nfs_socket.c revision 1.37 1 /* $NetBSD: nfs_socket.c,v 1.37 1997/05/12 23:40:22 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1991, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
39 */
40
41 /*
42 * Socket operations for use by nfs
43 */
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/mount.h>
49 #include <sys/kernel.h>
50 #include <sys/mbuf.h>
51 #include <sys/vnode.h>
52 #include <sys/domain.h>
53 #include <sys/protosw.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/syslog.h>
57 #include <sys/tprintf.h>
58 #include <sys/namei.h>
59
60 #include <netinet/in.h>
61 #include <netinet/tcp.h>
62
63 #include <nfs/rpcv2.h>
64 #include <nfs/nfsproto.h>
65 #include <nfs/nfs.h>
66 #include <nfs/xdr_subs.h>
67 #include <nfs/nfsm_subs.h>
68 #include <nfs/nfsmount.h>
69 #include <nfs/nfsnode.h>
70 #include <nfs/nfsrtt.h>
71 #include <nfs/nqnfs.h>
72 #include <nfs/nfs_var.h>
73
74 #define TRUE 1
75 #define FALSE 0
76
77 /*
78 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
79 * Use the mean and mean deviation of rtt for the appropriate type of rpc
80 * for the frequent rpcs and a default for the others.
81 * The justification for doing "other" this way is that these rpcs
82 * happen so infrequently that timer est. would probably be stale.
83 * Also, since many of these rpcs are
84 * non-idempotent, a conservative timeout is desired.
85 * getattr, lookup - A+2D
86 * read, write - A+4D
87 * other - nm_timeo
88 */
89 #define NFS_RTO(n, t) \
90 ((t) == 0 ? (n)->nm_timeo : \
91 ((t) < 3 ? \
92 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
93 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
94 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
95 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
96 /*
97 * External data, mostly RPC constants in XDR form
98 */
99 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
100 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
101 rpc_auth_kerb;
102 extern u_int32_t nfs_prog, nqnfs_prog;
103 extern time_t nqnfsstarttime;
104 extern struct nfsstats nfsstats;
105 extern int nfsv3_procid[NFS_NPROCS];
106 extern int nfs_ticks;
107
108 /*
109 * Defines which timer to use for the procnum.
110 * 0 - default
111 * 1 - getattr
112 * 2 - lookup
113 * 3 - read
114 * 4 - write
115 */
116 static int proct[NFS_NPROCS] = {
117 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
118 0, 0, 0,
119 };
120
121 /*
122 * There is a congestion window for outstanding rpcs maintained per mount
123 * point. The cwnd size is adjusted in roughly the way that:
124 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
125 * SIGCOMM '88". ACM, August 1988.
126 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
127 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
128 * of rpcs is in progress.
129 * (The sent count and cwnd are scaled for integer arith.)
130 * Variants of "slow start" were tried and were found to be too much of a
131 * performance hit (ave. rtt 3 times larger),
132 * I suspect due to the large rtt that nfs rpcs have.
133 */
134 #define NFS_CWNDSCALE 256
135 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
136 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
137 int nfsrtton = 0;
138 struct nfsrtt nfsrtt;
139
140 /*
141 * Initialize sockets and congestion for a new NFS connection.
142 * We do not free the sockaddr if error.
143 */
144 int
145 nfs_connect(nmp, rep)
146 register struct nfsmount *nmp;
147 struct nfsreq *rep;
148 {
149 register struct socket *so;
150 int s, error, rcvreserve, sndreserve;
151 struct sockaddr *saddr;
152 struct sockaddr_in *sin;
153 struct mbuf *m;
154 u_int16_t tport;
155
156 nmp->nm_so = (struct socket *)0;
157 saddr = mtod(nmp->nm_nam, struct sockaddr *);
158 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
159 nmp->nm_soproto);
160 if (error)
161 goto bad;
162 so = nmp->nm_so;
163 nmp->nm_soflags = so->so_proto->pr_flags;
164
165 /*
166 * Some servers require that the client port be a reserved port number.
167 */
168 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
169 MGET(m, M_WAIT, MT_SONAME);
170 sin = mtod(m, struct sockaddr_in *);
171 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
172 sin->sin_family = AF_INET;
173 sin->sin_addr.s_addr = INADDR_ANY;
174 tport = IPPORT_RESERVED - 1;
175 sin->sin_port = htons(tport);
176 while ((error = sobind(so, m)) == EADDRINUSE &&
177 --tport > IPPORT_RESERVED / 2)
178 sin->sin_port = htons(tport);
179 m_freem(m);
180 if (error)
181 goto bad;
182 }
183
184 /*
185 * Protocols that do not require connections may be optionally left
186 * unconnected for servers that reply from a port other than NFS_PORT.
187 */
188 if (nmp->nm_flag & NFSMNT_NOCONN) {
189 if (nmp->nm_soflags & PR_CONNREQUIRED) {
190 error = ENOTCONN;
191 goto bad;
192 }
193 } else {
194 error = soconnect(so, nmp->nm_nam);
195 if (error)
196 goto bad;
197
198 /*
199 * Wait for the connection to complete. Cribbed from the
200 * connect system call but with the wait timing out so
201 * that interruptible mounts don't hang here for a long time.
202 */
203 s = splsoftnet();
204 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
205 (void) tsleep((caddr_t)&so->so_timeo, PSOCK,
206 "nfscon", 2 * hz);
207 if ((so->so_state & SS_ISCONNECTING) &&
208 so->so_error == 0 && rep &&
209 (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){
210 so->so_state &= ~SS_ISCONNECTING;
211 splx(s);
212 goto bad;
213 }
214 }
215 if (so->so_error) {
216 error = so->so_error;
217 so->so_error = 0;
218 splx(s);
219 goto bad;
220 }
221 splx(s);
222 }
223 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
224 so->so_rcv.sb_timeo = (5 * hz);
225 so->so_snd.sb_timeo = (5 * hz);
226 } else {
227 so->so_rcv.sb_timeo = 0;
228 so->so_snd.sb_timeo = 0;
229 }
230 if (nmp->nm_sotype == SOCK_DGRAM) {
231 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
232 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
233 NFS_MAXPKTHDR) * 2;
234 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
235 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
236 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
237 NFS_MAXPKTHDR) * 2;
238 } else {
239 if (nmp->nm_sotype != SOCK_STREAM)
240 panic("nfscon sotype");
241 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
242 MGET(m, M_WAIT, MT_SOOPTS);
243 *mtod(m, int32_t *) = 1;
244 m->m_len = sizeof(int32_t);
245 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
246 }
247 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
248 MGET(m, M_WAIT, MT_SOOPTS);
249 *mtod(m, int32_t *) = 1;
250 m->m_len = sizeof(int32_t);
251 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
252 }
253 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
254 sizeof (u_int32_t)) * 2;
255 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
256 sizeof (u_int32_t)) * 2;
257 }
258 error = soreserve(so, sndreserve, rcvreserve);
259 if (error)
260 goto bad;
261 so->so_rcv.sb_flags |= SB_NOINTR;
262 so->so_snd.sb_flags |= SB_NOINTR;
263
264 /* Initialize other non-zero congestion variables */
265 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
266 nmp->nm_srtt[4] = (NFS_TIMEO << 3);
267 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
268 nmp->nm_sdrtt[3] = nmp->nm_sdrtt[4] = 0;
269 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
270 nmp->nm_sent = 0;
271 nmp->nm_timeouts = 0;
272 return (0);
273
274 bad:
275 nfs_disconnect(nmp);
276 return (error);
277 }
278
279 /*
280 * Reconnect routine:
281 * Called when a connection is broken on a reliable protocol.
282 * - clean up the old socket
283 * - nfs_connect() again
284 * - set R_MUSTRESEND for all outstanding requests on mount point
285 * If this fails the mount point is DEAD!
286 * nb: Must be called with the nfs_sndlock() set on the mount point.
287 */
288 int
289 nfs_reconnect(rep)
290 register struct nfsreq *rep;
291 {
292 register struct nfsreq *rp;
293 register struct nfsmount *nmp = rep->r_nmp;
294 int error;
295
296 nfs_disconnect(nmp);
297 while ((error = nfs_connect(nmp, rep)) != 0) {
298 if (error == EINTR || error == ERESTART)
299 return (EINTR);
300 (void) tsleep((caddr_t)&lbolt, PSOCK, "nfscon", 0);
301 }
302
303 /*
304 * Loop through outstanding request list and fix up all requests
305 * on old socket.
