nfs_socket.c revision 1.40 1 /* $NetBSD: nfs_socket.c,v 1.40 1997/11/16 23:23:20 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1991, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
39 */
40
41 /*
42 * Socket operations for use by nfs
43 */
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/mount.h>
49 #include <sys/kernel.h>
50 #include <sys/mbuf.h>
51 #include <sys/vnode.h>
52 #include <sys/domain.h>
53 #include <sys/protosw.h>
54 #include <sys/socket.h>
55 #include <sys/socketvar.h>
56 #include <sys/syslog.h>
57 #include <sys/tprintf.h>
58 #include <sys/namei.h>
59
60 #include <netinet/in.h>
61 #include <netinet/tcp.h>
62
63 #include <nfs/rpcv2.h>
64 #include <nfs/nfsproto.h>
65 #include <nfs/nfs.h>
66 #include <nfs/xdr_subs.h>
67 #include <nfs/nfsm_subs.h>
68 #include <nfs/nfsmount.h>
69 #include <nfs/nfsnode.h>
70 #include <nfs/nfsrtt.h>
71 #include <nfs/nqnfs.h>
72 #include <nfs/nfs_var.h>
73
74 #define TRUE 1
75 #define FALSE 0
76
77 /*
78 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
79 * Use the mean and mean deviation of rtt for the appropriate type of rpc
80 * for the frequent rpcs and a default for the others.
81 * The justification for doing "other" this way is that these rpcs
82 * happen so infrequently that timer est. would probably be stale.
83 * Also, since many of these rpcs are
84 * non-idempotent, a conservative timeout is desired.
85 * getattr, lookup - A+2D
86 * read, write - A+4D
87 * other - nm_timeo
88 */
89 #define NFS_RTO(n, t) \
90 ((t) == 0 ? (n)->nm_timeo : \
91 ((t) < 3 ? \
92 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
93 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
94 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
95 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
96 /*
97 * External data, mostly RPC constants in XDR form
98 */
99 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
100 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
101 rpc_auth_kerb;
102 extern u_int32_t nfs_prog, nqnfs_prog;
103 extern time_t nqnfsstarttime;
104 extern struct nfsstats nfsstats;
105 extern int nfsv3_procid[NFS_NPROCS];
106 extern int nfs_ticks;
107
108 /*
109 * Defines which timer to use for the procnum.
110 * 0 - default
111 * 1 - getattr
112 * 2 - lookup
113 * 3 - read
114 * 4 - write
115 */
116 static int proct[NFS_NPROCS] = {
117 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
118 0, 0, 0,
119 };
120
121 /*
122 * There is a congestion window for outstanding rpcs maintained per mount
123 * point. The cwnd size is adjusted in roughly the way that:
124 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
125 * SIGCOMM '88". ACM, August 1988.
126 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
127 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
128 * of rpcs is in progress.
129 * (The sent count and cwnd are scaled for integer arith.)
130 * Variants of "slow start" were tried and were found to be too much of a
131 * performance hit (ave. rtt 3 times larger),
132 * I suspect due to the large rtt that nfs rpcs have.
133 */
134 #define NFS_CWNDSCALE 256
135 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
136 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
137 int nfsrtton = 0;
138 struct nfsrtt nfsrtt;
139
140 /*
141 * Initialize sockets and congestion for a new NFS connection.
142 * We do not free the sockaddr if error.
143 */
144 int
145 nfs_connect(nmp, rep)
146 register struct nfsmount *nmp;
147 struct nfsreq *rep;
148 {
149 register struct socket *so;
150 int s, error, rcvreserve, sndreserve;
151 struct sockaddr *saddr;
152 struct sockaddr_in *sin;
153 struct mbuf *m;
154 u_int16_t tport;
155
156 nmp->nm_so = (struct socket *)0;
157 saddr = mtod(nmp->nm_nam, struct sockaddr *);
158 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
159 nmp->nm_soproto);
160 if (error)
161 goto bad;
162 so = nmp->nm_so;
163 nmp->nm_soflags = so->so_proto->pr_flags;
164
165 /*
166 * Some servers require that the client port be a reserved port number.
167 */
168 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
169 MGET(m, M_WAIT, MT_SONAME);
170 sin = mtod(m, struct sockaddr_in *);
171 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
172 sin->sin_family = AF_INET;
173 sin->sin_addr.s_addr = INADDR_ANY;
174 tport = IPPORT_RESERVED - 1;
175 sin->sin_port = htons(tport);
176 while ((error = sobind(so, m)) == EADDRINUSE &&
177 --tport > IPPORT_RESERVED / 2)
178 sin->sin_port = htons(tport);
179 m_freem(m);
180 if (error)
181 goto bad;
182 }
183
184 /*
185 * Protocols that do not require connections may be optionally left
186 * unconnected for servers that reply from a port other than NFS_PORT.
187 */
188 if (nmp->nm_flag & NFSMNT_NOCONN) {
189 if (nmp->nm_soflags & PR_CONNREQUIRED) {
190 error = ENOTCONN;
191 goto bad;
192 }
193 } else {
194 error = soconnect(so, nmp->nm_nam);
195 if (error)
196 goto bad;
197
198 /*
199 * Wait for the connection to complete. Cribbed from the
200 * connect system call but with the wait timing out so
201 * that interruptible mounts don't hang here for a long time.
202 */
203 s = splsoftnet();
204 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
205 (void) tsleep((caddr_t)&so->so_timeo, PSOCK,
206 "nfscon", 2 * hz);
207 if ((so->so_state & SS_ISCONNECTING) &&
208 so->so_error == 0 && rep &&
209 (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){
210 so->so_state &= ~SS_ISCONNECTING;
211 splx(s);
212 goto bad;
213 }
214 }
215 if (so->so_error) {
216 error = so->so_error;
217 so->so_error = 0;
218 splx(s);
219 goto bad;
220 }
221 splx(s);
222 }
223 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
224 so->so_rcv.sb_timeo = (5 * hz);
225 so->so_snd.sb_timeo = (5 * hz);
226 } else {
227 so->so_rcv.sb_timeo = 0;
228 so->so_snd.sb_timeo = 0;
229 }
230 if (nmp->nm_sotype == SOCK_DGRAM) {
231 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
232 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
233 NFS_MAXPKTHDR) * 2;
234 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
235 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
236 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
237 NFS_MAXPKTHDR) * 2;
238 } else {
239 if (nmp->nm_sotype != SOCK_STREAM)
240 panic("nfscon sotype");
241 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
242 MGET(m, M_WAIT, MT_SOOPTS);
243 *mtod(m, int32_t *) = 1;
244 m->m_len = sizeof(int32_t);
245 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
246 }
247 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
248 MGET(m, M_WAIT, MT_SOOPTS);
249 *mtod(m, int32_t *) = 1;
250 m->m_len = sizeof(int32_t);
251 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
252 }
253 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
254 sizeof (u_int32_t)) * 2;
255 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
256 sizeof (u_int32_t)) * 2;
257 }
258 error = soreserve(so, sndreserve, rcvreserve);
259 if (error)
260 goto bad;
261 so->so_rcv.sb_flags |= SB_NOINTR;
262 so->so_snd.sb_flags |= SB_NOINTR;
263
264 /* Initialize other non-zero congestion variables */
265 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
266 nmp->nm_srtt[4] = (NFS_TIMEO << 3);
267 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
268 nmp->nm_sdrtt[3] = nmp->nm_sdrtt[4] = 0;
269 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
270 nmp->nm_sent = 0;
271 nmp->nm_timeouts = 0;
272 return (0);
273
274 bad:
275 nfs_disconnect(nmp);
276 return (error);
277 }
278
279 /*
280 * Reconnect routine:
281 * Called when a connection is broken on a reliable protocol.
282 * - clean up the old socket
283 * - nfs_connect() again
284 * - set R_MUSTRESEND for all outstanding requests on mount point
285 * If this fails the mount point is DEAD!
286 * nb: Must be called with the nfs_sndlock() set on the mount point.
287 */
288 int
289 nfs_reconnect(rep)
290 register struct nfsreq *rep;
291 {
292 register struct nfsreq *rp;
293 register struct nfsmount *nmp = rep->r_nmp;
294 int error;
295
296 nfs_disconnect(nmp);
297 while ((error = nfs_connect(nmp, rep)) != 0) {
298 if (error == EINTR || error == ERESTART)
299 return (EINTR);
300 (void) tsleep((caddr_t)&lbolt, PSOCK, "nfscon", 0);
301 }
302
303 /*
304 * Loop through outstanding request list and fix up all requests
305 * on old socket.
