nfs_socket.c revision 1.42 1 /* $NetBSD: nfs_socket.c,v 1.42 1998/02/19 00:54:13 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1991, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
39 */
40
41 /*
42 * Socket operations for use by nfs
43 */
44
45 #include "fs_nfs.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/mount.h>
51 #include <sys/kernel.h>
52 #include <sys/mbuf.h>
53 #include <sys/vnode.h>
54 #include <sys/domain.h>
55 #include <sys/protosw.h>
56 #include <sys/socket.h>
57 #include <sys/socketvar.h>
58 #include <sys/syslog.h>
59 #include <sys/tprintf.h>
60 #include <sys/namei.h>
61
62 #include <netinet/in.h>
63 #include <netinet/tcp.h>
64
65 #include <nfs/rpcv2.h>
66 #include <nfs/nfsproto.h>
67 #include <nfs/nfs.h>
68 #include <nfs/xdr_subs.h>
69 #include <nfs/nfsm_subs.h>
70 #include <nfs/nfsmount.h>
71 #include <nfs/nfsnode.h>
72 #include <nfs/nfsrtt.h>
73 #include <nfs/nqnfs.h>
74 #include <nfs/nfs_var.h>
75
76 #define TRUE 1
77 #define FALSE 0
78
79 /*
80 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
81 * Use the mean and mean deviation of rtt for the appropriate type of rpc
82 * for the frequent rpcs and a default for the others.
83 * The justification for doing "other" this way is that these rpcs
84 * happen so infrequently that timer est. would probably be stale.
85 * Also, since many of these rpcs are
86 * non-idempotent, a conservative timeout is desired.
87 * getattr, lookup - A+2D
88 * read, write - A+4D
89 * other - nm_timeo
90 */
91 #define NFS_RTO(n, t) \
92 ((t) == 0 ? (n)->nm_timeo : \
93 ((t) < 3 ? \
94 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
95 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
96 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
97 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
98 /*
99 * External data, mostly RPC constants in XDR form
100 */
101 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
102 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
103 rpc_auth_kerb;
104 extern u_int32_t nfs_prog, nqnfs_prog;
105 extern time_t nqnfsstarttime;
106 extern struct nfsstats nfsstats;
107 extern int nfsv3_procid[NFS_NPROCS];
108 extern int nfs_ticks;
109
110 /*
111 * Defines which timer to use for the procnum.
112 * 0 - default
113 * 1 - getattr
114 * 2 - lookup
115 * 3 - read
116 * 4 - write
117 */
118 static int proct[NFS_NPROCS] = {
119 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
120 0, 0, 0,
121 };
122
123 /*
124 * There is a congestion window for outstanding rpcs maintained per mount
125 * point. The cwnd size is adjusted in roughly the way that:
126 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
127 * SIGCOMM '88". ACM, August 1988.
128 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
129 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
130 * of rpcs is in progress.
131 * (The sent count and cwnd are scaled for integer arith.)
132 * Variants of "slow start" were tried and were found to be too much of a
133 * performance hit (ave. rtt 3 times larger),
134 * I suspect due to the large rtt that nfs rpcs have.
135 */
136 #define NFS_CWNDSCALE 256
137 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
138 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
139 int nfsrtton = 0;
140 struct nfsrtt nfsrtt;
141
142 /*
143 * Initialize sockets and congestion for a new NFS connection.
144 * We do not free the sockaddr if error.
145 */
146 int
147 nfs_connect(nmp, rep)
148 register struct nfsmount *nmp;
149 struct nfsreq *rep;
150 {
151 register struct socket *so;
152 int s, error, rcvreserve, sndreserve;
153 struct sockaddr *saddr;
154 struct sockaddr_in *sin;
155 struct mbuf *m;
156 u_int16_t tport;
157
158 nmp->nm_so = (struct socket *)0;
159 saddr = mtod(nmp->nm_nam, struct sockaddr *);
160 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
161 nmp->nm_soproto);
162 if (error)
163 goto bad;
164 so = nmp->nm_so;
165 nmp->nm_soflags = so->so_proto->pr_flags;
166
167 /*
168 * Some servers require that the client port be a reserved port number.
169 */
170 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
171 MGET(m, M_WAIT, MT_SONAME);
172 sin = mtod(m, struct sockaddr_in *);
173 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
174 sin->sin_family = AF_INET;
175 sin->sin_addr.s_addr = INADDR_ANY;
176 tport = IPPORT_RESERVED - 1;
177 sin->sin_port = htons(tport);
178 while ((error = sobind(so, m)) == EADDRINUSE &&
179 --tport > IPPORT_RESERVED / 2)
180 sin->sin_port = htons(tport);
181 m_freem(m);
182 if (error)
183 goto bad;
184 }
185
186 /*
187 * Protocols that do not require connections may be optionally left
188 * unconnected for servers that reply from a port other than NFS_PORT.
189 */
190 if (nmp->nm_flag & NFSMNT_NOCONN) {
191 if (nmp->nm_soflags & PR_CONNREQUIRED) {
192 error = ENOTCONN;
193 goto bad;
194 }
195 } else {
196 error = soconnect(so, nmp->nm_nam);
197 if (error)
198 goto bad;
199
200 /*
201 * Wait for the connection to complete. Cribbed from the
202 * connect system call but with the wait timing out so
203 * that interruptible mounts don't hang here for a long time.
204 */
205 s = splsoftnet();
206 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
207 (void) tsleep((caddr_t)&so->so_timeo, PSOCK,
208 "nfscon", 2 * hz);
209 if ((so->so_state & SS_ISCONNECTING) &&
210 so->so_error == 0 && rep &&
211 (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){
212 so->so_state &= ~SS_ISCONNECTING;
213 splx(s);
214 goto bad;
215 }
216 }
217 if (so->so_error) {
218 error = so->so_error;
219 so->so_error = 0;
220 splx(s);
221 goto bad;
222 }
223 splx(s);
224 }
225 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
226 so->so_rcv.sb_timeo = (5 * hz);
227 so->so_snd.sb_timeo = (5 * hz);
228 } else {
229 so->so_rcv.sb_timeo = 0;
230 so->so_snd.sb_timeo = 0;
231 }
232 if (nmp->nm_sotype == SOCK_DGRAM) {
233 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
234 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
235 NFS_MAXPKTHDR) * 2;
236 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
237 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
238 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
239 NFS_MAXPKTHDR) * 2;
240 } else {
241 if (nmp->nm_sotype != SOCK_STREAM)
242 panic("nfscon sotype");
243 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
244 MGET(m, M_WAIT, MT_SOOPTS);
245 *mtod(m, int32_t *) = 1;
246 m->m_len = sizeof(int32_t);
247 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
248 }
249 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
250 MGET(m, M_WAIT, MT_SOOPTS);
251 *mtod(m, int32_t *) = 1;
252 m->m_len = sizeof(int32_t);
253 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
254 }
255 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
256 sizeof (u_int32_t)) * 2;
257 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
258 sizeof (u_int32_t)) * 2;
259 }
260 error = soreserve(so, sndreserve, rcvreserve);
261 if (error)
262 goto bad;
263 so->so_rcv.sb_flags |= SB_NOINTR;
264 so->so_snd.sb_flags |= SB_NOINTR;
265
266 /* Initialize other non-zero congestion variables */
267 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
268 nmp->nm_srtt[4] = (NFS_TIMEO << 3);
269 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
270 nmp->nm_sdrtt[3] = nmp->nm_sdrtt[4] = 0;
271 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
272 nmp->nm_sent = 0;
273 nmp->nm_timeouts = 0;
274 return (0);
275
276 bad:
277 nfs_disconnect(nmp);
278 return (error);
279 }
280
281 /*
282 * Reconnect routine:
283 * Called when a connection is broken on a reliable protocol.
284 * - clean up the old socket
285 * - nfs_connect() again
286 * - set R_MUSTRESEND for all outstanding requests on mount point
287 * If this fails the mount point is DEAD!
288 * nb: Must be called with the nfs_sndlock() set on the mount point.
289 */
290 int
291 nfs_reconnect(rep)
292 register struct nfsreq *rep;
293 {
294 register struct nfsreq *rp;
295 register struct nfsmount *nmp = rep->r_nmp;
296 int error;
297
298 nfs_disconnect(nmp);
299 while ((error = nfs_connect(nmp, rep)) != 0) {
300 if (error == EINTR || error == ERESTART)
301 return (EINTR);
302 (void) tsleep((caddr_t)&lbolt, PSOCK, "nfscon", 0);
303 }
304
305 /*
306 * Loop through outstanding request list and fix up all requests
307 * on old socket.