306 */
307 for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) {
308 if (rp->r_nmp == nmp)
309 rp->r_flags |= R_MUSTRESEND;
310 }
311 return (0);
312 }
313
314 /*
315 * NFS disconnect. Clean up and unlink.
316 */
317 void
318 nfs_disconnect(nmp)
319 register struct nfsmount *nmp;
320 {
321 register struct socket *so;
322
323 if (nmp->nm_so) {
324 so = nmp->nm_so;
325 nmp->nm_so = (struct socket *)0;
326 soshutdown(so, 2);
327 soclose(so);
328 }
329 }
330
331 /*
332 * This is the nfs send routine. For connection based socket types, it
333 * must be called with an nfs_sndlock() on the socket.
334 * "rep == NULL" indicates that it has been called from a server.
335 * For the client side:
336 * - return EINTR if the RPC is terminated, 0 otherwise
337 * - set R_MUSTRESEND if the send fails for any reason
338 * - do any cleanup required by recoverable socket errors (???)
339 * For the server side:
340 * - return EINTR or ERESTART if interrupted by a signal
341 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
342 * - do any cleanup required by recoverable socket errors (???)
343 */
344 int
345 nfs_send(so, nam, top, rep)
346 register struct socket *so;
347 struct mbuf *nam;
348 register struct mbuf *top;
349 struct nfsreq *rep;
350 {
351 struct mbuf *sendnam;
352 int error, soflags, flags;
353
354 if (rep) {
355 if (rep->r_flags & R_SOFTTERM) {
356 m_freem(top);
357 return (EINTR);
358 }
359 if ((so = rep->r_nmp->nm_so) == NULL) {
360 rep->r_flags |= R_MUSTRESEND;
361 m_freem(top);
362 return (0);
363 }
364 rep->r_flags &= ~R_MUSTRESEND;
365 soflags = rep->r_nmp->nm_soflags;
366 } else
367 soflags = so->so_proto->pr_flags;
368 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
369 sendnam = (struct mbuf *)0;
370 else
371 sendnam = nam;
372 if (so->so_type == SOCK_SEQPACKET)
373 flags = MSG_EOR;
374 else
375 flags = 0;
376
377 error = sosend(so, sendnam, (struct uio *)0, top,
378 (struct mbuf *)0, flags);
379 if (error) {
380 if (rep) {
381 log(LOG_INFO, "nfs send error %d for server %s\n",error,
382 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
383 /*
384 * Deal with errors for the client side.
385 */
386 if (rep->r_flags & R_SOFTTERM)
387 error = EINTR;
388 else
389 rep->r_flags |= R_MUSTRESEND;
390 } else
391 log(LOG_INFO, "nfsd send error %d\n", error);
392
393 /*
394 * Handle any recoverable (soft) socket errors here. (???)
395 */
396 if (error != EINTR && error != ERESTART &&
397 error != EWOULDBLOCK && error != EPIPE)
398 error = 0;
399 }
400 return (error);
401 }
402
403 #ifdef NFS
404 /*
405 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
406 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
407 * Mark and consolidate the data into a new mbuf list.
408 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
409 * small mbufs.
410 * For SOCK_STREAM we must be very careful to read an entire record once
411 * we have read any of it, even if the system call has been interrupted.
412 */
413 int
414 nfs_receive(rep, aname, mp)
415 register struct nfsreq *rep;
416 struct mbuf **aname;
417 struct mbuf **mp;
418 {
419 register struct socket *so;
420 struct uio auio;
421 struct iovec aio;
422 register struct mbuf *m;
423 struct mbuf *control;
424 u_int32_t len;
425 struct mbuf **getnam;
426 int error, sotype, rcvflg;
427 struct proc *p = curproc; /* XXX */
428
429 /*
430 * Set up arguments for soreceive()
431 */
432 *mp = (struct mbuf *)0;
433 *aname = (struct mbuf *)0;
434 sotype = rep->r_nmp->nm_sotype;
435
436 /*
437 * For reliable protocols, lock against other senders/receivers
438 * in case a reconnect is necessary.
439 * For SOCK_STREAM, first get the Record Mark to find out how much
440 * more there is to get.
441 * We must lock the socket against other receivers
442 * until we have an entire rpc request/reply.
443 */
444 if (sotype != SOCK_DGRAM) {
445 error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
446 if (error)
447 return (error);
448 tryagain:
449 /*
450 * Check for fatal errors and resending request.
451 */
452 /*
453 * Ugh: If a reconnect attempt just happened, nm_so
454 * would have changed. NULL indicates a failed
455 * attempt that has essentially shut down this
456 * mount point.
457 */
458 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
459 nfs_sndunlock(&rep->r_nmp->nm_flag);
460 return (EINTR);
461 }
462 so = rep->r_nmp->nm_so;
463 if (!so) {
464 error = nfs_reconnect(rep);
465 if (error) {
466 nfs_sndunlock(&rep->r_nmp->nm_flag);
467 return (error);
468 }
469 goto tryagain;
470 }
471 while (rep->r_flags & R_MUSTRESEND) {
472 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
473 nfsstats.rpcretries++;
474 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
475 if (error) {
476 if (error == EINTR || error == ERESTART ||
477 (error = nfs_reconnect(rep)) != 0) {
478 nfs_sndunlock(&rep->r_nmp->nm_flag);
479 return (error);
480 }
481 goto tryagain;
482 }
483 }
484 nfs_sndunlock(&rep->r_nmp->nm_flag);
485 if (sotype == SOCK_STREAM) {
486 aio.iov_base = (caddr_t) &len;
487 aio.iov_len = sizeof(u_int32_t);
488 auio.uio_iov = &aio;
489 auio.uio_iovcnt = 1;
490 auio.uio_segflg = UIO_SYSSPACE;
491 auio.uio_rw = UIO_READ;
492 auio.uio_offset = 0;
493 auio.uio_resid = sizeof(u_int32_t);
494 auio.uio_procp = p;
495 do {
496 rcvflg = MSG_WAITALL;
497 error = soreceive(so, (struct mbuf **)0, &auio,
498 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
499 if (error == EWOULDBLOCK && rep) {
500 if (rep->r_flags & R_SOFTTERM)
501 return (EINTR);
502 }
503 } while (error == EWOULDBLOCK);
504 if (!error && auio.uio_resid > 0) {
505 log(LOG_INFO,
506 "short receive (%d/%d) from nfs server %s\n",
507 sizeof(u_int32_t) - auio.uio_resid,
508 sizeof(u_int32_t),
509 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
510 error = EPIPE;
511 }
512 if (error)
513 goto errout;
514 len = ntohl(len) & ~0x80000000;
515 /*
516 * This is SERIOUS! We are out of sync with the sender
517 * and forcing a disconnect/reconnect is all I can do.
518 */
519 if (len > NFS_MAXPACKET) {
520 log(LOG_ERR, "%s (%d) from nfs server %s\n",
521 "impossible packet length",
522 len,
523 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
524 error = EFBIG;
525 goto errout;
526 }
527 auio.uio_resid = len;
528 do {
529 rcvflg = MSG_WAITALL;
530 error = soreceive(so, (struct mbuf **)0,
531 &auio, mp, (struct mbuf **)0, &rcvflg);
532 } while (error == EWOULDBLOCK || error == EINTR ||
533 error == ERESTART);
534 if (!error && auio.uio_resid > 0) {
535 log(LOG_INFO,
536 "short receive (%d/%d) from nfs server %s\n",
537 len - auio.uio_resid, len,
538 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
539 error = EPIPE;
540 }
541 } else {
542 /*
543 * NB: Since uio_resid is big, MSG_WAITALL is ignored
544 * and soreceive() will return when it has either a
545 * control msg or a data msg.
546 * We have no use for control msg., but must grab them
547 * and then throw them away so we know what is going
548 * on.