306 */
307 for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) {
308 if (rp->r_nmp == nmp)
309 rp->r_flags |= R_MUSTRESEND;
310 }
311 return (0);
312 }
313
314 /*
315 * NFS disconnect. Clean up and unlink.
316 */
317 void
318 nfs_disconnect(nmp)
319 register struct nfsmount *nmp;
320 {
321 register struct socket *so;
322
323 if (nmp->nm_so) {
324 struct nfsreq dummyreq;
325
326 bzero(&dummyreq, sizeof(dummyreq));
327 dummyreq.r_nmp = nmp;
328 nfs_rcvlock(&dummyreq);
329
330 so = nmp->nm_so;
331 nmp->nm_so = (struct socket *)0;
332 soshutdown(so, 2);
333 soclose(so);
334
335 nfs_rcvunlock(&nmp->nm_iflag);
336 }
337 }
338
339 /*
340 * This is the nfs send routine. For connection based socket types, it
341 * must be called with an nfs_sndlock() on the socket.
342 * "rep == NULL" indicates that it has been called from a server.
343 * For the client side:
344 * - return EINTR if the RPC is terminated, 0 otherwise
345 * - set R_MUSTRESEND if the send fails for any reason
346 * - do any cleanup required by recoverable socket errors (???)
347 * For the server side:
348 * - return EINTR or ERESTART if interrupted by a signal
349 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
350 * - do any cleanup required by recoverable socket errors (???)
351 */
352 int
353 nfs_send(so, nam, top, rep)
354 register struct socket *so;
355 struct mbuf *nam;
356 register struct mbuf *top;
357 struct nfsreq *rep;
358 {
359 struct mbuf *sendnam;
360 int error, soflags, flags;
361
362 if (rep) {
363 if (rep->r_flags & R_SOFTTERM) {
364 m_freem(top);
365 return (EINTR);
366 }
367 if ((so = rep->r_nmp->nm_so) == NULL) {
368 rep->r_flags |= R_MUSTRESEND;
369 m_freem(top);
370 return (0);
371 }
372 rep->r_flags &= ~R_MUSTRESEND;
373 soflags = rep->r_nmp->nm_soflags;
374 } else
375 soflags = so->so_proto->pr_flags;
376 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
377 sendnam = (struct mbuf *)0;
378 else
379 sendnam = nam;
380 if (so->so_type == SOCK_SEQPACKET)
381 flags = MSG_EOR;
382 else
383 flags = 0;
384
385 error = sosend(so, sendnam, (struct uio *)0, top,
386 (struct mbuf *)0, flags);
387 if (error) {
388 if (rep) {
389 log(LOG_INFO, "nfs send error %d for server %s\n",error,
390 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
391 /*
392 * Deal with errors for the client side.
393 */
394 if (rep->r_flags & R_SOFTTERM)
395 error = EINTR;
396 else
397 rep->r_flags |= R_MUSTRESEND;
398 } else
399 log(LOG_INFO, "nfsd send error %d\n", error);
400
401 /*
402 * Handle any recoverable (soft) socket errors here. (???)
403 */
404 if (error != EINTR && error != ERESTART &&
405 error != EWOULDBLOCK && error != EPIPE)
406 error = 0;
407 }
408 return (error);
409 }
410
411 #ifdef NFS
412 /*
413 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
414 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
415 * Mark and consolidate the data into a new mbuf list.
416 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
417 * small mbufs.
418 * For SOCK_STREAM we must be very careful to read an entire record once
419 * we have read any of it, even if the system call has been interrupted.
420 */
421 int
422 nfs_receive(rep, aname, mp)
423 register struct nfsreq *rep;
424 struct mbuf **aname;
425 struct mbuf **mp;
426 {
427 register struct socket *so;
428 struct uio auio;
429 struct iovec aio;
430 register struct mbuf *m;
431 struct mbuf *control;
432 u_int32_t len;
433 struct mbuf **getnam;
434 int error, sotype, rcvflg;
435 struct proc *p = curproc; /* XXX */
436
437 /*
438 * Set up arguments for soreceive()
439 */
440 *mp = (struct mbuf *)0;
441 *aname = (struct mbuf *)0;
442 sotype = rep->r_nmp->nm_sotype;
443
444 /*
445 * For reliable protocols, lock against other senders/receivers
446 * in case a reconnect is necessary.
447 * For SOCK_STREAM, first get the Record Mark to find out how much
448 * more there is to get.
449 * We must lock the socket against other receivers
450 * until we have an entire rpc request/reply.
451 */
452 if (sotype != SOCK_DGRAM) {
453 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep);
454 if (error)
455 return (error);
456 tryagain:
457 /*
458 * Check for fatal errors and resending request.
459 */
460 /*
461 * Ugh: If a reconnect attempt just happened, nm_so
462 * would have changed. NULL indicates a failed
463 * attempt that has essentially shut down this
464 * mount point.
465 */
466 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
467 nfs_sndunlock(&rep->r_nmp->nm_iflag);
468 return (EINTR);
469 }
470 so = rep->r_nmp->nm_so;
471 if (!so) {
472 error = nfs_reconnect(rep);
473 if (error) {
474 nfs_sndunlock(&rep->r_nmp->nm_iflag);
475 return (error);
476 }
477 goto tryagain;
478 }
479 while (rep->r_flags & R_MUSTRESEND) {
480 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
481 nfsstats.rpcretries++;
482 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
483 if (error) {
484 if (error == EINTR || error == ERESTART ||
485 (error = nfs_reconnect(rep)) != 0) {
486 nfs_sndunlock(&rep->r_nmp->nm_iflag);
487 return (error);
488 }
489 goto tryagain;
490 }
491 }
492 nfs_sndunlock(&rep->r_nmp->nm_iflag);
493 if (sotype == SOCK_STREAM) {
494 aio.iov_base = (caddr_t) &len;
495 aio.iov_len = sizeof(u_int32_t);
496 auio.uio_iov = &aio;
497 auio.uio_iovcnt = 1;
498 auio.uio_segflg = UIO_SYSSPACE;
499 auio.uio_rw = UIO_READ;
500 auio.uio_offset = 0;
501 auio.uio_resid = sizeof(u_int32_t);
502 auio.uio_procp = p;
503 do {
504 rcvflg = MSG_WAITALL;
505 error = soreceive(so, (struct mbuf **)0, &auio,
506 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
507 if (error == EWOULDBLOCK && rep) {
508 if (rep->r_flags & R_SOFTTERM)
509 return (EINTR);
510 }
511 } while (error == EWOULDBLOCK);
512 if (!error && auio.uio_resid > 0) {
513 log(LOG_INFO,
514 "short receive (%d/%d) from nfs server %s\n",
515 sizeof(u_int32_t) - auio.uio_resid,
516 sizeof(u_int32_t),
517 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
518 error = EPIPE;
519 }
520 if (error)
521 goto errout;
522 len = ntohl(len) & ~0x80000000;
523 /*
524 * This is SERIOUS! We are out of sync with the sender
525 * and forcing a disconnect/reconnect is all I can do.
526 */
527 if (len > NFS_MAXPACKET) {
528 log(LOG_ERR, "%s (%d) from nfs server %s\n",
529 "impossible packet length",
530 len,
531 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
532 error = EFBIG;
533 goto errout;
534 }
535 auio.uio_resid = len;
536 do {
537 rcvflg = MSG_WAITALL;
538 error = soreceive(so, (struct mbuf **)0,
539 &auio, mp, (struct mbuf **)0, &rcvflg);
540 } while (error == EWOULDBLOCK || error == EINTR ||
541 error == ERESTART);
542 if (!error && auio.uio_resid > 0) {
543 log(LOG_INFO,
544 "short receive (%d/%d) from nfs server %s\n",
545 len - auio.uio_resid, len,
546 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
547 error = EPIPE;
548 }
549 } else {
550 /*
551 * NB: Since uio_resid is big, MSG_WAITALL is ignored
552 * and soreceive() will return when it has either a
553 * control msg or a data msg.
554 * We have no use for control msg., but must grab them
555 * and then throw them away so we know what is going
556 * on.
