nfs_socket.c revision 1.35 1 /* $NetBSD: nfs_socket.c,v 1.35 1997/02/22 02:59:08 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1991, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
39 */
40
41 /*
42 * Socket operations for use by nfs
43 */
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/mount.h>
49 #include <sys/kernel.h>
50 #include <sys/mbuf.h>
51 #include <sys/vnode.h>
52 #include <sys/domain.h>
53 #include <sys/protosw.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/syslog.h>
57 #include <sys/tprintf.h>
58 #include <sys/namei.h>
59
60 #include <netinet/in.h>
61 #include <netinet/tcp.h>
62
63 #include <nfs/rpcv2.h>
64 #include <nfs/nfsproto.h>
65 #include <nfs/nfs.h>
66 #include <nfs/xdr_subs.h>
67 #include <nfs/nfsm_subs.h>
68 #include <nfs/nfsmount.h>
69 #include <nfs/nfsnode.h>
70 #include <nfs/nfsrtt.h>
71 #include <nfs/nqnfs.h>
72 #include <nfs/nfs_var.h>
73
74 #define TRUE 1
75 #define FALSE 0
76
77 /*
78 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
79 * Use the mean and mean deviation of rtt for the appropriate type of rpc
80 * for the frequent rpcs and a default for the others.
81 * The justification for doing "other" this way is that these rpcs
82 * happen so infrequently that timer est. would probably be stale.
83 * Also, since many of these rpcs are
84 * non-idempotent, a conservative timeout is desired.
85 * getattr, lookup - A+2D
86 * read, write - A+4D
87 * other - nm_timeo
88 */
89 #define NFS_RTO(n, t) \
90 ((t) == 0 ? (n)->nm_timeo : \
91 ((t) < 3 ? \
92 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
93 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
94 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
95 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
96 /*
97 * External data, mostly RPC constants in XDR form
98 */
99 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
100 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
101 rpc_auth_kerb;
102 extern u_int32_t nfs_prog, nqnfs_prog;
103 extern time_t nqnfsstarttime;
104 extern struct nfsstats nfsstats;
105 extern int nfsv3_procid[NFS_NPROCS];
106 extern int nfs_ticks;
107
108 /*
109 * Defines which timer to use for the procnum.
110 * 0 - default
111 * 1 - getattr
112 * 2 - lookup
113 * 3 - read
114 * 4 - write
115 */
116 static int proct[NFS_NPROCS] = {
117 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
118 0, 0, 0,
119 };
120
121 /*
122 * There is a congestion window for outstanding rpcs maintained per mount
123 * point. The cwnd size is adjusted in roughly the way that:
124 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
125 * SIGCOMM '88". ACM, August 1988.
126 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
127 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
128 * of rpcs is in progress.
129 * (The sent count and cwnd are scaled for integer arith.)
130 * Variants of "slow start" were tried and were found to be too much of a
131 * performance hit (ave. rtt 3 times larger),
132 * I suspect due to the large rtt that nfs rpcs have.
133 */
134 #define NFS_CWNDSCALE 256
135 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
136 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
137 int nfsrtton = 0;
138 struct nfsrtt nfsrtt;
139
140 /*
141 * Initialize sockets and congestion for a new NFS connection.
142 * We do not free the sockaddr if error.
143 */
144 int
145 nfs_connect(nmp, rep)
146 register struct nfsmount *nmp;
147 struct nfsreq *rep;
148 {
149 register struct socket *so;
150 int s, error, rcvreserve, sndreserve;
151 struct sockaddr *saddr;
152 struct sockaddr_in *sin;
153 struct mbuf *m;
154 u_int16_t tport;
155
156 nmp->nm_so = (struct socket *)0;
157 saddr = mtod(nmp->nm_nam, struct sockaddr *);
158 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
159 nmp->nm_soproto);
160 if (error)
161 goto bad;
162 so = nmp->nm_so;
163 nmp->nm_soflags = so->so_proto->pr_flags;
164
165 /*
166 * Some servers require that the client port be a reserved port number.
167 */
168 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
169 MGET(m, M_WAIT, MT_SONAME);
170 sin = mtod(m, struct sockaddr_in *);
171 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
172 sin->sin_family = AF_INET;
173 sin->sin_addr.s_addr = INADDR_ANY;
174 tport = IPPORT_RESERVED - 1;
175 sin->sin_port = htons(tport);
176 while ((error = sobind(so, m)) == EADDRINUSE &&
177 --tport > IPPORT_RESERVED / 2)
178 sin->sin_port = htons(tport);
179 m_freem(m);
180 if (error)
181 goto bad;
182 }
183
184 /*
185 * Protocols that do not require connections may be optionally left
186 * unconnected for servers that reply from a port other than NFS_PORT.
187 */
188 if (nmp->nm_flag & NFSMNT_NOCONN) {
189 if (nmp->nm_soflags & PR_CONNREQUIRED) {
190 error = ENOTCONN;
191 goto bad;
192 }
193 } else {
194 error = soconnect(so, nmp->nm_nam);
195 if (error)
196 goto bad;
197
198 /*
199 * Wait for the connection to complete. Cribbed from the
200 * connect system call but with the wait timing out so
201 * that interruptible mounts don't hang here for a long time.
202 */
203 s = splsoftnet();
204 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
205 (void) tsleep((caddr_t)&so->so_timeo, PSOCK,
206 "nfscon", 2 * hz);
207 if ((so->so_state & SS_ISCONNECTING) &&
208 so->so_error == 0 && rep &&
209 (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){
210 so->so_state &= ~SS_ISCONNECTING;
211 splx(s);
212 goto bad;
213 }
214 }
215 if (so->so_error) {
216 error = so->so_error;
217 so->so_error = 0;
218 splx(s);
219 goto bad;
220 }
221 splx(s);
222 }
223 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
224 so->so_rcv.sb_timeo = (5 * hz);
225 so->so_snd.sb_timeo = (5 * hz);
226 } else {
227 so->so_rcv.sb_timeo = 0;
228 so->so_snd.sb_timeo = 0;
229 }
230 if (nmp->nm_sotype == SOCK_DGRAM) {
231 sndreserve = nmp->nm_wsize + NFS_MAXPKTHDR;
232 rcvreserve = max(nmp->nm_rsize, nmp->nm_readdirsize) +
233 NFS_MAXPKTHDR;
234 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
235 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
236 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
237 NFS_MAXPKTHDR) * 2;
238 } else {
239 if (nmp->nm_sotype != SOCK_STREAM)
240 panic("nfscon sotype");
241 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
242 MGET(m, M_WAIT, MT_SOOPTS);
243 *mtod(m, int32_t *) = 1;
244 m->m_len = sizeof(int32_t);
245 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
246 }
247 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
248 MGET(m, M_WAIT, MT_SOOPTS);
249 *mtod(m, int32_t *) = 1;
250 m->m_len = sizeof(int32_t);
251 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
252 }
253 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
254 sizeof (u_int32_t)) * 2;
255 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
256 sizeof (u_int32_t)) * 2;
257 }
258 error = soreserve(so, sndreserve, rcvreserve);
259 if (error)
260 goto bad;
261 so->so_rcv.sb_flags |= SB_NOINTR;
262 so->so_snd.sb_flags |= SB_NOINTR;
263
264 /* Initialize other non-zero congestion variables */
265 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
266 nmp->nm_srtt[4] = (NFS_TIMEO << 3);
267 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
268 nmp->nm_sdrtt[3] = nmp->nm_sdrtt[4] = 0;
269 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
270 nmp->nm_sent = 0;
271 nmp->nm_timeouts = 0;
272 return (0);
273
274 bad:
275 nfs_disconnect(nmp);
276 return (error);
277 }
278
279 /*
280 * Reconnect routine:
281 * Called when a connection is broken on a reliable protocol.
282 * - clean up the old socket
283 * - nfs_connect() again
284 * - set R_MUSTRESEND for all outstanding requests on mount point
285 * If this fails the mount point is DEAD!
286 * nb: Must be called with the nfs_sndlock() set on the mount point.
