nfs_socket.c revision 1.61 1 /* $NetBSD: nfs_socket.c,v 1.61 2000/09/19 23:26:26 bjh21 Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1991, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
39 */
40
41 /*
42 * Socket operations for use by nfs
43 */
44
45 #include "fs_nfs.h"
46 #include "opt_nfs.h"
47 #include "opt_nfsserver.h"
48 #include "opt_inet.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/callout.h>
53 #include <sys/proc.h>
54 #include <sys/mount.h>
55 #include <sys/kernel.h>
56 #include <sys/mbuf.h>
57 #include <sys/vnode.h>
58 #include <sys/domain.h>
59 #include <sys/protosw.h>
60 #include <sys/socket.h>
61 #include <sys/socketvar.h>
62 #include <sys/syslog.h>
63 #include <sys/tprintf.h>
64 #include <sys/namei.h>
65 #include <sys/signal.h>
66 #include <sys/signalvar.h>
67
68 #include <netinet/in.h>
69 #include <netinet/tcp.h>
70
71 #include <nfs/rpcv2.h>
72 #include <nfs/nfsproto.h>
73 #include <nfs/nfs.h>
74 #include <nfs/xdr_subs.h>
75 #include <nfs/nfsm_subs.h>
76 #include <nfs/nfsmount.h>
77 #include <nfs/nfsnode.h>
78 #include <nfs/nfsrtt.h>
79 #include <nfs/nqnfs.h>
80 #include <nfs/nfs_var.h>
81
82 #define TRUE 1
83 #define FALSE 0
84
85 /*
86 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
87 * Use the mean and mean deviation of rtt for the appropriate type of rpc
88 * for the frequent rpcs and a default for the others.
89 * The justification for doing "other" this way is that these rpcs
90 * happen so infrequently that timer est. would probably be stale.
91 * Also, since many of these rpcs are
92 * non-idempotent, a conservative timeout is desired.
93 * getattr, lookup - A+2D
94 * read, write - A+4D
95 * other - nm_timeo
96 */
97 #define NFS_RTO(n, t) \
98 ((t) == 0 ? (n)->nm_timeo : \
99 ((t) < 3 ? \
100 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
101 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
102 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
103 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
104 /*
105 * External data, mostly RPC constants in XDR form
106 */
107 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
108 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
109 rpc_auth_kerb;
110 extern u_int32_t nfs_prog, nqnfs_prog;
111 extern time_t nqnfsstarttime;
112 extern struct nfsstats nfsstats;
113 extern int nfsv3_procid[NFS_NPROCS];
114 extern int nfs_ticks;
115
116 /*
117 * Defines which timer to use for the procnum.
118 * 0 - default
119 * 1 - getattr
120 * 2 - lookup
121 * 3 - read
122 * 4 - write
123 */
124 static int proct[NFS_NPROCS] = {
125 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
126 0, 0, 0,
127 };
128
129 /*
130 * There is a congestion window for outstanding rpcs maintained per mount
131 * point. The cwnd size is adjusted in roughly the way that:
132 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
133 * SIGCOMM '88". ACM, August 1988.
134 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
135 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
136 * of rpcs is in progress.
137 * (The sent count and cwnd are scaled for integer arith.)
138 * Variants of "slow start" were tried and were found to be too much of a
139 * performance hit (ave. rtt 3 times larger),
140 * I suspect due to the large rtt that nfs rpcs have.
141 */
142 #define NFS_CWNDSCALE 256
143 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
144 static int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
145 int nfsrtton = 0;
146 struct nfsrtt nfsrtt;
147
148 struct callout nfs_timer_ch = CALLOUT_INITIALIZER;
149
150 /*
151 * Initialize sockets and congestion for a new NFS connection.
152 * We do not free the sockaddr if error.
153 */
154 int
155 nfs_connect(nmp, rep)
156 struct nfsmount *nmp;
157 struct nfsreq *rep;
158 {
159 struct socket *so;
160 int s, error, rcvreserve, sndreserve;
161 struct sockaddr *saddr;
162 struct sockaddr_in *sin;
163 #ifdef INET6
164 struct sockaddr_in6 *sin6;
165 #endif
166 struct mbuf *m;
167 u_int16_t tport;
168
169 nmp->nm_so = (struct socket *)0;
170 saddr = mtod(nmp->nm_nam, struct sockaddr *);
171 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
172 nmp->nm_soproto);
173 if (error)
174 goto bad;
175 so = nmp->nm_so;
176 nmp->nm_soflags = so->so_proto->pr_flags;
177
178 /*
179 * Some servers require that the client port be a reserved port number.
180 */
181 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
182 MGET(m, M_WAIT, MT_SONAME);
183 sin = mtod(m, struct sockaddr_in *);
184 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
185 sin->sin_family = AF_INET;
186 sin->sin_addr.s_addr = INADDR_ANY;
187 tport = IPPORT_RESERVED - 1;
188 sin->sin_port = htons(tport);
189 while ((error = sobind(so, m)) == EADDRINUSE &&
190 --tport > IPPORT_RESERVED / 2)
191 sin->sin_port = htons(tport);
192 m_freem(m);
193 if (error)
194 goto bad;
195 }
196 #ifdef INET6
197 if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) {
198 MGET(m, M_WAIT, MT_SONAME);
199 sin6 = mtod(m, struct sockaddr_in6 *);
200 sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6);
201 sin6->sin6_family = AF_INET6;
202 sin6->sin6_addr = in6addr_any;
203 tport = IPV6PORT_RESERVED - 1;
204 sin6->sin6_port = htons(tport);
205 while ((error = sobind(so, m)) == EADDRINUSE &&
206 --tport > IPV6PORT_RESERVED / 2)
207 sin6->sin6_port = htons(tport);
208 m_freem(m);
209 if (error)
210 goto bad;
211 }
212 #endif
213
214 /*
215 * Protocols that do not require connections may be optionally left
216 * unconnected for servers that reply from a port other than NFS_PORT.