308 */
309 for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) {
310 if (rp->r_nmp == nmp)
311 rp->r_flags |= R_MUSTRESEND;
312 }
313 return (0);
314 }
315
316 /*
317 * NFS disconnect. Clean up and unlink.
318 */
319 void
320 nfs_disconnect(nmp)
321 register struct nfsmount *nmp;
322 {
323 register struct socket *so;
324
325 if (nmp->nm_so) {
326 so = nmp->nm_so;
327 nmp->nm_so = (struct socket *)0;
328 soshutdown(so, 2);
329 soclose(so);
330 }
331 }
332
333 void
334 nfs_safedisconnect(nmp)
335 struct nfsmount *nmp;
336 {
337 struct nfsreq dummyreq;
338
339 bzero(&dummyreq, sizeof(dummyreq));
340 dummyreq.r_nmp = nmp;
341 nfs_rcvlock(&dummyreq);
342 nfs_disconnect(nmp);
343 nfs_rcvunlock(&nmp->nm_iflag);
344 }
345
346 /*
347 * This is the nfs send routine. For connection based socket types, it
348 * must be called with an nfs_sndlock() on the socket.
349 * "rep == NULL" indicates that it has been called from a server.
350 * For the client side:
351 * - return EINTR if the RPC is terminated, 0 otherwise
352 * - set R_MUSTRESEND if the send fails for any reason
353 * - do any cleanup required by recoverable socket errors (???)
354 * For the server side:
355 * - return EINTR or ERESTART if interrupted by a signal
356 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
357 * - do any cleanup required by recoverable socket errors (???)
358 */
359 int
360 nfs_send(so, nam, top, rep)
361 register struct socket *so;
362 struct mbuf *nam;
363 register struct mbuf *top;
364 struct nfsreq *rep;
365 {
366 struct mbuf *sendnam;
367 int error, soflags, flags;
368
369 if (rep) {
370 if (rep->r_flags & R_SOFTTERM) {
371 m_freem(top);
372 return (EINTR);
373 }
374 if ((so = rep->r_nmp->nm_so) == NULL) {
375 rep->r_flags |= R_MUSTRESEND;
376 m_freem(top);
377 return (0);
378 }
379 rep->r_flags &= ~R_MUSTRESEND;
380 soflags = rep->r_nmp->nm_soflags;
381 } else
382 soflags = so->so_proto->pr_flags;
383 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
384 sendnam = (struct mbuf *)0;
385 else
386 sendnam = nam;
387 if (so->so_type == SOCK_SEQPACKET)
388 flags = MSG_EOR;
389 else
390 flags = 0;
391
392 error = sosend(so, sendnam, (struct uio *)0, top,
393 (struct mbuf *)0, flags);
394 if (error) {
395 if (rep) {
396 log(LOG_INFO, "nfs send error %d for server %s\n",error,
397 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
398 /*
399 * Deal with errors for the client side.
400 */
401 if (rep->r_flags & R_SOFTTERM)
402 error = EINTR;
403 else
404 rep->r_flags |= R_MUSTRESEND;
405 } else
406 log(LOG_INFO, "nfsd send error %d\n", error);
407
408 /*
409 * Handle any recoverable (soft) socket errors here. (???)
410 */
411 if (error != EINTR && error != ERESTART &&
412 error != EWOULDBLOCK && error != EPIPE)
413 error = 0;
414 }
415 return (error);
416 }
417
418 #ifdef NFS
419 /*
420 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
421 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
422 * Mark and consolidate the data into a new mbuf list.
423 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
424 * small mbufs.
425 * For SOCK_STREAM we must be very careful to read an entire record once
426 * we have read any of it, even if the system call has been interrupted.
427 */
428 int
429 nfs_receive(rep, aname, mp)
430 register struct nfsreq *rep;
431 struct mbuf **aname;
432 struct mbuf **mp;
433 {
434 register struct socket *so;
435 struct uio auio;
436 struct iovec aio;
437 register struct mbuf *m;
438 struct mbuf *control;
439 u_int32_t len;
440 struct mbuf **getnam;
441 int error, sotype, rcvflg;
442 struct proc *p = curproc; /* XXX */
443
444 /*
445 * Set up arguments for soreceive()
446 */
447 *mp = (struct mbuf *)0;
448 *aname = (struct mbuf *)0;
449 sotype = rep->r_nmp->nm_sotype;
450
451 /*
452 * For reliable protocols, lock against other senders/receivers
453 * in case a reconnect is necessary.
454 * For SOCK_STREAM, first get the Record Mark to find out how much
455 * more there is to get.
456 * We must lock the socket against other receivers
457 * until we have an entire rpc request/reply.
458 */
459 if (sotype != SOCK_DGRAM) {
460 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep);
461 if (error)
462 return (error);
463 tryagain:
464 /*
465 * Check for fatal errors and resending request.
466 */
467 /*
468 * Ugh: If a reconnect attempt just happened, nm_so
469 * would have changed. NULL indicates a failed
470 * attempt that has essentially shut down this
471 * mount point.
472 */
473 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
474 nfs_sndunlock(&rep->r_nmp->nm_iflag);
475 return (EINTR);
476 }
477 so = rep->r_nmp->nm_so;
478 if (!so) {
479 error = nfs_reconnect(rep);
480 if (error) {
481 nfs_sndunlock(&rep->r_nmp->nm_iflag);
482 return (error);
483 }
484 goto tryagain;
485 }
486 while (rep->r_flags & R_MUSTRESEND) {
487 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
488 nfsstats.rpcretries++;
489 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
490 if (error) {
491 if (error == EINTR || error == ERESTART ||
492 (error = nfs_reconnect(rep)) != 0) {
493 nfs_sndunlock(&rep->r_nmp->nm_iflag);
494 return (error);
495 }
496 goto tryagain;
497 }
498 }
499 nfs_sndunlock(&rep->r_nmp->nm_iflag);
500 if (sotype == SOCK_STREAM) {
501 aio.iov_base = (caddr_t) &len;
502 aio.iov_len = sizeof(u_int32_t);
503 auio.uio_iov = &aio;
504 auio.uio_iovcnt = 1;
505 auio.uio_segflg = UIO_SYSSPACE;
506 auio.uio_rw = UIO_READ;
507 auio.uio_offset = 0;
508 auio.uio_resid = sizeof(u_int32_t);
509 auio.uio_procp = p;
510 do {
511 rcvflg = MSG_WAITALL;
512 error = soreceive(so, (struct mbuf **)0, &auio,
513 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
514 if (error == EWOULDBLOCK && rep) {
515 if (rep->r_flags & R_SOFTTERM)
516 return (EINTR);
517 }
518 } while (error == EWOULDBLOCK);
519 if (!error && auio.uio_resid > 0) {
520 /*
521 * Don't log a 0 byte receive; it means
522 * that the socket has been closed, and
523 * can happen during normal operation
524 * (forcible unmount or Solaris server).
525 */
526 if (auio.uio_resid != sizeof (u_int32_t))
527 log(LOG_INFO,
528 "short receive (%d/%d) from nfs server %s\n",
529 sizeof(u_int32_t) - auio.uio_resid,
530 sizeof(u_int32_t),
531 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
532 error = EPIPE;
533 }
534 if (error)
535 goto errout;
536 len = ntohl(len) & ~0x80000000;
537 /*
538 * This is SERIOUS! We are out of sync with the sender
539 * and forcing a disconnect/reconnect is all I can do.
540 */
541 if (len > NFS_MAXPACKET) {
542 log(LOG_ERR, "%s (%d) from nfs server %s\n",
543 "impossible packet length",
544 len,
545 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
546 error = EFBIG;
547 goto errout;
548 }
549 auio.uio_resid = len;
550 do {
551 rcvflg = MSG_WAITALL;
552 error = soreceive(so, (struct mbuf **)0,
553 &auio, mp, (struct mbuf **)0, &rcvflg);
554 } while (error == EWOULDBLOCK || error == EINTR ||
555 error == ERESTART);
556 if (!error && auio.uio_resid > 0) {
557 if (len != auio.uio_resid)
558 log(LOG_INFO,
559 "short receive (%d/%d) from nfs server %s\n",
560 len - auio.uio_resid, len,
561 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
562 error = EPIPE;
563 }
564 } else {
565 /*
566 * NB: Since uio_resid is big, MSG_WAITALL is ignored
567 * and soreceive() will return when it has either a
568 * control msg or a data msg.