287 */
288 int
289 nfs_reconnect(rep)
290 register struct nfsreq *rep;
291 {
292 register struct nfsreq *rp;
293 register struct nfsmount *nmp = rep->r_nmp;
294 int error;
295
296 nfs_disconnect(nmp);
297 while ((error = nfs_connect(nmp, rep)) != 0) {
298 if (error == EINTR || error == ERESTART)
299 return (EINTR);
300 (void) tsleep((caddr_t)&lbolt, PSOCK, "nfscon", 0);
301 }
302
303 /*
304 * Loop through outstanding request list and fix up all requests
305 * on old socket.
306 */
307 for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) {
308 if (rp->r_nmp == nmp)
309 rp->r_flags |= R_MUSTRESEND;
310 }
311 return (0);
312 }
313
314 /*
315 * NFS disconnect. Clean up and unlink.
316 */
317 void
318 nfs_disconnect(nmp)
319 register struct nfsmount *nmp;
320 {
321 register struct socket *so;
322
323 if (nmp->nm_so) {
324 so = nmp->nm_so;
325 nmp->nm_so = (struct socket *)0;
326 soshutdown(so, 2);
327 soclose(so);
328 }
329 }
330
331 /*
332 * This is the nfs send routine. For connection based socket types, it
333 * must be called with an nfs_sndlock() on the socket.
334 * "rep == NULL" indicates that it has been called from a server.
335 * For the client side:
336 * - return EINTR if the RPC is terminated, 0 otherwise
337 * - set R_MUSTRESEND if the send fails for any reason
338 * - do any cleanup required by recoverable socket errors (???)
339 * For the server side:
340 * - return EINTR or ERESTART if interrupted by a signal
341 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
342 * - do any cleanup required by recoverable socket errors (???)
343 */
344 int
345 nfs_send(so, nam, top, rep)
346 register struct socket *so;
347 struct mbuf *nam;
348 register struct mbuf *top;
349 struct nfsreq *rep;
350 {
351 struct mbuf *sendnam;
352 int error, soflags, flags;
353
354 if (rep) {
355 if (rep->r_flags & R_SOFTTERM) {
356 m_freem(top);
357 return (EINTR);
358 }
359 if ((so = rep->r_nmp->nm_so) == NULL) {
360 rep->r_flags |= R_MUSTRESEND;
361 m_freem(top);
362 return (0);
363 }
364 rep->r_flags &= ~R_MUSTRESEND;
365 soflags = rep->r_nmp->nm_soflags;
366 } else
367 soflags = so->so_proto->pr_flags;
368 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
369 sendnam = (struct mbuf *)0;
370 else
371 sendnam = nam;
372 if (so->so_type == SOCK_SEQPACKET)
373 flags = MSG_EOR;
374 else
375 flags = 0;
376
377 error = sosend(so, sendnam, (struct uio *)0, top,
378 (struct mbuf *)0, flags);
379 if (error) {
380 if (rep) {
381 log(LOG_INFO, "nfs send error %d for server %s\n",error,
382 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
383 /*
384 * Deal with errors for the client side.
385 */
386 if (rep->r_flags & R_SOFTTERM)
387 error = EINTR;
388 else
389 rep->r_flags |= R_MUSTRESEND;
390 } else
391 log(LOG_INFO, "nfsd send error %d\n", error);
392
393 /*
394 * Handle any recoverable (soft) socket errors here. (???)
395 */
396 if (error != EINTR && error != ERESTART &&
397 error != EWOULDBLOCK && error != EPIPE)
398 error = 0;
399 }
400 return (error);
401 }
402
403 #ifdef NFS
404 /*
405 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
406 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
407 * Mark and consolidate the data into a new mbuf list.
408 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
409 * small mbufs.
410 * For SOCK_STREAM we must be very careful to read an entire record once
411 * we have read any of it, even if the system call has been interrupted.
412 */
413 int
414 nfs_receive(rep, aname, mp)
415 register struct nfsreq *rep;
416 struct mbuf **aname;
417 struct mbuf **mp;
418 {
419 register struct socket *so;
420 struct uio auio;
421 struct iovec aio;
422 register struct mbuf *m;
423 struct mbuf *control;
424 u_int32_t len;
425 struct mbuf **getnam;
426 int error, sotype, rcvflg;
427 struct proc *p = curproc; /* XXX */
428
429 /*
430 * Set up arguments for soreceive()
431 */
432 *mp = (struct mbuf *)0;
433 *aname = (struct mbuf *)0;
434 sotype = rep->r_nmp->nm_sotype;
435
436 /*
437 * For reliable protocols, lock against other senders/receivers
438 * in case a reconnect is necessary.
439 * For SOCK_STREAM, first get the Record Mark to find out how much
440 * more there is to get.
441 * We must lock the socket against other receivers
442 * until we have an entire rpc request/reply.
443 */
444 if (sotype != SOCK_DGRAM) {
445 error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
446 if (error)
447 return (error);
448 tryagain:
449 /*
450 * Check for fatal errors and resending request.
451 */
452 /*
453 * Ugh: If a reconnect attempt just happened, nm_so
454 * would have changed. NULL indicates a failed
455 * attempt that has essentially shut down this
456 * mount point.
457 */
458 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
459 nfs_sndunlock(&rep->r_nmp->nm_flag);
460 return (EINTR);
461 }
462 so = rep->r_nmp->nm_so;
463 if (!so) {
464 error = nfs_reconnect(rep);
465 if (error) {
466 nfs_sndunlock(&rep->r_nmp->nm_flag);
467 return (error);
468 }
469 goto tryagain;
470 }
471 while (rep->r_flags & R_MUSTRESEND) {
472 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
473 nfsstats.rpcretries++;
474 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
475 if (error) {
476 if (error == EINTR || error == ERESTART ||
477 (error = nfs_reconnect(rep)) != 0) {
478 nfs_sndunlock(&rep->r_nmp->nm_flag);
479 return (error);
480 }
481 goto tryagain;
482 }
483 }
484 nfs_sndunlock(&rep->r_nmp->nm_flag);
485 if (sotype == SOCK_STREAM) {
486 aio.iov_base = (caddr_t) &len;
487 aio.iov_len = sizeof(u_int32_t);
488 auio.uio_iov = &aio;
489 auio.uio_iovcnt = 1;
490 auio.uio_segflg = UIO_SYSSPACE;
491 auio.uio_rw = UIO_READ;
492 auio.uio_offset = 0;
493 auio.uio_resid = sizeof(u_int32_t);
494 auio.uio_procp = p;
495 do {
496 rcvflg = MSG_WAITALL;
497 error = soreceive(so, (struct mbuf **)0, &auio,
498 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
499 if (error == EWOULDBLOCK && rep) {
500 if (rep->r_flags & R_SOFTTERM)
501 return (EINTR);
502 }
503 } while (error == EWOULDBLOCK);
504 if (!error && auio.uio_resid > 0) {
505 log(LOG_INFO,
506 "short receive (%d/%d) from nfs server %s\n",
507 sizeof(u_int32_t) - auio.uio_resid,
508 sizeof(u_int32_t),
509 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
510 error = EPIPE;
511 }
512 if (error)
513 goto errout;
514 len = ntohl(len) & ~0x80000000;
515 /*
516 * This is SERIOUS! We are out of sync with the sender
517 * and forcing a disconnect/reconnect is all I can do.
518 */
519 if (len > NFS_MAXPACKET) {
520 log(LOG_ERR, "%s (%d) from nfs server %s\n",
521 "impossible packet length",
522 len,
523 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
524 error = EFBIG;
525 goto errout;
526 }
527 auio.uio_resid = len;
528 do {
529 rcvflg = MSG_WAITALL;
530 error = soreceive(so, (struct mbuf **)0,
531 &auio, mp, (struct mbuf **)0, &rcvflg);
532 } while (error == EWOULDBLOCK || error == EINTR ||
533 error == ERESTART);
534 if (!error && auio.uio_resid > 0) {
535 log(LOG_INFO,
536 "short receive (%d/%d) from nfs server %s\n",
537 len - auio.uio_resid, len,
538 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
539 error = EPIPE;
540 }
541 } else {
542 /*
543 * NB: Since uio_resid is big, MSG_WAITALL is ignored
544 * and soreceive() will return when it has either a
545 * control msg or a data msg.
546 * We have no use for control msg., but must grab them
547 * and then throw them away so we know what is going
548 * on.