557 */
558 auio.uio_resid = len = 100000000; /* Anything Big */
559 auio.uio_procp = p;
560 do {
561 rcvflg = 0;
562 error = soreceive(so, (struct mbuf **)0,
563 &auio, mp, &control, &rcvflg);
564 if (control)
565 m_freem(control);
566 if (error == EWOULDBLOCK && rep) {
567 if (rep->r_flags & R_SOFTTERM)
568 return (EINTR);
569 }
570 } while (error == EWOULDBLOCK ||
571 (!error && *mp == NULL && control));
572 if ((rcvflg & MSG_EOR) == 0)
573 printf("Egad!!\n");
574 if (!error && *mp == NULL)
575 error = EPIPE;
576 len -= auio.uio_resid;
577 }
578 errout:
579 if (error && error != EINTR && error != ERESTART) {
580 m_freem(*mp);
581 *mp = (struct mbuf *)0;
582 if (error != EPIPE)
583 log(LOG_INFO,
584 "receive error %d from nfs server %s\n",
585 error,
586 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
587 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep);
588 if (!error)
589 error = nfs_reconnect(rep);
590 if (!error)
591 goto tryagain;
592 else
593 nfs_sndunlock(&rep->r_nmp->nm_iflag);
594 }
595 } else {
596 if ((so = rep->r_nmp->nm_so) == NULL)
597 return (EACCES);
598 if (so->so_state & SS_ISCONNECTED)
599 getnam = (struct mbuf **)0;
600 else
601 getnam = aname;
602 auio.uio_resid = len = 1000000;
603 auio.uio_procp = p;
604 do {
605 rcvflg = 0;
606 error = soreceive(so, getnam, &auio, mp,
607 (struct mbuf **)0, &rcvflg);
608 if (error == EWOULDBLOCK &&
609 (rep->r_flags & R_SOFTTERM))
610 return (EINTR);
611 } while (error == EWOULDBLOCK);
612 len -= auio.uio_resid;
613 }
614 if (error) {
615 m_freem(*mp);
616 *mp = (struct mbuf *)0;
617 }
618 return (error);
619 }
620
621 /*
622 * Implement receipt of reply on a socket.
623 * We must search through the list of received datagrams matching them
624 * with outstanding requests using the xid, until ours is found.
625 */
626 /* ARGSUSED */
627 int
628 nfs_reply(myrep)
629 struct nfsreq *myrep;
630 {
631 register struct nfsreq *rep;
632 register struct nfsmount *nmp = myrep->r_nmp;
633 register int32_t t1;
634 struct mbuf *mrep, *nam, *md;
635 u_int32_t rxid, *tl;
636 caddr_t dpos, cp2;
637 int error;
638
639 /*
640 * Loop around until we get our own reply
641 */
642 for (;;) {
643 /*
644 * Lock against other receivers so that I don't get stuck in
645 * sbwait() after someone else has received my reply for me.
646 * Also necessary for connection based protocols to avoid
647 * race conditions during a reconnect.
648 */
649 error = nfs_rcvlock(myrep);
650 if (error == EALREADY)
651 return (0);
652 if (error)
653 return (error);
654 /*
655 * Get the next Rpc reply off the socket
656 */
657 error = nfs_receive(myrep, &nam, &mrep);
658 nfs_rcvunlock(&nmp->nm_iflag);
659 if (error) {
660
661 /*
662 * Ignore routing errors on connectionless protocols??
663 */
664 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
665 nmp->nm_so->so_error = 0;
666 #ifdef DEBUG
667 printf("nfs_reply: ignoring error %d\n", error);
668 #endif
669 if (myrep->r_flags & R_GETONEREP)
670 return (0);
671 continue;
672 }
673 return (error);
674 }
675 if (nam)
676 m_freem(nam);
677
678 /*
679 * Get the xid and check that it is an rpc reply
680 */
681 md = mrep;
682 dpos = mtod(md, caddr_t);
683 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
684 rxid = *tl++;
685 if (*tl != rpc_reply) {
686 if (nmp->nm_flag & NFSMNT_NQNFS) {
687 if (nqnfs_callback(nmp, mrep, md, dpos))
688 nfsstats.rpcinvalid++;
689 } else {
690 nfsstats.rpcinvalid++;
691 m_freem(mrep);
692 }
693 nfsmout:
694 if (myrep->r_flags & R_GETONEREP)
695 return (0);
696 continue;
697 }
698
699 /*
700 * Loop through the request list to match up the reply
701 * Iff no match, just drop the datagram
702 */
703 for (rep = nfs_reqq.tqh_first; rep != 0;
704 rep = rep->r_chain.tqe_next) {
705 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
706 /* Found it.. */
707 rep->r_mrep = mrep;
708 rep->r_md = md;
709 rep->r_dpos = dpos;
710 if (nfsrtton) {
711 struct rttl *rt;
712
713 rt = &nfsrtt.rttl[nfsrtt.pos];
714 rt->proc = rep->r_procnum;
715 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
716 rt->sent = nmp->nm_sent;
717 rt->cwnd = nmp->nm_cwnd;
718 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
719 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
720 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
721 rt->tstamp = time;
722 if (rep->r_flags & R_TIMING)
723 rt->rtt = rep->r_rtt;
724 else
725 rt->rtt = 1000000;
726 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
727 }
728 /*
729 * Update congestion window.
730 * Do the additive increase of
731 * one rpc/rtt.
732 */
733 if (nmp->nm_cwnd <= nmp->nm_sent) {
734 nmp->nm_cwnd +=
735 (NFS_CWNDSCALE * NFS_CWNDSCALE +
736 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
737 if (nmp->nm_cwnd > NFS_MAXCWND)
738 nmp->nm_cwnd = NFS_MAXCWND;
739 }
740 rep->r_flags &= ~R_SENT;
741 nmp->nm_sent -= NFS_CWNDSCALE;
742 /*
743 * Update rtt using a gain of 0.125 on the mean
744 * and a gain of 0.25 on the deviation.
745 */
746 if (rep->r_flags & R_TIMING) {
747 /*
748 * Since the timer resolution of
749 * NFS_HZ is so course, it can often
750 * result in r_rtt == 0. Since
751 * r_rtt == N means that the actual
752 * rtt is between N+dt and N+2-dt ticks,
753 * add 1.
754 */
755 t1 = rep->r_rtt + 1;
756 t1 -= (NFS_SRTT(rep) >> 3);
757 NFS_SRTT(rep) += t1;
758 if (t1 < 0)
759 t1 = -t1;
760 t1 -= (NFS_SDRTT(rep) >> 2);
761 NFS_SDRTT(rep) += t1;
762 }
763 nmp->nm_timeouts = 0;
764 break;
765 }
766 }
767 /*
768 * If not matched to a request, drop it.
769 * If it's mine, get out.
770 */
771 if (rep == 0) {
772 nfsstats.rpcunexpected++;
773 m_freem(mrep);
774 } else if (rep == myrep) {
775 if (rep->r_mrep == NULL)
776 panic("nfsreply nil");
777 return (0);
778 }
779 if (myrep->r_flags & R_GETONEREP)
780 return (0);
781 }
782 }
783
784 /*
785 * nfs_request - goes something like this
786 * - fill in request struct
787 * - links it into list
788 * - calls nfs_send() for first transmit
789 * - calls nfs_receive() to get reply
790 * - break down rpc header and return with nfs reply pointed to
791 * by mrep or error
792 * nb: always frees up mreq mbuf list
793 */
794 int
795 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp)
796 struct vnode *vp;
797 struct mbuf *mrest;
798 int procnum;
799 struct proc *procp;
800 struct ucred *cred;
801 struct mbuf **mrp;
802 struct mbuf **mdp;
803 caddr_t *dposp;
804 {
805 register struct mbuf *m, *mrep;
806 register struct nfsreq *rep;
807 register u_int32_t *tl;
808 register int i;
809 struct nfsmount *nmp;
810 struct mbuf *md, *mheadend;
811 struct nfsnode *np;
812 char nickv[RPCX_NICKVERF];
813 time_t reqtime, waituntil;
814 caddr_t dpos, cp2;
815 int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type;
816 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
817 int verf_len, verf_type;
818 u_int32_t xid;
819 u_quad_t frev;
820 char *auth_str, *verf_str;
821 NFSKERBKEY_T key; /* save session key */
822
823 nmp = VFSTONFS(vp->v_mount);
824 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
825 rep->r_nmp = nmp;
826 rep->r_vp = vp;
827 rep->r_procp = procp;
828 rep->r_procnum = procnum;
829 i = 0;
830 m = mrest;
831 while (m) {
832 i += m->m_len;
833 m = m->m_next;
834 }
835 mrest_len = i;
836
837 /*
838 * Get the RPC header with authorization.
