nfs_socket.c revision 1.45 1 /* $NetBSD: nfs_socket.c,v 1.45 1998/07/20 16:41:05 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1991, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
39 */
40
41 /*
42 * Socket operations for use by nfs
43 */
44
45 #include "fs_nfs.h"
46 #include "opt_nfsserver.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/proc.h>
51 #include <sys/mount.h>
52 #include <sys/kernel.h>
53 #include <sys/mbuf.h>
54 #include <sys/vnode.h>
55 #include <sys/domain.h>
56 #include <sys/protosw.h>
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
59 #include <sys/syslog.h>
60 #include <sys/tprintf.h>
61 #include <sys/namei.h>
62
63 #include <netinet/in.h>
64 #include <netinet/tcp.h>
65
66 #include <nfs/rpcv2.h>
67 #include <nfs/nfsproto.h>
68 #include <nfs/nfs.h>
69 #include <nfs/xdr_subs.h>
70 #include <nfs/nfsm_subs.h>
71 #include <nfs/nfsmount.h>
72 #include <nfs/nfsnode.h>
73 #include <nfs/nfsrtt.h>
74 #include <nfs/nqnfs.h>
75 #include <nfs/nfs_var.h>
76
77 #define TRUE 1
78 #define FALSE 0
79
80 /*
81 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
82 * Use the mean and mean deviation of rtt for the appropriate type of rpc
83 * for the frequent rpcs and a default for the others.
84 * The justification for doing "other" this way is that these rpcs
85 * happen so infrequently that timer est. would probably be stale.
86 * Also, since many of these rpcs are
87 * non-idempotent, a conservative timeout is desired.
88 * getattr, lookup - A+2D
89 * read, write - A+4D
90 * other - nm_timeo
91 */
92 #define NFS_RTO(n, t) \
93 ((t) == 0 ? (n)->nm_timeo : \
94 ((t) < 3 ? \
95 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
96 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
97 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
98 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
99 /*
100 * External data, mostly RPC constants in XDR form
101 */
102 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
103 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
104 rpc_auth_kerb;
105 extern u_int32_t nfs_prog, nqnfs_prog;
106 extern time_t nqnfsstarttime;
107 extern struct nfsstats nfsstats;
108 extern int nfsv3_procid[NFS_NPROCS];
109 extern int nfs_ticks;
110
111 /*
112 * Defines which timer to use for the procnum.
113 * 0 - default
114 * 1 - getattr
115 * 2 - lookup
116 * 3 - read
117 * 4 - write
118 */
119 static int proct[NFS_NPROCS] = {
120 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
121 0, 0, 0,
122 };
123
124 /*
125 * There is a congestion window for outstanding rpcs maintained per mount
126 * point. The cwnd size is adjusted in roughly the way that:
127 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
128 * SIGCOMM '88". ACM, August 1988.
129 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
130 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
131 * of rpcs is in progress.
132 * (The sent count and cwnd are scaled for integer arith.)
133 * Variants of "slow start" were tried and were found to be too much of a
134 * performance hit (ave. rtt 3 times larger),
135 * I suspect due to the large rtt that nfs rpcs have.
136 */
137 #define NFS_CWNDSCALE 256
138 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
139 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
140 int nfsrtton = 0;
141 struct nfsrtt nfsrtt;
142
143 /*
144 * Initialize sockets and congestion for a new NFS connection.
145 * We do not free the sockaddr if error.
146 */
147 int
148 nfs_connect(nmp, rep)
149 register struct nfsmount *nmp;
150 struct nfsreq *rep;
151 {
152 register struct socket *so;
153 int s, error, rcvreserve, sndreserve;
154 struct sockaddr *saddr;
155 struct sockaddr_in *sin;
156 struct mbuf *m;
157 u_int16_t tport;
158
159 nmp->nm_so = (struct socket *)0;
160 saddr = mtod(nmp->nm_nam, struct sockaddr *);
161 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
162 nmp->nm_soproto);
163 if (error)
164 goto bad;
165 so = nmp->nm_so;
166 nmp->nm_soflags = so->so_proto->pr_flags;
167
168 /*
169 * Some servers require that the client port be a reserved port number.
170 */
171 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
172 MGET(m, M_WAIT, MT_SONAME);
173 sin = mtod(m, struct sockaddr_in *);
174 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
175 sin->sin_family = AF_INET;
176 sin->sin_addr.s_addr = INADDR_ANY;
177 tport = IPPORT_RESERVED - 1;
178 sin->sin_port = htons(tport);
179 while ((error = sobind(so, m)) == EADDRINUSE &&
180 --tport > IPPORT_RESERVED / 2)
181 sin->sin_port = htons(tport);
182 m_freem(m);
183 if (error)
184 goto bad;
185 }
186
187 /*
188 * Protocols that do not require connections may be optionally left
189 * unconnected for servers that reply from a port other than NFS_PORT.
190 */
191 if (nmp->nm_flag & NFSMNT_NOCONN) {
192 if (nmp->nm_soflags & PR_CONNREQUIRED) {
193 error = ENOTCONN;
194 goto bad;
195 }
196 } else {
197 error = soconnect(so, nmp->nm_nam);
198 if (error)
199 goto bad;
200
201 /*
202 * Wait for the connection to complete. Cribbed from the
203 * connect system call but with the wait timing out so
204 * that interruptible mounts don't hang here for a long time.
205 */
206 s = splsoftnet();
207 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
208 (void) tsleep((caddr_t)&so->so_timeo, PSOCK,
209 "nfscon", 2 * hz);
210 if ((so->so_state & SS_ISCONNECTING) &&
211 so->so_error == 0 && rep &&
212 (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){
213 so->so_state &= ~SS_ISCONNECTING;
214 splx(s);
215 goto bad;
216 }
217 }
218 if (so->so_error) {
219 error = so->so_error;
220 so->so_error = 0;
221 splx(s);
222 goto bad;
223 }
224 splx(s);
225 }
226 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
227 so->so_rcv.sb_timeo = (5 * hz);
228 so->so_snd.sb_timeo = (5 * hz);
229 } else {
230 so->so_rcv.sb_timeo = 0;
231 so->so_snd.sb_timeo = 0;
232 }
233 if (nmp->nm_sotype == SOCK_DGRAM) {
234 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
235 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
236 NFS_MAXPKTHDR) * 2;
237 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
238 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
239 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
240 NFS_MAXPKTHDR) * 2;
241 } else {
242 if (nmp->nm_sotype != SOCK_STREAM)
243 panic("nfscon sotype");
244 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
245 MGET(m, M_WAIT, MT_SOOPTS);
246 *mtod(m, int32_t *) = 1;
247 m->m_len = sizeof(int32_t);
248 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
249 }
250 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
251 MGET(m, M_WAIT, MT_SOOPTS);
252 *mtod(m, int32_t *) = 1;
253 m->m_len = sizeof(int32_t);
254 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
255 }
256 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
257 sizeof (u_int32_t)) * 2;
258 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
259 sizeof (u_int32_t)) * 2;
260 }
261 error = soreserve(so, sndreserve, rcvreserve);
262 if (error)
263 goto bad;
264 so->so_rcv.sb_flags |= SB_NOINTR;
265 so->so_snd.sb_flags |= SB_NOINTR;
266
267 /* Initialize other non-zero congestion variables */
268 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
269 nmp->nm_srtt[4] = (NFS_TIMEO << 3);
270 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
271 nmp->nm_sdrtt[3] = nmp->nm_sdrtt[4] = 0;
272 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
273 nmp->nm_sent = 0;
274 nmp->nm_timeouts = 0;
275 return (0);
276
277 bad:
278 nfs_disconnect(nmp);
279 return (error);
280 }
281
282 /*
283 * Reconnect routine:
284 * Called when a connection is broken on a reliable protocol.
285 * - clean up the old socket
286 * - nfs_connect() again
287 * - set R_MUSTRESEND for all outstanding requests on mount point
288 * If this fails the mount point is DEAD!
289 * nb: Must be called with the nfs_sndlock() set on the mount point.
290 */
291 int
292 nfs_reconnect(rep)
293 register struct nfsreq *rep;
294 {
295 register struct nfsreq *rp;
296 register struct nfsmount *nmp = rep->r_nmp;
297 int error;
298
299 nfs_disconnect(nmp);
300 while ((error = nfs_connect(nmp, rep)) != 0) {
301 if (error == EINTR || error == ERESTART)
302 return (EINTR);
303 (void) tsleep((caddr_t)&lbolt, PSOCK, "nfscon", 0);
304 }
305
306 /*
307 * Loop through outstanding request list and fix up all requests
308 * on old socket.