549 */
550 auio.uio_resid = len = 100000000; /* Anything Big */
551 auio.uio_procp = p;
552 do {
553 rcvflg = 0;
554 error = soreceive(so, (struct mbuf **)0,
555 &auio, mp, &control, &rcvflg);
556 if (control)
557 m_freem(control);
558 if (error == EWOULDBLOCK && rep) {
559 if (rep->r_flags & R_SOFTTERM)
560 return (EINTR);
561 }
562 } while (error == EWOULDBLOCK ||
563 (!error && *mp == NULL && control));
564 if ((rcvflg & MSG_EOR) == 0)
565 printf("Egad!!\n");
566 if (!error && *mp == NULL)
567 error = EPIPE;
568 len -= auio.uio_resid;
569 }
570 errout:
571 if (error && error != EINTR && error != ERESTART) {
572 m_freem(*mp);
573 *mp = (struct mbuf *)0;
574 if (error != EPIPE)
575 log(LOG_INFO,
576 "receive error %d from nfs server %s\n",
577 error,
578 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
579 error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
580 if (!error)
581 error = nfs_reconnect(rep);
582 if (!error)
583 goto tryagain;
584 }
585 } else {
586 if ((so = rep->r_nmp->nm_so) == NULL)
587 return (EACCES);
588 if (so->so_state & SS_ISCONNECTED)
589 getnam = (struct mbuf **)0;
590 else
591 getnam = aname;
592 auio.uio_resid = len = 1000000;
593 auio.uio_procp = p;
594 do {
595 rcvflg = 0;
596 error = soreceive(so, getnam, &auio, mp,
597 (struct mbuf **)0, &rcvflg);
598 if (error == EWOULDBLOCK &&
599 (rep->r_flags & R_SOFTTERM))
600 return (EINTR);
601 } while (error == EWOULDBLOCK);
602 len -= auio.uio_resid;
603 }
604 if (error) {
605 m_freem(*mp);
606 *mp = (struct mbuf *)0;
607 }
608 return (error);
609 }
610
611 /*
612 * Implement receipt of reply on a socket.
613 * We must search through the list of received datagrams matching them
614 * with outstanding requests using the xid, until ours is found.
615 */
616 /* ARGSUSED */
617 int
618 nfs_reply(myrep)
619 struct nfsreq *myrep;
620 {
621 register struct nfsreq *rep;
622 register struct nfsmount *nmp = myrep->r_nmp;
623 register int32_t t1;
624 struct mbuf *mrep, *nam, *md;
625 u_int32_t rxid, *tl;
626 caddr_t dpos, cp2;
627 int error;
628
629 /*
630 * Loop around until we get our own reply
631 */
632 for (;;) {
633 /*
634 * Lock against other receivers so that I don't get stuck in
635 * sbwait() after someone else has received my reply for me.
636 * Also necessary for connection based protocols to avoid
637 * race conditions during a reconnect.
638 */
639 error = nfs_rcvlock(myrep);
640 if (error)
641 return (error);
642 /* Already received, bye bye */
643 if (myrep->r_mrep != NULL) {
644 nfs_rcvunlock(&nmp->nm_flag);
645 return (0);
646 }
647 /*
648 * Get the next Rpc reply off the socket
649 */
650 error = nfs_receive(myrep, &nam, &mrep);
651 nfs_rcvunlock(&nmp->nm_flag);
652 if (error) {
653
654 /*
655 * Ignore routing errors on connectionless protocols??
656 */
657 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
658 nmp->nm_so->so_error = 0;
659 printf("nfs_reply: ignoring error %d\n", error);
660 if (myrep->r_flags & R_GETONEREP)
661 return (0);
662 continue;
663 }
664 return (error);
665 }
666 if (nam)
667 m_freem(nam);
668
669 /*
670 * Get the xid and check that it is an rpc reply
671 */
672 md = mrep;
673 dpos = mtod(md, caddr_t);
674 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
675 rxid = *tl++;
676 if (*tl != rpc_reply) {
677 if (nmp->nm_flag & NFSMNT_NQNFS) {
678 if (nqnfs_callback(nmp, mrep, md, dpos))
679 nfsstats.rpcinvalid++;
680 } else {
681 nfsstats.rpcinvalid++;
682 m_freem(mrep);
683 }
684 nfsmout:
685 if (myrep->r_flags & R_GETONEREP)
686 return (0);
687 continue;
688 }
689
690 /*
691 * Loop through the request list to match up the reply
692 * Iff no match, just drop the datagram
693 */
694 for (rep = nfs_reqq.tqh_first; rep != 0;
695 rep = rep->r_chain.tqe_next) {
696 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
697 /* Found it.. */
698 rep->r_mrep = mrep;
699 rep->r_md = md;
700 rep->r_dpos = dpos;
701 if (nfsrtton) {
702 struct rttl *rt;
703
704 rt = &nfsrtt.rttl[nfsrtt.pos];
705 rt->proc = rep->r_procnum;
706 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
707 rt->sent = nmp->nm_sent;
708 rt->cwnd = nmp->nm_cwnd;
709 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
710 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
711 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
712 rt->tstamp = time;
713 if (rep->r_flags & R_TIMING)
714 rt->rtt = rep->r_rtt;
715 else
716 rt->rtt = 1000000;
717 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
718 }
719 /*
720 * Update congestion window.
721 * Do the additive increase of
722 * one rpc/rtt.
723 */
724 if (nmp->nm_cwnd <= nmp->nm_sent) {
725 nmp->nm_cwnd +=
726 (NFS_CWNDSCALE * NFS_CWNDSCALE +
727 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
728 if (nmp->nm_cwnd > NFS_MAXCWND)
729 nmp->nm_cwnd = NFS_MAXCWND;
730 }
731 rep->r_flags &= ~R_SENT;
732 nmp->nm_sent -= NFS_CWNDSCALE;
733 /*
734 * Update rtt using a gain of 0.125 on the mean
735 * and a gain of 0.25 on the deviation.
736 */
737 if (rep->r_flags & R_TIMING) {
738 /*
739 * Since the timer resolution of
740 * NFS_HZ is so course, it can often
741 * result in r_rtt == 0. Since
742 * r_rtt == N means that the actual
743 * rtt is between N+dt and N+2-dt ticks,
744 * add 1.
745 */
746 t1 = rep->r_rtt + 1;
747 t1 -= (NFS_SRTT(rep) >> 3);
748 NFS_SRTT(rep) += t1;
749 if (t1 < 0)
750 t1 = -t1;
751 t1 -= (NFS_SDRTT(rep) >> 2);
752 NFS_SDRTT(rep) += t1;
753 }
754 nmp->nm_timeouts = 0;
755 break;
756 }
757 }
758 /*
759 * If not matched to a request, drop it.
760 * If it's mine, get out.
761 */
762 if (rep == 0) {
763 nfsstats.rpcunexpected++;
764 m_freem(mrep);
765 } else if (rep == myrep) {
766 if (rep->r_mrep == NULL)
767 panic("nfsreply nil");
768 return (0);
769 }
770 if (myrep->r_flags & R_GETONEREP)
771 return (0);
772 }
773 }
774
775 /*
776 * nfs_request - goes something like this
777 * - fill in request struct
778 * - links it into list
779 * - calls nfs_send() for first transmit
780 * - calls nfs_receive() to get reply
781 * - break down rpc header and return with nfs reply pointed to
782 * by mrep or error
783 * nb: always frees up mreq mbuf list
784 */
785 int
786 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp)
787 struct vnode *vp;
788 struct mbuf *mrest;
789 int procnum;
790 struct proc *procp;
791 struct ucred *cred;
792 struct mbuf **mrp;
793 struct mbuf **mdp;
794 caddr_t *dposp;
795 {
796 register struct mbuf *m, *mrep;
797 register struct nfsreq *rep;
798 register u_int32_t *tl;
799 register int i;
800 struct nfsmount *nmp;
801 struct mbuf *md, *mheadend;
802 struct nfsnode *np;
803 char nickv[RPCX_NICKVERF];
804 time_t reqtime, waituntil;
805 caddr_t dpos, cp2;
806 int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type;
807 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
808 int verf_len, verf_type;
809 u_int32_t xid;
810 u_quad_t frev;
811 char *auth_str, *verf_str;
812 NFSKERBKEY_T key; /* save session key */
813
814 nmp = VFSTONFS(vp->v_mount);
815 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
816 rep->r_nmp = nmp;
817 rep->r_vp = vp;
818 rep->r_procp = procp;
819 rep->r_procnum = procnum;
820 i = 0;
821 m = mrest;
822 while (m) {
823 i += m->m_len;
824 m = m->m_next;
825 }
826 mrest_len = i;
827
828 /*
829 * Get the RPC header with authorization.