549 */
550 auio.uio_resid = len = 100000000; /* Anything Big */
551 auio.uio_procp = p;
552 do {
553 rcvflg = 0;
554 error = soreceive(so, (struct mbuf **)0,
555 &auio, mp, &control, &rcvflg);
556 if (control)
557 m_freem(control);
558 if (error == EWOULDBLOCK && rep) {
559 if (rep->r_flags & R_SOFTTERM)
560 return (EINTR);
561 }
562 } while (error == EWOULDBLOCK ||
563 (!error && *mp == NULL && control));
564 if ((rcvflg & MSG_EOR) == 0)
565 printf("Egad!!\n");
566 if (!error && *mp == NULL)
567 error = EPIPE;
568 len -= auio.uio_resid;
569 }
570 errout:
571 if (error && error != EINTR && error != ERESTART) {
572 m_freem(*mp);
573 *mp = (struct mbuf *)0;
574 if (error != EPIPE)
575 log(LOG_INFO,
576 "receive error %d from nfs server %s\n",
577 error,
578 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
579 error = nfs_sndlock(&rep->r_nmp->nm_flag, rep);
580 if (!error)
581 error = nfs_reconnect(rep);
582 if (!error)
583 goto tryagain;
584 else
585 nfs_sndunlock(&rep->r_nmp->nm_flag);
586 }
587 } else {
588 if ((so = rep->r_nmp->nm_so) == NULL)
589 return (EACCES);
590 if (so->so_state & SS_ISCONNECTED)
591 getnam = (struct mbuf **)0;
592 else
593 getnam = aname;
594 auio.uio_resid = len = 1000000;
595 auio.uio_procp = p;
596 do {
597 rcvflg = 0;
598 error = soreceive(so, getnam, &auio, mp,
599 (struct mbuf **)0, &rcvflg);
600 if (error == EWOULDBLOCK &&
601 (rep->r_flags & R_SOFTTERM))
602 return (EINTR);
603 } while (error == EWOULDBLOCK);
604 len -= auio.uio_resid;
605 }
606 if (error) {
607 m_freem(*mp);
608 *mp = (struct mbuf *)0;
609 }
610 return (error);
611 }
612
613 /*
614 * Implement receipt of reply on a socket.
615 * We must search through the list of received datagrams matching them
616 * with outstanding requests using the xid, until ours is found.
617 */
618 /* ARGSUSED */
619 int
620 nfs_reply(myrep)
621 struct nfsreq *myrep;
622 {
623 register struct nfsreq *rep;
624 register struct nfsmount *nmp = myrep->r_nmp;
625 register int32_t t1;
626 struct mbuf *mrep, *nam, *md;
627 u_int32_t rxid, *tl;
628 caddr_t dpos, cp2;
629 int error;
630
631 /*
632 * Loop around until we get our own reply
633 */
634 for (;;) {
635 /*
636 * Lock against other receivers so that I don't get stuck in
637 * sbwait() after someone else has received my reply for me.
638 * Also necessary for connection based protocols to avoid
639 * race conditions during a reconnect.
640 */
641 error = nfs_rcvlock(myrep);
642 if (error == EALREADY)
643 return (0);
644 if (error)
645 return (error);
646 /*
647 * Get the next Rpc reply off the socket
648 */
649 error = nfs_receive(myrep, &nam, &mrep);
650 nfs_rcvunlock(&nmp->nm_flag);
651 if (error) {
652
653 /*
654 * Ignore routing errors on connectionless protocols??
655 */
656 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
657 nmp->nm_so->so_error = 0;
658 #ifdef DEBUG
659 printf("nfs_reply: ignoring error %d\n", error);
660 #endif
661 if (myrep->r_flags & R_GETONEREP)
662 return (0);
663 continue;
664 }
665 return (error);
666 }
667 if (nam)
668 m_freem(nam);
669
670 /*
671 * Get the xid and check that it is an rpc reply
672 */
673 md = mrep;
674 dpos = mtod(md, caddr_t);
675 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
676 rxid = *tl++;
677 if (*tl != rpc_reply) {
678 if (nmp->nm_flag & NFSMNT_NQNFS) {
679 if (nqnfs_callback(nmp, mrep, md, dpos))
680 nfsstats.rpcinvalid++;
681 } else {
682 nfsstats.rpcinvalid++;
683 m_freem(mrep);
684 }
685 nfsmout:
686 if (myrep->r_flags & R_GETONEREP)
687 return (0);
688 continue;
689 }
690
691 /*
692 * Loop through the request list to match up the reply
693 * Iff no match, just drop the datagram
694 */
695 for (rep = nfs_reqq.tqh_first; rep != 0;
696 rep = rep->r_chain.tqe_next) {
697 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
698 /* Found it.. */
699 rep->r_mrep = mrep;
700 rep->r_md = md;
701 rep->r_dpos = dpos;
702 if (nfsrtton) {
703 struct rttl *rt;
704
705 rt = &nfsrtt.rttl[nfsrtt.pos];
706 rt->proc = rep->r_procnum;
707 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
708 rt->sent = nmp->nm_sent;
709 rt->cwnd = nmp->nm_cwnd;
710 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
711 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
712 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
713 rt->tstamp = time;
714 if (rep->r_flags & R_TIMING)
715 rt->rtt = rep->r_rtt;
716 else
717 rt->rtt = 1000000;
718 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
719 }
720 /*
721 * Update congestion window.
722 * Do the additive increase of
723 * one rpc/rtt.
724 */
725 if (nmp->nm_cwnd <= nmp->nm_sent) {
726 nmp->nm_cwnd +=
727 (NFS_CWNDSCALE * NFS_CWNDSCALE +
728 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
729 if (nmp->nm_cwnd > NFS_MAXCWND)
730 nmp->nm_cwnd = NFS_MAXCWND;
731 }
732 rep->r_flags &= ~R_SENT;
733 nmp->nm_sent -= NFS_CWNDSCALE;
734 /*
735 * Update rtt using a gain of 0.125 on the mean
736 * and a gain of 0.25 on the deviation.
737 */
738 if (rep->r_flags & R_TIMING) {
739 /*
740 * Since the timer resolution of
741 * NFS_HZ is so course, it can often
742 * result in r_rtt == 0. Since
743 * r_rtt == N means that the actual
744 * rtt is between N+dt and N+2-dt ticks,
745 * add 1.
746 */
747 t1 = rep->r_rtt + 1;
748 t1 -= (NFS_SRTT(rep) >> 3);
749 NFS_SRTT(rep) += t1;
750 if (t1 < 0)
751 t1 = -t1;
752 t1 -= (NFS_SDRTT(rep) >> 2);
753 NFS_SDRTT(rep) += t1;
754 }
755 nmp->nm_timeouts = 0;
756 break;
757 }
758 }
759 /*
760 * If not matched to a request, drop it.
761 * If it's mine, get out.
762 */
763 if (rep == 0) {
764 nfsstats.rpcunexpected++;
765 m_freem(mrep);
766 } else if (rep == myrep) {
767 if (rep->r_mrep == NULL)
768 panic("nfsreply nil");
769 return (0);
770 }
771 if (myrep->r_flags & R_GETONEREP)
772 return (0);
773 }
774 }
775
776 /*
777 * nfs_request - goes something like this
778 * - fill in request struct
779 * - links it into list
780 * - calls nfs_send() for first transmit
781 * - calls nfs_receive() to get reply
782 * - break down rpc header and return with nfs reply pointed to
783 * by mrep or error
784 * nb: always frees up mreq mbuf list
785 */
786 int
787 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp)
788 struct vnode *vp;
789 struct mbuf *mrest;
790 int procnum;
791 struct proc *procp;
792 struct ucred *cred;
793 struct mbuf **mrp;
794 struct mbuf **mdp;
795 caddr_t *dposp;
796 {
797 register struct mbuf *m, *mrep;
798 register struct nfsreq *rep;
799 register u_int32_t *tl;
800 register int i;
801 struct nfsmount *nmp;
802 struct mbuf *md, *mheadend;
803 struct nfsnode *np;
804 char nickv[RPCX_NICKVERF];
805 time_t reqtime, waituntil;
806 caddr_t dpos, cp2;
807 int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type;
808 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
809 int verf_len, verf_type;
810 u_int32_t xid;
811 u_quad_t frev;
812 char *auth_str, *verf_str;
813 NFSKERBKEY_T key; /* save session key */
814
815 nmp = VFSTONFS(vp->v_mount);
816 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
817 rep->r_nmp = nmp;
818 rep->r_vp = vp;
819 rep->r_procp = procp;
820 rep->r_procnum = procnum;
821 i = 0;
822 m = mrest;
823 while (m) {
824 i += m->m_len;
825 m = m->m_next;
826 }
827 mrest_len = i;
828
829 /*
830 * Get the RPC header with authorization.