309 */
310 for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) {
311 if (rp->r_nmp == nmp)
312 rp->r_flags |= R_MUSTRESEND;
313 }
314 return (0);
315 }
316
317 /*
318 * NFS disconnect. Clean up and unlink.
319 */
320 void
321 nfs_disconnect(nmp)
322 register struct nfsmount *nmp;
323 {
324 register struct socket *so;
325
326 if (nmp->nm_so) {
327 so = nmp->nm_so;
328 nmp->nm_so = (struct socket *)0;
329 soshutdown(so, 2);
330 soclose(so);
331 }
332 }
333
334 void
335 nfs_safedisconnect(nmp)
336 struct nfsmount *nmp;
337 {
338 struct nfsreq dummyreq;
339
340 bzero(&dummyreq, sizeof(dummyreq));
341 dummyreq.r_nmp = nmp;
342 nfs_rcvlock(&dummyreq);
343 nfs_disconnect(nmp);
344 nfs_rcvunlock(&nmp->nm_iflag);
345 }
346
347 /*
348 * This is the nfs send routine. For connection based socket types, it
349 * must be called with an nfs_sndlock() on the socket.
350 * "rep == NULL" indicates that it has been called from a server.
351 * For the client side:
352 * - return EINTR if the RPC is terminated, 0 otherwise
353 * - set R_MUSTRESEND if the send fails for any reason
354 * - do any cleanup required by recoverable socket errors (???)
355 * For the server side:
356 * - return EINTR or ERESTART if interrupted by a signal
357 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
358 * - do any cleanup required by recoverable socket errors (???)
359 */
360 int
361 nfs_send(so, nam, top, rep)
362 register struct socket *so;
363 struct mbuf *nam;
364 register struct mbuf *top;
365 struct nfsreq *rep;
366 {
367 struct mbuf *sendnam;
368 int error, soflags, flags;
369
370 if (rep) {
371 if (rep->r_flags & R_SOFTTERM) {
372 m_freem(top);
373 return (EINTR);
374 }
375 if ((so = rep->r_nmp->nm_so) == NULL) {
376 rep->r_flags |= R_MUSTRESEND;
377 m_freem(top);
378 return (0);
379 }
380 rep->r_flags &= ~R_MUSTRESEND;
381 soflags = rep->r_nmp->nm_soflags;
382 } else
383 soflags = so->so_proto->pr_flags;
384 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
385 sendnam = (struct mbuf *)0;
386 else
387 sendnam = nam;
388 if (so->so_type == SOCK_SEQPACKET)
389 flags = MSG_EOR;
390 else
391 flags = 0;
392
393 error = (*so->so_send)(so, sendnam, (struct uio *)0, top,
394 (struct mbuf *)0, flags);
395 if (error) {
396 if (rep) {
397 log(LOG_INFO, "nfs send error %d for server %s\n",error,
398 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
399 /*
400 * Deal with errors for the client side.
401 */
402 if (rep->r_flags & R_SOFTTERM)
403 error = EINTR;
404 else
405 rep->r_flags |= R_MUSTRESEND;
406 } else
407 log(LOG_INFO, "nfsd send error %d\n", error);
408
409 /*
410 * Handle any recoverable (soft) socket errors here. (???)
411 */
412 if (error != EINTR && error != ERESTART &&
413 error != EWOULDBLOCK && error != EPIPE)
414 error = 0;
415 }
416 return (error);
417 }
418
419 #ifdef NFS
420 /*
421 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
422 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
423 * Mark and consolidate the data into a new mbuf list.
424 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
425 * small mbufs.
426 * For SOCK_STREAM we must be very careful to read an entire record once
427 * we have read any of it, even if the system call has been interrupted.
428 */
429 int
430 nfs_receive(rep, aname, mp)
431 register struct nfsreq *rep;
432 struct mbuf **aname;
433 struct mbuf **mp;
434 {
435 register struct socket *so;
436 struct uio auio;
437 struct iovec aio;
438 register struct mbuf *m;
439 struct mbuf *control;
440 u_int32_t len;
441 struct mbuf **getnam;
442 int error, sotype, rcvflg;
443 struct proc *p = curproc; /* XXX */
444
445 /*
446 * Set up arguments for soreceive()
447 */
448 *mp = (struct mbuf *)0;
449 *aname = (struct mbuf *)0;
450 sotype = rep->r_nmp->nm_sotype;
451
452 /*
453 * For reliable protocols, lock against other senders/receivers
454 * in case a reconnect is necessary.
455 * For SOCK_STREAM, first get the Record Mark to find out how much
456 * more there is to get.
457 * We must lock the socket against other receivers
458 * until we have an entire rpc request/reply.
459 */
460 if (sotype != SOCK_DGRAM) {
461 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep);
462 if (error)
463 return (error);
464 tryagain:
465 /*
466 * Check for fatal errors and resending request.
467 */
468 /*
469 * Ugh: If a reconnect attempt just happened, nm_so
470 * would have changed. NULL indicates a failed
471 * attempt that has essentially shut down this
472 * mount point.
473 */
474 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
475 nfs_sndunlock(&rep->r_nmp->nm_iflag);
476 return (EINTR);
477 }
478 so = rep->r_nmp->nm_so;
479 if (!so) {
480 error = nfs_reconnect(rep);
481 if (error) {
482 nfs_sndunlock(&rep->r_nmp->nm_iflag);
483 return (error);
484 }
485 goto tryagain;
486 }
487 while (rep->r_flags & R_MUSTRESEND) {
488 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
489 nfsstats.rpcretries++;
490 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
491 if (error) {
492 if (error == EINTR || error == ERESTART ||
493 (error = nfs_reconnect(rep)) != 0) {
494 nfs_sndunlock(&rep->r_nmp->nm_iflag);
495 return (error);
496 }
497 goto tryagain;
498 }
499 }
500 nfs_sndunlock(&rep->r_nmp->nm_iflag);
501 if (sotype == SOCK_STREAM) {
502 aio.iov_base = (caddr_t) &len;
503 aio.iov_len = sizeof(u_int32_t);
504 auio.uio_iov = &aio;
505 auio.uio_iovcnt = 1;
506 auio.uio_segflg = UIO_SYSSPACE;
507 auio.uio_rw = UIO_READ;
508 auio.uio_offset = 0;
509 auio.uio_resid = sizeof(u_int32_t);
510 auio.uio_procp = p;
511 do {
512 rcvflg = MSG_WAITALL;
513 error = (*so->so_receive)(so, (struct mbuf **)0, &auio,
514 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
515 if (error == EWOULDBLOCK && rep) {
516 if (rep->r_flags & R_SOFTTERM)
517 return (EINTR);
518 }
519 } while (error == EWOULDBLOCK);
520 if (!error && auio.uio_resid > 0) {
521 /*
522 * Don't log a 0 byte receive; it means
523 * that the socket has been closed, and
524 * can happen during normal operation
525 * (forcible unmount or Solaris server).
526 */
527 if (auio.uio_resid != sizeof (u_int32_t))
528 log(LOG_INFO,
529 "short receive (%d/%d) from nfs server %s\n",
530 sizeof(u_int32_t) - auio.uio_resid,
531 sizeof(u_int32_t),
532 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
533 error = EPIPE;
534 }
535 if (error)
536 goto errout;
537 len = ntohl(len) & ~0x80000000;
538 /*
539 * This is SERIOUS! We are out of sync with the sender
540 * and forcing a disconnect/reconnect is all I can do.
541 */
542 if (len > NFS_MAXPACKET) {
543 log(LOG_ERR, "%s (%d) from nfs server %s\n",
544 "impossible packet length",
545 len,
546 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
547 error = EFBIG;
548 goto errout;
549 }
550 auio.uio_resid = len;
551 do {
552 rcvflg = MSG_WAITALL;
553 error = (*so->so_receive)(so, (struct mbuf **)0,
554 &auio, mp, (struct mbuf **)0, &rcvflg);
555 } while (error == EWOULDBLOCK || error == EINTR ||
556 error == ERESTART);
557 if (!error && auio.uio_resid > 0) {
558 if (len != auio.uio_resid)
559 log(LOG_INFO,
560 "short receive (%d/%d) from nfs server %s\n",
561 len - auio.uio_resid, len,
562 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
563 error = EPIPE;
564 }
565 } else {
566 /*
567 * NB: Since uio_resid is big, MSG_WAITALL is ignored
568 * and soreceive() will return when it has either a
569 * control msg or a data msg.