569 * We have no use for control msg., but must grab them
570 * and then throw them away so we know what is going
571 * on.
572 */
573 auio.uio_resid = len = 100000000; /* Anything Big */
574 auio.uio_procp = p;
575 do {
576 rcvflg = 0;
577 error = soreceive(so, (struct mbuf **)0,
578 &auio, mp, &control, &rcvflg);
579 if (control)
580 m_freem(control);
581 if (error == EWOULDBLOCK && rep) {
582 if (rep->r_flags & R_SOFTTERM)
583 return (EINTR);
584 }
585 } while (error == EWOULDBLOCK ||
586 (!error && *mp == NULL && control));
587 if ((rcvflg & MSG_EOR) == 0)
588 printf("Egad!!\n");
589 if (!error && *mp == NULL)
590 error = EPIPE;
591 len -= auio.uio_resid;
592 }
593 errout:
594 if (error && error != EINTR && error != ERESTART) {
595 m_freem(*mp);
596 *mp = (struct mbuf *)0;
597 if (error != EPIPE)
598 log(LOG_INFO,
599 "receive error %d from nfs server %s\n",
600 error,
601 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
602 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep);
603 if (!error)
604 error = nfs_reconnect(rep);
605 if (!error)
606 goto tryagain;
607 else
608 nfs_sndunlock(&rep->r_nmp->nm_iflag);
609 }
610 } else {
611 if ((so = rep->r_nmp->nm_so) == NULL)
612 return (EACCES);
613 if (so->so_state & SS_ISCONNECTED)
614 getnam = (struct mbuf **)0;
615 else
616 getnam = aname;
617 auio.uio_resid = len = 1000000;
618 auio.uio_procp = p;
619 do {
620 rcvflg = 0;
621 error = soreceive(so, getnam, &auio, mp,
622 (struct mbuf **)0, &rcvflg);
623 if (error == EWOULDBLOCK &&
624 (rep->r_flags & R_SOFTTERM))
625 return (EINTR);
626 } while (error == EWOULDBLOCK);
627 len -= auio.uio_resid;
628 }
629 if (error) {
630 m_freem(*mp);
631 *mp = (struct mbuf *)0;
632 }
633 return (error);
634 }
635
636 /*
637 * Implement receipt of reply on a socket.
638 * We must search through the list of received datagrams matching them
639 * with outstanding requests using the xid, until ours is found.
640 */
641 /* ARGSUSED */
642 int
643 nfs_reply(myrep)
644 struct nfsreq *myrep;
645 {
646 register struct nfsreq *rep;
647 register struct nfsmount *nmp = myrep->r_nmp;
648 register int32_t t1;
649 struct mbuf *mrep, *nam, *md;
650 u_int32_t rxid, *tl;
651 caddr_t dpos, cp2;
652 int error;
653
654 /*
655 * Loop around until we get our own reply
656 */
657 for (;;) {
658 /*
659 * Lock against other receivers so that I don't get stuck in
660 * sbwait() after someone else has received my reply for me.
661 * Also necessary for connection based protocols to avoid
662 * race conditions during a reconnect.
663 */
664 error = nfs_rcvlock(myrep);
665 if (error == EALREADY)
666 return (0);
667 if (error)
668 return (error);
669 /*
670 * Get the next Rpc reply off the socket
671 */
672 error = nfs_receive(myrep, &nam, &mrep);
673 nfs_rcvunlock(&nmp->nm_iflag);
674 if (error) {
675
676 /*
677 * Ignore routing errors on connectionless protocols??
678 */
679 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
680 nmp->nm_so->so_error = 0;
681 #ifdef DEBUG
682 printf("nfs_reply: ignoring error %d\n", error);
683 #endif
684 if (myrep->r_flags & R_GETONEREP)
685 return (0);
686 continue;
687 }
688 return (error);
689 }
690 if (nam)
691 m_freem(nam);
692
693 /*
694 * Get the xid and check that it is an rpc reply
695 */
696 md = mrep;
697 dpos = mtod(md, caddr_t);
698 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
699 rxid = *tl++;
700 if (*tl != rpc_reply) {
701 if (nmp->nm_flag & NFSMNT_NQNFS) {
702 if (nqnfs_callback(nmp, mrep, md, dpos))
703 nfsstats.rpcinvalid++;
704 } else {
705 nfsstats.rpcinvalid++;
706 m_freem(mrep);
707 }
708 nfsmout:
709 if (myrep->r_flags & R_GETONEREP)
710 return (0);
711 continue;
712 }
713
714 /*
715 * Loop through the request list to match up the reply
716 * Iff no match, just drop the datagram
717 */
718 for (rep = nfs_reqq.tqh_first; rep != 0;
719 rep = rep->r_chain.tqe_next) {
720 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
721 /* Found it.. */
722 rep->r_mrep = mrep;
723 rep->r_md = md;
724 rep->r_dpos = dpos;
725 if (nfsrtton) {
726 struct rttl *rt;
727
728 rt = &nfsrtt.rttl[nfsrtt.pos];
729 rt->proc = rep->r_procnum;
730 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
731 rt->sent = nmp->nm_sent;
732 rt->cwnd = nmp->nm_cwnd;
733 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
734 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
735 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
736 rt->tstamp = time;
737 if (rep->r_flags & R_TIMING)
738 rt->rtt = rep->r_rtt;
739 else
740 rt->rtt = 1000000;
741 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
742 }
743 /*
744 * Update congestion window.
745 * Do the additive increase of
746 * one rpc/rtt.
747 */
748 if (nmp->nm_cwnd <= nmp->nm_sent) {
749 nmp->nm_cwnd +=
750 (NFS_CWNDSCALE * NFS_CWNDSCALE +
751 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
752 if (nmp->nm_cwnd > NFS_MAXCWND)
753 nmp->nm_cwnd = NFS_MAXCWND;
754 }
755 rep->r_flags &= ~R_SENT;
756 nmp->nm_sent -= NFS_CWNDSCALE;
757 /*
758 * Update rtt using a gain of 0.125 on the mean
759 * and a gain of 0.25 on the deviation.
760 */
761 if (rep->r_flags & R_TIMING) {
762 /*
763 * Since the timer resolution of
764 * NFS_HZ is so course, it can often
765 * result in r_rtt == 0. Since
766 * r_rtt == N means that the actual
767 * rtt is between N+dt and N+2-dt ticks,
768 * add 1.
769 */
770 t1 = rep->r_rtt + 1;
771 t1 -= (NFS_SRTT(rep) >> 3);
772 NFS_SRTT(rep) += t1;
773 if (t1 < 0)
774 t1 = -t1;
775 t1 -= (NFS_SDRTT(rep) >> 2);
776 NFS_SDRTT(rep) += t1;
777 }
778 nmp->nm_timeouts = 0;
779 break;
780 }
781 }
782 /*
783 * If not matched to a request, drop it.
784 * If it's mine, get out.
785 */
786 if (rep == 0) {
787 nfsstats.rpcunexpected++;
788 m_freem(mrep);
789 } else if (rep == myrep) {
790 if (rep->r_mrep == NULL)
791 panic("nfsreply nil");
792 return (0);
793 }
794 if (myrep->r_flags & R_GETONEREP)
795 return (0);
796 }
797 }
798
799 /*
800 * nfs_request - goes something like this
801 * - fill in request struct
802 * - links it into list
803 * - calls nfs_send() for first transmit
804 * - calls nfs_receive() to get reply
805 * - break down rpc header and return with nfs reply pointed to
806 * by mrep or error
807 * nb: always frees up mreq mbuf list
808 */
809 int
810 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp)
811 struct vnode *vp;
812 struct mbuf *mrest;
813 int procnum;
814 struct proc *procp;
815 struct ucred *cred;
816 struct mbuf **mrp;
817 struct mbuf **mdp;
818 caddr_t *dposp;
819 {
820 register struct mbuf *m, *mrep;
821 register struct nfsreq *rep;
822 register u_int32_t *tl;
823 register int i;
824 struct nfsmount *nmp;
825 struct mbuf *md, *mheadend;
826 struct nfsnode *np;
827 char nickv[RPCX_NICKVERF];
828 time_t reqtime, waituntil;
829 caddr_t dpos, cp2;
830 int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type;
831 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
832 int verf_len, verf_type;
833 u_int32_t xid;
834 u_quad_t frev;
835 char *auth_str, *verf_str;
836 NFSKERBKEY_T key; /* save session key */
837
838 nmp = VFSTONFS(vp->v_mount);
839 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
840 rep->r_nmp = nmp;
841 rep->r_vp = vp;
842 rep->r_procp = procp;
843 rep->r_procnum = procnum;
844 i = 0;
845 m = mrest;
846 while (m) {
847 i += m->m_len;
848 m = m->m_next;
849 }
850 mrest_len = i;
851
852 /*
853 * Get the RPC header with authorization.