839 */
840 kerbauth:
841 verf_str = auth_str = (char *)0;
842 if (nmp->nm_flag & NFSMNT_KERB) {
843 verf_str = nickv;
844 verf_len = sizeof (nickv);
845 auth_type = RPCAUTH_KERB4;
846 bzero((caddr_t)key, sizeof (key));
847 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
848 &auth_len, verf_str, verf_len)) {
849 error = nfs_getauth(nmp, rep, cred, &auth_str,
850 &auth_len, verf_str, &verf_len, key);
851 if (error) {
852 free((caddr_t)rep, M_NFSREQ);
853 m_freem(mrest);
854 return (error);
855 }
856 }
857 } else {
858 auth_type = RPCAUTH_UNIX;
859 auth_len = (((cred->cr_ngroups > nmp->nm_numgrps) ?
860 nmp->nm_numgrps : cred->cr_ngroups) << 2) +
861 5 * NFSX_UNSIGNED;
862 }
863 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
864 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
865 if (auth_str)
866 free(auth_str, M_TEMP);
867
868 /*
869 * For stream protocols, insert a Sun RPC Record Mark.
870 */
871 if (nmp->nm_sotype == SOCK_STREAM) {
872 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
873 *mtod(m, u_int32_t *) = htonl(0x80000000 |
874 (m->m_pkthdr.len - NFSX_UNSIGNED));
875 }
876 rep->r_mreq = m;
877 rep->r_xid = xid;
878 tryagain:
879 if (nmp->nm_flag & NFSMNT_SOFT)
880 rep->r_retry = nmp->nm_retry;
881 else
882 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
883 rep->r_rtt = rep->r_rexmit = 0;
884 if (proct[procnum] > 0)
885 rep->r_flags = R_TIMING;
886 else
887 rep->r_flags = 0;
888 rep->r_mrep = NULL;
889
890 /*
891 * Do the client side RPC.
892 */
893 nfsstats.rpcrequests++;
894 /*
895 * Chain request into list of outstanding requests. Be sure
896 * to put it LAST so timer finds oldest requests first.
897 */
898 s = splsoftnet();
899 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
900
901 /* Get send time for nqnfs */
902 reqtime = time.tv_sec;
903
904 /*
905 * If backing off another request or avoiding congestion, don't
906 * send this one now but let timer do it. If not timing a request,
907 * do it now.
908 */
909 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
910 (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
911 nmp->nm_sent < nmp->nm_cwnd)) {
912 splx(s);
913 if (nmp->nm_soflags & PR_CONNREQUIRED)
914 error = nfs_sndlock(&nmp->nm_iflag, rep);
915 if (!error) {
916 m = m_copym(m, 0, M_COPYALL, M_WAIT);
917 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
918 if (nmp->nm_soflags & PR_CONNREQUIRED)
919 nfs_sndunlock(&nmp->nm_iflag);
920 }
921 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
922 nmp->nm_sent += NFS_CWNDSCALE;
923 rep->r_flags |= R_SENT;
924 }
925 } else {
926 splx(s);
927 rep->r_rtt = -1;
928 }
929
930 /*
931 * Wait for the reply from our send or the timer's.
932 */
933 if (!error || error == EPIPE)
934 error = nfs_reply(rep);
935
936 /*
937 * RPC done, unlink the request.
938 */
939 s = splsoftnet();
940 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
941 splx(s);
942
943 /*
944 * Decrement the outstanding request count.
945 */
946 if (rep->r_flags & R_SENT) {
947 rep->r_flags &= ~R_SENT; /* paranoia */
948 nmp->nm_sent -= NFS_CWNDSCALE;
949 }
950
951 /*
952 * If there was a successful reply and a tprintf msg.
953 * tprintf a response.
954 */
955 if (!error && (rep->r_flags & R_TPRINTFMSG))
956 nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
957 "is alive again");
958 mrep = rep->r_mrep;
959 md = rep->r_md;
960 dpos = rep->r_dpos;
961 if (error) {
962 m_freem(rep->r_mreq);
963 free((caddr_t)rep, M_NFSREQ);
964 return (error);
965 }
966
967 /*
968 * break down the rpc header and check if ok
969 */
970 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
971 if (*tl++ == rpc_msgdenied) {
972 if (*tl == rpc_mismatch)
973 error = EOPNOTSUPP;
974 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
975 if (!failed_auth) {
976 failed_auth++;
977 mheadend->m_next = (struct mbuf *)0;
978 m_freem(mrep);
979 m_freem(rep->r_mreq);
980 goto kerbauth;
981 } else
982 error = EAUTH;
983 } else
984 error = EACCES;
985 m_freem(mrep);
986 m_freem(rep->r_mreq);
987 free((caddr_t)rep, M_NFSREQ);
988 return (error);
989 }
990
991 /*
992 * Grab any Kerberos verifier, otherwise just throw it away.
993 */
994 verf_type = fxdr_unsigned(int, *tl++);
995 i = fxdr_unsigned(int32_t, *tl);
996 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
997 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
998 if (error)
999 goto nfsmout;
1000 } else if (i > 0)
1001 nfsm_adv(nfsm_rndup(i));
1002 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1003 /* 0 == ok */
1004 if (*tl == 0) {
1005 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1006 if (*tl != 0) {
1007 error = fxdr_unsigned(int, *tl);
1008 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1009 error == NFSERR_TRYLATER) {
1010 m_freem(mrep);
1011 error = 0;
1012 waituntil = time.tv_sec + trylater_delay;
1013 while (time.tv_sec < waituntil)
1014 (void) tsleep((caddr_t)&lbolt,
1015 PSOCK, "nqnfstry", 0);
1016 trylater_delay *= nfs_backoff[trylater_cnt];
1017 if (trylater_cnt < 7)
1018 trylater_cnt++;
1019 goto tryagain;
1020 }
1021
1022 /*
1023 * If the File Handle was stale, invalidate the
1024 * lookup cache, just in case.
1025 */
1026 if (error == ESTALE)
1027 cache_purge(vp);
1028 if (nmp->nm_flag & NFSMNT_NFSV3) {
1029 *mrp = mrep;
1030 *mdp = md;
1031 *dposp = dpos;
1032 error |= NFSERR_RETERR;
1033 } else
1034 m_freem(mrep);
1035 m_freem(rep->r_mreq);
1036 free((caddr_t)rep, M_NFSREQ);
1037 return (error);
1038 }
1039
1040 /*
1041 * For nqnfs, get any lease in reply
1042 */
1043 if (nmp->nm_flag & NFSMNT_NQNFS) {
1044 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1045 if (*tl) {
1046 np = VTONFS(vp);
1047 nqlflag = fxdr_unsigned(int, *tl);
1048 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED);
1049 cachable = fxdr_unsigned(int, *tl++);
1050 reqtime += fxdr_unsigned(int, *tl++);
1051 if (reqtime > time.tv_sec) {
1052 fxdr_hyper(tl, &frev);
1053 nqnfs_clientlease(nmp, np, nqlflag,
1054 cachable, reqtime, frev);
1055 }
1056 }
1057 }
1058 *mrp = mrep;
1059 *mdp = md;
1060 *dposp = dpos;
1061 m_freem(rep->r_mreq);
1062 FREE((caddr_t)rep, M_NFSREQ);
1063 return (0);
1064 }
1065 m_freem(mrep);
1066 error = EPROTONOSUPPORT;
1067 nfsmout:
1068 m_freem(rep->r_mreq);
1069 free((caddr_t)rep, M_NFSREQ);
1070 return (error);
1071 }
1072 #endif /* NFS */
1073
1074 /*
1075 * Generate the rpc reply header
1076 * siz arg. is used to decide if adding a cluster is worthwhile
1077 */
1078 int
1079 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1080 int siz;
1081 struct nfsrv_descript *nd;
1082 struct nfssvc_sock *slp;
1083 int err;
1084 int cache;
1085 u_quad_t *frev;
1086 struct mbuf **mrq;
1087 struct mbuf **mbp;
1088 caddr_t *bposp;
1089 {
1090 register u_int32_t *tl;
1091 register struct mbuf *mreq;
1092 caddr_t bpos;
1093 struct mbuf *mb, *mb2;
1094
1095 MGETHDR(mreq, M_WAIT, MT_DATA);
1096 mb = mreq;
1097 /*
1098 * If this is a big reply, use a cluster else
1099 * try and leave leading space for the lower level headers.