570 * We have no use for control msg., but must grab them
571 * and then throw them away so we know what is going
572 * on.
573 */
574 auio.uio_resid = len = 100000000; /* Anything Big */
575 auio.uio_procp = p;
576 do {
577 rcvflg = 0;
578 error = (*so->so_receive)(so, (struct mbuf **)0,
579 &auio, mp, &control, &rcvflg);
580 if (control)
581 m_freem(control);
582 if (error == EWOULDBLOCK && rep) {
583 if (rep->r_flags & R_SOFTTERM)
584 return (EINTR);
585 }
586 } while (error == EWOULDBLOCK ||
587 (!error && *mp == NULL && control));
588 if ((rcvflg & MSG_EOR) == 0)
589 printf("Egad!!\n");
590 if (!error && *mp == NULL)
591 error = EPIPE;
592 len -= auio.uio_resid;
593 }
594 errout:
595 if (error && error != EINTR && error != ERESTART) {
596 m_freem(*mp);
597 *mp = (struct mbuf *)0;
598 if (error != EPIPE)
599 log(LOG_INFO,
600 "receive error %d from nfs server %s\n",
601 error,
602 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
603 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep);
604 if (!error)
605 error = nfs_reconnect(rep);
606 if (!error)
607 goto tryagain;
608 else
609 nfs_sndunlock(&rep->r_nmp->nm_iflag);
610 }
611 } else {
612 if ((so = rep->r_nmp->nm_so) == NULL)
613 return (EACCES);
614 if (so->so_state & SS_ISCONNECTED)
615 getnam = (struct mbuf **)0;
616 else
617 getnam = aname;
618 auio.uio_resid = len = 1000000;
619 auio.uio_procp = p;
620 do {
621 rcvflg = 0;
622 error = (*so->so_receive)(so, getnam, &auio, mp,
623 (struct mbuf **)0, &rcvflg);
624 if (error == EWOULDBLOCK &&
625 (rep->r_flags & R_SOFTTERM))
626 return (EINTR);
627 } while (error == EWOULDBLOCK);
628 len -= auio.uio_resid;
629 }
630 if (error) {
631 m_freem(*mp);
632 *mp = (struct mbuf *)0;
633 }
634 return (error);
635 }
636
637 /*
638 * Implement receipt of reply on a socket.
639 * We must search through the list of received datagrams matching them
640 * with outstanding requests using the xid, until ours is found.
641 */
642 /* ARGSUSED */
643 int
644 nfs_reply(myrep)
645 struct nfsreq *myrep;
646 {
647 register struct nfsreq *rep;
648 register struct nfsmount *nmp = myrep->r_nmp;
649 register int32_t t1;
650 struct mbuf *mrep, *nam, *md;
651 u_int32_t rxid, *tl;
652 caddr_t dpos, cp2;
653 int error;
654
655 /*
656 * Loop around until we get our own reply
657 */
658 for (;;) {
659 /*
660 * Lock against other receivers so that I don't get stuck in
661 * sbwait() after someone else has received my reply for me.
662 * Also necessary for connection based protocols to avoid
663 * race conditions during a reconnect.
664 */
665 error = nfs_rcvlock(myrep);
666 if (error == EALREADY)
667 return (0);
668 if (error)
669 return (error);
670 /*
671 * Get the next Rpc reply off the socket
672 */
673 error = nfs_receive(myrep, &nam, &mrep);
674 nfs_rcvunlock(&nmp->nm_iflag);
675 if (error) {
676
677 /*
678 * Ignore routing errors on connectionless protocols??
679 */
680 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
681 nmp->nm_so->so_error = 0;
682 #ifdef DEBUG
683 printf("nfs_reply: ignoring error %d\n", error);
684 #endif
685 if (myrep->r_flags & R_GETONEREP)
686 return (0);
687 continue;
688 }
689 return (error);
690 }
691 if (nam)
692 m_freem(nam);
693
694 /*
695 * Get the xid and check that it is an rpc reply
696 */
697 md = mrep;
698 dpos = mtod(md, caddr_t);
699 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
700 rxid = *tl++;
701 if (*tl != rpc_reply) {
702 if (nmp->nm_flag & NFSMNT_NQNFS) {
703 if (nqnfs_callback(nmp, mrep, md, dpos))
704 nfsstats.rpcinvalid++;
705 } else {
706 nfsstats.rpcinvalid++;
707 m_freem(mrep);
708 }
709 nfsmout:
710 if (myrep->r_flags & R_GETONEREP)
711 return (0);
712 continue;
713 }
714
715 /*
716 * Loop through the request list to match up the reply
717 * Iff no match, just drop the datagram
718 */
719 for (rep = nfs_reqq.tqh_first; rep != 0;
720 rep = rep->r_chain.tqe_next) {
721 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
722 /* Found it.. */
723 rep->r_mrep = mrep;
724 rep->r_md = md;
725 rep->r_dpos = dpos;
726 if (nfsrtton) {
727 struct rttl *rt;
728
729 rt = &nfsrtt.rttl[nfsrtt.pos];
730 rt->proc = rep->r_procnum;
731 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
732 rt->sent = nmp->nm_sent;
733 rt->cwnd = nmp->nm_cwnd;
734 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
735 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
736 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
737 rt->tstamp = time;
738 if (rep->r_flags & R_TIMING)
739 rt->rtt = rep->r_rtt;
740 else
741 rt->rtt = 1000000;
742 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
743 }
744 /*
745 * Update congestion window.
746 * Do the additive increase of
747 * one rpc/rtt.
748 */
749 if (nmp->nm_cwnd <= nmp->nm_sent) {
750 nmp->nm_cwnd +=
751 (NFS_CWNDSCALE * NFS_CWNDSCALE +
752 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
753 if (nmp->nm_cwnd > NFS_MAXCWND)
754 nmp->nm_cwnd = NFS_MAXCWND;
755 }
756 rep->r_flags &= ~R_SENT;
757 nmp->nm_sent -= NFS_CWNDSCALE;
758 /*
759 * Update rtt using a gain of 0.125 on the mean
760 * and a gain of 0.25 on the deviation.
761 */
762 if (rep->r_flags & R_TIMING) {
763 /*
764 * Since the timer resolution of
765 * NFS_HZ is so course, it can often
766 * result in r_rtt == 0. Since
767 * r_rtt == N means that the actual
768 * rtt is between N+dt and N+2-dt ticks,
769 * add 1.
770 */
771 t1 = rep->r_rtt + 1;
772 t1 -= (NFS_SRTT(rep) >> 3);
773 NFS_SRTT(rep) += t1;
774 if (t1 < 0)
775 t1 = -t1;
776 t1 -= (NFS_SDRTT(rep) >> 2);
777 NFS_SDRTT(rep) += t1;
778 }
779 nmp->nm_timeouts = 0;
780 break;
781 }
782 }
783 /*
784 * If not matched to a request, drop it.
785 * If it's mine, get out.
786 */
787 if (rep == 0) {
788 nfsstats.rpcunexpected++;
789 m_freem(mrep);
790 } else if (rep == myrep) {
791 if (rep->r_mrep == NULL)
792 panic("nfsreply nil");
793 return (0);
794 }
795 if (myrep->r_flags & R_GETONEREP)
796 return (0);
797 }
798 }
799
800 /*
801 * nfs_request - goes something like this
802 * - fill in request struct
803 * - links it into list
804 * - calls nfs_send() for first transmit
805 * - calls nfs_receive() to get reply
806 * - break down rpc header and return with nfs reply pointed to
807 * by mrep or error
808 * nb: always frees up mreq mbuf list
809 */
810 int
811 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp)
812 struct vnode *vp;
813 struct mbuf *mrest;
814 int procnum;
815 struct proc *procp;
816 struct ucred *cred;
817 struct mbuf **mrp;
818 struct mbuf **mdp;
819 caddr_t *dposp;
820 {
821 register struct mbuf *m, *mrep;
822 register struct nfsreq *rep;
823 register u_int32_t *tl;
824 register int i;
825 struct nfsmount *nmp;
826 struct mbuf *md, *mheadend;
827 struct nfsnode *np;
828 char nickv[RPCX_NICKVERF];
829 time_t reqtime, waituntil;
830 caddr_t dpos, cp2;
831 int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type;
832 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
833 int verf_len, verf_type;
834 u_int32_t xid;
835 u_quad_t frev;
836 char *auth_str, *verf_str;
837 NFSKERBKEY_T key; /* save session key */
838
839 nmp = VFSTONFS(vp->v_mount);
840 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
841 rep->r_nmp = nmp;
842 rep->r_vp = vp;
843 rep->r_procp = procp;
844 rep->r_procnum = procnum;
845 i = 0;
846 m = mrest;
847 while (m) {
848 i += m->m_len;
849 m = m->m_next;
850 }
851 mrest_len = i;
852
853 /*
854 * Get the RPC header with authorization.