854 */
855 kerbauth:
856 verf_str = auth_str = (char *)0;
857 if (nmp->nm_flag & NFSMNT_KERB) {
858 verf_str = nickv;
859 verf_len = sizeof (nickv);
860 auth_type = RPCAUTH_KERB4;
861 bzero((caddr_t)key, sizeof (key));
862 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
863 &auth_len, verf_str, verf_len)) {
864 error = nfs_getauth(nmp, rep, cred, &auth_str,
865 &auth_len, verf_str, &verf_len, key);
866 if (error) {
867 free((caddr_t)rep, M_NFSREQ);
868 m_freem(mrest);
869 return (error);
870 }
871 }
872 } else {
873 auth_type = RPCAUTH_UNIX;
874 auth_len = (((cred->cr_ngroups > nmp->nm_numgrps) ?
875 nmp->nm_numgrps : cred->cr_ngroups) << 2) +
876 5 * NFSX_UNSIGNED;
877 }
878 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
879 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
880 if (auth_str)
881 free(auth_str, M_TEMP);
882
883 /*
884 * For stream protocols, insert a Sun RPC Record Mark.
885 */
886 if (nmp->nm_sotype == SOCK_STREAM) {
887 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
888 *mtod(m, u_int32_t *) = htonl(0x80000000 |
889 (m->m_pkthdr.len - NFSX_UNSIGNED));
890 }
891 rep->r_mreq = m;
892 rep->r_xid = xid;
893 tryagain:
894 if (nmp->nm_flag & NFSMNT_SOFT)
895 rep->r_retry = nmp->nm_retry;
896 else
897 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
898 rep->r_rtt = rep->r_rexmit = 0;
899 if (proct[procnum] > 0)
900 rep->r_flags = R_TIMING;
901 else
902 rep->r_flags = 0;
903 rep->r_mrep = NULL;
904
905 /*
906 * Do the client side RPC.
907 */
908 nfsstats.rpcrequests++;
909 /*
910 * Chain request into list of outstanding requests. Be sure
911 * to put it LAST so timer finds oldest requests first.
912 */
913 s = splsoftnet();
914 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
915
916 /* Get send time for nqnfs */
917 reqtime = time.tv_sec;
918
919 /*
920 * If backing off another request or avoiding congestion, don't
921 * send this one now but let timer do it. If not timing a request,
922 * do it now.
923 */
924 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
925 (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
926 nmp->nm_sent < nmp->nm_cwnd)) {
927 splx(s);
928 if (nmp->nm_soflags & PR_CONNREQUIRED)
929 error = nfs_sndlock(&nmp->nm_iflag, rep);
930 if (!error) {
931 m = m_copym(m, 0, M_COPYALL, M_WAIT);
932 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
933 if (nmp->nm_soflags & PR_CONNREQUIRED)
934 nfs_sndunlock(&nmp->nm_iflag);
935 }
936 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
937 nmp->nm_sent += NFS_CWNDSCALE;
938 rep->r_flags |= R_SENT;
939 }
940 } else {
941 splx(s);
942 rep->r_rtt = -1;
943 }
944
945 /*
946 * Wait for the reply from our send or the timer's.
947 */
948 if (!error || error == EPIPE)
949 error = nfs_reply(rep);
950
951 /*
952 * RPC done, unlink the request.
953 */
954 s = splsoftnet();
955 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
956 splx(s);
957
958 /*
959 * Decrement the outstanding request count.
960 */
961 if (rep->r_flags & R_SENT) {
962 rep->r_flags &= ~R_SENT; /* paranoia */
963 nmp->nm_sent -= NFS_CWNDSCALE;
964 }
965
966 /*
967 * If there was a successful reply and a tprintf msg.
968 * tprintf a response.
969 */
970 if (!error && (rep->r_flags & R_TPRINTFMSG))
971 nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
972 "is alive again");
973 mrep = rep->r_mrep;
974 md = rep->r_md;
975 dpos = rep->r_dpos;
976 if (error) {
977 m_freem(rep->r_mreq);
978 free((caddr_t)rep, M_NFSREQ);
979 return (error);
980 }
981
982 /*
983 * break down the rpc header and check if ok
984 */
985 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
986 if (*tl++ == rpc_msgdenied) {
987 if (*tl == rpc_mismatch)
988 error = EOPNOTSUPP;
989 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
990 if (!failed_auth) {
991 failed_auth++;
992 mheadend->m_next = (struct mbuf *)0;
993 m_freem(mrep);
994 m_freem(rep->r_mreq);
995 goto kerbauth;
996 } else
997 error = EAUTH;
998 } else
999 error = EACCES;
1000 m_freem(mrep);
1001 m_freem(rep->r_mreq);
1002 free((caddr_t)rep, M_NFSREQ);
1003 return (error);
1004 }
1005
1006 /*
1007 * Grab any Kerberos verifier, otherwise just throw it away.
1008 */
1009 verf_type = fxdr_unsigned(int, *tl++);
1010 i = fxdr_unsigned(int32_t, *tl);
1011 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1012 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1013 if (error)
1014 goto nfsmout;
1015 } else if (i > 0)
1016 nfsm_adv(nfsm_rndup(i));
1017 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1018 /* 0 == ok */
1019 if (*tl == 0) {
1020 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1021 if (*tl != 0) {
1022 error = fxdr_unsigned(int, *tl);
1023 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1024 error == NFSERR_TRYLATER) {
1025 m_freem(mrep);
1026 error = 0;
1027 waituntil = time.tv_sec + trylater_delay;
1028 while (time.tv_sec < waituntil)
1029 (void) tsleep((caddr_t)&lbolt,
1030 PSOCK, "nqnfstry", 0);
1031 trylater_delay *= nfs_backoff[trylater_cnt];
1032 if (trylater_cnt < 7)
1033 trylater_cnt++;
1034 goto tryagain;
1035 }
1036
1037 /*
1038 * If the File Handle was stale, invalidate the
1039 * lookup cache, just in case.
1040 */
1041 if (error == ESTALE)
1042 cache_purge(vp);
1043 if (nmp->nm_flag & NFSMNT_NFSV3) {
1044 *mrp = mrep;
1045 *mdp = md;
1046 *dposp = dpos;
1047 error |= NFSERR_RETERR;
1048 } else
1049 m_freem(mrep);
1050 m_freem(rep->r_mreq);
1051 free((caddr_t)rep, M_NFSREQ);
1052 return (error);
1053 }
1054
1055 /*
1056 * For nqnfs, get any lease in reply
1057 */
1058 if (nmp->nm_flag & NFSMNT_NQNFS) {
1059 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1060 if (*tl) {
1061 np = VTONFS(vp);
1062 nqlflag = fxdr_unsigned(int, *tl);
1063 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED);
1064 cachable = fxdr_unsigned(int, *tl++);
1065 reqtime += fxdr_unsigned(int, *tl++);
1066 if (reqtime > time.tv_sec) {
1067 fxdr_hyper(tl, &frev);
1068 nqnfs_clientlease(nmp, np, nqlflag,
1069 cachable, reqtime, frev);
1070 }
1071 }
1072 }
1073 *mrp = mrep;
1074 *mdp = md;
1075 *dposp = dpos;
1076 m_freem(rep->r_mreq);
1077 FREE((caddr_t)rep, M_NFSREQ);
1078 return (0);
1079 }
1080 m_freem(mrep);
1081 error = EPROTONOSUPPORT;
1082 nfsmout:
1083 m_freem(rep->r_mreq);
1084 free((caddr_t)rep, M_NFSREQ);
1085 return (error);
1086 }
1087 #endif /* NFS */
1088
1089 /*
1090 * Generate the rpc reply header
1091 * siz arg. is used to decide if adding a cluster is worthwhile
1092 */
1093 int
1094 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1095 int siz;
1096 struct nfsrv_descript *nd;
1097 struct nfssvc_sock *slp;
1098 int err;
1099 int cache;
1100 u_quad_t *frev;
1101 struct mbuf **mrq;
1102 struct mbuf **mbp;
1103 caddr_t *bposp;
1104 {
1105 register u_int32_t *tl;
1106 register struct mbuf *mreq;
1107 caddr_t bpos;
1108 struct mbuf *mb, *mb2;
1109
1110 MGETHDR(mreq, M_WAIT, MT_DATA);
1111 mb = mreq;
1112 /*
1113 * If this is a big reply, use a cluster else
1114 * try and leave leading space for the lower level headers.