830 */
831 kerbauth:
832 verf_str = auth_str = (char *)0;
833 if (nmp->nm_flag & NFSMNT_KERB) {
834 verf_str = nickv;
835 verf_len = sizeof (nickv);
836 auth_type = RPCAUTH_KERB4;
837 bzero((caddr_t)key, sizeof (key));
838 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
839 &auth_len, verf_str, verf_len)) {
840 error = nfs_getauth(nmp, rep, cred, &auth_str,
841 &auth_len, verf_str, &verf_len, key);
842 if (error) {
843 free((caddr_t)rep, M_NFSREQ);
844 m_freem(mrest);
845 return (error);
846 }
847 }
848 } else {
849 auth_type = RPCAUTH_UNIX;
850 auth_len = (((cred->cr_ngroups > nmp->nm_numgrps) ?
851 nmp->nm_numgrps : cred->cr_ngroups) << 2) +
852 5 * NFSX_UNSIGNED;
853 }
854 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
855 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
856 if (auth_str)
857 free(auth_str, M_TEMP);
858
859 /*
860 * For stream protocols, insert a Sun RPC Record Mark.
861 */
862 if (nmp->nm_sotype == SOCK_STREAM) {
863 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
864 *mtod(m, u_int32_t *) = htonl(0x80000000 |
865 (m->m_pkthdr.len - NFSX_UNSIGNED));
866 }
867 rep->r_mreq = m;
868 rep->r_xid = xid;
869 tryagain:
870 if (nmp->nm_flag & NFSMNT_SOFT)
871 rep->r_retry = nmp->nm_retry;
872 else
873 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
874 rep->r_rtt = rep->r_rexmit = 0;
875 if (proct[procnum] > 0)
876 rep->r_flags = R_TIMING;
877 else
878 rep->r_flags = 0;
879 rep->r_mrep = NULL;
880
881 /*
882 * Do the client side RPC.
883 */
884 nfsstats.rpcrequests++;
885 /*
886 * Chain request into list of outstanding requests. Be sure
887 * to put it LAST so timer finds oldest requests first.
888 */
889 s = splsoftnet();
890 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
891
892 /* Get send time for nqnfs */
893 reqtime = time.tv_sec;
894
895 /*
896 * If backing off another request or avoiding congestion, don't
897 * send this one now but let timer do it. If not timing a request,
898 * do it now.
899 */
900 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
901 (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
902 nmp->nm_sent < nmp->nm_cwnd)) {
903 splx(s);
904 if (nmp->nm_soflags & PR_CONNREQUIRED)
905 error = nfs_sndlock(&nmp->nm_flag, rep);
906 if (!error) {
907 m = m_copym(m, 0, M_COPYALL, M_WAIT);
908 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
909 if (nmp->nm_soflags & PR_CONNREQUIRED)
910 nfs_sndunlock(&nmp->nm_flag);
911 }
912 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
913 nmp->nm_sent += NFS_CWNDSCALE;
914 rep->r_flags |= R_SENT;
915 }
916 } else {
917 splx(s);
918 rep->r_rtt = -1;
919 }
920
921 /*
922 * Wait for the reply from our send or the timer's.
923 */
924 if (!error || error == EPIPE)
925 error = nfs_reply(rep);
926
927 /*
928 * RPC done, unlink the request.
929 */
930 s = splsoftnet();
931 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
932 splx(s);
933
934 /*
935 * Decrement the outstanding request count.
936 */
937 if (rep->r_flags & R_SENT) {
938 rep->r_flags &= ~R_SENT; /* paranoia */
939 nmp->nm_sent -= NFS_CWNDSCALE;
940 }
941
942 /*
943 * If there was a successful reply and a tprintf msg.
944 * tprintf a response.
945 */
946 if (!error && (rep->r_flags & R_TPRINTFMSG))
947 nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
948 "is alive again");
949 mrep = rep->r_mrep;
950 md = rep->r_md;
951 dpos = rep->r_dpos;
952 if (error) {
953 m_freem(rep->r_mreq);
954 free((caddr_t)rep, M_NFSREQ);
955 return (error);
956 }
957
958 /*
959 * break down the rpc header and check if ok
960 */
961 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
962 if (*tl++ == rpc_msgdenied) {
963 if (*tl == rpc_mismatch)
964 error = EOPNOTSUPP;
965 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
966 if (!failed_auth) {
967 failed_auth++;
968 mheadend->m_next = (struct mbuf *)0;
969 m_freem(mrep);
970 m_freem(rep->r_mreq);
971 goto kerbauth;
972 } else
973 error = EAUTH;
974 } else
975 error = EACCES;
976 m_freem(mrep);
977 m_freem(rep->r_mreq);
978 free((caddr_t)rep, M_NFSREQ);
979 return (error);
980 }
981
982 /*
983 * Grab any Kerberos verifier, otherwise just throw it away.
984 */
985 verf_type = fxdr_unsigned(int, *tl++);
986 i = fxdr_unsigned(int32_t, *tl);
987 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
988 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
989 if (error)
990 goto nfsmout;
991 } else if (i > 0)
992 nfsm_adv(nfsm_rndup(i));
993 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
994 /* 0 == ok */
995 if (*tl == 0) {
996 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
997 if (*tl != 0) {
998 error = fxdr_unsigned(int, *tl);
999 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1000 error == NFSERR_TRYLATER) {
1001 m_freem(mrep);
1002 error = 0;
1003 waituntil = time.tv_sec + trylater_delay;
1004 while (time.tv_sec < waituntil)
1005 (void) tsleep((caddr_t)&lbolt,
1006 PSOCK, "nqnfstry", 0);
1007 trylater_delay *= nfs_backoff[trylater_cnt];
1008 if (trylater_cnt < 7)
1009 trylater_cnt++;
1010 goto tryagain;
1011 }
1012
1013 /*
1014 * If the File Handle was stale, invalidate the
1015 * lookup cache, just in case.
1016 */
1017 if (error == ESTALE)
1018 cache_purge(vp);
1019 if (nmp->nm_flag & NFSMNT_NFSV3) {
1020 *mrp = mrep;
1021 *mdp = md;
1022 *dposp = dpos;
1023 error |= NFSERR_RETERR;
1024 } else
1025 m_freem(mrep);
1026 m_freem(rep->r_mreq);
1027 free((caddr_t)rep, M_NFSREQ);
1028 return (error);
1029 }
1030
1031 /*
1032 * For nqnfs, get any lease in reply
1033 */
1034 if (nmp->nm_flag & NFSMNT_NQNFS) {
1035 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1036 if (*tl) {
1037 np = VTONFS(vp);
1038 nqlflag = fxdr_unsigned(int, *tl);
1039 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED);
1040 cachable = fxdr_unsigned(int, *tl++);
1041 reqtime += fxdr_unsigned(int, *tl++);
1042 if (reqtime > time.tv_sec) {
1043 fxdr_hyper(tl, &frev);
1044 nqnfs_clientlease(nmp, np, nqlflag,
1045 cachable, reqtime, frev);
1046 }
1047 }
1048 }
1049 *mrp = mrep;
1050 *mdp = md;
1051 *dposp = dpos;
1052 m_freem(rep->r_mreq);
1053 FREE((caddr_t)rep, M_NFSREQ);
1054 return (0);
1055 }
1056 m_freem(mrep);
1057 error = EPROTONOSUPPORT;
1058 nfsmout:
1059 m_freem(rep->r_mreq);
1060 free((caddr_t)rep, M_NFSREQ);
1061 return (error);
1062 }
1063 #endif /* NFS */
1064
1065 /*
1066 * Generate the rpc reply header
1067 * siz arg. is used to decide if adding a cluster is worthwhile
1068 */
1069 int
1070 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1071 int siz;
1072 struct nfsrv_descript *nd;
1073 struct nfssvc_sock *slp;
1074 int err;
1075 int cache;
1076 u_quad_t *frev;
1077 struct mbuf **mrq;
1078 struct mbuf **mbp;
1079 caddr_t *bposp;
1080 {
1081 register u_int32_t *tl;
1082 register struct mbuf *mreq;
1083 caddr_t bpos;
1084 struct mbuf *mb, *mb2;
1085
1086 MGETHDR(mreq, M_WAIT, MT_DATA);
1087 mb = mreq;
1088 /*
1089 * If this is a big reply, use a cluster else
1090 * try and leave leading space for the lower level headers.