831 */
832 kerbauth:
833 verf_str = auth_str = (char *)0;
834 if (nmp->nm_flag & NFSMNT_KERB) {
835 verf_str = nickv;
836 verf_len = sizeof (nickv);
837 auth_type = RPCAUTH_KERB4;
838 bzero((caddr_t)key, sizeof (key));
839 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
840 &auth_len, verf_str, verf_len)) {
841 error = nfs_getauth(nmp, rep, cred, &auth_str,
842 &auth_len, verf_str, &verf_len, key);
843 if (error) {
844 free((caddr_t)rep, M_NFSREQ);
845 m_freem(mrest);
846 return (error);
847 }
848 }
849 } else {
850 auth_type = RPCAUTH_UNIX;
851 auth_len = (((cred->cr_ngroups > nmp->nm_numgrps) ?
852 nmp->nm_numgrps : cred->cr_ngroups) << 2) +
853 5 * NFSX_UNSIGNED;
854 }
855 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
856 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
857 if (auth_str)
858 free(auth_str, M_TEMP);
859
860 /*
861 * For stream protocols, insert a Sun RPC Record Mark.
862 */
863 if (nmp->nm_sotype == SOCK_STREAM) {
864 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
865 *mtod(m, u_int32_t *) = htonl(0x80000000 |
866 (m->m_pkthdr.len - NFSX_UNSIGNED));
867 }
868 rep->r_mreq = m;
869 rep->r_xid = xid;
870 tryagain:
871 if (nmp->nm_flag & NFSMNT_SOFT)
872 rep->r_retry = nmp->nm_retry;
873 else
874 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
875 rep->r_rtt = rep->r_rexmit = 0;
876 if (proct[procnum] > 0)
877 rep->r_flags = R_TIMING;
878 else
879 rep->r_flags = 0;
880 rep->r_mrep = NULL;
881
882 /*
883 * Do the client side RPC.
884 */
885 nfsstats.rpcrequests++;
886 /*
887 * Chain request into list of outstanding requests. Be sure
888 * to put it LAST so timer finds oldest requests first.
889 */
890 s = splsoftnet();
891 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
892
893 /* Get send time for nqnfs */
894 reqtime = time.tv_sec;
895
896 /*
897 * If backing off another request or avoiding congestion, don't
898 * send this one now but let timer do it. If not timing a request,
899 * do it now.
900 */
901 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
902 (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
903 nmp->nm_sent < nmp->nm_cwnd)) {
904 splx(s);
905 if (nmp->nm_soflags & PR_CONNREQUIRED)
906 error = nfs_sndlock(&nmp->nm_flag, rep);
907 if (!error) {
908 m = m_copym(m, 0, M_COPYALL, M_WAIT);
909 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
910 if (nmp->nm_soflags & PR_CONNREQUIRED)
911 nfs_sndunlock(&nmp->nm_flag);
912 }
913 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
914 nmp->nm_sent += NFS_CWNDSCALE;
915 rep->r_flags |= R_SENT;
916 }
917 } else {
918 splx(s);
919 rep->r_rtt = -1;
920 }
921
922 /*
923 * Wait for the reply from our send or the timer's.
924 */
925 if (!error || error == EPIPE)
926 error = nfs_reply(rep);
927
928 /*
929 * RPC done, unlink the request.
930 */
931 s = splsoftnet();
932 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
933 splx(s);
934
935 /*
936 * Decrement the outstanding request count.
937 */
938 if (rep->r_flags & R_SENT) {
939 rep->r_flags &= ~R_SENT; /* paranoia */
940 nmp->nm_sent -= NFS_CWNDSCALE;
941 }
942
943 /*
944 * If there was a successful reply and a tprintf msg.
945 * tprintf a response.
946 */
947 if (!error && (rep->r_flags & R_TPRINTFMSG))
948 nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
949 "is alive again");
950 mrep = rep->r_mrep;
951 md = rep->r_md;
952 dpos = rep->r_dpos;
953 if (error) {
954 m_freem(rep->r_mreq);
955 free((caddr_t)rep, M_NFSREQ);
956 return (error);
957 }
958
959 /*
960 * break down the rpc header and check if ok
961 */
962 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
963 if (*tl++ == rpc_msgdenied) {
964 if (*tl == rpc_mismatch)
965 error = EOPNOTSUPP;
966 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
967 if (!failed_auth) {
968 failed_auth++;
969 mheadend->m_next = (struct mbuf *)0;
970 m_freem(mrep);
971 m_freem(rep->r_mreq);
972 goto kerbauth;
973 } else
974 error = EAUTH;
975 } else
976 error = EACCES;
977 m_freem(mrep);
978 m_freem(rep->r_mreq);
979 free((caddr_t)rep, M_NFSREQ);
980 return (error);
981 }
982
983 /*
984 * Grab any Kerberos verifier, otherwise just throw it away.
985 */
986 verf_type = fxdr_unsigned(int, *tl++);
987 i = fxdr_unsigned(int32_t, *tl);
988 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
989 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
990 if (error)
991 goto nfsmout;
992 } else if (i > 0)
993 nfsm_adv(nfsm_rndup(i));
994 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
995 /* 0 == ok */
996 if (*tl == 0) {
997 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
998 if (*tl != 0) {
999 error = fxdr_unsigned(int, *tl);
1000 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1001 error == NFSERR_TRYLATER) {
1002 m_freem(mrep);
1003 error = 0;
1004 waituntil = time.tv_sec + trylater_delay;
1005 while (time.tv_sec < waituntil)
1006 (void) tsleep((caddr_t)&lbolt,
1007 PSOCK, "nqnfstry", 0);
1008 trylater_delay *= nfs_backoff[trylater_cnt];
1009 if (trylater_cnt < 7)
1010 trylater_cnt++;
1011 goto tryagain;
1012 }
1013
1014 /*
1015 * If the File Handle was stale, invalidate the
1016 * lookup cache, just in case.
1017 */
1018 if (error == ESTALE)
1019 cache_purge(vp);
1020 if (nmp->nm_flag & NFSMNT_NFSV3) {
1021 *mrp = mrep;
1022 *mdp = md;
1023 *dposp = dpos;
1024 error |= NFSERR_RETERR;
1025 } else
1026 m_freem(mrep);
1027 m_freem(rep->r_mreq);
1028 free((caddr_t)rep, M_NFSREQ);
1029 return (error);
1030 }
1031
1032 /*
1033 * For nqnfs, get any lease in reply
1034 */
1035 if (nmp->nm_flag & NFSMNT_NQNFS) {
1036 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1037 if (*tl) {
1038 np = VTONFS(vp);
1039 nqlflag = fxdr_unsigned(int, *tl);
1040 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED);
1041 cachable = fxdr_unsigned(int, *tl++);
1042 reqtime += fxdr_unsigned(int, *tl++);
1043 if (reqtime > time.tv_sec) {
1044 fxdr_hyper(tl, &frev);
1045 nqnfs_clientlease(nmp, np, nqlflag,
1046 cachable, reqtime, frev);
1047 }
1048 }
1049 }
1050 *mrp = mrep;
1051 *mdp = md;
1052 *dposp = dpos;
1053 m_freem(rep->r_mreq);
1054 FREE((caddr_t)rep, M_NFSREQ);
1055 return (0);
1056 }
1057 m_freem(mrep);
1058 error = EPROTONOSUPPORT;
1059 nfsmout:
1060 m_freem(rep->r_mreq);
1061 free((caddr_t)rep, M_NFSREQ);
1062 return (error);
1063 }
1064 #endif /* NFS */
1065
1066 /*
1067 * Generate the rpc reply header
1068 * siz arg. is used to decide if adding a cluster is worthwhile
1069 */
1070 int
1071 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1072 int siz;
1073 struct nfsrv_descript *nd;
1074 struct nfssvc_sock *slp;
1075 int err;
1076 int cache;
1077 u_quad_t *frev;
1078 struct mbuf **mrq;
1079 struct mbuf **mbp;
1080 caddr_t *bposp;
1081 {
1082 register u_int32_t *tl;
1083 register struct mbuf *mreq;
1084 caddr_t bpos;
1085 struct mbuf *mb, *mb2;
1086
1087 MGETHDR(mreq, M_WAIT, MT_DATA);
1088 mb = mreq;
1089 /*
1090 * If this is a big reply, use a cluster else
1091 * try and leave leading space for the lower level headers.