855 */
856 kerbauth:
857 verf_str = auth_str = (char *)0;
858 if (nmp->nm_flag & NFSMNT_KERB) {
859 verf_str = nickv;
860 verf_len = sizeof (nickv);
861 auth_type = RPCAUTH_KERB4;
862 bzero((caddr_t)key, sizeof (key));
863 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
864 &auth_len, verf_str, verf_len)) {
865 error = nfs_getauth(nmp, rep, cred, &auth_str,
866 &auth_len, verf_str, &verf_len, key);
867 if (error) {
868 free((caddr_t)rep, M_NFSREQ);
869 m_freem(mrest);
870 return (error);
871 }
872 }
873 } else {
874 auth_type = RPCAUTH_UNIX;
875 auth_len = (((cred->cr_ngroups > nmp->nm_numgrps) ?
876 nmp->nm_numgrps : cred->cr_ngroups) << 2) +
877 5 * NFSX_UNSIGNED;
878 }
879 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
880 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
881 if (auth_str)
882 free(auth_str, M_TEMP);
883
884 /*
885 * For stream protocols, insert a Sun RPC Record Mark.
886 */
887 if (nmp->nm_sotype == SOCK_STREAM) {
888 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
889 *mtod(m, u_int32_t *) = htonl(0x80000000 |
890 (m->m_pkthdr.len - NFSX_UNSIGNED));
891 }
892 rep->r_mreq = m;
893 rep->r_xid = xid;
894 tryagain:
895 if (nmp->nm_flag & NFSMNT_SOFT)
896 rep->r_retry = nmp->nm_retry;
897 else
898 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
899 rep->r_rtt = rep->r_rexmit = 0;
900 if (proct[procnum] > 0)
901 rep->r_flags = R_TIMING;
902 else
903 rep->r_flags = 0;
904 rep->r_mrep = NULL;
905
906 /*
907 * Do the client side RPC.
908 */
909 nfsstats.rpcrequests++;
910 /*
911 * Chain request into list of outstanding requests. Be sure
912 * to put it LAST so timer finds oldest requests first.
913 */
914 s = splsoftnet();
915 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
916
917 /* Get send time for nqnfs */
918 reqtime = time.tv_sec;
919
920 /*
921 * If backing off another request or avoiding congestion, don't
922 * send this one now but let timer do it. If not timing a request,
923 * do it now.
924 */
925 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
926 (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
927 nmp->nm_sent < nmp->nm_cwnd)) {
928 splx(s);
929 if (nmp->nm_soflags & PR_CONNREQUIRED)
930 error = nfs_sndlock(&nmp->nm_iflag, rep);
931 if (!error) {
932 m = m_copym(m, 0, M_COPYALL, M_WAIT);
933 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
934 if (nmp->nm_soflags & PR_CONNREQUIRED)
935 nfs_sndunlock(&nmp->nm_iflag);
936 }
937 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
938 nmp->nm_sent += NFS_CWNDSCALE;
939 rep->r_flags |= R_SENT;
940 }
941 } else {
942 splx(s);
943 rep->r_rtt = -1;
944 }
945
946 /*
947 * Wait for the reply from our send or the timer's.
948 */
949 if (!error || error == EPIPE)
950 error = nfs_reply(rep);
951
952 /*
953 * RPC done, unlink the request.
954 */
955 s = splsoftnet();
956 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
957 splx(s);
958
959 /*
960 * Decrement the outstanding request count.
961 */
962 if (rep->r_flags & R_SENT) {
963 rep->r_flags &= ~R_SENT; /* paranoia */
964 nmp->nm_sent -= NFS_CWNDSCALE;
965 }
966
967 /*
968 * If there was a successful reply and a tprintf msg.
969 * tprintf a response.
970 */
971 if (!error && (rep->r_flags & R_TPRINTFMSG))
972 nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
973 "is alive again");
974 mrep = rep->r_mrep;
975 md = rep->r_md;
976 dpos = rep->r_dpos;
977 if (error) {
978 m_freem(rep->r_mreq);
979 free((caddr_t)rep, M_NFSREQ);
980 return (error);
981 }
982
983 /*
984 * break down the rpc header and check if ok
985 */
986 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
987 if (*tl++ == rpc_msgdenied) {
988 if (*tl == rpc_mismatch)
989 error = EOPNOTSUPP;
990 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
991 if (!failed_auth) {
992 failed_auth++;
993 mheadend->m_next = (struct mbuf *)0;
994 m_freem(mrep);
995 m_freem(rep->r_mreq);
996 goto kerbauth;
997 } else
998 error = EAUTH;
999 } else
1000 error = EACCES;
1001 m_freem(mrep);
1002 m_freem(rep->r_mreq);
1003 free((caddr_t)rep, M_NFSREQ);
1004 return (error);
1005 }
1006
1007 /*
1008 * Grab any Kerberos verifier, otherwise just throw it away.
1009 */
1010 verf_type = fxdr_unsigned(int, *tl++);
1011 i = fxdr_unsigned(int32_t, *tl);
1012 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1013 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1014 if (error)
1015 goto nfsmout;
1016 } else if (i > 0)
1017 nfsm_adv(nfsm_rndup(i));
1018 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1019 /* 0 == ok */
1020 if (*tl == 0) {
1021 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1022 if (*tl != 0) {
1023 error = fxdr_unsigned(int, *tl);
1024 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1025 error == NFSERR_TRYLATER) {
1026 m_freem(mrep);
1027 error = 0;
1028 waituntil = time.tv_sec + trylater_delay;
1029 while (time.tv_sec < waituntil)
1030 (void) tsleep((caddr_t)&lbolt,
1031 PSOCK, "nqnfstry", 0);
1032 trylater_delay *= nfs_backoff[trylater_cnt];
1033 if (trylater_cnt < 7)
1034 trylater_cnt++;
1035 goto tryagain;
1036 }
1037
1038 /*
1039 * If the File Handle was stale, invalidate the
1040 * lookup cache, just in case.
1041 */
1042 if (error == ESTALE)
1043 cache_purge(vp);
1044 if (nmp->nm_flag & NFSMNT_NFSV3) {
1045 *mrp = mrep;
1046 *mdp = md;
1047 *dposp = dpos;
1048 error |= NFSERR_RETERR;
1049 } else
1050 m_freem(mrep);
1051 m_freem(rep->r_mreq);
1052 free((caddr_t)rep, M_NFSREQ);
1053 return (error);
1054 }
1055
1056 /*
1057 * For nqnfs, get any lease in reply
1058 */
1059 if (nmp->nm_flag & NFSMNT_NQNFS) {
1060 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1061 if (*tl) {
1062 np = VTONFS(vp);
1063 nqlflag = fxdr_unsigned(int, *tl);
1064 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED);
1065 cachable = fxdr_unsigned(int, *tl++);
1066 reqtime += fxdr_unsigned(int, *tl++);
1067 if (reqtime > time.tv_sec) {
1068 fxdr_hyper(tl, &frev);
1069 nqnfs_clientlease(nmp, np, nqlflag,
1070 cachable, reqtime, frev);
1071 }
1072 }
1073 }
1074 *mrp = mrep;
1075 *mdp = md;
1076 *dposp = dpos;
1077 m_freem(rep->r_mreq);
1078 FREE((caddr_t)rep, M_NFSREQ);
1079 return (0);
1080 }
1081 m_freem(mrep);
1082 error = EPROTONOSUPPORT;
1083 nfsmout:
1084 m_freem(rep->r_mreq);
1085 free((caddr_t)rep, M_NFSREQ);
1086 return (error);
1087 }
1088 #endif /* NFS */
1089
1090 /*
1091 * Generate the rpc reply header
1092 * siz arg. is used to decide if adding a cluster is worthwhile
1093 */
1094 int
1095 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1096 int siz;
1097 struct nfsrv_descript *nd;
1098 struct nfssvc_sock *slp;
1099 int err;
1100 int cache;
1101 u_quad_t *frev;
1102 struct mbuf **mrq;
1103 struct mbuf **mbp;
1104 caddr_t *bposp;
1105 {
1106 register u_int32_t *tl;
1107 register struct mbuf *mreq;
1108 caddr_t bpos;
1109 struct mbuf *mb, *mb2;
1110
1111 MGETHDR(mreq, M_WAIT, MT_DATA);
1112 mb = mreq;
1113 /*
1114 * If this is a big reply, use a cluster else
1115 * try and leave leading space for the lower level headers.