1091 */
1092 siz += RPC_REPLYSIZ;
1093 if (siz >= MINCLSIZE) {
1094 MCLGET(mreq, M_WAIT);
1095 } else
1096 mreq->m_data += max_hdr;
1097 tl = mtod(mreq, u_int32_t *);
1098 mreq->m_len = 6 * NFSX_UNSIGNED;
1099 bpos = ((caddr_t)tl) + mreq->m_len;
1100 *tl++ = txdr_unsigned(nd->nd_retxid);
1101 *tl++ = rpc_reply;
1102 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1103 *tl++ = rpc_msgdenied;
1104 if (err & NFSERR_AUTHERR) {
1105 *tl++ = rpc_autherr;
1106 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1107 mreq->m_len -= NFSX_UNSIGNED;
1108 bpos -= NFSX_UNSIGNED;
1109 } else {
1110 *tl++ = rpc_mismatch;
1111 *tl++ = txdr_unsigned(RPC_VER2);
1112 *tl = txdr_unsigned(RPC_VER2);
1113 }
1114 } else {
1115 *tl++ = rpc_msgaccepted;
1116
1117 /*
1118 * For Kerberos authentication, we must send the nickname
1119 * verifier back, otherwise just RPCAUTH_NULL.
1120 */
1121 if (nd->nd_flag & ND_KERBFULL) {
1122 register struct nfsuid *nuidp;
1123 struct timeval ktvin, ktvout;
1124
1125 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1126 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1127 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1128 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1129 &nuidp->nu_haddr, nd->nd_nam2)))
1130 break;
1131 }
1132 if (nuidp) {
1133 ktvin.tv_sec =
1134 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1135 ktvin.tv_usec =
1136 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1137
1138 /*
1139 * Encrypt the timestamp in ecb mode using the
1140 * session key.
1141 */
1142 #ifdef NFSKERB
1143 XXX
1144 #endif
1145
1146 *tl++ = rpc_auth_kerb;
1147 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1148 *tl = ktvout.tv_sec;
1149 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1150 *tl++ = ktvout.tv_usec;
1151 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1152 } else {
1153 *tl++ = 0;
1154 *tl++ = 0;
1155 }
1156 } else {
1157 *tl++ = 0;
1158 *tl++ = 0;
1159 }
1160 switch (err) {
1161 case EPROGUNAVAIL:
1162 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1163 break;
1164 case EPROGMISMATCH:
1165 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1166 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1167 if (nd->nd_flag & ND_NQNFS) {
1168 *tl++ = txdr_unsigned(3);
1169 *tl = txdr_unsigned(3);
1170 } else {
1171 *tl++ = txdr_unsigned(2);
1172 *tl = txdr_unsigned(3);
1173 }
1174 break;
1175 case EPROCUNAVAIL:
1176 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1177 break;
1178 case EBADRPC:
1179 *tl = txdr_unsigned(RPC_GARBAGE);
1180 break;
1181 default:
1182 *tl = 0;
1183 if (err != NFSERR_RETVOID) {
1184 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1185 if (err)
1186 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1187 else
1188 *tl = 0;
1189 }
1190 break;
1191 };
1192 }
1193
1194 /*
1195 * For nqnfs, piggyback lease as requested.
1196 */
1197 if ((nd->nd_flag & ND_NQNFS) && err == 0) {
1198 if (nd->nd_flag & ND_LEASE) {
1199 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1200 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE);
1201 *tl++ = txdr_unsigned(cache);
1202 *tl++ = txdr_unsigned(nd->nd_duration);
1203 txdr_hyper(frev, tl);
1204 } else {
1205 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1206 *tl = 0;
1207 }
1208 }
1209 if (mrq != NULL)
1210 *mrq = mreq;
1211 *mbp = mb;
1212 *bposp = bpos;
1213 if (err != 0 && err != NFSERR_RETVOID)
1214 nfsstats.srvrpc_errs++;
1215 return (0);
1216 }
1217
1218 /*
1219 * Nfs timer routine
1220 * Scan the nfsreq list and retranmit any requests that have timed out
1221 * To avoid retransmission attempts on STREAM sockets (in the future) make
1222 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1223 */
1224 void
1225 nfs_timer(arg)
1226 void *arg; /* never used */
1227 {
1228 register struct nfsreq *rep;
1229 register struct mbuf *m;
1230 register struct socket *so;
1231 register struct nfsmount *nmp;
1232 register int timeo;
1233 int s, error;
1234 #ifdef NFSSERVER
1235 register struct nfssvc_sock *slp;
1236 static long lasttime = 0;
1237 u_quad_t cur_usec;
1238 #endif
1239
1240 s = splsoftnet();
1241 for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) {
1242 nmp = rep->r_nmp;
1243 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1244 continue;
1245 if (nfs_sigintr(nmp, rep, rep->r_procp)) {
1246 rep->r_flags |= R_SOFTTERM;
1247 continue;
1248 }
1249 if (rep->r_rtt >= 0) {
1250 rep->r_rtt++;
1251 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1252 timeo = nmp->nm_timeo;
1253 else
1254 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1255 if (nmp->nm_timeouts > 0)
1256 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1257 if (rep->r_rtt <= timeo)
1258 continue;
1259 if (nmp->nm_timeouts < 8)
1260 nmp->nm_timeouts++;
1261 }
1262 /*
1263 * Check for server not responding
1264 */
1265 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1266 rep->r_rexmit > nmp->nm_deadthresh) {
1267 nfs_msg(rep->r_procp,
1268 nmp->nm_mountp->mnt_stat.f_mntfromname,
1269 "not responding");
1270 rep->r_flags |= R_TPRINTFMSG;
1271 }
1272 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1273 nfsstats.rpctimeouts++;
1274 rep->r_flags |= R_SOFTTERM;
1275 continue;
1276 }
1277 if (nmp->nm_sotype != SOCK_DGRAM) {
1278 if (++rep->r_rexmit > NFS_MAXREXMIT)
1279 rep->r_rexmit = NFS_MAXREXMIT;
1280 continue;
1281 }
1282 if ((so = nmp->nm_so) == NULL)
1283 continue;
1284
1285 /*
1286 * If there is enough space and the window allows..
1287 * Resend it
1288 * Set r_rtt to -1 in case we fail to send it now.
1289 */
1290 rep->r_rtt = -1;
1291 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1292 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1293 (rep->r_flags & R_SENT) ||
1294 nmp->nm_sent < nmp->nm_cwnd) &&
1295 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1296 if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1297 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1298 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1299 else
1300 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1301 nmp->nm_nam, (struct mbuf *)0, (struct proc *)0);
1302 if (error) {
1303 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
1304 printf("nfs_timer: ignoring error %d\n",
1305 error);
1306 so->so_error = 0;
1307 }
1308 } else {
1309 /*
1310 * Iff first send, start timing
1311 * else turn timing off, backoff timer
1312 * and divide congestion window by 2.
1313 */
1314 if (rep->r_flags & R_SENT) {
1315 rep->r_flags &= ~R_TIMING;
1316 if (++rep->r_rexmit > NFS_MAXREXMIT)
1317 rep->r_rexmit = NFS_MAXREXMIT;
1318 nmp->nm_cwnd >>= 1;
1319 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1320 nmp->nm_cwnd = NFS_CWNDSCALE;
1321 nfsstats.rpcretries++;
1322 } else {
1323 rep->r_flags |= R_SENT;
1324 nmp->nm_sent += NFS_CWNDSCALE;
1325 }
1326 rep->r_rtt = 0;
1327 }
1328 }
1329 }
1330
1331 #ifdef NFSSERVER
1332 /*
1333 * Call the nqnfs server timer once a second to handle leases.
1334 */
1335 if (lasttime != time.tv_sec) {
1336 lasttime = time.tv_sec;
1337 nqnfs_serverd();
1338 }
1339
1340 /*
1341 * Scan the write gathering queues for writes that need to be
1342 * completed now.