1092 */
1093 siz += RPC_REPLYSIZ;
1094 if (siz >= MINCLSIZE) {
1095 MCLGET(mreq, M_WAIT);
1096 } else
1097 mreq->m_data += max_hdr;
1098 tl = mtod(mreq, u_int32_t *);
1099 mreq->m_len = 6 * NFSX_UNSIGNED;
1100 bpos = ((caddr_t)tl) + mreq->m_len;
1101 *tl++ = txdr_unsigned(nd->nd_retxid);
1102 *tl++ = rpc_reply;
1103 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1104 *tl++ = rpc_msgdenied;
1105 if (err & NFSERR_AUTHERR) {
1106 *tl++ = rpc_autherr;
1107 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1108 mreq->m_len -= NFSX_UNSIGNED;
1109 bpos -= NFSX_UNSIGNED;
1110 } else {
1111 *tl++ = rpc_mismatch;
1112 *tl++ = txdr_unsigned(RPC_VER2);
1113 *tl = txdr_unsigned(RPC_VER2);
1114 }
1115 } else {
1116 *tl++ = rpc_msgaccepted;
1117
1118 /*
1119 * For Kerberos authentication, we must send the nickname
1120 * verifier back, otherwise just RPCAUTH_NULL.
1121 */
1122 if (nd->nd_flag & ND_KERBFULL) {
1123 register struct nfsuid *nuidp;
1124 struct timeval ktvin, ktvout;
1125
1126 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1127 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1128 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1129 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1130 &nuidp->nu_haddr, nd->nd_nam2)))
1131 break;
1132 }
1133 if (nuidp) {
1134 ktvin.tv_sec =
1135 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1136 ktvin.tv_usec =
1137 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1138
1139 /*
1140 * Encrypt the timestamp in ecb mode using the
1141 * session key.
1142 */
1143 #ifdef NFSKERB
1144 XXX
1145 #endif
1146
1147 *tl++ = rpc_auth_kerb;
1148 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1149 *tl = ktvout.tv_sec;
1150 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1151 *tl++ = ktvout.tv_usec;
1152 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1153 } else {
1154 *tl++ = 0;
1155 *tl++ = 0;
1156 }
1157 } else {
1158 *tl++ = 0;
1159 *tl++ = 0;
1160 }
1161 switch (err) {
1162 case EPROGUNAVAIL:
1163 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1164 break;
1165 case EPROGMISMATCH:
1166 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1167 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1168 if (nd->nd_flag & ND_NQNFS) {
1169 *tl++ = txdr_unsigned(3);
1170 *tl = txdr_unsigned(3);
1171 } else {
1172 *tl++ = txdr_unsigned(2);
1173 *tl = txdr_unsigned(3);
1174 }
1175 break;
1176 case EPROCUNAVAIL:
1177 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1178 break;
1179 case EBADRPC:
1180 *tl = txdr_unsigned(RPC_GARBAGE);
1181 break;
1182 default:
1183 *tl = 0;
1184 if (err != NFSERR_RETVOID) {
1185 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1186 if (err)
1187 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1188 else
1189 *tl = 0;
1190 }
1191 break;
1192 };
1193 }
1194
1195 /*
1196 * For nqnfs, piggyback lease as requested.
1197 */
1198 if ((nd->nd_flag & ND_NQNFS) && err == 0) {
1199 if (nd->nd_flag & ND_LEASE) {
1200 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1201 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE);
1202 *tl++ = txdr_unsigned(cache);
1203 *tl++ = txdr_unsigned(nd->nd_duration);
1204 txdr_hyper(frev, tl);
1205 } else {
1206 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1207 *tl = 0;
1208 }
1209 }
1210 if (mrq != NULL)
1211 *mrq = mreq;
1212 *mbp = mb;
1213 *bposp = bpos;
1214 if (err != 0 && err != NFSERR_RETVOID)
1215 nfsstats.srvrpc_errs++;
1216 return (0);
1217 }
1218
1219 /*
1220 * Nfs timer routine
1221 * Scan the nfsreq list and retranmit any requests that have timed out
1222 * To avoid retransmission attempts on STREAM sockets (in the future) make
1223 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1224 */
1225 void
1226 nfs_timer(arg)
1227 void *arg; /* never used */
1228 {
1229 register struct nfsreq *rep;
1230 register struct mbuf *m;
1231 register struct socket *so;
1232 register struct nfsmount *nmp;
1233 register int timeo;
1234 int s, error;
1235 #ifdef NFSSERVER
1236 register struct nfssvc_sock *slp;
1237 static long lasttime = 0;
1238 u_quad_t cur_usec;
1239 #endif
1240
1241 s = splsoftnet();
1242 for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) {
1243 nmp = rep->r_nmp;
1244 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1245 continue;
1246 if (nfs_sigintr(nmp, rep, rep->r_procp)) {
1247 rep->r_flags |= R_SOFTTERM;
1248 continue;
1249 }
1250 if (rep->r_rtt >= 0) {
1251 rep->r_rtt++;
1252 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1253 timeo = nmp->nm_timeo;
1254 else
1255 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1256 if (nmp->nm_timeouts > 0)
1257 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1258 if (rep->r_rtt <= timeo)
1259 continue;
1260 if (nmp->nm_timeouts < 8)
1261 nmp->nm_timeouts++;
1262 }
1263 /*
1264 * Check for server not responding
1265 */
1266 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1267 rep->r_rexmit > nmp->nm_deadthresh) {
1268 nfs_msg(rep->r_procp,
1269 nmp->nm_mountp->mnt_stat.f_mntfromname,
1270 "not responding");
1271 rep->r_flags |= R_TPRINTFMSG;
1272 }
1273 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1274 nfsstats.rpctimeouts++;
1275 rep->r_flags |= R_SOFTTERM;
1276 continue;
1277 }
1278 if (nmp->nm_sotype != SOCK_DGRAM) {
1279 if (++rep->r_rexmit > NFS_MAXREXMIT)
1280 rep->r_rexmit = NFS_MAXREXMIT;
1281 continue;
1282 }
1283 if ((so = nmp->nm_so) == NULL)
1284 continue;
1285
1286 /*
1287 * If there is enough space and the window allows..
1288 * Resend it
1289 * Set r_rtt to -1 in case we fail to send it now.
1290 */
1291 rep->r_rtt = -1;
1292 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1293 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1294 (rep->r_flags & R_SENT) ||
1295 nmp->nm_sent < nmp->nm_cwnd) &&
1296 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1297 if ((nmp->nm_flag & NFSMNT_NOCONN) == 0)
1298 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1299 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1300 else
1301 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1302 nmp->nm_nam, (struct mbuf *)0, (struct proc *)0);
1303 if (error) {
1304 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
1305 #ifdef DEBUG
1306 printf("nfs_timer: ignoring error %d\n",
1307 error);
1308 #endif
1309 so->so_error = 0;
1310 }
1311 } else {
1312 /*
1313 * Iff first send, start timing
1314 * else turn timing off, backoff timer
1315 * and divide congestion window by 2.
1316 */
1317 if (rep->r_flags & R_SENT) {
1318 rep->r_flags &= ~R_TIMING;
1319 if (++rep->r_rexmit > NFS_MAXREXMIT)
1320 rep->r_rexmit = NFS_MAXREXMIT;
1321 nmp->nm_cwnd >>= 1;
1322 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1323 nmp->nm_cwnd = NFS_CWNDSCALE;
1324 nfsstats.rpcretries++;
1325 } else {
1326 rep->r_flags |= R_SENT;
1327 nmp->nm_sent += NFS_CWNDSCALE;
1328 }
1329 rep->r_rtt = 0;
1330 }
1331 }
1332 }
1333
1334 #ifdef NFSSERVER
1335 /*
1336 * Call the nqnfs server timer once a second to handle leases.
1337 */
1338 if (lasttime != time.tv_sec) {
1339 lasttime = time.tv_sec;
1340 nqnfs_serverd();
1341 }
1342
1343 /*
1344 * Scan the write gathering queues for writes that need to be
1345 * completed now.