1100 */
1101 siz += RPC_REPLYSIZ;
1102 if (siz >= MINCLSIZE) {
1103 MCLGET(mreq, M_WAIT);
1104 } else
1105 mreq->m_data += max_hdr;
1106 tl = mtod(mreq, u_int32_t *);
1107 mreq->m_len = 6 * NFSX_UNSIGNED;
1108 bpos = ((caddr_t)tl) + mreq->m_len;
1109 *tl++ = txdr_unsigned(nd->nd_retxid);
1110 *tl++ = rpc_reply;
1111 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1112 *tl++ = rpc_msgdenied;
1113 if (err & NFSERR_AUTHERR) {
1114 *tl++ = rpc_autherr;
1115 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1116 mreq->m_len -= NFSX_UNSIGNED;
1117 bpos -= NFSX_UNSIGNED;
1118 } else {
1119 *tl++ = rpc_mismatch;
1120 *tl++ = txdr_unsigned(RPC_VER2);
1121 *tl = txdr_unsigned(RPC_VER2);
1122 }
1123 } else {
1124 *tl++ = rpc_msgaccepted;
1125
1126 /*
1127 * For Kerberos authentication, we must send the nickname
1128 * verifier back, otherwise just RPCAUTH_NULL.
1129 */
1130 if (nd->nd_flag & ND_KERBFULL) {
1131 register struct nfsuid *nuidp;
1132 struct timeval ktvin, ktvout;
1133
1134 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1135 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1136 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1137 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1138 &nuidp->nu_haddr, nd->nd_nam2)))
1139 break;
1140 }
1141 if (nuidp) {
1142 ktvin.tv_sec =
1143 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1144 ktvin.tv_usec =
1145 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1146
1147 /*
1148 * Encrypt the timestamp in ecb mode using the
1149 * session key.
1150 */
1151 #ifdef NFSKERB
1152 XXX
1153 #endif
1154
1155 *tl++ = rpc_auth_kerb;
1156 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1157 *tl = ktvout.tv_sec;
1158 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1159 *tl++ = ktvout.tv_usec;
1160 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1161 } else {
1162 *tl++ = 0;
1163 *tl++ = 0;
1164 }
1165 } else {
1166 *tl++ = 0;
1167 *tl++ = 0;
1168 }
1169 switch (err) {
1170 case EPROGUNAVAIL:
1171 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1172 break;
1173 case EPROGMISMATCH:
1174 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1175 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1176 if (nd->nd_flag & ND_NQNFS) {
1177 *tl++ = txdr_unsigned(3);
1178 *tl = txdr_unsigned(3);
1179 } else {
1180 *tl++ = txdr_unsigned(2);
1181 *tl = txdr_unsigned(3);
1182 }
1183 break;
1184 case EPROCUNAVAIL:
1185 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1186 break;
1187 case EBADRPC:
1188 *tl = txdr_unsigned(RPC_GARBAGE);
1189 break;
1190 default:
1191 *tl = 0;
1192 if (err != NFSERR_RETVOID) {
1193 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1194 if (err)
1195 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1196 else
1197 *tl = 0;
1198 }
1199 break;
1200 };
1201 }
1202
1203 /*
1204 * For nqnfs, piggyback lease as requested.
1205 */
1206 if ((nd->nd_flag & ND_NQNFS) && err == 0) {
1207 if (nd->nd_flag & ND_LEASE) {
1208 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1209 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE);
1210 *tl++ = txdr_unsigned(cache);
1211 *tl++ = txdr_unsigned(nd->nd_duration);
1212 txdr_hyper(frev, tl);
1213 } else {
1214 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1215 *tl = 0;
1216 }
1217 }
1218 if (mrq != NULL)
1219 *mrq = mreq;
1220 *mbp = mb;
1221 *bposp = bpos;
1222 if (err != 0 && err != NFSERR_RETVOID)
1223 nfsstats.srvrpc_errs++;
1224 return (0);
1225 }
1226
1227 /*
1228 * Nfs timer routine
1229 * Scan the nfsreq list and retranmit any requests that have timed out
1230 * To avoid retransmission attempts on STREAM sockets (in the future) make
1231 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1232 */
1233 void
1234 nfs_timer(arg)
1235 void *arg; /* never used */
1236 {
1237 register struct nfsreq *rep;
1238 register struct mbuf *m;
1239 register struct socket *so;
1240 register struct nfsmount *nmp;
1241 register int timeo;
1242 int s, error;
1243 #ifdef NFSSERVER
1244 register struct nfssvc_sock *slp;
1245 static long lasttime = 0;
1246 u_quad_t cur_usec;
1247 #endif
1248
1249 s = splsoftnet();
1250 for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) {
1251 nmp = rep->r_nmp;
1252 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1253 continue;
1254 if (nfs_sigintr(nmp, rep, rep->r_procp)) {
1255 rep->r_flags |= R_SOFTTERM;
1256 continue;
1257 }
1258 if (rep->r_rtt >= 0) {
1259 rep->r_rtt++;
1260 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1261 timeo = nmp->nm_timeo;
1262 else
1263 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1264 if (nmp->nm_timeouts > 0)
1265 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1266 if (rep->r_rtt <= timeo)
1267 continue;
1268 if (nmp->nm_timeouts < 8)
1269 nmp->nm_timeouts++;
1270 }
1271 /*
1272 * Check for server not responding
1273 */
1274 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1275 rep->r_rexmit > nmp->nm_deadthresh) {
1276 nfs_msg(rep->r_procp,
1277 nmp->nm_mountp->mnt_stat.f_mntfromname,
1278 "not responding");
1279 rep->r_flags |= R_TPRINTFMSG;
1280 }
1281 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1282 nfsstats.rpctimeouts++;
1283 rep->r_flags |= R_SOFTTERM;
1284 continue;
1285 }
1286 if (nmp->nm_sotype != SOCK_DGRAM) {
1287 if (++rep->r_rexmit > NFS_MAXREXMIT)
1288 rep->r_rexmit = NFS_MAXREXMIT;
1289 continue;
1290 }
1291 if ((so = nmp->nm_so) == NULL)
1292 continue;
1293
1294 /*
1295 * If there is enough space and the window allows..
1296 * Resend it
1297 * Set r_rtt to -1 in case we fail to send it now.
1298 */
1299 rep->r_rtt = -1;
1300 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1301 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1302 (rep->r_flags & R_SENT) ||
1303 nmp->nm_sent < nmp->nm_cwnd) &&
1304 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1305 if (so->so_state & SS_ISCONNECTED)
1306 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1307 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1308 else
1309 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1310 nmp->nm_nam, (struct mbuf *)0, (struct proc *)0);
1311 if (error) {
1312 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
1313 #ifdef DEBUG
1314 printf("nfs_timer: ignoring error %d\n",
1315 error);
1316 #endif
1317 so->so_error = 0;
1318 }
1319 } else {
1320 /*
1321 * Iff first send, start timing
1322 * else turn timing off, backoff timer
1323 * and divide congestion window by 2.
1324 */
1325 if (rep->r_flags & R_SENT) {
1326 rep->r_flags &= ~R_TIMING;
1327 if (++rep->r_rexmit > NFS_MAXREXMIT)
1328 rep->r_rexmit = NFS_MAXREXMIT;
1329 nmp->nm_cwnd >>= 1;
1330 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1331 nmp->nm_cwnd = NFS_CWNDSCALE;
1332 nfsstats.rpcretries++;
1333 } else {
1334 rep->r_flags |= R_SENT;
1335 nmp->nm_sent += NFS_CWNDSCALE;
1336 }
1337 rep->r_rtt = 0;
1338 }
1339 }
1340 }
1341
1342 #ifdef NFSSERVER
1343 /*
1344 * Call the nqnfs server timer once a second to handle leases.
1345 */
1346 if (lasttime != time.tv_sec) {
1347 lasttime = time.tv_sec;
1348 nqnfs_serverd();
1349 }
1350
1351 /*
1352 * Scan the write gathering queues for writes that need to be
1353 * completed now.