1343 */
1344 cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec;
1345 for (slp = nfssvc_sockhead.tqh_first; slp != 0;
1346 slp = slp->ns_chain.tqe_next) {
1347 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
1348 nfsrv_wakenfsd(slp);
1349 }
1350 #endif /* NFSSERVER */
1351 splx(s);
1352 timeout(nfs_timer, (void *)0, nfs_ticks);
1353 }
1354
1355 /*
1356 * Test for a termination condition pending on the process.
1357 * This is used for NFSMNT_INT mounts.
1358 */
1359 int
1360 nfs_sigintr(nmp, rep, p)
1361 struct nfsmount *nmp;
1362 struct nfsreq *rep;
1363 register struct proc *p;
1364 {
1365
1366 if (rep && (rep->r_flags & R_SOFTTERM))
1367 return (EINTR);
1368 if (!(nmp->nm_flag & NFSMNT_INT))
1369 return (0);
1370 if (p && p->p_siglist &&
1371 (((p->p_siglist & ~p->p_sigmask) & ~p->p_sigignore) &
1372 NFSINT_SIGMASK))
1373 return (EINTR);
1374 return (0);
1375 }
1376
1377 /*
1378 * Lock a socket against others.
1379 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1380 * and also to avoid race conditions between the processes with nfs requests
1381 * in progress when a reconnect is necessary.
1382 */
1383 int
1384 nfs_sndlock(flagp, rep)
1385 register int *flagp;
1386 struct nfsreq *rep;
1387 {
1388 struct proc *p;
1389 int slpflag = 0, slptimeo = 0;
1390
1391 if (rep) {
1392 p = rep->r_procp;
1393 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1394 slpflag = PCATCH;
1395 } else
1396 p = (struct proc *)0;
1397 while (*flagp & NFSMNT_SNDLOCK) {
1398 if (nfs_sigintr(rep->r_nmp, rep, p))
1399 return (EINTR);
1400 *flagp |= NFSMNT_WANTSND;
1401 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck",
1402 slptimeo);
1403 if (slpflag == PCATCH) {
1404 slpflag = 0;
1405 slptimeo = 2 * hz;
1406 }
1407 }
1408 *flagp |= NFSMNT_SNDLOCK;
1409 return (0);
1410 }
1411
1412 /*
1413 * Unlock the stream socket for others.
1414 */
1415 void
1416 nfs_sndunlock(flagp)
1417 register int *flagp;
1418 {
1419
1420 if ((*flagp & NFSMNT_SNDLOCK) == 0)
1421 panic("nfs sndunlock");
1422 *flagp &= ~NFSMNT_SNDLOCK;
1423 if (*flagp & NFSMNT_WANTSND) {
1424 *flagp &= ~NFSMNT_WANTSND;
1425 wakeup((caddr_t)flagp);
1426 }
1427 }
1428
1429 int
1430 nfs_rcvlock(rep)
1431 register struct nfsreq *rep;
1432 {
1433 register int *flagp = &rep->r_nmp->nm_flag;
1434 int slpflag, slptimeo = 0;
1435
1436 if (*flagp & NFSMNT_INT)
1437 slpflag = PCATCH;
1438 else
1439 slpflag = 0;
1440 while (*flagp & NFSMNT_RCVLOCK) {
1441 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
1442 return (EINTR);
1443 *flagp |= NFSMNT_WANTRCV;
1444 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk",
1445 slptimeo);
1446 if (slpflag == PCATCH) {
1447 slpflag = 0;
1448 slptimeo = 2 * hz;
1449 }
1450 }
1451 *flagp |= NFSMNT_RCVLOCK;
1452 return (0);
1453 }
1454
1455 /*
1456 * Unlock the stream socket for others.
1457 */
1458 void
1459 nfs_rcvunlock(flagp)
1460 register int *flagp;
1461 {
1462
1463 if ((*flagp & NFSMNT_RCVLOCK) == 0)
1464 panic("nfs rcvunlock");
1465 *flagp &= ~NFSMNT_RCVLOCK;
1466 if (*flagp & NFSMNT_WANTRCV) {
1467 *flagp &= ~NFSMNT_WANTRCV;
1468 wakeup((caddr_t)flagp);
1469 }
1470 }
1471
1472 /*
1473 * Parse an RPC request
1474 * - verify it
1475 * - fill in the cred struct.
1476 */
1477 int
1478 nfs_getreq(nd, nfsd, has_header)
1479 register struct nfsrv_descript *nd;
1480 struct nfsd *nfsd;
1481 int has_header;
1482 {
1483 register int len, i;
1484 register u_int32_t *tl;
1485 register int32_t t1;
1486 struct uio uio;
1487 struct iovec iov;
1488 caddr_t dpos, cp2, cp;
1489 u_int32_t nfsvers, auth_type;
1490 uid_t nickuid;
1491 int error = 0, nqnfs = 0, ticklen;
1492 struct mbuf *mrep, *md;
1493 register struct nfsuid *nuidp;
1494 struct timeval tvin, tvout;
1495
1496 mrep = nd->nd_mrep;
1497 md = nd->nd_md;
1498 dpos = nd->nd_dpos;
1499 if (has_header) {
1500 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1501 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1502 if (*tl++ != rpc_call) {
1503 m_freem(mrep);
1504 return (EBADRPC);
1505 }
1506 } else
1507 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1508 nd->nd_repstat = 0;
1509 nd->nd_flag = 0;
1510 if (*tl++ != rpc_vers) {
1511 nd->nd_repstat = ERPCMISMATCH;
1512 nd->nd_procnum = NFSPROC_NOOP;
1513 return (0);
1514 }
1515 if (*tl != nfs_prog) {
1516 if (*tl == nqnfs_prog)
1517 nqnfs++;
1518 else {
1519 nd->nd_repstat = EPROGUNAVAIL;
1520 nd->nd_procnum = NFSPROC_NOOP;
1521 return (0);
1522 }
1523 }
1524 tl++;
1525 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1526 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) ||
1527 (nfsvers != NQNFS_VER3 && nqnfs)) {
1528 nd->nd_repstat = EPROGMISMATCH;
1529 nd->nd_procnum = NFSPROC_NOOP;
1530 return (0);
1531 }
1532 if (nqnfs)
1533 nd->nd_flag = (ND_NFSV3 | ND_NQNFS);
1534 else if (nfsvers == NFS_VER3)
1535 nd->nd_flag = ND_NFSV3;
1536 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1537 if (nd->nd_procnum == NFSPROC_NULL)
1538 return (0);
1539 if (nd->nd_procnum >= NFS_NPROCS ||
1540 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
1541 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1542 nd->nd_repstat = EPROCUNAVAIL;
1543 nd->nd_procnum = NFSPROC_NOOP;
1544 return (0);
1545 }
1546 if ((nd->nd_flag & ND_NFSV3) == 0)
1547 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1548 auth_type = *tl++;
1549 len = fxdr_unsigned(int, *tl++);
1550 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1551 m_freem(mrep);
1552 return (EBADRPC);
1553 }
1554
1555 nd->nd_flag &= ~ND_KERBAUTH;
1556 /*
1557 * Handle auth_unix or auth_kerb.