1115 */
1116 siz += RPC_REPLYSIZ;
1117 if (siz >= MINCLSIZE) {
1118 MCLGET(mreq, M_WAIT);
1119 } else
1120 mreq->m_data += max_hdr;
1121 tl = mtod(mreq, u_int32_t *);
1122 mreq->m_len = 6 * NFSX_UNSIGNED;
1123 bpos = ((caddr_t)tl) + mreq->m_len;
1124 *tl++ = txdr_unsigned(nd->nd_retxid);
1125 *tl++ = rpc_reply;
1126 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1127 *tl++ = rpc_msgdenied;
1128 if (err & NFSERR_AUTHERR) {
1129 *tl++ = rpc_autherr;
1130 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1131 mreq->m_len -= NFSX_UNSIGNED;
1132 bpos -= NFSX_UNSIGNED;
1133 } else {
1134 *tl++ = rpc_mismatch;
1135 *tl++ = txdr_unsigned(RPC_VER2);
1136 *tl = txdr_unsigned(RPC_VER2);
1137 }
1138 } else {
1139 *tl++ = rpc_msgaccepted;
1140
1141 /*
1142 * For Kerberos authentication, we must send the nickname
1143 * verifier back, otherwise just RPCAUTH_NULL.
1144 */
1145 if (nd->nd_flag & ND_KERBFULL) {
1146 register struct nfsuid *nuidp;
1147 struct timeval ktvin, ktvout;
1148
1149 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1150 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1151 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1152 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1153 &nuidp->nu_haddr, nd->nd_nam2)))
1154 break;
1155 }
1156 if (nuidp) {
1157 ktvin.tv_sec =
1158 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1159 ktvin.tv_usec =
1160 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1161
1162 /*
1163 * Encrypt the timestamp in ecb mode using the
1164 * session key.
1165 */
1166 #ifdef NFSKERB
1167 XXX
1168 #endif
1169
1170 *tl++ = rpc_auth_kerb;
1171 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1172 *tl = ktvout.tv_sec;
1173 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1174 *tl++ = ktvout.tv_usec;
1175 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1176 } else {
1177 *tl++ = 0;
1178 *tl++ = 0;
1179 }
1180 } else {
1181 *tl++ = 0;
1182 *tl++ = 0;
1183 }
1184 switch (err) {
1185 case EPROGUNAVAIL:
1186 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1187 break;
1188 case EPROGMISMATCH:
1189 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1190 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1191 if (nd->nd_flag & ND_NQNFS) {
1192 *tl++ = txdr_unsigned(3);
1193 *tl = txdr_unsigned(3);
1194 } else {
1195 *tl++ = txdr_unsigned(2);
1196 *tl = txdr_unsigned(3);
1197 }
1198 break;
1199 case EPROCUNAVAIL:
1200 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1201 break;
1202 case EBADRPC:
1203 *tl = txdr_unsigned(RPC_GARBAGE);
1204 break;
1205 default:
1206 *tl = 0;
1207 if (err != NFSERR_RETVOID) {
1208 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1209 if (err)
1210 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1211 else
1212 *tl = 0;
1213 }
1214 break;
1215 };
1216 }
1217
1218 /*
1219 * For nqnfs, piggyback lease as requested.
1220 */
1221 if ((nd->nd_flag & ND_NQNFS) && err == 0) {
1222 if (nd->nd_flag & ND_LEASE) {
1223 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1224 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE);
1225 *tl++ = txdr_unsigned(cache);
1226 *tl++ = txdr_unsigned(nd->nd_duration);
1227 txdr_hyper(frev, tl);
1228 } else {
1229 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1230 *tl = 0;
1231 }
1232 }
1233 if (mrq != NULL)
1234 *mrq = mreq;
1235 *mbp = mb;
1236 *bposp = bpos;
1237 if (err != 0 && err != NFSERR_RETVOID)
1238 nfsstats.srvrpc_errs++;
1239 return (0);
1240 }
1241
1242 /*
1243 * Nfs timer routine
1244 * Scan the nfsreq list and retranmit any requests that have timed out
1245 * To avoid retransmission attempts on STREAM sockets (in the future) make
1246 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1247 */
1248 void
1249 nfs_timer(arg)
1250 void *arg; /* never used */
1251 {
1252 register struct nfsreq *rep;
1253 register struct mbuf *m;
1254 register struct socket *so;
1255 register struct nfsmount *nmp;
1256 register int timeo;
1257 int s, error;
1258 #ifdef NFSSERVER
1259 register struct nfssvc_sock *slp;
1260 static long lasttime = 0;
1261 u_quad_t cur_usec;
1262 #endif
1263
1264 s = splsoftnet();
1265 for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) {
1266 nmp = rep->r_nmp;
1267 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1268 continue;
1269 if (nfs_sigintr(nmp, rep, rep->r_procp)) {
1270 rep->r_flags |= R_SOFTTERM;
1271 continue;
1272 }
1273 if (rep->r_rtt >= 0) {
1274 rep->r_rtt++;
1275 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1276 timeo = nmp->nm_timeo;
1277 else
1278 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1279 if (nmp->nm_timeouts > 0)
1280 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1281 if (rep->r_rtt <= timeo)
1282 continue;
1283 if (nmp->nm_timeouts < 8)
1284 nmp->nm_timeouts++;
1285 }
1286 /*
1287 * Check for server not responding
1288 */
1289 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1290 rep->r_rexmit > nmp->nm_deadthresh) {
1291 nfs_msg(rep->r_procp,
1292 nmp->nm_mountp->mnt_stat.f_mntfromname,
1293 "not responding");
1294 rep->r_flags |= R_TPRINTFMSG;
1295 }
1296 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1297 nfsstats.rpctimeouts++;
1298 rep->r_flags |= R_SOFTTERM;
1299 continue;
1300 }
1301 if (nmp->nm_sotype != SOCK_DGRAM) {
1302 if (++rep->r_rexmit > NFS_MAXREXMIT)
1303 rep->r_rexmit = NFS_MAXREXMIT;
1304 continue;
1305 }
1306 if ((so = nmp->nm_so) == NULL)
1307 continue;
1308
1309 /*
1310 * If there is enough space and the window allows..
1311 * Resend it
1312 * Set r_rtt to -1 in case we fail to send it now.
1313 */
1314 rep->r_rtt = -1;
1315 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1316 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1317 (rep->r_flags & R_SENT) ||
1318 nmp->nm_sent < nmp->nm_cwnd) &&
1319 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1320 if (so->so_state & SS_ISCONNECTED)
1321 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1322 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1323 else
1324 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1325 nmp->nm_nam, (struct mbuf *)0, (struct proc *)0);
1326 if (error) {
1327 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
1328 #ifdef DEBUG
1329 printf("nfs_timer: ignoring error %d\n",
1330 error);
1331 #endif
1332 so->so_error = 0;
1333 }
1334 } else {
1335 /*
1336 * Iff first send, start timing
1337 * else turn timing off, backoff timer
1338 * and divide congestion window by 2.
1339 */
1340 if (rep->r_flags & R_SENT) {
1341 rep->r_flags &= ~R_TIMING;
1342 if (++rep->r_rexmit > NFS_MAXREXMIT)
1343 rep->r_rexmit = NFS_MAXREXMIT;
1344 nmp->nm_cwnd >>= 1;
1345 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1346 nmp->nm_cwnd = NFS_CWNDSCALE;
1347 nfsstats.rpcretries++;
1348 } else {
1349 rep->r_flags |= R_SENT;
1350 nmp->nm_sent += NFS_CWNDSCALE;
1351 }
1352 rep->r_rtt = 0;
1353 }
1354 }
1355 }
1356
1357 #ifdef NFSSERVER
1358 /*
1359 * Call the nqnfs server timer once a second to handle leases.
1360 */
1361 if (lasttime != time.tv_sec) {
1362 lasttime = time.tv_sec;
1363 nqnfs_serverd();
1364 }
1365
1366 /*
1367 * Scan the write gathering queues for writes that need to be
1368 * completed now.