1346 */
1347 cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec;
1348 for (slp = nfssvc_sockhead.tqh_first; slp != 0;
1349 slp = slp->ns_chain.tqe_next) {
1350 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
1351 nfsrv_wakenfsd(slp);
1352 }
1353 #endif /* NFSSERVER */
1354 splx(s);
1355 timeout(nfs_timer, (void *)0, nfs_ticks);
1356 }
1357
1358 /*
1359 * Test for a termination condition pending on the process.
1360 * This is used for NFSMNT_INT mounts.
1361 */
1362 int
1363 nfs_sigintr(nmp, rep, p)
1364 struct nfsmount *nmp;
1365 struct nfsreq *rep;
1366 register struct proc *p;
1367 {
1368
1369 if (rep && (rep->r_flags & R_SOFTTERM))
1370 return (EINTR);
1371 if (!(nmp->nm_flag & NFSMNT_INT))
1372 return (0);
1373 if (p && p->p_siglist &&
1374 (((p->p_siglist & ~p->p_sigmask) & ~p->p_sigignore) &
1375 NFSINT_SIGMASK))
1376 return (EINTR);
1377 return (0);
1378 }
1379
1380 /*
1381 * Lock a socket against others.
1382 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1383 * and also to avoid race conditions between the processes with nfs requests
1384 * in progress when a reconnect is necessary.
1385 */
1386 int
1387 nfs_sndlock(flagp, rep)
1388 register int *flagp;
1389 struct nfsreq *rep;
1390 {
1391 struct proc *p;
1392 int slpflag = 0, slptimeo = 0;
1393
1394 if (rep) {
1395 p = rep->r_procp;
1396 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1397 slpflag = PCATCH;
1398 } else
1399 p = (struct proc *)0;
1400 while (*flagp & NFSMNT_SNDLOCK) {
1401 if (nfs_sigintr(rep->r_nmp, rep, p))
1402 return (EINTR);
1403 *flagp |= NFSMNT_WANTSND;
1404 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck",
1405 slptimeo);
1406 if (slpflag == PCATCH) {
1407 slpflag = 0;
1408 slptimeo = 2 * hz;
1409 }
1410 }
1411 *flagp |= NFSMNT_SNDLOCK;
1412 return (0);
1413 }
1414
1415 /*
1416 * Unlock the stream socket for others.
1417 */
1418 void
1419 nfs_sndunlock(flagp)
1420 register int *flagp;
1421 {
1422
1423 if ((*flagp & NFSMNT_SNDLOCK) == 0)
1424 panic("nfs sndunlock");
1425 *flagp &= ~NFSMNT_SNDLOCK;
1426 if (*flagp & NFSMNT_WANTSND) {
1427 *flagp &= ~NFSMNT_WANTSND;
1428 wakeup((caddr_t)flagp);
1429 }
1430 }
1431
1432 int
1433 nfs_rcvlock(rep)
1434 register struct nfsreq *rep;
1435 {
1436 register int *flagp = &rep->r_nmp->nm_flag;
1437 int slpflag, slptimeo = 0;
1438
1439 if (*flagp & NFSMNT_INT)
1440 slpflag = PCATCH;
1441 else
1442 slpflag = 0;
1443 while (*flagp & NFSMNT_RCVLOCK) {
1444 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
1445 return (EINTR);
1446 *flagp |= NFSMNT_WANTRCV;
1447 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk",
1448 slptimeo);
1449 /* If our reply was received while we were sleeping,
1450 * then just return without taking the lock to avoid a
1451 * situation where a single iod could 'capture' the
1452 * receive lock.
1453 */
1454 if (rep->r_mrep != NULL)
1455 return (EALREADY);
1456 if (slpflag == PCATCH) {
1457 slpflag = 0;
1458 slptimeo = 2 * hz;
1459 }
1460 }
1461 *flagp |= NFSMNT_RCVLOCK;
1462 return (0);
1463 }
1464
1465 /*
1466 * Unlock the stream socket for others.
1467 */
1468 void
1469 nfs_rcvunlock(flagp)
1470 register int *flagp;
1471 {
1472
1473 if ((*flagp & NFSMNT_RCVLOCK) == 0)
1474 panic("nfs rcvunlock");
1475 *flagp &= ~NFSMNT_RCVLOCK;
1476 if (*flagp & NFSMNT_WANTRCV) {
1477 *flagp &= ~NFSMNT_WANTRCV;
1478 wakeup((caddr_t)flagp);
1479 }
1480 }
1481
1482 /*
1483 * Parse an RPC request
1484 * - verify it
1485 * - fill in the cred struct.
1486 */
1487 int
1488 nfs_getreq(nd, nfsd, has_header)
1489 register struct nfsrv_descript *nd;
1490 struct nfsd *nfsd;
1491 int has_header;
1492 {
1493 register int len, i;
1494 register u_int32_t *tl;
1495 register int32_t t1;
1496 struct uio uio;
1497 struct iovec iov;
1498 caddr_t dpos, cp2, cp;
1499 u_int32_t nfsvers, auth_type;
1500 uid_t nickuid;
1501 int error = 0, nqnfs = 0, ticklen;
1502 struct mbuf *mrep, *md;
1503 register struct nfsuid *nuidp;
1504 struct timeval tvin, tvout;
1505
1506 mrep = nd->nd_mrep;
1507 md = nd->nd_md;
1508 dpos = nd->nd_dpos;
1509 if (has_header) {
1510 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1511 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1512 if (*tl++ != rpc_call) {
1513 m_freem(mrep);
1514 return (EBADRPC);
1515 }
1516 } else
1517 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1518 nd->nd_repstat = 0;
1519 nd->nd_flag = 0;
1520 if (*tl++ != rpc_vers) {
1521 nd->nd_repstat = ERPCMISMATCH;
1522 nd->nd_procnum = NFSPROC_NOOP;
1523 return (0);
1524 }
1525 if (*tl != nfs_prog) {
1526 if (*tl == nqnfs_prog)
1527 nqnfs++;
1528 else {
1529 nd->nd_repstat = EPROGUNAVAIL;
1530 nd->nd_procnum = NFSPROC_NOOP;
1531 return (0);
1532 }
1533 }
1534 tl++;
1535 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1536 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) ||
1537 (nfsvers != NQNFS_VER3 && nqnfs)) {
1538 nd->nd_repstat = EPROGMISMATCH;
1539 nd->nd_procnum = NFSPROC_NOOP;
1540 return (0);
1541 }
1542 if (nqnfs)
1543 nd->nd_flag = (ND_NFSV3 | ND_NQNFS);
1544 else if (nfsvers == NFS_VER3)
1545 nd->nd_flag = ND_NFSV3;
1546 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1547 if (nd->nd_procnum == NFSPROC_NULL)
1548 return (0);
1549 if (nd->nd_procnum >= NFS_NPROCS ||
1550 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
1551 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1552 nd->nd_repstat = EPROCUNAVAIL;
1553 nd->nd_procnum = NFSPROC_NOOP;
1554 return (0);
1555 }
1556 if ((nd->nd_flag & ND_NFSV3) == 0)
1557 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1558 auth_type = *tl++;
1559 len = fxdr_unsigned(int, *tl++);
1560 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1561 m_freem(mrep);
1562 return (EBADRPC);
1563 }
1564
1565 nd->nd_flag &= ~ND_KERBAUTH;
1566 /*
1567 * Handle auth_unix or auth_kerb.