1558 */
1559 if (auth_type == rpc_auth_unix) {
1560 len = fxdr_unsigned(int, *++tl);
1561 if (len < 0 || len > NFS_MAXNAMLEN) {
1562 m_freem(mrep);
1563 return (EBADRPC);
1564 }
1565 nfsm_adv(nfsm_rndup(len));
1566 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1567 bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
1568 nd->nd_cr.cr_ref = 1;
1569 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
1570 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
1571 len = fxdr_unsigned(int, *tl);
1572 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
1573 m_freem(mrep);
1574 return (EBADRPC);
1575 }
1576 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
1577 for (i = 0; i < len; i++)
1578 if (i < NGROUPS)
1579 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
1580 else
1581 tl++;
1582 nd->nd_cr.cr_ngroups = (len > NGROUPS) ? NGROUPS : len;
1583 if (nd->nd_cr.cr_ngroups > 1)
1584 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
1585 len = fxdr_unsigned(int, *++tl);
1586 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1587 m_freem(mrep);
1588 return (EBADRPC);
1589 }
1590 if (len > 0)
1591 nfsm_adv(nfsm_rndup(len));
1592 } else if (auth_type == rpc_auth_kerb) {
1593 switch (fxdr_unsigned(int, *tl++)) {
1594 case RPCAKN_FULLNAME:
1595 ticklen = fxdr_unsigned(int, *tl);
1596 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
1597 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
1598 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
1599 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
1600 m_freem(mrep);
1601 return (EBADRPC);
1602 }
1603 uio.uio_offset = 0;
1604 uio.uio_iov = &iov;
1605 uio.uio_iovcnt = 1;
1606 uio.uio_segflg = UIO_SYSSPACE;
1607 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
1608 iov.iov_len = RPCAUTH_MAXSIZ - 4;
1609 nfsm_mtouio(&uio, uio.uio_resid);
1610 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1611 if (*tl++ != rpc_auth_kerb ||
1612 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
1613 printf("Bad kerb verifier\n");
1614 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1615 nd->nd_procnum = NFSPROC_NOOP;
1616 return (0);
1617 }
1618 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
1619 tl = (u_int32_t *)cp;
1620 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
1621 printf("Not fullname kerb verifier\n");
1622 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1623 nd->nd_procnum = NFSPROC_NOOP;
1624 return (0);
1625 }
1626 cp += NFSX_UNSIGNED;
1627 bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
1628 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
1629 nd->nd_flag |= ND_KERBFULL;
1630 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
1631 break;
1632 case RPCAKN_NICKNAME:
1633 if (len != 2 * NFSX_UNSIGNED) {
1634 printf("Kerb nickname short\n");
1635 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
1636 nd->nd_procnum = NFSPROC_NOOP;
1637 return (0);
1638 }
1639 nickuid = fxdr_unsigned(uid_t, *tl);
1640 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1641 if (*tl++ != rpc_auth_kerb ||
1642 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
1643 printf("Kerb nick verifier bad\n");
1644 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1645 nd->nd_procnum = NFSPROC_NOOP;
1646 return (0);
1647 }
1648 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1649 tvin.tv_sec = *tl++;
1650 tvin.tv_usec = *tl;
1651
1652 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
1653 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1654 if (nuidp->nu_cr.cr_uid == nickuid &&
1655 (!nd->nd_nam2 ||
1656 netaddr_match(NU_NETFAM(nuidp),
1657 &nuidp->nu_haddr, nd->nd_nam2)))
1658 break;
1659 }
1660 if (!nuidp) {
1661 nd->nd_repstat =
1662 (NFSERR_AUTHERR|AUTH_REJECTCRED);
1663 nd->nd_procnum = NFSPROC_NOOP;
1664 return (0);
1665 }
1666
1667 /*
1668 * Now, decrypt the timestamp using the session key
1669 * and validate it.
1670 */
1671 #ifdef NFSKERB
1672 XXX
1673 #endif
1674
1675 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
1676 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
1677 if (nuidp->nu_expire < time.tv_sec ||
1678 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
1679 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
1680 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
1681 nuidp->nu_expire = 0;
1682 nd->nd_repstat =
1683 (NFSERR_AUTHERR|AUTH_REJECTVERF);
1684 nd->nd_procnum = NFSPROC_NOOP;
1685 return (0);
1686 }
1687 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
1688 nd->nd_flag |= ND_KERBNICK;
1689 };
1690 } else {
1691 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
1692 nd->nd_procnum = NFSPROC_NOOP;
1693 return (0);
1694 }
1695
1696 /*
1697 * For nqnfs, get piggybacked lease request.
1698 */
1699 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
1700 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1701 nd->nd_flag |= fxdr_unsigned(int, *tl);
1702 if (nd->nd_flag & ND_LEASE) {
1703 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1704 nd->nd_duration = fxdr_unsigned(u_int32_t, *tl);
1705 } else
1706 nd->nd_duration = NQ_MINLEASE;
1707 } else
1708 nd->nd_duration = NQ_MINLEASE;
1709 nd->nd_md = md;
1710 nd->nd_dpos = dpos;
1711 return (0);
1712 nfsmout:
1713 return (error);
1714 }
1715
1716 int
1717 nfs_msg(p, server, msg)
1718 struct proc *p;
1719 char *server, *msg;
1720 {
1721 tpr_t tpr;
1722
1723 if (p)
1724 tpr = tprintf_open(p);
1725 else
1726 tpr = NULL;
1727 tprintf(tpr, "nfs server %s: %s\n", server, msg);
1728 tprintf_close(tpr);
1729 return (0);
1730 }
1731
1732 #ifdef NFSSERVER
1733 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
1734 struct nfssvc_sock *, struct proc *,
1735 struct mbuf **)) = {
1736 nfsrv_null,
1737 nfsrv_getattr,
1738 nfsrv_setattr,
1739 nfsrv_lookup,
1740 nfsrv3_access,
1741 nfsrv_readlink,
1742 nfsrv_read,
1743 nfsrv_write,
1744 nfsrv_create,
1745 nfsrv_mkdir,
1746 nfsrv_symlink,
1747 nfsrv_mknod,
1748 nfsrv_remove,
1749 nfsrv_rmdir,
1750 nfsrv_rename,
1751 nfsrv_link,
1752 nfsrv_readdir,
1753 nfsrv_readdirplus,
1754 nfsrv_statfs,
1755 nfsrv_fsinfo,
1756 nfsrv_pathconf,
1757 nfsrv_commit,
1758 nqnfsrv_getlease,
1759 nqnfsrv_vacated,
1760 nfsrv_noop,
1761 nfsrv_noop
1762 };
1763
1764 /*
1765 * Socket upcall routine for the nfsd sockets.
1766 * The caddr_t arg is a pointer to the "struct nfssvc_sock".
1767 * Essentially do as much as possible non-blocking, else punt and it will
1768 * be called with M_WAIT from an nfsd.
1769 */
1770 void
1771 nfsrv_rcv(so, arg, waitflag)
1772 struct socket *so;
1773 caddr_t arg;
1774 int waitflag;
1775 {
1776 register struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
1777 register struct mbuf *m;
1778 struct mbuf *mp, *nam;
1779 struct uio auio;
1780 int flags, error;
1781
1782 if ((slp->ns_flag & SLP_VALID) == 0)
1783 return;
1784 #ifdef notdef
1785 /*
1786 * Define this to test for nfsds handling this under heavy load.
1787 */
1788 if (waitflag == M_DONTWAIT) {
1789 slp->ns_flag |= SLP_NEEDQ; goto dorecs;
1790 }
1791 #endif
1792 auio.uio_procp = NULL;
1793 if (so->so_type == SOCK_STREAM) {
1794 /*
1795 * If there are already records on the queue, defer soreceive()
1796 * to an nfsd so that there is feedback to the TCP layer that
1797 * the nfs servers are heavily loaded.
1798 */
1799 if (slp->ns_rec && waitflag == M_DONTWAIT) {
1800 slp->ns_flag |= SLP_NEEDQ;
1801 goto dorecs;
1802 }
1803
1804 /*
1805 * Do soreceive().
1806 */
1807 auio.uio_resid = 1000000000;
1808 flags = MSG_DONTWAIT;
1809 error = soreceive(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
1810 if (error || mp == (struct mbuf *)0) {
1811 if (error == EWOULDBLOCK)
1812 slp->ns_flag |= SLP_NEEDQ;
1813 else
1814 slp->ns_flag |= SLP_DISCONN;
1815 goto dorecs;
1816 }
1817 m = mp;
1818 if (slp->ns_rawend) {
1819 slp->ns_rawend->m_next = m;
1820 slp->ns_cc += 1000000000 - auio.uio_resid;
1821 } else {
1822 slp->ns_raw = m;
1823 slp->ns_cc = 1000000000 - auio.uio_resid;
1824 }
1825 while (m->m_next)
1826 m = m->m_next;
1827 slp->ns_rawend = m;
1828
1829 /*
1830 * Now try and parse record(s) out of the raw stream data.