1354 */
1355 cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec;
1356 for (slp = nfssvc_sockhead.tqh_first; slp != 0;
1357 slp = slp->ns_chain.tqe_next) {
1358 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
1359 nfsrv_wakenfsd(slp);
1360 }
1361 #endif /* NFSSERVER */
1362 splx(s);
1363 timeout(nfs_timer, (void *)0, nfs_ticks);
1364 }
1365
1366 /*
1367 * Test for a termination condition pending on the process.
1368 * This is used for NFSMNT_INT mounts.
1369 */
1370 int
1371 nfs_sigintr(nmp, rep, p)
1372 struct nfsmount *nmp;
1373 struct nfsreq *rep;
1374 register struct proc *p;
1375 {
1376
1377 if (rep && (rep->r_flags & R_SOFTTERM))
1378 return (EINTR);
1379 if (!(nmp->nm_flag & NFSMNT_INT))
1380 return (0);
1381 if (p && p->p_siglist &&
1382 (((p->p_siglist & ~p->p_sigmask) & ~p->p_sigignore) &
1383 NFSINT_SIGMASK))
1384 return (EINTR);
1385 return (0);
1386 }
1387
1388 /*
1389 * Lock a socket against others.
1390 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1391 * and also to avoid race conditions between the processes with nfs requests
1392 * in progress when a reconnect is necessary.
1393 */
1394 int
1395 nfs_sndlock(flagp, rep)
1396 register int *flagp;
1397 struct nfsreq *rep;
1398 {
1399 struct proc *p;
1400 int slpflag = 0, slptimeo = 0;
1401
1402 if (rep) {
1403 p = rep->r_procp;
1404 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1405 slpflag = PCATCH;
1406 } else
1407 p = (struct proc *)0;
1408 while (*flagp & NFSMNT_SNDLOCK) {
1409 if (nfs_sigintr(rep->r_nmp, rep, p))
1410 return (EINTR);
1411 *flagp |= NFSMNT_WANTSND;
1412 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck",
1413 slptimeo);
1414 if (slpflag == PCATCH) {
1415 slpflag = 0;
1416 slptimeo = 2 * hz;
1417 }
1418 }
1419 *flagp |= NFSMNT_SNDLOCK;
1420 return (0);
1421 }
1422
1423 /*
1424 * Unlock the stream socket for others.
1425 */
1426 void
1427 nfs_sndunlock(flagp)
1428 register int *flagp;
1429 {
1430
1431 if ((*flagp & NFSMNT_SNDLOCK) == 0)
1432 panic("nfs sndunlock");
1433 *flagp &= ~NFSMNT_SNDLOCK;
1434 if (*flagp & NFSMNT_WANTSND) {
1435 *flagp &= ~NFSMNT_WANTSND;
1436 wakeup((caddr_t)flagp);
1437 }
1438 }
1439
1440 int
1441 nfs_rcvlock(rep)
1442 register struct nfsreq *rep;
1443 {
1444 register int *flagp = &rep->r_nmp->nm_iflag;
1445 int slpflag, slptimeo = 0;
1446
1447 if (*flagp & NFSMNT_INT)
1448 slpflag = PCATCH;
1449 else
1450 slpflag = 0;
1451 while (*flagp & NFSMNT_RCVLOCK) {
1452 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
1453 return (EINTR);
1454 *flagp |= NFSMNT_WANTRCV;
1455 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk",
1456 slptimeo);
1457 /* If our reply was received while we were sleeping,
1458 * then just return without taking the lock to avoid a
1459 * situation where a single iod could 'capture' the
1460 * receive lock.
1461 */
1462 if (rep->r_mrep != NULL)
1463 return (EALREADY);
1464 if (slpflag == PCATCH) {
1465 slpflag = 0;
1466 slptimeo = 2 * hz;
1467 }
1468 }
1469 *flagp |= NFSMNT_RCVLOCK;
1470 return (0);
1471 }
1472
1473 /*
1474 * Unlock the stream socket for others.
1475 */
1476 void
1477 nfs_rcvunlock(flagp)
1478 register int *flagp;
1479 {
1480
1481 if ((*flagp & NFSMNT_RCVLOCK) == 0)
1482 panic("nfs rcvunlock");
1483 *flagp &= ~NFSMNT_RCVLOCK;
1484 if (*flagp & NFSMNT_WANTRCV) {
1485 *flagp &= ~NFSMNT_WANTRCV;
1486 wakeup((caddr_t)flagp);
1487 }
1488 }
1489
1490 /*
1491 * Parse an RPC request
1492 * - verify it
1493 * - fill in the cred struct.
1494 */
1495 int
1496 nfs_getreq(nd, nfsd, has_header)
1497 register struct nfsrv_descript *nd;
1498 struct nfsd *nfsd;
1499 int has_header;
1500 {
1501 register int len, i;
1502 register u_int32_t *tl;
1503 register int32_t t1;
1504 struct uio uio;
1505 struct iovec iov;
1506 caddr_t dpos, cp2, cp;
1507 u_int32_t nfsvers, auth_type;
1508 uid_t nickuid;
1509 int error = 0, nqnfs = 0, ticklen;
1510 struct mbuf *mrep, *md;
1511 register struct nfsuid *nuidp;
1512 struct timeval tvin, tvout;
1513
1514 mrep = nd->nd_mrep;
1515 md = nd->nd_md;
1516 dpos = nd->nd_dpos;
1517 if (has_header) {
1518 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1519 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1520 if (*tl++ != rpc_call) {
1521 m_freem(mrep);
1522 return (EBADRPC);
1523 }
1524 } else
1525 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1526 nd->nd_repstat = 0;
1527 nd->nd_flag = 0;
1528 if (*tl++ != rpc_vers) {
1529 nd->nd_repstat = ERPCMISMATCH;
1530 nd->nd_procnum = NFSPROC_NOOP;
1531 return (0);
1532 }
1533 if (*tl != nfs_prog) {
1534 if (*tl == nqnfs_prog)
1535 nqnfs++;
1536 else {
1537 nd->nd_repstat = EPROGUNAVAIL;
1538 nd->nd_procnum = NFSPROC_NOOP;
1539 return (0);
1540 }
1541 }
1542 tl++;
1543 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1544 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) ||
1545 (nfsvers != NQNFS_VER3 && nqnfs)) {
1546 nd->nd_repstat = EPROGMISMATCH;
1547 nd->nd_procnum = NFSPROC_NOOP;
1548 return (0);
1549 }
1550 if (nqnfs)
1551 nd->nd_flag = (ND_NFSV3 | ND_NQNFS);
1552 else if (nfsvers == NFS_VER3)
1553 nd->nd_flag = ND_NFSV3;
1554 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1555 if (nd->nd_procnum == NFSPROC_NULL)
1556 return (0);
1557 if (nd->nd_procnum >= NFS_NPROCS ||
1558 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
1559 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1560 nd->nd_repstat = EPROCUNAVAIL;
1561 nd->nd_procnum = NFSPROC_NOOP;
1562 return (0);
1563 }
1564 if ((nd->nd_flag & ND_NFSV3) == 0)
1565 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1566 auth_type = *tl++;
1567 len = fxdr_unsigned(int, *tl++);
1568 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1569 m_freem(mrep);
1570 return (EBADRPC);
1571 }
1572
1573 nd->nd_flag &= ~ND_KERBAUTH;
1574 /*
1575 * Handle auth_unix or auth_kerb.