1568 */
1569 if (auth_type == rpc_auth_unix) {
1570 len = fxdr_unsigned(int, *++tl);
1571 if (len < 0 || len > NFS_MAXNAMLEN) {
1572 m_freem(mrep);
1573 return (EBADRPC);
1574 }
1575 nfsm_adv(nfsm_rndup(len));
1576 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1577 bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
1578 nd->nd_cr.cr_ref = 1;
1579 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
1580 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
1581 len = fxdr_unsigned(int, *tl);
1582 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
1583 m_freem(mrep);
1584 return (EBADRPC);
1585 }
1586 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
1587 for (i = 0; i < len; i++)
1588 if (i < NGROUPS)
1589 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
1590 else
1591 tl++;
1592 nd->nd_cr.cr_ngroups = (len > NGROUPS) ? NGROUPS : len;
1593 if (nd->nd_cr.cr_ngroups > 1)
1594 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
1595 len = fxdr_unsigned(int, *++tl);
1596 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1597 m_freem(mrep);
1598 return (EBADRPC);
1599 }
1600 if (len > 0)
1601 nfsm_adv(nfsm_rndup(len));
1602 } else if (auth_type == rpc_auth_kerb) {
1603 switch (fxdr_unsigned(int, *tl++)) {
1604 case RPCAKN_FULLNAME:
1605 ticklen = fxdr_unsigned(int, *tl);
1606 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
1607 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
1608 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
1609 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
1610 m_freem(mrep);
1611 return (EBADRPC);
1612 }
1613 uio.uio_offset = 0;
1614 uio.uio_iov = &iov;
1615 uio.uio_iovcnt = 1;
1616 uio.uio_segflg = UIO_SYSSPACE;
1617 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
1618 iov.iov_len = RPCAUTH_MAXSIZ - 4;
1619 nfsm_mtouio(&uio, uio.uio_resid);
1620 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1621 if (*tl++ != rpc_auth_kerb ||
1622 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
1623 printf("Bad kerb verifier\n");
1624 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1625 nd->nd_procnum = NFSPROC_NOOP;
1626 return (0);
1627 }
1628 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
1629 tl = (u_int32_t *)cp;
1630 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
1631 printf("Not fullname kerb verifier\n");
1632 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1633 nd->nd_procnum = NFSPROC_NOOP;
1634 return (0);
1635 }
1636 cp += NFSX_UNSIGNED;
1637 bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
1638 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
1639 nd->nd_flag |= ND_KERBFULL;
1640 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
1641 break;
1642 case RPCAKN_NICKNAME:
1643 if (len != 2 * NFSX_UNSIGNED) {
1644 printf("Kerb nickname short\n");
1645 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
1646 nd->nd_procnum = NFSPROC_NOOP;
1647 return (0);
1648 }
1649 nickuid = fxdr_unsigned(uid_t, *tl);
1650 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1651 if (*tl++ != rpc_auth_kerb ||
1652 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
1653 printf("Kerb nick verifier bad\n");
1654 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1655 nd->nd_procnum = NFSPROC_NOOP;
1656 return (0);
1657 }
1658 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1659 tvin.tv_sec = *tl++;
1660 tvin.tv_usec = *tl;
1661
1662 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
1663 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1664 if (nuidp->nu_cr.cr_uid == nickuid &&
1665 (!nd->nd_nam2 ||
1666 netaddr_match(NU_NETFAM(nuidp),
1667 &nuidp->nu_haddr, nd->nd_nam2)))
1668 break;
1669 }
1670 if (!nuidp) {
1671 nd->nd_repstat =
1672 (NFSERR_AUTHERR|AUTH_REJECTCRED);
1673 nd->nd_procnum = NFSPROC_NOOP;
1674 return (0);
1675 }
1676
1677 /*
1678 * Now, decrypt the timestamp using the session key
1679 * and validate it.
1680 */
1681 #ifdef NFSKERB
1682 XXX
1683 #endif
1684
1685 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
1686 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
1687 if (nuidp->nu_expire < time.tv_sec ||
1688 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
1689 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
1690 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
1691 nuidp->nu_expire = 0;
1692 nd->nd_repstat =
1693 (NFSERR_AUTHERR|AUTH_REJECTVERF);
1694 nd->nd_procnum = NFSPROC_NOOP;
1695 return (0);
1696 }
1697 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
1698 nd->nd_flag |= ND_KERBNICK;
1699 };
1700 } else {
1701 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
1702 nd->nd_procnum = NFSPROC_NOOP;
1703 return (0);
1704 }
1705
1706 /*
1707 * For nqnfs, get piggybacked lease request.
1708 */
1709 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
1710 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1711 nd->nd_flag |= fxdr_unsigned(int, *tl);
1712 if (nd->nd_flag & ND_LEASE) {
1713 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1714 nd->nd_duration = fxdr_unsigned(u_int32_t, *tl);
1715 } else
1716 nd->nd_duration = NQ_MINLEASE;
1717 } else
1718 nd->nd_duration = NQ_MINLEASE;
1719 nd->nd_md = md;
1720 nd->nd_dpos = dpos;
1721 return (0);
1722 nfsmout:
1723 return (error);
1724 }
1725
1726 int
1727 nfs_msg(p, server, msg)
1728 struct proc *p;
1729 char *server, *msg;
1730 {
1731 tpr_t tpr;
1732
1733 if (p)
1734 tpr = tprintf_open(p);
1735 else
1736 tpr = NULL;
1737 tprintf(tpr, "nfs server %s: %s\n", server, msg);
1738 tprintf_close(tpr);
1739 return (0);
1740 }
1741
1742 #ifdef NFSSERVER
1743 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
1744 struct nfssvc_sock *, struct proc *,
1745 struct mbuf **)) = {
1746 nfsrv_null,
1747 nfsrv_getattr,
1748 nfsrv_setattr,
1749 nfsrv_lookup,
1750 nfsrv3_access,
1751 nfsrv_readlink,
1752 nfsrv_read,
1753 nfsrv_write,
1754 nfsrv_create,
1755 nfsrv_mkdir,
1756 nfsrv_symlink,
1757 nfsrv_mknod,
1758 nfsrv_remove,
1759 nfsrv_rmdir,
1760 nfsrv_rename,
1761 nfsrv_link,
1762 nfsrv_readdir,
1763 nfsrv_readdirplus,
1764 nfsrv_statfs,
1765 nfsrv_fsinfo,
1766 nfsrv_pathconf,
1767 nfsrv_commit,
1768 nqnfsrv_getlease,
1769 nqnfsrv_vacated,
1770 nfsrv_noop,
1771 nfsrv_noop
1772 };
1773
1774 /*
1775 * Socket upcall routine for the nfsd sockets.
1776 * The caddr_t arg is a pointer to the "struct nfssvc_sock".
1777 * Essentially do as much as possible non-blocking, else punt and it will
1778 * be called with M_WAIT from an nfsd.
1779 */
1780 void
1781 nfsrv_rcv(so, arg, waitflag)
1782 struct socket *so;
1783 caddr_t arg;
1784 int waitflag;
1785 {
1786 register struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
1787 register struct mbuf *m;
1788 struct mbuf *mp, *nam;
1789 struct uio auio;
1790 int flags, error;
1791
1792 if ((slp->ns_flag & SLP_VALID) == 0)
1793 return;
1794 #ifdef notdef
1795 /*
1796 * Define this to test for nfsds handling this under heavy load.
1797 */
1798 if (waitflag == M_DONTWAIT) {
1799 slp->ns_flag |= SLP_NEEDQ; goto dorecs;
1800 }
1801 #endif
1802 auio.uio_procp = NULL;
1803 if (so->so_type == SOCK_STREAM) {
1804 /*
1805 * If there are already records on the queue, defer soreceive()
1806 * to an nfsd so that there is feedback to the TCP layer that
1807 * the nfs servers are heavily loaded.
1808 */
1809 if (slp->ns_rec && waitflag == M_DONTWAIT) {
1810 slp->ns_flag |= SLP_NEEDQ;
1811 goto dorecs;
1812 }
1813
1814 /*
1815 * Do soreceive().
1816 */
1817 auio.uio_resid = 1000000000;
1818 flags = MSG_DONTWAIT;
1819 error = soreceive(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
1820 if (error || mp == (struct mbuf *)0) {
1821 if (error == EWOULDBLOCK)
1822 slp->ns_flag |= SLP_NEEDQ;
1823 else
1824 slp->ns_flag |= SLP_DISCONN;
1825 goto dorecs;
1826 }
1827 m = mp;
1828 if (slp->ns_rawend) {
1829 slp->ns_rawend->m_next = m;
1830 slp->ns_cc += 1000000000 - auio.uio_resid;
1831 } else {
1832 slp->ns_raw = m;
1833 slp->ns_cc = 1000000000 - auio.uio_resid;
1834 }
1835 while (m->m_next)
1836 m = m->m_next;
1837 slp->ns_rawend = m;
1838
1839 /*
1840 * Now try and parse record(s) out of the raw stream data.