1116 */
1117 siz += RPC_REPLYSIZ;
1118 if (siz >= max_datalen) {
1119 MCLGET(mreq, M_WAIT);
1120 } else
1121 mreq->m_data += max_hdr;
1122 tl = mtod(mreq, u_int32_t *);
1123 mreq->m_len = 6 * NFSX_UNSIGNED;
1124 bpos = ((caddr_t)tl) + mreq->m_len;
1125 *tl++ = txdr_unsigned(nd->nd_retxid);
1126 *tl++ = rpc_reply;
1127 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1128 *tl++ = rpc_msgdenied;
1129 if (err & NFSERR_AUTHERR) {
1130 *tl++ = rpc_autherr;
1131 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1132 mreq->m_len -= NFSX_UNSIGNED;
1133 bpos -= NFSX_UNSIGNED;
1134 } else {
1135 *tl++ = rpc_mismatch;
1136 *tl++ = txdr_unsigned(RPC_VER2);
1137 *tl = txdr_unsigned(RPC_VER2);
1138 }
1139 } else {
1140 *tl++ = rpc_msgaccepted;
1141
1142 /*
1143 * For Kerberos authentication, we must send the nickname
1144 * verifier back, otherwise just RPCAUTH_NULL.
1145 */
1146 if (nd->nd_flag & ND_KERBFULL) {
1147 register struct nfsuid *nuidp;
1148 struct timeval ktvin, ktvout;
1149
1150 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1151 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1152 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1153 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1154 &nuidp->nu_haddr, nd->nd_nam2)))
1155 break;
1156 }
1157 if (nuidp) {
1158 ktvin.tv_sec =
1159 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1160 ktvin.tv_usec =
1161 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1162
1163 /*
1164 * Encrypt the timestamp in ecb mode using the
1165 * session key.
1166 */
1167 #ifdef NFSKERB
1168 XXX
1169 #endif
1170
1171 *tl++ = rpc_auth_kerb;
1172 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1173 *tl = ktvout.tv_sec;
1174 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1175 *tl++ = ktvout.tv_usec;
1176 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1177 } else {
1178 *tl++ = 0;
1179 *tl++ = 0;
1180 }
1181 } else {
1182 *tl++ = 0;
1183 *tl++ = 0;
1184 }
1185 switch (err) {
1186 case EPROGUNAVAIL:
1187 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1188 break;
1189 case EPROGMISMATCH:
1190 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1191 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1192 if (nd->nd_flag & ND_NQNFS) {
1193 *tl++ = txdr_unsigned(3);
1194 *tl = txdr_unsigned(3);
1195 } else {
1196 *tl++ = txdr_unsigned(2);
1197 *tl = txdr_unsigned(3);
1198 }
1199 break;
1200 case EPROCUNAVAIL:
1201 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1202 break;
1203 case EBADRPC:
1204 *tl = txdr_unsigned(RPC_GARBAGE);
1205 break;
1206 default:
1207 *tl = 0;
1208 if (err != NFSERR_RETVOID) {
1209 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1210 if (err)
1211 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1212 else
1213 *tl = 0;
1214 }
1215 break;
1216 };
1217 }
1218
1219 /*
1220 * For nqnfs, piggyback lease as requested.
1221 */
1222 if ((nd->nd_flag & ND_NQNFS) && err == 0) {
1223 if (nd->nd_flag & ND_LEASE) {
1224 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1225 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE);
1226 *tl++ = txdr_unsigned(cache);
1227 *tl++ = txdr_unsigned(nd->nd_duration);
1228 txdr_hyper(frev, tl);
1229 } else {
1230 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1231 *tl = 0;
1232 }
1233 }
1234 if (mrq != NULL)
1235 *mrq = mreq;
1236 *mbp = mb;
1237 *bposp = bpos;
1238 if (err != 0 && err != NFSERR_RETVOID)
1239 nfsstats.srvrpc_errs++;
1240 return (0);
1241 }
1242
1243 /*
1244 * Nfs timer routine
1245 * Scan the nfsreq list and retranmit any requests that have timed out
1246 * To avoid retransmission attempts on STREAM sockets (in the future) make
1247 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1248 */
1249 void
1250 nfs_timer(arg)
1251 void *arg; /* never used */
1252 {
1253 register struct nfsreq *rep;
1254 register struct mbuf *m;
1255 register struct socket *so;
1256 register struct nfsmount *nmp;
1257 register int timeo;
1258 int s, error;
1259 #ifdef NFSSERVER
1260 register struct nfssvc_sock *slp;
1261 static long lasttime = 0;
1262 u_quad_t cur_usec;
1263 #endif
1264
1265 s = splsoftnet();
1266 for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) {
1267 nmp = rep->r_nmp;
1268 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1269 continue;
1270 if (nfs_sigintr(nmp, rep, rep->r_procp)) {
1271 rep->r_flags |= R_SOFTTERM;
1272 continue;
1273 }
1274 if (rep->r_rtt >= 0) {
1275 rep->r_rtt++;
1276 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1277 timeo = nmp->nm_timeo;
1278 else
1279 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1280 if (nmp->nm_timeouts > 0)
1281 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1282 if (rep->r_rtt <= timeo)
1283 continue;
1284 if (nmp->nm_timeouts < 8)
1285 nmp->nm_timeouts++;
1286 }
1287 /*
1288 * Check for server not responding
1289 */
1290 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1291 rep->r_rexmit > nmp->nm_deadthresh) {
1292 nfs_msg(rep->r_procp,
1293 nmp->nm_mountp->mnt_stat.f_mntfromname,
1294 "not responding");
1295 rep->r_flags |= R_TPRINTFMSG;
1296 }
1297 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1298 nfsstats.rpctimeouts++;
1299 rep->r_flags |= R_SOFTTERM;
1300 continue;
1301 }
1302 if (nmp->nm_sotype != SOCK_DGRAM) {
1303 if (++rep->r_rexmit > NFS_MAXREXMIT)
1304 rep->r_rexmit = NFS_MAXREXMIT;
1305 continue;
1306 }
1307 if ((so = nmp->nm_so) == NULL)
1308 continue;
1309
1310 /*
1311 * If there is enough space and the window allows..
1312 * Resend it
1313 * Set r_rtt to -1 in case we fail to send it now.
1314 */
1315 rep->r_rtt = -1;
1316 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1317 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1318 (rep->r_flags & R_SENT) ||
1319 nmp->nm_sent < nmp->nm_cwnd) &&
1320 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1321 if (so->so_state & SS_ISCONNECTED)
1322 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1323 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1324 else
1325 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1326 nmp->nm_nam, (struct mbuf *)0, (struct proc *)0);
1327 if (error) {
1328 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
1329 #ifdef DEBUG
1330 printf("nfs_timer: ignoring error %d\n",
1331 error);
1332 #endif
1333 so->so_error = 0;
1334 }
1335 } else {
1336 /*
1337 * Iff first send, start timing
1338 * else turn timing off, backoff timer
1339 * and divide congestion window by 2.
1340 */
1341 if (rep->r_flags & R_SENT) {
1342 rep->r_flags &= ~R_TIMING;
1343 if (++rep->r_rexmit > NFS_MAXREXMIT)
1344 rep->r_rexmit = NFS_MAXREXMIT;
1345 nmp->nm_cwnd >>= 1;
1346 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1347 nmp->nm_cwnd = NFS_CWNDSCALE;
1348 nfsstats.rpcretries++;
1349 } else {
1350 rep->r_flags |= R_SENT;
1351 nmp->nm_sent += NFS_CWNDSCALE;
1352 }
1353 rep->r_rtt = 0;
1354 }
1355 }
1356 }
1357
1358 #ifdef NFSSERVER
1359 /*
1360 * Call the nqnfs server timer once a second to handle leases.
1361 */
1362 if (lasttime != time.tv_sec) {
1363 lasttime = time.tv_sec;
1364 nqnfs_serverd();
1365 }
1366
1367 /*
1368 * Scan the write gathering queues for writes that need to be
1369 * completed now.