1831 */
1832 error = nfsrv_getstream(slp, waitflag);
1833 if (error) {
1834 if (error == EPERM)
1835 slp->ns_flag |= SLP_DISCONN;
1836 else
1837 slp->ns_flag |= SLP_NEEDQ;
1838 }
1839 } else {
1840 do {
1841 auio.uio_resid = 1000000000;
1842 flags = MSG_DONTWAIT;
1843 error = soreceive(so, &nam, &auio, &mp,
1844 (struct mbuf **)0, &flags);
1845 if (mp) {
1846 if (nam) {
1847 m = nam;
1848 m->m_next = mp;
1849 } else
1850 m = mp;
1851 if (slp->ns_recend)
1852 slp->ns_recend->m_nextpkt = m;
1853 else
1854 slp->ns_rec = m;
1855 slp->ns_recend = m;
1856 m->m_nextpkt = (struct mbuf *)0;
1857 }
1858 if (error) {
1859 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
1860 && error != EWOULDBLOCK) {
1861 slp->ns_flag |= SLP_DISCONN;
1862 goto dorecs;
1863 }
1864 }
1865 } while (mp);
1866 }
1867
1868 /*
1869 * Now try and process the request records, non-blocking.
1870 */
1871 dorecs:
1872 if (waitflag == M_DONTWAIT &&
1873 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
1874 nfsrv_wakenfsd(slp);
1875 }
1876
1877 /*
1878 * Try and extract an RPC request from the mbuf data list received on a
1879 * stream socket. The "waitflag" argument indicates whether or not it
1880 * can sleep.
1881 */
1882 int
1883 nfsrv_getstream(slp, waitflag)
1884 register struct nfssvc_sock *slp;
1885 int waitflag;
1886 {
1887 register struct mbuf *m, **mpp;
1888 register char *cp1, *cp2;
1889 register int len;
1890 struct mbuf *om, *m2, *recm = NULL;
1891 u_int32_t recmark;
1892
1893 if (slp->ns_flag & SLP_GETSTREAM)
1894 panic("nfs getstream");
1895 slp->ns_flag |= SLP_GETSTREAM;
1896 for (;;) {
1897 if (slp->ns_reclen == 0) {
1898 if (slp->ns_cc < NFSX_UNSIGNED) {
1899 slp->ns_flag &= ~SLP_GETSTREAM;
1900 return (0);
1901 }
1902 m = slp->ns_raw;
1903 if (m->m_len >= NFSX_UNSIGNED) {
1904 bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
1905 m->m_data += NFSX_UNSIGNED;
1906 m->m_len -= NFSX_UNSIGNED;
1907 } else {
1908 cp1 = (caddr_t)&recmark;
1909 cp2 = mtod(m, caddr_t);
1910 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
1911 while (m->m_len == 0) {
1912 m = m->m_next;
1913 cp2 = mtod(m, caddr_t);
1914 }
1915 *cp1++ = *cp2++;
1916 m->m_data++;
1917 m->m_len--;
1918 }
1919 }
1920 slp->ns_cc -= NFSX_UNSIGNED;
1921 recmark = ntohl(recmark);
1922 slp->ns_reclen = recmark & ~0x80000000;
1923 if (recmark & 0x80000000)
1924 slp->ns_flag |= SLP_LASTFRAG;
1925 else
1926 slp->ns_flag &= ~SLP_LASTFRAG;
1927 if (slp->ns_reclen > NFS_MAXPACKET) {
1928 slp->ns_flag &= ~SLP_GETSTREAM;
1929 return (EPERM);
1930 }
1931 }
1932
1933 /*
1934 * Now get the record part.
1935 */
1936 if (slp->ns_cc == slp->ns_reclen) {
1937 recm = slp->ns_raw;
1938 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
1939 slp->ns_cc = slp->ns_reclen = 0;
1940 } else if (slp->ns_cc > slp->ns_reclen) {
1941 len = 0;
1942 m = slp->ns_raw;
1943 om = (struct mbuf *)0;
1944 while (len < slp->ns_reclen) {
1945 if ((len + m->m_len) > slp->ns_reclen) {
1946 size_t left = slp->ns_reclen - len;
1947
1948 MGETHDR(m2, waitflag, m->m_type);
1949 if (m2 == NULL) {
1950 slp->ns_flag &= ~SLP_GETSTREAM;
1951 return (EWOULDBLOCK);
1952 }
1953 if (left > MHLEN) {
1954 MCLGET(m2, waitflag);
1955 if (!(m2->m_flags & M_EXT)) {
1956 m_freem(m2);
1957 slp->ns_flag &= ~SLP_GETSTREAM;
1958 return (EWOULDBLOCK);
1959 }
1960 }
1961 bcopy(mtod(m, caddr_t), mtod(m2, caddr_t),
1962 left);
1963 m2->m_len = left;
1964 m->m_data += left;
1965 m->m_len -= left;
1966 if (om) {
1967 om->m_next = m2;
1968 recm = slp->ns_raw;
1969 } else
1970 recm = m2;
1971 len = slp->ns_reclen;
1972 } else if ((len + m->m_len) == slp->ns_reclen) {
1973 om = m;
1974 len += m->m_len;
1975 m = m->m_next;
1976 recm = slp->ns_raw;
1977 om->m_next = (struct mbuf *)0;
1978 } else {
1979 om = m;
1980 len += m->m_len;
1981 m = m->m_next;
1982 }
1983 }
1984 slp->ns_raw = m;
1985 slp->ns_cc -= len;
1986 slp->ns_reclen = 0;
1987 } else {
1988 slp->ns_flag &= ~SLP_GETSTREAM;
1989 return (0);
1990 }
1991
1992 /*
1993 * Accumulate the fragments into a record.
1994 */
1995 mpp = &slp->ns_frag;
1996 while (*mpp)
1997 mpp = &((*mpp)->m_next);
1998 *mpp = recm;
1999 if (slp->ns_flag & SLP_LASTFRAG) {
2000 if (slp->ns_recend)
2001 slp->ns_recend->m_nextpkt = slp->ns_frag;
2002 else
2003 slp->ns_rec = slp->ns_frag;
2004 slp->ns_recend = slp->ns_frag;
2005 slp->ns_frag = (struct mbuf *)0;
2006 }
2007 }
2008 }
2009
2010 /*
2011 * Parse an RPC header.
2012 */
2013 int
2014 nfsrv_dorec(slp, nfsd, ndp)
2015 register struct nfssvc_sock *slp;
2016 struct nfsd *nfsd;
2017 struct nfsrv_descript **ndp;
2018 {
2019 register struct mbuf *m, *nam;
2020 register struct nfsrv_descript *nd;
2021 int error;
2022
2023 *ndp = NULL;
2024 if ((slp->ns_flag & SLP_VALID) == 0 ||
2025 (m = slp->ns_rec) == (struct mbuf *)0)
2026 return (ENOBUFS);
2027 slp->ns_rec = m->m_nextpkt;
2028 if (slp->ns_rec)
2029 m->m_nextpkt = (struct mbuf *)0;
2030 else
2031 slp->ns_recend = (struct mbuf *)0;
2032 if (m->m_type == MT_SONAME) {
2033 nam = m;
2034 m = m->m_next;
2035 nam->m_next = NULL;
2036 } else
2037 nam = NULL;
2038 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2039 M_NFSRVDESC, M_WAITOK);
2040 nd->nd_md = nd->nd_mrep = m;
2041 nd->nd_nam2 = nam;
2042 nd->nd_dpos = mtod(m, caddr_t);
2043 error = nfs_getreq(nd, nfsd, TRUE);
2044 if (error) {
2045 m_freem(nam);
2046 free((caddr_t)nd, M_NFSRVDESC);
2047 return (error);
2048 }
2049 *ndp = nd;
2050 nfsd->nfsd_nd = nd;
2051 return (0);
2052 }
2053
2054
2055 /*
2056 * Search for a sleeping nfsd and wake it up.
2057 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2058 * running nfsds will go look for the work in the nfssvc_sock list.
2059 */
2060 void
2061 nfsrv_wakenfsd(slp)
2062 struct nfssvc_sock *slp;
2063 {
2064 register struct nfsd *nd;
2065
2066 if ((slp->ns_flag & SLP_VALID) == 0)
2067 return;
2068 for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) {
2069 if (nd->nfsd_flag & NFSD_WAITING) {
2070 nd->nfsd_flag &= ~NFSD_WAITING;
2071 if (nd->nfsd_slp)
2072 panic("nfsd wakeup");
2073 slp->ns_sref++;
2074 nd->nfsd_slp = slp;
2075 wakeup((caddr_t)nd);
2076 return;
2077 }
2078 }
2079 slp->ns_flag |= SLP_DOREC;
2080 nfsd_head_flag |= NFSD_CHECKSLP;
2081 }
2082 #endif /* NFSSERVER */
2083