1369 */
1370 cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec;
1371 for (slp = nfssvc_sockhead.tqh_first; slp != 0;
1372 slp = slp->ns_chain.tqe_next) {
1373 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
1374 nfsrv_wakenfsd(slp);
1375 }
1376 #endif /* NFSSERVER */
1377 splx(s);
1378 timeout(nfs_timer, (void *)0, nfs_ticks);
1379 }
1380
1381 /*
1382 * Test for a termination condition pending on the process.
1383 * This is used for NFSMNT_INT mounts.
1384 */
1385 int
1386 nfs_sigintr(nmp, rep, p)
1387 struct nfsmount *nmp;
1388 struct nfsreq *rep;
1389 register struct proc *p;
1390 {
1391
1392 if (rep && (rep->r_flags & R_SOFTTERM))
1393 return (EINTR);
1394 if (!(nmp->nm_flag & NFSMNT_INT))
1395 return (0);
1396 if (p && p->p_siglist &&
1397 (((p->p_siglist & ~p->p_sigmask) & ~p->p_sigignore) &
1398 NFSINT_SIGMASK))
1399 return (EINTR);
1400 return (0);
1401 }
1402
1403 /*
1404 * Lock a socket against others.
1405 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1406 * and also to avoid race conditions between the processes with nfs requests
1407 * in progress when a reconnect is necessary.
1408 */
1409 int
1410 nfs_sndlock(flagp, rep)
1411 register int *flagp;
1412 struct nfsreq *rep;
1413 {
1414 struct proc *p;
1415 int slpflag = 0, slptimeo = 0;
1416
1417 if (rep) {
1418 p = rep->r_procp;
1419 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1420 slpflag = PCATCH;
1421 } else
1422 p = (struct proc *)0;
1423 while (*flagp & NFSMNT_SNDLOCK) {
1424 if (nfs_sigintr(rep->r_nmp, rep, p))
1425 return (EINTR);
1426 *flagp |= NFSMNT_WANTSND;
1427 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck",
1428 slptimeo);
1429 if (slpflag == PCATCH) {
1430 slpflag = 0;
1431 slptimeo = 2 * hz;
1432 }
1433 }
1434 *flagp |= NFSMNT_SNDLOCK;
1435 return (0);
1436 }
1437
1438 /*
1439 * Unlock the stream socket for others.
1440 */
1441 void
1442 nfs_sndunlock(flagp)
1443 register int *flagp;
1444 {
1445
1446 if ((*flagp & NFSMNT_SNDLOCK) == 0)
1447 panic("nfs sndunlock");
1448 *flagp &= ~NFSMNT_SNDLOCK;
1449 if (*flagp & NFSMNT_WANTSND) {
1450 *flagp &= ~NFSMNT_WANTSND;
1451 wakeup((caddr_t)flagp);
1452 }
1453 }
1454
1455 int
1456 nfs_rcvlock(rep)
1457 register struct nfsreq *rep;
1458 {
1459 register int *flagp = &rep->r_nmp->nm_iflag;
1460 int slpflag, slptimeo = 0;
1461
1462 if (*flagp & NFSMNT_INT)
1463 slpflag = PCATCH;
1464 else
1465 slpflag = 0;
1466 while (*flagp & NFSMNT_RCVLOCK) {
1467 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
1468 return (EINTR);
1469 *flagp |= NFSMNT_WANTRCV;
1470 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk",
1471 slptimeo);
1472 /* If our reply was received while we were sleeping,
1473 * then just return without taking the lock to avoid a
1474 * situation where a single iod could 'capture' the
1475 * receive lock.
1476 */
1477 if (rep->r_mrep != NULL)
1478 return (EALREADY);
1479 if (slpflag == PCATCH) {
1480 slpflag = 0;
1481 slptimeo = 2 * hz;
1482 }
1483 }
1484 *flagp |= NFSMNT_RCVLOCK;
1485 return (0);
1486 }
1487
1488 /*
1489 * Unlock the stream socket for others.
1490 */
1491 void
1492 nfs_rcvunlock(flagp)
1493 register int *flagp;
1494 {
1495
1496 if ((*flagp & NFSMNT_RCVLOCK) == 0)
1497 panic("nfs rcvunlock");
1498 *flagp &= ~NFSMNT_RCVLOCK;
1499 if (*flagp & NFSMNT_WANTRCV) {
1500 *flagp &= ~NFSMNT_WANTRCV;
1501 wakeup((caddr_t)flagp);
1502 }
1503 }
1504
1505 /*
1506 * Parse an RPC request
1507 * - verify it
1508 * - fill in the cred struct.
1509 */
1510 int
1511 nfs_getreq(nd, nfsd, has_header)
1512 register struct nfsrv_descript *nd;
1513 struct nfsd *nfsd;
1514 int has_header;
1515 {
1516 register int len, i;
1517 register u_int32_t *tl;
1518 register int32_t t1;
1519 struct uio uio;
1520 struct iovec iov;
1521 caddr_t dpos, cp2, cp;
1522 u_int32_t nfsvers, auth_type;
1523 uid_t nickuid;
1524 int error = 0, nqnfs = 0, ticklen;
1525 struct mbuf *mrep, *md;
1526 register struct nfsuid *nuidp;
1527 struct timeval tvin, tvout;
1528
1529 mrep = nd->nd_mrep;
1530 md = nd->nd_md;
1531 dpos = nd->nd_dpos;
1532 if (has_header) {
1533 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1534 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1535 if (*tl++ != rpc_call) {
1536 m_freem(mrep);
1537 return (EBADRPC);
1538 }
1539 } else
1540 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1541 nd->nd_repstat = 0;
1542 nd->nd_flag = 0;
1543 if (*tl++ != rpc_vers) {
1544 nd->nd_repstat = ERPCMISMATCH;
1545 nd->nd_procnum = NFSPROC_NOOP;
1546 return (0);
1547 }
1548 if (*tl != nfs_prog) {
1549 if (*tl == nqnfs_prog)
1550 nqnfs++;
1551 else {
1552 nd->nd_repstat = EPROGUNAVAIL;
1553 nd->nd_procnum = NFSPROC_NOOP;
1554 return (0);
1555 }
1556 }
1557 tl++;
1558 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1559 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) ||
1560 (nfsvers != NQNFS_VER3 && nqnfs)) {
1561 nd->nd_repstat = EPROGMISMATCH;
1562 nd->nd_procnum = NFSPROC_NOOP;
1563 return (0);
1564 }
1565 if (nqnfs)
1566 nd->nd_flag = (ND_NFSV3 | ND_NQNFS);
1567 else if (nfsvers == NFS_VER3)
1568 nd->nd_flag = ND_NFSV3;
1569 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1570 if (nd->nd_procnum == NFSPROC_NULL)
1571 return (0);
1572 if (nd->nd_procnum >= NFS_NPROCS ||
1573 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
1574 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1575 nd->nd_repstat = EPROCUNAVAIL;
1576 nd->nd_procnum = NFSPROC_NOOP;
1577 return (0);
1578 }
1579 if ((nd->nd_flag & ND_NFSV3) == 0)
1580 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1581 auth_type = *tl++;
1582 len = fxdr_unsigned(int, *tl++);
1583 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1584 m_freem(mrep);
1585 return (EBADRPC);
1586 }
1587
1588 nd->nd_flag &= ~ND_KERBAUTH;
1589 /*
1590 * Handle auth_unix or auth_kerb.