1370 */
1371 cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec;
1372 for (slp = nfssvc_sockhead.tqh_first; slp != 0;
1373 slp = slp->ns_chain.tqe_next) {
1374 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
1375 nfsrv_wakenfsd(slp);
1376 }
1377 #endif /* NFSSERVER */
1378 splx(s);
1379 timeout(nfs_timer, (void *)0, nfs_ticks);
1380 }
1381
1382 /*
1383 * Test for a termination condition pending on the process.
1384 * This is used for NFSMNT_INT mounts.
1385 */
1386 int
1387 nfs_sigintr(nmp, rep, p)
1388 struct nfsmount *nmp;
1389 struct nfsreq *rep;
1390 register struct proc *p;
1391 {
1392
1393 if (rep && (rep->r_flags & R_SOFTTERM))
1394 return (EINTR);
1395 if (!(nmp->nm_flag & NFSMNT_INT))
1396 return (0);
1397 if (p && p->p_siglist &&
1398 (((p->p_siglist & ~p->p_sigmask) & ~p->p_sigignore) &
1399 NFSINT_SIGMASK))
1400 return (EINTR);
1401 return (0);
1402 }
1403
1404 /*
1405 * Lock a socket against others.
1406 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1407 * and also to avoid race conditions between the processes with nfs requests
1408 * in progress when a reconnect is necessary.
1409 */
1410 int
1411 nfs_sndlock(flagp, rep)
1412 register int *flagp;
1413 struct nfsreq *rep;
1414 {
1415 struct proc *p;
1416 int slpflag = 0, slptimeo = 0;
1417
1418 if (rep) {
1419 p = rep->r_procp;
1420 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1421 slpflag = PCATCH;
1422 } else
1423 p = (struct proc *)0;
1424 while (*flagp & NFSMNT_SNDLOCK) {
1425 if (nfs_sigintr(rep->r_nmp, rep, p))
1426 return (EINTR);
1427 *flagp |= NFSMNT_WANTSND;
1428 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck",
1429 slptimeo);
1430 if (slpflag == PCATCH) {
1431 slpflag = 0;
1432 slptimeo = 2 * hz;
1433 }
1434 }
1435 *flagp |= NFSMNT_SNDLOCK;
1436 return (0);
1437 }
1438
1439 /*
1440 * Unlock the stream socket for others.
1441 */
1442 void
1443 nfs_sndunlock(flagp)
1444 register int *flagp;
1445 {
1446
1447 if ((*flagp & NFSMNT_SNDLOCK) == 0)
1448 panic("nfs sndunlock");
1449 *flagp &= ~NFSMNT_SNDLOCK;
1450 if (*flagp & NFSMNT_WANTSND) {
1451 *flagp &= ~NFSMNT_WANTSND;
1452 wakeup((caddr_t)flagp);
1453 }
1454 }
1455
1456 int
1457 nfs_rcvlock(rep)
1458 register struct nfsreq *rep;
1459 {
1460 register int *flagp = &rep->r_nmp->nm_iflag;
1461 int slpflag, slptimeo = 0;
1462
1463 if (*flagp & NFSMNT_INT)
1464 slpflag = PCATCH;
1465 else
1466 slpflag = 0;
1467 while (*flagp & NFSMNT_RCVLOCK) {
1468 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
1469 return (EINTR);
1470 *flagp |= NFSMNT_WANTRCV;
1471 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk",
1472 slptimeo);
1473 /* If our reply was received while we were sleeping,
1474 * then just return without taking the lock to avoid a
1475 * situation where a single iod could 'capture' the
1476 * receive lock.
1477 */
1478 if (rep->r_mrep != NULL)
1479 return (EALREADY);
1480 if (slpflag == PCATCH) {
1481 slpflag = 0;
1482 slptimeo = 2 * hz;
1483 }
1484 }
1485 *flagp |= NFSMNT_RCVLOCK;
1486 return (0);
1487 }
1488
1489 /*
1490 * Unlock the stream socket for others.
1491 */
1492 void
1493 nfs_rcvunlock(flagp)
1494 register int *flagp;
1495 {
1496
1497 if ((*flagp & NFSMNT_RCVLOCK) == 0)
1498 panic("nfs rcvunlock");
1499 *flagp &= ~NFSMNT_RCVLOCK;
1500 if (*flagp & NFSMNT_WANTRCV) {
1501 *flagp &= ~NFSMNT_WANTRCV;
1502 wakeup((caddr_t)flagp);
1503 }
1504 }
1505
1506 /*
1507 * Parse an RPC request
1508 * - verify it
1509 * - fill in the cred struct.
1510 */
1511 int
1512 nfs_getreq(nd, nfsd, has_header)
1513 register struct nfsrv_descript *nd;
1514 struct nfsd *nfsd;
1515 int has_header;
1516 {
1517 register int len, i;
1518 register u_int32_t *tl;
1519 register int32_t t1;
1520 struct uio uio;
1521 struct iovec iov;
1522 caddr_t dpos, cp2, cp;
1523 u_int32_t nfsvers, auth_type;
1524 uid_t nickuid;
1525 int error = 0, nqnfs = 0, ticklen;
1526 struct mbuf *mrep, *md;
1527 register struct nfsuid *nuidp;
1528 struct timeval tvin, tvout;
1529
1530 mrep = nd->nd_mrep;
1531 md = nd->nd_md;
1532 dpos = nd->nd_dpos;
1533 if (has_header) {
1534 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1535 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1536 if (*tl++ != rpc_call) {
1537 m_freem(mrep);
1538 return (EBADRPC);
1539 }
1540 } else
1541 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1542 nd->nd_repstat = 0;
1543 nd->nd_flag = 0;
1544 if (*tl++ != rpc_vers) {
1545 nd->nd_repstat = ERPCMISMATCH;
1546 nd->nd_procnum = NFSPROC_NOOP;
1547 return (0);
1548 }
1549 if (*tl != nfs_prog) {
1550 if (*tl == nqnfs_prog)
1551 nqnfs++;
1552 else {
1553 nd->nd_repstat = EPROGUNAVAIL;
1554 nd->nd_procnum = NFSPROC_NOOP;
1555 return (0);
1556 }
1557 }
1558 tl++;
1559 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1560 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) ||
1561 (nfsvers != NQNFS_VER3 && nqnfs)) {
1562 nd->nd_repstat = EPROGMISMATCH;
1563 nd->nd_procnum = NFSPROC_NOOP;
1564 return (0);
1565 }
1566 if (nqnfs)
1567 nd->nd_flag = (ND_NFSV3 | ND_NQNFS);
1568 else if (nfsvers == NFS_VER3)
1569 nd->nd_flag = ND_NFSV3;
1570 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1571 if (nd->nd_procnum == NFSPROC_NULL)
1572 return (0);
1573 if (nd->nd_procnum >= NFS_NPROCS ||
1574 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
1575 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1576 nd->nd_repstat = EPROCUNAVAIL;
1577 nd->nd_procnum = NFSPROC_NOOP;
1578 return (0);
1579 }
1580 if ((nd->nd_flag & ND_NFSV3) == 0)
1581 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1582 auth_type = *tl++;
1583 len = fxdr_unsigned(int, *tl++);
1584 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1585 m_freem(mrep);
1586 return (EBADRPC);
1587 }
1588
1589 nd->nd_flag &= ~ND_KERBAUTH;
1590 /*
1591 * Handle auth_unix or auth_kerb.