1841 */
1842 error = nfsrv_getstream(slp, waitflag);
1843 if (error) {
1844 if (error == EPERM)
1845 slp->ns_flag |= SLP_DISCONN;
1846 else
1847 slp->ns_flag |= SLP_NEEDQ;
1848 }
1849 } else {
1850 do {
1851 auio.uio_resid = 1000000000;
1852 flags = MSG_DONTWAIT;
1853 error = soreceive(so, &nam, &auio, &mp,
1854 (struct mbuf **)0, &flags);
1855 if (mp) {
1856 if (nam) {
1857 m = nam;
1858 m->m_next = mp;
1859 } else
1860 m = mp;
1861 if (slp->ns_recend)
1862 slp->ns_recend->m_nextpkt = m;
1863 else
1864 slp->ns_rec = m;
1865 slp->ns_recend = m;
1866 m->m_nextpkt = (struct mbuf *)0;
1867 }
1868 if (error) {
1869 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
1870 && error != EWOULDBLOCK) {
1871 slp->ns_flag |= SLP_DISCONN;
1872 goto dorecs;
1873 }
1874 }
1875 } while (mp);
1876 }
1877
1878 /*
1879 * Now try and process the request records, non-blocking.
1880 */
1881 dorecs:
1882 if (waitflag == M_DONTWAIT &&
1883 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
1884 nfsrv_wakenfsd(slp);
1885 }
1886
1887 /*
1888 * Try and extract an RPC request from the mbuf data list received on a
1889 * stream socket. The "waitflag" argument indicates whether or not it
1890 * can sleep.
1891 */
1892 int
1893 nfsrv_getstream(slp, waitflag)
1894 register struct nfssvc_sock *slp;
1895 int waitflag;
1896 {
1897 register struct mbuf *m, **mpp;
1898 register char *cp1, *cp2;
1899 register int len;
1900 struct mbuf *om, *m2, *recm = NULL;
1901 u_int32_t recmark;
1902
1903 if (slp->ns_flag & SLP_GETSTREAM)
1904 panic("nfs getstream");
1905 slp->ns_flag |= SLP_GETSTREAM;
1906 for (;;) {
1907 if (slp->ns_reclen == 0) {
1908 if (slp->ns_cc < NFSX_UNSIGNED) {
1909 slp->ns_flag &= ~SLP_GETSTREAM;
1910 return (0);
1911 }
1912 m = slp->ns_raw;
1913 if (m->m_len >= NFSX_UNSIGNED) {
1914 bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
1915 m->m_data += NFSX_UNSIGNED;
1916 m->m_len -= NFSX_UNSIGNED;
1917 } else {
1918 cp1 = (caddr_t)&recmark;
1919 cp2 = mtod(m, caddr_t);
1920 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
1921 while (m->m_len == 0) {
1922 m = m->m_next;
1923 cp2 = mtod(m, caddr_t);
1924 }
1925 *cp1++ = *cp2++;
1926 m->m_data++;
1927 m->m_len--;
1928 }
1929 }
1930 slp->ns_cc -= NFSX_UNSIGNED;
1931 recmark = ntohl(recmark);
1932 slp->ns_reclen = recmark & ~0x80000000;
1933 if (recmark & 0x80000000)
1934 slp->ns_flag |= SLP_LASTFRAG;
1935 else
1936 slp->ns_flag &= ~SLP_LASTFRAG;
1937 if (slp->ns_reclen > NFS_MAXPACKET) {
1938 slp->ns_flag &= ~SLP_GETSTREAM;
1939 return (EPERM);
1940 }
1941 }
1942
1943 /*
1944 * Now get the record part.
1945 */
1946 if (slp->ns_cc == slp->ns_reclen) {
1947 recm = slp->ns_raw;
1948 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
1949 slp->ns_cc = slp->ns_reclen = 0;
1950 } else if (slp->ns_cc > slp->ns_reclen) {
1951 len = 0;
1952 m = slp->ns_raw;
1953 om = (struct mbuf *)0;
1954 while (len < slp->ns_reclen) {
1955 if ((len + m->m_len) > slp->ns_reclen) {
1956 size_t left = slp->ns_reclen - len;
1957
1958 MGETHDR(m2, waitflag, m->m_type);
1959 if (m2 == NULL) {
1960 slp->ns_flag &= ~SLP_GETSTREAM;
1961 return (EWOULDBLOCK);
1962 }
1963 if (left > MHLEN) {
1964 MCLGET(m2, waitflag);
1965 if (!(m2->m_flags & M_EXT)) {
1966 m_freem(m2);
1967 slp->ns_flag &= ~SLP_GETSTREAM;
1968 return (EWOULDBLOCK);
1969 }
1970 }
1971 bcopy(mtod(m, caddr_t), mtod(m2, caddr_t),
1972 left);
1973 m2->m_len = left;
1974 m->m_data += left;
1975 m->m_len -= left;
1976 if (om) {
1977 om->m_next = m2;
1978 recm = slp->ns_raw;
1979 } else
1980 recm = m2;
1981 len = slp->ns_reclen;
1982 } else if ((len + m->m_len) == slp->ns_reclen) {
1983 om = m;
1984 len += m->m_len;
1985 m = m->m_next;
1986 recm = slp->ns_raw;
1987 om->m_next = (struct mbuf *)0;
1988 } else {
1989 om = m;
1990 len += m->m_len;
1991 m = m->m_next;
1992 }
1993 }
1994 slp->ns_raw = m;
1995 slp->ns_cc -= len;
1996 slp->ns_reclen = 0;
1997 } else {
1998 slp->ns_flag &= ~SLP_GETSTREAM;
1999 return (0);
2000 }
2001
2002 /*
2003 * Accumulate the fragments into a record.
2004 */
2005 mpp = &slp->ns_frag;
2006 while (*mpp)
2007 mpp = &((*mpp)->m_next);
2008 *mpp = recm;
2009 if (slp->ns_flag & SLP_LASTFRAG) {
2010 if (slp->ns_recend)
2011 slp->ns_recend->m_nextpkt = slp->ns_frag;
2012 else
2013 slp->ns_rec = slp->ns_frag;
2014 slp->ns_recend = slp->ns_frag;
2015 slp->ns_frag = (struct mbuf *)0;
2016 }
2017 }
2018 }
2019
2020 /*
2021 * Parse an RPC header.
2022 */
2023 int
2024 nfsrv_dorec(slp, nfsd, ndp)
2025 register struct nfssvc_sock *slp;
2026 struct nfsd *nfsd;
2027 struct nfsrv_descript **ndp;
2028 {
2029 register struct mbuf *m, *nam;
2030 register struct nfsrv_descript *nd;
2031 int error;
2032
2033 *ndp = NULL;
2034 if ((slp->ns_flag & SLP_VALID) == 0 ||
2035 (m = slp->ns_rec) == (struct mbuf *)0)
2036 return (ENOBUFS);
2037 slp->ns_rec = m->m_nextpkt;
2038 if (slp->ns_rec)
2039 m->m_nextpkt = (struct mbuf *)0;
2040 else
2041 slp->ns_recend = (struct mbuf *)0;
2042 if (m->m_type == MT_SONAME) {
2043 nam = m;
2044 m = m->m_next;
2045 nam->m_next = NULL;
2046 } else
2047 nam = NULL;
2048 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2049 M_NFSRVDESC, M_WAITOK);
2050 nd->nd_md = nd->nd_mrep = m;
2051 nd->nd_nam2 = nam;
2052 nd->nd_dpos = mtod(m, caddr_t);
2053 error = nfs_getreq(nd, nfsd, TRUE);
2054 if (error) {
2055 m_freem(nam);
2056 free((caddr_t)nd, M_NFSRVDESC);
2057 return (error);
2058 }
2059 *ndp = nd;
2060 nfsd->nfsd_nd = nd;
2061 return (0);
2062 }
2063
2064
2065 /*
2066 * Search for a sleeping nfsd and wake it up.
2067 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2068 * running nfsds will go look for the work in the nfssvc_sock list.
2069 */
2070 void
2071 nfsrv_wakenfsd(slp)
2072 struct nfssvc_sock *slp;
2073 {
2074 register struct nfsd *nd;
2075
2076 if ((slp->ns_flag & SLP_VALID) == 0)
2077 return;
2078 for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) {
2079 if (nd->nfsd_flag & NFSD_WAITING) {
2080 nd->nfsd_flag &= ~NFSD_WAITING;
2081 if (nd->nfsd_slp)
2082 panic("nfsd wakeup");
2083 slp->ns_sref++;
2084 nd->nfsd_slp = slp;
2085 wakeup((caddr_t)nd);
2086 return;
2087 }
2088 }
2089 slp->ns_flag |= SLP_DOREC;
2090 nfsd_head_flag |= NFSD_CHECKSLP;
2091 }
2092 #endif /* NFSSERVER */
2093