1591 */
1592 if (auth_type == rpc_auth_unix) {
1593 len = fxdr_unsigned(int, *++tl);
1594 if (len < 0 || len > NFS_MAXNAMLEN) {
1595 m_freem(mrep);
1596 return (EBADRPC);
1597 }
1598 nfsm_adv(nfsm_rndup(len));
1599 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1600 bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
1601 nd->nd_cr.cr_ref = 1;
1602 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
1603 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
1604 len = fxdr_unsigned(int, *tl);
1605 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
1606 m_freem(mrep);
1607 return (EBADRPC);
1608 }
1609 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
1610 for (i = 0; i < len; i++)
1611 if (i < NGROUPS)
1612 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
1613 else
1614 tl++;
1615 nd->nd_cr.cr_ngroups = (len > NGROUPS) ? NGROUPS : len;
1616 if (nd->nd_cr.cr_ngroups > 1)
1617 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
1618 len = fxdr_unsigned(int, *++tl);
1619 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1620 m_freem(mrep);
1621 return (EBADRPC);
1622 }
1623 if (len > 0)
1624 nfsm_adv(nfsm_rndup(len));
1625 } else if (auth_type == rpc_auth_kerb) {
1626 switch (fxdr_unsigned(int, *tl++)) {
1627 case RPCAKN_FULLNAME:
1628 ticklen = fxdr_unsigned(int, *tl);
1629 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
1630 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
1631 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
1632 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
1633 m_freem(mrep);
1634 return (EBADRPC);
1635 }
1636 uio.uio_offset = 0;
1637 uio.uio_iov = &iov;
1638 uio.uio_iovcnt = 1;
1639 uio.uio_segflg = UIO_SYSSPACE;
1640 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
1641 iov.iov_len = RPCAUTH_MAXSIZ - 4;
1642 nfsm_mtouio(&uio, uio.uio_resid);
1643 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1644 if (*tl++ != rpc_auth_kerb ||
1645 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
1646 printf("Bad kerb verifier\n");
1647 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1648 nd->nd_procnum = NFSPROC_NOOP;
1649 return (0);
1650 }
1651 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
1652 tl = (u_int32_t *)cp;
1653 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
1654 printf("Not fullname kerb verifier\n");
1655 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1656 nd->nd_procnum = NFSPROC_NOOP;
1657 return (0);
1658 }
1659 cp += NFSX_UNSIGNED;
1660 bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
1661 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
1662 nd->nd_flag |= ND_KERBFULL;
1663 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
1664 break;
1665 case RPCAKN_NICKNAME:
1666 if (len != 2 * NFSX_UNSIGNED) {
1667 printf("Kerb nickname short\n");
1668 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
1669 nd->nd_procnum = NFSPROC_NOOP;
1670 return (0);
1671 }
1672 nickuid = fxdr_unsigned(uid_t, *tl);
1673 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1674 if (*tl++ != rpc_auth_kerb ||
1675 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
1676 printf("Kerb nick verifier bad\n");
1677 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1678 nd->nd_procnum = NFSPROC_NOOP;
1679 return (0);
1680 }
1681 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1682 tvin.tv_sec = *tl++;
1683 tvin.tv_usec = *tl;
1684
1685 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
1686 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1687 if (nuidp->nu_cr.cr_uid == nickuid &&
1688 (!nd->nd_nam2 ||
1689 netaddr_match(NU_NETFAM(nuidp),
1690 &nuidp->nu_haddr, nd->nd_nam2)))
1691 break;
1692 }
1693 if (!nuidp) {
1694 nd->nd_repstat =
1695 (NFSERR_AUTHERR|AUTH_REJECTCRED);
1696 nd->nd_procnum = NFSPROC_NOOP;
1697 return (0);
1698 }
1699
1700 /*
1701 * Now, decrypt the timestamp using the session key
1702 * and validate it.
1703 */
1704 #ifdef NFSKERB
1705 XXX
1706 #endif
1707
1708 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
1709 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
1710 if (nuidp->nu_expire < time.tv_sec ||
1711 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
1712 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
1713 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
1714 nuidp->nu_expire = 0;
1715 nd->nd_repstat =
1716 (NFSERR_AUTHERR|AUTH_REJECTVERF);
1717 nd->nd_procnum = NFSPROC_NOOP;
1718 return (0);
1719 }
1720 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
1721 nd->nd_flag |= ND_KERBNICK;
1722 };
1723 } else {
1724 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
1725 nd->nd_procnum = NFSPROC_NOOP;
1726 return (0);
1727 }
1728
1729 /*
1730 * For nqnfs, get piggybacked lease request.
1731 */
1732 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
1733 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1734 nd->nd_flag |= fxdr_unsigned(int, *tl);
1735 if (nd->nd_flag & ND_LEASE) {
1736 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1737 nd->nd_duration = fxdr_unsigned(u_int32_t, *tl);
1738 } else
1739 nd->nd_duration = NQ_MINLEASE;
1740 } else
1741 nd->nd_duration = NQ_MINLEASE;
1742 nd->nd_md = md;
1743 nd->nd_dpos = dpos;
1744 return (0);
1745 nfsmout:
1746 return (error);
1747 }
1748
1749 int
1750 nfs_msg(p, server, msg)
1751 struct proc *p;
1752 char *server, *msg;
1753 {
1754 tpr_t tpr;
1755
1756 if (p)
1757 tpr = tprintf_open(p);
1758 else
1759 tpr = NULL;
1760 tprintf(tpr, "nfs server %s: %s\n", server, msg);
1761 tprintf_close(tpr);
1762 return (0);
1763 }
1764
1765 #ifdef NFSSERVER
1766 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
1767 struct nfssvc_sock *, struct proc *,
1768 struct mbuf **)) = {
1769 nfsrv_null,
1770 nfsrv_getattr,
1771 nfsrv_setattr,
1772 nfsrv_lookup,
1773 nfsrv3_access,
1774 nfsrv_readlink,
1775 nfsrv_read,
1776 nfsrv_write,
1777 nfsrv_create,
1778 nfsrv_mkdir,
1779 nfsrv_symlink,
1780 nfsrv_mknod,
1781 nfsrv_remove,
1782 nfsrv_rmdir,
1783 nfsrv_rename,
1784 nfsrv_link,
1785 nfsrv_readdir,
1786 nfsrv_readdirplus,
1787 nfsrv_statfs,
1788 nfsrv_fsinfo,
1789 nfsrv_pathconf,
1790 nfsrv_commit,
1791 nqnfsrv_getlease,
1792 nqnfsrv_vacated,
1793 nfsrv_noop,
1794 nfsrv_noop
1795 };
1796
1797 /*
1798 * Socket upcall routine for the nfsd sockets.
1799 * The caddr_t arg is a pointer to the "struct nfssvc_sock".
1800 * Essentially do as much as possible non-blocking, else punt and it will
1801 * be called with M_WAIT from an nfsd.
1802 */
1803 void
1804 nfsrv_rcv(so, arg, waitflag)
1805 struct socket *so;
1806 caddr_t arg;
1807 int waitflag;
1808 {
1809 register struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
1810 register struct mbuf *m;
1811 struct mbuf *mp, *nam;
1812 struct uio auio;
1813 int flags, error;
1814
1815 if ((slp->ns_flag & SLP_VALID) == 0)
1816 return;
1817 #ifdef notdef
1818 /*
1819 * Define this to test for nfsds handling this under heavy load.
1820 */
1821 if (waitflag == M_DONTWAIT) {
1822 slp->ns_flag |= SLP_NEEDQ; goto dorecs;
1823 }
1824 #endif
1825 auio.uio_procp = NULL;
1826 if (so->so_type == SOCK_STREAM) {
1827 /*
1828 * If there are already records on the queue, defer soreceive()
1829 * to an nfsd so that there is feedback to the TCP layer that
1830 * the nfs servers are heavily loaded.
1831 */
1832 if (slp->ns_rec && waitflag == M_DONTWAIT) {
1833 slp->ns_flag |= SLP_NEEDQ;
1834 goto dorecs;
1835 }
1836
1837 /*
1838 * Do soreceive().
1839 */
1840 auio.uio_resid = 1000000000;
1841 flags = MSG_DONTWAIT;
1842 error = soreceive(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
1843 if (error || mp == (struct mbuf *)0) {
1844 if (error == EWOULDBLOCK)
1845 slp->ns_flag |= SLP_NEEDQ;
1846 else
1847 slp->ns_flag |= SLP_DISCONN;
1848 goto dorecs;
1849 }
1850 m = mp;
1851 if (slp->ns_rawend) {
1852 slp->ns_rawend->m_next = m;
1853 slp->ns_cc += 1000000000 - auio.uio_resid;
1854 } else {
1855 slp->ns_raw = m;
1856 slp->ns_cc = 1000000000 - auio.uio_resid;
1857 }
1858 while (m->m_next)
1859 m = m->m_next;
1860 slp->ns_rawend = m;
1861
1862 /*
1863 * Now try and parse record(s) out of the raw stream data.
