = slp->ns_frag;
2088 slp->ns_frag = (struct mbuf *)0;
2089 }
2090 }
2091 }
2092
2093 /*
2094 * Parse an RPC header.
2095 */
2096 int
2097 nfsrv_dorec(slp, nfsd, ndp)
2098 register struct nfssvc_sock *slp;
2099 struct nfsd *nfsd;
2100 struct nfsrv_descript **ndp;
2101 {
2102 register struct mbuf *m, *nam;
2103 register struct nfsrv_descript *nd;
2104 int error;
2105
2106 *ndp = NULL;
2107 if ((slp->ns_flag & SLP_VALID) == 0 ||
2108 (m = slp->ns_rec) == (struct mbuf *)0)
2109 return (ENOBUFS);
2110 slp->ns_rec = m->m_nextpkt;
2111 if (slp->ns_rec)
2112 m->m_nextpkt = (struct mbuf *)0;
2113 else
2114 slp->ns_recend = (struct mbuf *)0;
2115 if (m->m_type == MT_SONAME) {
2116 nam = m;
2117 m = m->m_next;
2118 nam->m_next = NULL;
2119 } else
2120 nam = NULL;
2121 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2122 M_NFSRVDESC, M_WAITOK);
2123 nd->nd_md = nd->nd_mrep = m;
2124 nd->nd_nam2 = nam;
2125 nd->nd_dpos = mtod(m, caddr_t);
2126 error = nfs_getreq(nd, nfsd, TRUE);
2127 if (error) {
2128 m_freem(nam);
2129 free((caddr_t)nd, M_NFSRVDESC);
2130 return (error);
2131 }
2132 *ndp = nd;
2133 nfsd->nfsd_nd = nd;
2134 return (0);
2135 }
2136
2137
2138 /*
2139 * Search for a sleeping nfsd and wake it up.
2140 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2141 * running nfsds will go look for the work in the nfssvc_sock list.
2142 */
2143 void
2144 nfsrv_wakenfsd(slp)
2145 struct nfssvc_sock *slp;
2146 {
2147 register struct nfsd *nd;
2148
2149 if ((slp->ns_flag & SLP_VALID) == 0)
2150 return;
2151 for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) {
2152 if (nd->nfsd_flag & NFSD_WAITING) {
2153 nd->nfsd_flag &= ~NFSD_WAITING;
2154 if (nd->nfsd_slp)
2155 panic("nfsd wakeup");
2156 slp->ns_sref++;
2157 nd->nfsd_slp = slp;
2158 wakeup((caddr_t)nd);
2159 return;
2160 }
2161 }
2162 slp->ns_flag |= SLP_DOREC;
2163 nfsd_head_flag |= NFSD_CHECKSLP;
2164 }
2165 #endif /* NFSSERVER */
2166