1576 */
1577 if (auth_type == rpc_auth_unix) {
1578 len = fxdr_unsigned(int, *++tl);
1579 if (len < 0 || len > NFS_MAXNAMLEN) {
1580 m_freem(mrep);
1581 return (EBADRPC);
1582 }
1583 nfsm_adv(nfsm_rndup(len));
1584 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1585 bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
1586 nd->nd_cr.cr_ref = 1;
1587 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
1588 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
1589 len = fxdr_unsigned(int, *tl);
1590 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
1591 m_freem(mrep);
1592 return (EBADRPC);
1593 }
1594 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
1595 for (i = 0; i < len; i++)
1596 if (i < NGROUPS)
1597 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
1598 else
1599 tl++;
1600 nd->nd_cr.cr_ngroups = (len > NGROUPS) ? NGROUPS : len;
1601 if (nd->nd_cr.cr_ngroups > 1)
1602 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
1603 len = fxdr_unsigned(int, *++tl);
1604 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1605 m_freem(mrep);
1606 return (EBADRPC);
1607 }
1608 if (len > 0)
1609 nfsm_adv(nfsm_rndup(len));
1610 } else if (auth_type == rpc_auth_kerb) {
1611 switch (fxdr_unsigned(int, *tl++)) {
1612 case RPCAKN_FULLNAME:
1613 ticklen = fxdr_unsigned(int, *tl);
1614 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
1615 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
1616 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
1617 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
1618 m_freem(mrep);
1619 return (EBADRPC);
1620 }
1621 uio.uio_offset = 0;
1622 uio.uio_iov = &iov;
1623 uio.uio_iovcnt = 1;
1624 uio.uio_segflg = UIO_SYSSPACE;
1625 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
1626 iov.iov_len = RPCAUTH_MAXSIZ - 4;
1627 nfsm_mtouio(&uio, uio.uio_resid);
1628 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1629 if (*tl++ != rpc_auth_kerb ||
1630 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
1631 printf("Bad kerb verifier\n");
1632 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1633 nd->nd_procnum = NFSPROC_NOOP;
1634 return (0);
1635 }
1636 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
1637 tl = (u_int32_t *)cp;
1638 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
1639 printf("Not fullname kerb verifier\n");
1640 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1641 nd->nd_procnum = NFSPROC_NOOP;
1642 return (0);
1643 }
1644 cp += NFSX_UNSIGNED;
1645 bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
1646 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
1647 nd->nd_flag |= ND_KERBFULL;
1648 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
1649 break;
1650 case RPCAKN_NICKNAME:
1651 if (len != 2 * NFSX_UNSIGNED) {
1652 printf("Kerb nickname short\n");
1653 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
1654 nd->nd_procnum = NFSPROC_NOOP;
1655 return (0);
1656 }
1657 nickuid = fxdr_unsigned(uid_t, *tl);
1658 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1659 if (*tl++ != rpc_auth_kerb ||
1660 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
1661 printf("Kerb nick verifier bad\n");
1662 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1663 nd->nd_procnum = NFSPROC_NOOP;
1664 return (0);
1665 }
1666 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1667 tvin.tv_sec = *tl++;
1668 tvin.tv_usec = *tl;
1669
1670 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
1671 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1672 if (nuidp->nu_cr.cr_uid == nickuid &&
1673 (!nd->nd_nam2 ||
1674 netaddr_match(NU_NETFAM(nuidp),
1675 &nuidp->nu_haddr, nd->nd_nam2)))
1676 break;
1677 }
1678 if (!nuidp) {
1679 nd->nd_repstat =
1680 (NFSERR_AUTHERR|AUTH_REJECTCRED);
1681 nd->nd_procnum = NFSPROC_NOOP;
1682 return (0);
1683 }
1684
1685 /*
1686 * Now, decrypt the timestamp using the session key
1687 * and validate it.
1688 */
1689 #ifdef NFSKERB
1690 XXX
1691 #endif
1692
1693 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
1694 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
1695 if (nuidp->nu_expire < time.tv_sec ||
1696 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
1697 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
1698 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
1699 nuidp->nu_expire = 0;
1700 nd->nd_repstat =
1701 (NFSERR_AUTHERR|AUTH_REJECTVERF);
1702 nd->nd_procnum = NFSPROC_NOOP;
1703 return (0);
1704 }
1705 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
1706 nd->nd_flag |= ND_KERBNICK;
1707 };
1708 } else {
1709 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
1710 nd->nd_procnum = NFSPROC_NOOP;
1711 return (0);
1712 }
1713
1714 /*
1715 * For nqnfs, get piggybacked lease request.
1716 */
1717 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
1718 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1719 nd->nd_flag |= fxdr_unsigned(int, *tl);
1720 if (nd->nd_flag & ND_LEASE) {
1721 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1722 nd->nd_duration = fxdr_unsigned(u_int32_t, *tl);
1723 } else
1724 nd->nd_duration = NQ_MINLEASE;
1725 } else
1726 nd->nd_duration = NQ_MINLEASE;
1727 nd->nd_md = md;
1728 nd->nd_dpos = dpos;
1729 return (0);
1730 nfsmout:
1731 return (error);
1732 }
1733
1734 int
1735 nfs_msg(p, server, msg)
1736 struct proc *p;
1737 char *server, *msg;
1738 {
1739 tpr_t tpr;
1740
1741 if (p)
1742 tpr = tprintf_open(p);
1743 else
1744 tpr = NULL;
1745 tprintf(tpr, "nfs server %s: %s\n", server, msg);
1746 tprintf_close(tpr);
1747 return (0);
1748 }
1749
1750 #ifdef NFSSERVER
1751 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
1752 struct nfssvc_sock *, struct proc *,
1753 struct mbuf **)) = {
1754 nfsrv_null,
1755 nfsrv_getattr,
1756 nfsrv_setattr,
1757 nfsrv_lookup,
1758 nfsrv3_access,
1759 nfsrv_readlink,
1760 nfsrv_read,
1761 nfsrv_write,
1762 nfsrv_create,
1763 nfsrv_mkdir,
1764 nfsrv_symlink,
1765 nfsrv_mknod,
1766 nfsrv_remove,
1767 nfsrv_rmdir,
1768 nfsrv_rename,
1769 nfsrv_link,
1770 nfsrv_readdir,
1771 nfsrv_readdirplus,
1772 nfsrv_statfs,
1773 nfsrv_fsinfo,
1774 nfsrv_pathconf,
1775 nfsrv_commit,
1776 nqnfsrv_getlease,
1777 nqnfsrv_vacated,
1778 nfsrv_noop,
1779 nfsrv_noop
1780 };
1781
1782 /*
1783 * Socket upcall routine for the nfsd sockets.
1784 * The caddr_t arg is a pointer to the "struct nfssvc_sock".
1785 * Essentially do as much as possible non-blocking, else punt and it will
1786 * be called with M_WAIT from an nfsd.
1787 */
1788 void
1789 nfsrv_rcv(so, arg, waitflag)
1790 struct socket *so;
1791 caddr_t arg;
1792 int waitflag;
1793 {
1794 register struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
1795 register struct mbuf *m;
1796 struct mbuf *mp, *nam;
1797 struct uio auio;
1798 int flags, error;
1799
1800 if ((slp->ns_flag & SLP_VALID) == 0)
1801 return;
1802 #ifdef notdef
1803 /*
1804 * Define this to test for nfsds handling this under heavy load.
1805 */
1806 if (waitflag == M_DONTWAIT) {
1807 slp->ns_flag |= SLP_NEEDQ; goto dorecs;
1808 }
1809 #endif
1810 auio.uio_procp = NULL;
1811 if (so->so_type == SOCK_STREAM) {
1812 /*
1813 * If there are already records on the queue, defer soreceive()
1814 * to an nfsd so that there is feedback to the TCP layer that
1815 * the nfs servers are heavily loaded.
1816 */
1817 if (slp->ns_rec && waitflag == M_DONTWAIT) {
1818 slp->ns_flag |= SLP_NEEDQ;
1819 goto dorecs;
1820 }
1821
1822 /*
1823 * Do soreceive().
1824 */
1825 auio.uio_resid = 1000000000;
1826 flags = MSG_DONTWAIT;
1827 error = soreceive(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
1828 if (error || mp == (struct mbuf *)0) {
1829 if (error == EWOULDBLOCK)
1830 slp->ns_flag |= SLP_NEEDQ;
1831 else
1832 slp->ns_flag |= SLP_DISCONN;
1833 goto dorecs;
1834 }
1835 m = mp;
1836 if (slp->ns_rawend) {
1837 slp->ns_rawend->m_next = m;
1838 slp->ns_cc += 1000000000 - auio.uio_resid;
1839 } else {
1840 slp->ns_raw = m;
1841 slp->ns_cc = 1000000000 - auio.uio_resid;
1842 }
1843 while (m->m_next)
1844 m = m->m_next;
1845 slp->ns_rawend = m;
1846
1847 /*
1848 * Now try and parse record(s) out of the raw stream data.