1592 */
1593 if (auth_type == rpc_auth_unix) {
1594 len = fxdr_unsigned(int, *++tl);
1595 if (len < 0 || len > NFS_MAXNAMLEN) {
1596 m_freem(mrep);
1597 return (EBADRPC);
1598 }
1599 nfsm_adv(nfsm_rndup(len));
1600 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1601 bzero((caddr_t)&nd->nd_cr, sizeof (struct ucred));
1602 nd->nd_cr.cr_ref = 1;
1603 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
1604 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
1605 len = fxdr_unsigned(int, *tl);
1606 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
1607 m_freem(mrep);
1608 return (EBADRPC);
1609 }
1610 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
1611 for (i = 0; i < len; i++)
1612 if (i < NGROUPS)
1613 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
1614 else
1615 tl++;
1616 nd->nd_cr.cr_ngroups = (len > NGROUPS) ? NGROUPS : len;
1617 if (nd->nd_cr.cr_ngroups > 1)
1618 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
1619 len = fxdr_unsigned(int, *++tl);
1620 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1621 m_freem(mrep);
1622 return (EBADRPC);
1623 }
1624 if (len > 0)
1625 nfsm_adv(nfsm_rndup(len));
1626 } else if (auth_type == rpc_auth_kerb) {
1627 switch (fxdr_unsigned(int, *tl++)) {
1628 case RPCAKN_FULLNAME:
1629 ticklen = fxdr_unsigned(int, *tl);
1630 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
1631 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
1632 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
1633 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
1634 m_freem(mrep);
1635 return (EBADRPC);
1636 }
1637 uio.uio_offset = 0;
1638 uio.uio_iov = &iov;
1639 uio.uio_iovcnt = 1;
1640 uio.uio_segflg = UIO_SYSSPACE;
1641 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
1642 iov.iov_len = RPCAUTH_MAXSIZ - 4;
1643 nfsm_mtouio(&uio, uio.uio_resid);
1644 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1645 if (*tl++ != rpc_auth_kerb ||
1646 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
1647 printf("Bad kerb verifier\n");
1648 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1649 nd->nd_procnum = NFSPROC_NOOP;
1650 return (0);
1651 }
1652 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
1653 tl = (u_int32_t *)cp;
1654 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
1655 printf("Not fullname kerb verifier\n");
1656 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1657 nd->nd_procnum = NFSPROC_NOOP;
1658 return (0);
1659 }
1660 cp += NFSX_UNSIGNED;
1661 bcopy(cp, nfsd->nfsd_verfstr, 3 * NFSX_UNSIGNED);
1662 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
1663 nd->nd_flag |= ND_KERBFULL;
1664 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
1665 break;
1666 case RPCAKN_NICKNAME:
1667 if (len != 2 * NFSX_UNSIGNED) {
1668 printf("Kerb nickname short\n");
1669 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
1670 nd->nd_procnum = NFSPROC_NOOP;
1671 return (0);
1672 }
1673 nickuid = fxdr_unsigned(uid_t, *tl);
1674 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1675 if (*tl++ != rpc_auth_kerb ||
1676 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
1677 printf("Kerb nick verifier bad\n");
1678 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1679 nd->nd_procnum = NFSPROC_NOOP;
1680 return (0);
1681 }
1682 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1683 tvin.tv_sec = *tl++;
1684 tvin.tv_usec = *tl;
1685
1686 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
1687 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1688 if (nuidp->nu_cr.cr_uid == nickuid &&
1689 (!nd->nd_nam2 ||
1690 netaddr_match(NU_NETFAM(nuidp),
1691 &nuidp->nu_haddr, nd->nd_nam2)))
1692 break;
1693 }
1694 if (!nuidp) {
1695 nd->nd_repstat =
1696 (NFSERR_AUTHERR|AUTH_REJECTCRED);
1697 nd->nd_procnum = NFSPROC_NOOP;
1698 return (0);
1699 }
1700
1701 /*
1702 * Now, decrypt the timestamp using the session key
1703 * and validate it.
1704 */
1705 #ifdef NFSKERB
1706 XXX
1707 #endif
1708
1709 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
1710 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
1711 if (nuidp->nu_expire < time.tv_sec ||
1712 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
1713 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
1714 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
1715 nuidp->nu_expire = 0;
1716 nd->nd_repstat =
1717 (NFSERR_AUTHERR|AUTH_REJECTVERF);
1718 nd->nd_procnum = NFSPROC_NOOP;
1719 return (0);
1720 }
1721 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
1722 nd->nd_flag |= ND_KERBNICK;
1723 };
1724 } else {
1725 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
1726 nd->nd_procnum = NFSPROC_NOOP;
1727 return (0);
1728 }
1729
1730 /*
1731 * For nqnfs, get piggybacked lease request.
1732 */
1733 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
1734 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1735 nd->nd_flag |= fxdr_unsigned(int, *tl);
1736 if (nd->nd_flag & ND_LEASE) {
1737 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1738 nd->nd_duration = fxdr_unsigned(u_int32_t, *tl);
1739 } else
1740 nd->nd_duration = NQ_MINLEASE;
1741 } else
1742 nd->nd_duration = NQ_MINLEASE;
1743 nd->nd_md = md;
1744 nd->nd_dpos = dpos;
1745 return (0);
1746 nfsmout:
1747 return (error);
1748 }
1749
1750 int
1751 nfs_msg(p, server, msg)
1752 struct proc *p;
1753 char *server, *msg;
1754 {
1755 tpr_t tpr;
1756
1757 if (p)
1758 tpr = tprintf_open(p);
1759 else
1760 tpr = NULL;
1761 tprintf(tpr, "nfs server %s: %s\n", server, msg);
1762 tprintf_close(tpr);
1763 return (0);
1764 }
1765
1766 #ifdef NFSSERVER
1767 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
1768 struct nfssvc_sock *, struct proc *,
1769 struct mbuf **)) = {
1770 nfsrv_null,
1771 nfsrv_getattr,
1772 nfsrv_setattr,
1773 nfsrv_lookup,
1774 nfsrv3_access,
1775 nfsrv_readlink,
1776 nfsrv_read,
1777 nfsrv_write,
1778 nfsrv_create,
1779 nfsrv_mkdir,
1780 nfsrv_symlink,
1781 nfsrv_mknod,
1782 nfsrv_remove,
1783 nfsrv_rmdir,
1784 nfsrv_rename,
1785 nfsrv_link,
1786 nfsrv_readdir,
1787 nfsrv_readdirplus,
1788 nfsrv_statfs,
1789 nfsrv_fsinfo,
1790 nfsrv_pathconf,
1791 nfsrv_commit,
1792 nqnfsrv_getlease,
1793 nqnfsrv_vacated,
1794 nfsrv_noop,
1795 nfsrv_noop
1796 };
1797
1798 /*
1799 * Socket upcall routine for the nfsd sockets.
1800 * The caddr_t arg is a pointer to the "struct nfssvc_sock".
1801 * Essentially do as much as possible non-blocking, else punt and it will
1802 * be called with M_WAIT from an nfsd.
1803 */
1804 void
1805 nfsrv_rcv(so, arg, waitflag)
1806 struct socket *so;
1807 caddr_t arg;
1808 int waitflag;
1809 {
1810 register struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
1811 register struct mbuf *m;
1812 struct mbuf *mp, *nam;
1813 struct uio auio;
1814 int flags, error;
1815
1816 if ((slp->ns_flag & SLP_VALID) == 0)
1817 return;
1818 #ifdef notdef
1819 /*
1820 * Define this to test for nfsds handling this under heavy load.
1821 */
1822 if (waitflag == M_DONTWAIT) {
1823 slp->ns_flag |= SLP_NEEDQ; goto dorecs;
1824 }
1825 #endif
1826 auio.uio_procp = NULL;
1827 if (so->so_type == SOCK_STREAM) {
1828 /*
1829 * If there are already records on the queue, defer soreceive()
1830 * to an nfsd so that there is feedback to the TCP layer that
1831 * the nfs servers are heavily loaded.
1832 */
1833 if (slp->ns_rec && waitflag == M_DONTWAIT) {
1834 slp->ns_flag |= SLP_NEEDQ;
1835 goto dorecs;
1836 }
1837
1838 /*
1839 * Do soreceive().
1840 */
1841 auio.uio_resid = 1000000000;
1842 flags = MSG_DONTWAIT;
1843 error = (*so->so_receive)(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
1844 if (error || mp == (struct mbuf *)0) {
1845 if (error == EWOULDBLOCK)
1846 slp->ns_flag |= SLP_NEEDQ;
1847 else
1848 slp->ns_flag |= SLP_DISCONN;
1849 goto dorecs;
1850 }
1851 m = mp;
1852 if (slp->ns_rawend) {
1853 slp->ns_rawend->m_next = m;
1854 slp->ns_cc += 1000000000 - auio.uio_resid;
1855 } else {
1856 slp->ns_raw = m;
1857 slp->ns_cc = 1000000000 - auio.uio_resid;
1858 }
1859 while (m->m_next)
1860 m = m->m_next;
1861 slp->ns_rawend = m;
1862
1863 /*
1864 * Now try and parse record(s) out of the raw stream data.