1864 */
1865 error = nfsrv_getstream(slp, waitflag);
1866 if (error) {
1867 if (error == EPERM)
1868 slp->ns_flag |= SLP_DISCONN;
1869 else
1870 slp->ns_flag |= SLP_NEEDQ;
1871 }
1872 } else {
1873 do {
1874 auio.uio_resid = 1000000000;
1875 flags = MSG_DONTWAIT;
1876 error = soreceive(so, &nam, &auio, &mp,
1877 (struct mbuf **)0, &flags);
1878 if (mp) {
1879 if (nam) {
1880 m = nam;
1881 m->m_next = mp;
1882 } else
1883 m = mp;
1884 if (slp->ns_recend)
1885 slp->ns_recend->m_nextpkt = m;
1886 else
1887 slp->ns_rec = m;
1888 slp->ns_recend = m;
1889 m->m_nextpkt = (struct mbuf *)0;
1890 }
1891 if (error) {
1892 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
1893 && error != EWOULDBLOCK) {
1894 slp->ns_flag |= SLP_DISCONN;
1895 goto dorecs;
1896 }
1897 }
1898 } while (mp);
1899 }
1900
1901 /*
1902 * Now try and process the request records, non-blocking.
1903 */
1904 dorecs:
1905 if (waitflag == M_DONTWAIT &&
1906 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
1907 nfsrv_wakenfsd(slp);
1908 }
1909
1910 /*
1911 * Try and extract an RPC request from the mbuf data list received on a
1912 * stream socket. The "waitflag" argument indicates whether or not it
1913 * can sleep.
1914 */
1915 int
1916 nfsrv_getstream(slp, waitflag)
1917 register struct nfssvc_sock *slp;
1918 int waitflag;
1919 {
1920 register struct mbuf *m, **mpp;
1921 register char *cp1, *cp2;
1922 register int len;
1923 struct mbuf *om, *m2, *recm = NULL;
1924 u_int32_t recmark;
1925
1926 if (slp->ns_flag & SLP_GETSTREAM)
1927 panic("nfs getstream");
1928 slp->ns_flag |= SLP_GETSTREAM;
1929 for (;;) {
1930 if (slp->ns_reclen == 0) {
1931 if (slp->ns_cc < NFSX_UNSIGNED) {
1932 slp->ns_flag &= ~SLP_GETSTREAM;
1933 return (0);
1934 }
1935 m = slp->ns_raw;
1936 if (m->m_len >= NFSX_UNSIGNED) {
1937 bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
1938 m->m_data += NFSX_UNSIGNED;
1939 m->m_len -= NFSX_UNSIGNED;
1940 } else {
1941 cp1 = (caddr_t)&recmark;
1942 cp2 = mtod(m, caddr_t);
1943 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
1944 while (m->m_len == 0) {
1945 m = m->m_next;
1946 cp2 = mtod(m, caddr_t);
1947 }
1948 *cp1++ = *cp2++;
1949 m->m_data++;
1950 m->m_len--;
1951 }
1952 }
1953 slp->ns_cc -= NFSX_UNSIGNED;
1954 recmark = ntohl(recmark);
1955 slp->ns_reclen = recmark & ~0x80000000;
1956 if (recmark & 0x80000000)
1957 slp->ns_flag |= SLP_LASTFRAG;
1958 else
1959 slp->ns_flag &= ~SLP_LASTFRAG;
1960 if (slp->ns_reclen > NFS_MAXPACKET) {
1961 slp->ns_flag &= ~SLP_GETSTREAM;
1962 return (EPERM);
1963 }
1964 }
1965
1966 /*
1967 * Now get the record part.
1968 */
1969 if (slp->ns_cc == slp->ns_reclen) {
1970 recm = slp->ns_raw;
1971 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
1972 slp->ns_cc = slp->ns_reclen = 0;
1973 } else if (slp->ns_cc > slp->ns_reclen) {
1974 len = 0;
1975 m = slp->ns_raw;
1976 om = (struct mbuf *)0;
1977 while (len < slp->ns_reclen) {
1978 if ((len + m->m_len) > slp->ns_reclen) {
1979 size_t left = slp->ns_reclen - len;
1980
1981 MGETHDR(m2, waitflag, m->m_type);
1982 if (m2 == NULL) {
1983 slp->ns_flag &= ~SLP_GETSTREAM;
1984 return (EWOULDBLOCK);
1985 }
1986 if (left > MHLEN) {
1987 MCLGET(m2, waitflag);
1988 if (!(m2->m_flags & M_EXT)) {
1989 m_freem(m2);
1990 slp->ns_flag &= ~SLP_GETSTREAM;
1991 return (EWOULDBLOCK);
1992 }
1993 }
1994 bcopy(mtod(m, caddr_t), mtod(m2, caddr_t),
1995 left);
1996 m2->m_len = left;
1997 m->m_data += left;
1998 m->m_len -= left;
1999 if (om) {
2000 om->m_next = m2;
2001 recm = slp->ns_raw;
2002 } else
2003 recm = m2;
2004 len = slp->ns_reclen;
2005 } else if ((len + m->m_len) == slp->ns_reclen) {
2006 om = m;
2007 len += m->m_len;
2008 m = m->m_next;
2009 recm = slp->ns_raw;
2010 om->m_next = (struct mbuf *)0;
2011 } else {
2012 om = m;
2013 len += m->m_len;
2014 m = m->m_next;
2015 }
2016 }
2017 slp->ns_raw = m;
2018 slp->ns_cc -= len;
2019 slp->ns_reclen = 0;
2020 } else {
2021 slp->ns_flag &= ~SLP_GETSTREAM;
2022 return (0);
2023 }
2024
2025 /*
2026 * Accumulate the fragments into a record.
2027 */
2028 mpp = &slp->ns_frag;
2029 while (*mpp)
2030 mpp = &((*mpp)->m_next);
2031 *mpp = recm;
2032 if (slp->ns_flag & SLP_LASTFRAG) {
2033 if (slp->ns_recend)
2034 slp->ns_recend->m_nextpkt = slp->ns_frag;
2035 else
2036 slp->ns_rec = slp->ns_frag;
2037 slp->ns_recend = slp->ns_frag;
2038 slp->ns_frag = (struct mbuf *)0;
2039 }
2040 }
2041 }
2042
2043 /*
2044 * Parse an RPC header.
2045 */
2046 int
2047 nfsrv_dorec(slp, nfsd, ndp)
2048 register struct nfssvc_sock *slp;
2049 struct nfsd *nfsd;
2050 struct nfsrv_descript **ndp;
2051 {
2052 register struct mbuf *m, *nam;
2053 register struct nfsrv_descript *nd;
2054 int error;
2055
2056 *ndp = NULL;
2057 if ((slp->ns_flag & SLP_VALID) == 0 ||
2058 (m = slp->ns_rec) == (struct mbuf *)0)
2059 return (ENOBUFS);
2060 slp->ns_rec = m->m_nextpkt;
2061 if (slp->ns_rec)
2062 m->m_nextpkt = (struct mbuf *)0;
2063 else
2064 slp->ns_recend = (struct mbuf *)0;
2065 if (m->m_type == MT_SONAME) {
2066 nam = m;
2067 m = m->m_next;
2068 nam->m_next = NULL;
2069 } else
2070 nam = NULL;
2071 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2072 M_NFSRVDESC, M_WAITOK);
2073 nd->nd_md = nd->nd_mrep = m;
2074 nd->nd_nam2 = nam;
2075 nd->nd_dpos = mtod(m, caddr_t);
2076 error = nfs_getreq(nd, nfsd, TRUE);
2077 if (error) {
2078 m_freem(nam);
2079 free((caddr_t)nd, M_NFSRVDESC);
2080 return (error);
2081 }
2082 *ndp = nd;
2083 nfsd->nfsd_nd = nd;
2084 return (0);
2085 }
2086
2087
2088 /*
2089 * Search for a sleeping nfsd and wake it up.
2090 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2091 * running nfsds will go look for the work in the nfssvc_sock list.
2092 */
2093 void
2094 nfsrv_wakenfsd(slp)
2095 struct nfssvc_sock *slp;
2096 {
2097 register struct nfsd *nd;
2098
2099 if ((slp->ns_flag & SLP_VALID) == 0)
2100 return;
2101 for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) {
2102 if (nd->nfsd_flag & NFSD_WAITING) {
2103 nd->nfsd_flag &= ~NFSD_WAITING;
2104 if (nd->nfsd_slp)
2105 panic("nfsd wakeup");
2106 slp->ns_sref++;
2107 nd->nfsd_slp = slp;
2108 wakeup((caddr_t)nd);
2109 return;
2110 }
2111 }
2112 slp->ns_flag |= SLP_DOREC;
2113 nfsd_head_flag |= NFSD_CHECKSLP;
2114 }
2115 #endif /* NFSSERVER */
2116