1849 */
1850 error = nfsrv_getstream(slp, waitflag);
1851 if (error) {
1852 if (error == EPERM)
1853 slp->ns_flag |= SLP_DISCONN;
1854 else
1855 slp->ns_flag |= SLP_NEEDQ;
1856 }
1857 } else {
1858 do {
1859 auio.uio_resid = 1000000000;
1860 flags = MSG_DONTWAIT;
1861 error = soreceive(so, &nam, &auio, &mp,
1862 (struct mbuf **)0, &flags);
1863 if (mp) {
1864 if (nam) {
1865 m = nam;
1866 m->m_next = mp;
1867 } else
1868 m = mp;
1869 if (slp->ns_recend)
1870 slp->ns_recend->m_nextpkt = m;
1871 else
1872 slp->ns_rec = m;
1873 slp->ns_recend = m;
1874 m->m_nextpkt = (struct mbuf *)0;
1875 }
1876 if (error) {
1877 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
1878 && error != EWOULDBLOCK) {
1879 slp->ns_flag |= SLP_DISCONN;
1880 goto dorecs;
1881 }
1882 }
1883 } while (mp);
1884 }
1885
1886 /*
1887 * Now try and process the request records, non-blocking.
1888 */
1889 dorecs:
1890 if (waitflag == M_DONTWAIT &&
1891 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
1892 nfsrv_wakenfsd(slp);
1893 }
1894
1895 /*
1896 * Try and extract an RPC request from the mbuf data list received on a
1897 * stream socket. The "waitflag" argument indicates whether or not it
1898 * can sleep.
1899 */
1900 int
1901 nfsrv_getstream(slp, waitflag)
1902 register struct nfssvc_sock *slp;
1903 int waitflag;
1904 {
1905 register struct mbuf *m, **mpp;
1906 register char *cp1, *cp2;
1907 register int len;
1908 struct mbuf *om, *m2, *recm = NULL;
1909 u_int32_t recmark;
1910
1911 if (slp->ns_flag & SLP_GETSTREAM)
1912 panic("nfs getstream");
1913 slp->ns_flag |= SLP_GETSTREAM;
1914 for (;;) {
1915 if (slp->ns_reclen == 0) {
1916 if (slp->ns_cc < NFSX_UNSIGNED) {
1917 slp->ns_flag &= ~SLP_GETSTREAM;
1918 return (0);
1919 }
1920 m = slp->ns_raw;
1921 if (m->m_len >= NFSX_UNSIGNED) {
1922 bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
1923 m->m_data += NFSX_UNSIGNED;
1924 m->m_len -= NFSX_UNSIGNED;
1925 } else {
1926 cp1 = (caddr_t)&recmark;
1927 cp2 = mtod(m, caddr_t);
1928 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
1929 while (m->m_len == 0) {
1930 m = m->m_next;
1931 cp2 = mtod(m, caddr_t);
1932 }
1933 *cp1++ = *cp2++;
1934 m->m_data++;
1935 m->m_len--;
1936 }
1937 }
1938 slp->ns_cc -= NFSX_UNSIGNED;
1939 recmark = ntohl(recmark);
1940 slp->ns_reclen = recmark & ~0x80000000;
1941 if (recmark & 0x80000000)
1942 slp->ns_flag |= SLP_LASTFRAG;
1943 else
1944 slp->ns_flag &= ~SLP_LASTFRAG;
1945 if (slp->ns_reclen > NFS_MAXPACKET) {
1946 slp->ns_flag &= ~SLP_GETSTREAM;
1947 return (EPERM);
1948 }
1949 }
1950
1951 /*
1952 * Now get the record part.
1953 */
1954 if (slp->ns_cc == slp->ns_reclen) {
1955 recm = slp->ns_raw;
1956 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
1957 slp->ns_cc = slp->ns_reclen = 0;
1958 } else if (slp->ns_cc > slp->ns_reclen) {
1959 len = 0;
1960 m = slp->ns_raw;
1961 om = (struct mbuf *)0;
1962 while (len < slp->ns_reclen) {
1963 if ((len + m->m_len) > slp->ns_reclen) {
1964 size_t left = slp->ns_reclen - len;
1965
1966 MGETHDR(m2, waitflag, m->m_type);
1967 if (m2 == NULL) {
1968 slp->ns_flag &= ~SLP_GETSTREAM;
1969 return (EWOULDBLOCK);
1970 }
1971 if (left > MHLEN) {
1972 MCLGET(m2, waitflag);
1973 if (!(m2->m_flags & M_EXT)) {
1974 m_freem(m2);
1975 slp->ns_flag &= ~SLP_GETSTREAM;
1976 return (EWOULDBLOCK);
1977 }
1978 }
1979 bcopy(mtod(m, caddr_t), mtod(m2, caddr_t),
1980 left);
1981 m2->m_len = left;
1982 m->m_data += left;
1983 m->m_len -= left;
1984 if (om) {
1985 om->m_next = m2;
1986 recm = slp->ns_raw;
1987 } else
1988 recm = m2;
1989 len = slp->ns_reclen;
1990 } else if ((len + m->m_len) == slp->ns_reclen) {
1991 om = m;
1992 len += m->m_len;
1993 m = m->m_next;
1994 recm = slp->ns_raw;
1995 om->m_next = (struct mbuf *)0;
1996 } else {
1997 om = m;
1998 len += m->m_len;
1999 m = m->m_next;
2000 }
2001 }
2002 slp->ns_raw = m;
2003 slp->ns_cc -= len;
2004 slp->ns_reclen = 0;
2005 } else {
2006 slp->ns_flag &= ~SLP_GETSTREAM;
2007 return (0);
2008 }
2009
2010 /*
2011 * Accumulate the fragments into a record.
2012 */
2013 mpp = &slp->ns_frag;
2014 while (*mpp)
2015 mpp = &((*mpp)->m_next);
2016 *mpp = recm;
2017 if (slp->ns_flag & SLP_LASTFRAG) {
2018 if (slp->ns_recend)
2019 slp->ns_recend->m_nextpkt = slp->ns_frag;
2020 else
2021 slp->ns_rec = slp->ns_frag;
2022 slp->ns_recend = slp->ns_frag;
2023 slp->ns_frag = (struct mbuf *)0;
2024 }
2025 }
2026 }
2027
2028 /*
2029 * Parse an RPC header.
2030 */
2031 int
2032 nfsrv_dorec(slp, nfsd, ndp)
2033 register struct nfssvc_sock *slp;
2034 struct nfsd *nfsd;
2035 struct nfsrv_descript **ndp;
2036 {
2037 register struct mbuf *m, *nam;
2038 register struct nfsrv_descript *nd;
2039 int error;
2040
2041 *ndp = NULL;
2042 if ((slp->ns_flag & SLP_VALID) == 0 ||
2043 (m = slp->ns_rec) == (struct mbuf *)0)
2044 return (ENOBUFS);
2045 slp->ns_rec = m->m_nextpkt;
2046 if (slp->ns_rec)
2047 m->m_nextpkt = (struct mbuf *)0;
2048 else
2049 slp->ns_recend = (struct mbuf *)0;
2050 if (m->m_type == MT_SONAME) {
2051 nam = m;
2052 m = m->m_next;
2053 nam->m_next = NULL;
2054 } else
2055 nam = NULL;
2056 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2057 M_NFSRVDESC, M_WAITOK);
2058 nd->nd_md = nd->nd_mrep = m;
2059 nd->nd_nam2 = nam;
2060 nd->nd_dpos = mtod(m, caddr_t);
2061 error = nfs_getreq(nd, nfsd, TRUE);
2062 if (error) {
2063 m_freem(nam);
2064 free((caddr_t)nd, M_NFSRVDESC);
2065 return (error);
2066 }
2067 *ndp = nd;
2068 nfsd->nfsd_nd = nd;
2069 return (0);
2070 }
2071
2072
2073 /*
2074 * Search for a sleeping nfsd and wake it up.
2075 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2076 * running nfsds will go look for the work in the nfssvc_sock list.
2077 */
2078 void
2079 nfsrv_wakenfsd(slp)
2080 struct nfssvc_sock *slp;
2081 {
2082 register struct nfsd *nd;
2083
2084 if ((slp->ns_flag & SLP_VALID) == 0)
2085 return;
2086 for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) {
2087 if (nd->nfsd_flag & NFSD_WAITING) {
2088 nd->nfsd_flag &= ~NFSD_WAITING;
2089 if (nd->nfsd_slp)
2090 panic("nfsd wakeup");
2091 slp->ns_sref++;
2092 nd->nfsd_slp = slp;
2093 wakeup((caddr_t)nd);
2094 return;
2095 }
2096 }
2097 slp->ns_flag |= SLP_DOREC;
2098 nfsd_head_flag |= NFSD_CHECKSLP;
2099 }
2100 #endif /* NFSSERVER */
2101