1865 */
1866 error = nfsrv_getstream(slp, waitflag);
1867 if (error) {
1868 if (error == EPERM)
1869 slp->ns_flag |= SLP_DISCONN;
1870 else
1871 slp->ns_flag |= SLP_NEEDQ;
1872 }
1873 } else {
1874 do {
1875 auio.uio_resid = 1000000000;
1876 flags = MSG_DONTWAIT;
1877 error = (*so->so_receive)(so, &nam, &auio, &mp,
1878 (struct mbuf **)0, &flags);
1879 if (mp) {
1880 if (nam) {
1881 m = nam;
1882 m->m_next = mp;
1883 } else
1884 m = mp;
1885 if (slp->ns_recend)
1886 slp->ns_recend->m_nextpkt = m;
1887 else
1888 slp->ns_rec = m;
1889 slp->ns_recend = m;
1890 m->m_nextpkt = (struct mbuf *)0;
1891 }
1892 if (error) {
1893 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
1894 && error != EWOULDBLOCK) {
1895 slp->ns_flag |= SLP_DISCONN;
1896 goto dorecs;
1897 }
1898 }
1899 } while (mp);
1900 }
1901
1902 /*
1903 * Now try and process the request records, non-blocking.
1904 */
1905 dorecs:
1906 if (waitflag == M_DONTWAIT &&
1907 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
1908 nfsrv_wakenfsd(slp);
1909 }
1910
1911 /*
1912 * Try and extract an RPC request from the mbuf data list received on a
1913 * stream socket. The "waitflag" argument indicates whether or not it
1914 * can sleep.
1915 */
1916 int
1917 nfsrv_getstream(slp, waitflag)
1918 register struct nfssvc_sock *slp;
1919 int waitflag;
1920 {
1921 register struct mbuf *m, **mpp;
1922 register char *cp1, *cp2;
1923 register int len;
1924 struct mbuf *om, *m2, *recm = NULL;
1925 u_int32_t recmark;
1926
1927 if (slp->ns_flag & SLP_GETSTREAM)
1928 panic("nfs getstream");
1929 slp->ns_flag |= SLP_GETSTREAM;
1930 for (;;) {
1931 if (slp->ns_reclen == 0) {
1932 if (slp->ns_cc < NFSX_UNSIGNED) {
1933 slp->ns_flag &= ~SLP_GETSTREAM;
1934 return (0);
1935 }
1936 m = slp->ns_raw;
1937 if (m->m_len >= NFSX_UNSIGNED) {
1938 bcopy(mtod(m, caddr_t), (caddr_t)&recmark, NFSX_UNSIGNED);
1939 m->m_data += NFSX_UNSIGNED;
1940 m->m_len -= NFSX_UNSIGNED;
1941 } else {
1942 cp1 = (caddr_t)&recmark;
1943 cp2 = mtod(m, caddr_t);
1944 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
1945 while (m->m_len == 0) {
1946 m = m->m_next;
1947 cp2 = mtod(m, caddr_t);
1948 }
1949 *cp1++ = *cp2++;
1950 m->m_data++;
1951 m->m_len--;
1952 }
1953 }
1954 slp->ns_cc -= NFSX_UNSIGNED;
1955 recmark = ntohl(recmark);
1956 slp->ns_reclen = recmark & ~0x80000000;
1957 if (recmark & 0x80000000)
1958 slp->ns_flag |= SLP_LASTFRAG;
1959 else
1960 slp->ns_flag &= ~SLP_LASTFRAG;
1961 if (slp->ns_reclen > NFS_MAXPACKET) {
1962 slp->ns_flag &= ~SLP_GETSTREAM;
1963 return (EPERM);
1964 }
1965 }
1966
1967 /*
1968 * Now get the record part.
1969 */
1970 if (slp->ns_cc == slp->ns_reclen) {
1971 recm = slp->ns_raw;
1972 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
1973 slp->ns_cc = slp->ns_reclen = 0;
1974 } else if (slp->ns_cc > slp->ns_reclen) {
1975 len = 0;
1976 m = slp->ns_raw;
1977 om = (struct mbuf *)0;
1978 while (len < slp->ns_reclen) {
1979 if ((len + m->m_len) > slp->ns_reclen) {
1980 size_t left = slp->ns_reclen - len;
1981
1982 MGETHDR(m2, waitflag, m->m_type);
1983 if (m2 == NULL) {
1984 slp->ns_flag &= ~SLP_GETSTREAM;
1985 return (EWOULDBLOCK);
1986 }
1987 if (left > MHLEN) {
1988 MCLGET(m2, waitflag);
1989 if (!(m2->m_flags & M_EXT)) {
1990 m_freem(m2);
1991 slp->ns_flag &= ~SLP_GETSTREAM;
1992 return (EWOULDBLOCK);
1993 }
1994 }
1995 bcopy(mtod(m, caddr_t), mtod(m2, caddr_t),
1996 left);
1997 m2->m_len = left;
1998 m->m_data += left;
1999 m->m_len -= left;
2000 if (om) {
2001 om->m_next = m2;
2002 recm = slp->ns_raw;
2003 } else
2004 recm = m2;
2005 len = slp->ns_reclen;
2006 } else if ((len + m->m_len) == slp->ns_reclen) {
2007 om = m;
2008 len += m->m_len;
2009 m = m->m_next;
2010 recm = slp->ns_raw;
2011 om->m_next = (struct mbuf *)0;
2012 } else {
2013 om = m;
2014 len += m->m_len;
2015 m = m->m_next;
2016 }
2017 }
2018 slp->ns_raw = m;
2019 slp->ns_cc -= len;
2020 slp->ns_reclen = 0;
2021 } else {
2022 slp->ns_flag &= ~SLP_GETSTREAM;
2023 return (0);
2024 }
2025
2026 /*
2027 * Accumulate the fragments into a record.
2028 */
2029 mpp = &slp->ns_frag;
2030 while (*mpp)
2031 mpp = &((*mpp)->m_next);
2032 *mpp = recm;
2033 if (slp->ns_flag & SLP_LASTFRAG) {
2034 if (slp->ns_recend)
2035 slp->ns_recend->m_nextpkt = slp->ns_frag;
2036 else
2037 slp->ns_rec = slp->ns_frag;
2038 slp->ns_recend = slp->ns_frag;
2039 slp->ns_frag = (struct mbuf *)0;
2040 }
2041 }
2042 }
2043
2044 /*
2045 * Parse an RPC header.
2046 */
2047 int
2048 nfsrv_dorec(slp, nfsd, ndp)
2049 register struct nfssvc_sock *slp;
2050 struct nfsd *nfsd;
2051 struct nfsrv_descript **ndp;
2052 {
2053 register struct mbuf *m, *nam;
2054 register struct nfsrv_descript *nd;
2055 int error;
2056
2057 *ndp = NULL;
2058 if ((slp->ns_flag & SLP_VALID) == 0 ||
2059 (m = slp->ns_rec) == (struct mbuf *)0)
2060 return (ENOBUFS);
2061 slp->ns_rec = m->m_nextpkt;
2062 if (slp->ns_rec)
2063 m->m_nextpkt = (struct mbuf *)0;
2064 else
2065 slp->ns_recend = (struct mbuf *)0;
2066 if (m->m_type == MT_SONAME) {
2067 nam = m;
2068 m = m->m_next;
2069 nam->m_next = NULL;
2070 } else
2071 nam = NULL;
2072 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2073 M_NFSRVDESC, M_WAITOK);
2074 nd->nd_md = nd->nd_mrep = m;
2075 nd->nd_nam2 = nam;
2076 nd->nd_dpos = mtod(m, caddr_t);
2077 error = nfs_getreq(nd, nfsd, TRUE);
2078 if (error) {
2079 m_freem(nam);
2080 free((caddr_t)nd, M_NFSRVDESC);
2081 return (error);
2082 }
2083 *ndp = nd;
2084 nfsd->nfsd_nd = nd;
2085 return (0);
2086 }
2087
2088
2089 /*
2090 * Search for a sleeping nfsd and wake it up.
2091 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2092 * running nfsds will go look for the work in the nfssvc_sock list.
2093 */
2094 void
2095 nfsrv_wakenfsd(slp)
2096 struct nfssvc_sock *slp;
2097 {
2098 register struct nfsd *nd;
2099
2100 if ((slp->ns_flag & SLP_VALID) == 0)
2101 return;
2102 for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) {
2103 if (nd->nfsd_flag & NFSD_WAITING) {
2104 nd->nfsd_flag &= ~NFSD_WAITING;
2105 if (nd->nfsd_slp)
2106 panic("nfsd wakeup");
2107 slp->ns_sref++;
2108 nd->nfsd_slp = slp;
2109 wakeup((caddr_t)nd);
2110 return;
2111 }
2112 }
2113 slp->ns_flag |= SLP_DOREC;
2114 nfsd_head_flag |= NFSD_CHECKSLP;
2115 }
2116 #endif /* NFSSERVER */
2117