217 */
218 if (nmp->nm_flag & NFSMNT_NOCONN) {
219 if (nmp->nm_soflags & PR_CONNREQUIRED) {
220 error = ENOTCONN;
221 goto bad;
222 }
223 } else {
224 error = soconnect(so, nmp->nm_nam);
225 if (error)
226 goto bad;
227
228 /*
229 * Wait for the connection to complete. Cribbed from the
230 * connect system call but with the wait timing out so
231 * that interruptible mounts don't hang here for a long time.
232 */
233 s = splsoftnet();
234 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
235 (void) tsleep((caddr_t)&so->so_timeo, PSOCK,
236 "nfscn1", 2 * hz);
237 if ((so->so_state & SS_ISCONNECTING) &&
238 so->so_error == 0 && rep &&
239 (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){
240 so->so_state &= ~SS_ISCONNECTING;
241 splx(s);
242 goto bad;
243 }
244 }
245 if (so->so_error) {
246 error = so->so_error;
247 so->so_error = 0;
248 splx(s);
249 goto bad;
250 }
251 splx(s);
252 }
253 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
254 so->so_rcv.sb_timeo = (5 * hz);
255 so->so_snd.sb_timeo = (5 * hz);
256 } else {
257 so->so_rcv.sb_timeo = 0;
258 so->so_snd.sb_timeo = 0;
259 }
260 if (nmp->nm_sotype == SOCK_DGRAM) {
261 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
262 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
263 NFS_MAXPKTHDR) * 2;
264 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
265 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
266 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
267 NFS_MAXPKTHDR) * 2;
268 } else {
269 if (nmp->nm_sotype != SOCK_STREAM)
270 panic("nfscon sotype");
271 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
272 MGET(m, M_WAIT, MT_SOOPTS);
273 *mtod(m, int32_t *) = 1;
274 m->m_len = sizeof(int32_t);
275 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
276 }
277 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
278 MGET(m, M_WAIT, MT_SOOPTS);
279 *mtod(m, int32_t *) = 1;
280 m->m_len = sizeof(int32_t);
281 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
282 }
283 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
284 sizeof (u_int32_t)) * 2;
285 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
286 sizeof (u_int32_t)) * 2;
287 }
288 error = soreserve(so, sndreserve, rcvreserve);
289 if (error)
290 goto bad;
291 so->so_rcv.sb_flags |= SB_NOINTR;
292 so->so_snd.sb_flags |= SB_NOINTR;
293
294 /* Initialize other non-zero congestion variables */
295 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
296 nmp->nm_srtt[4] = (NFS_TIMEO << 3);
297 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
298 nmp->nm_sdrtt[3] = nmp->nm_sdrtt[4] = 0;
299 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
300 nmp->nm_sent = 0;
301 nmp->nm_timeouts = 0;
302 return (0);
303
304 bad:
305 nfs_disconnect(nmp);
306 return (error);
307 }
308
309 /*
310 * Reconnect routine:
311 * Called when a connection is broken on a reliable protocol.
312 * - clean up the old socket
313 * - nfs_connect() again
314 * - set R_MUSTRESEND for all outstanding requests on mount point
315 * If this fails the mount point is DEAD!
316 * nb: Must be called with the nfs_sndlock() set on the mount point.
317 */
318 int
319 nfs_reconnect(rep)
320 struct nfsreq *rep;
321 {
322 struct nfsreq *rp;
323 struct nfsmount *nmp = rep->r_nmp;
324 int error;
325
326 nfs_disconnect(nmp);
327 while ((error = nfs_connect(nmp, rep)) != 0) {
328 if (error == EINTR || error == ERESTART)
329 return (EINTR);
330 (void) tsleep((caddr_t)&lbolt, PSOCK, "nfscn2", 0);
331 }
332
333 /*
334 * Loop through outstanding request list and fix up all requests
335 * on old socket.
336 */
337 for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) {
338 if (rp->r_nmp == nmp)
339 rp->r_flags |= R_MUSTRESEND;
340 }
341 return (0);
342 }
343
344 /*
345 * NFS disconnect. Clean up and unlink.
346 */
347 void
348 nfs_disconnect(nmp)
349 struct nfsmount *nmp;
350 {
351 struct socket *so;
352 int drain = 0;
353
354 if (nmp->nm_so) {
355 so = nmp->nm_so;
356 nmp->nm_so = (struct socket *)0;
357 soshutdown(so, 2);
358 drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0;
359 if (drain) {
360 /*
361 * soshutdown() above should wake up the current
362 * listener.
363 * Now wake up those waiting for the recive lock, and
364 * wait for them to go away unhappy, to prevent *nmp
365 * from evaporating while they're sleeping.
366 */
367 while (nmp->nm_waiters > 0) {
368 wakeup (&nmp->nm_iflag);
369 (void) tsleep(&nmp->nm_waiters, PVFS,
370 "nfsdis", 0);
371 }
372 }
373 soclose(so);
374 }
375 #ifdef DIAGNOSTIC
376 if (drain && (nmp->nm_waiters > 0))
377 panic("nfs_disconnect: waiters left after drain?\n");
378 #endif
379 }
380
381 void
382 nfs_safedisconnect(nmp)
383 struct nfsmount *nmp;
384 {
385 struct nfsreq dummyreq;
386
387 memset(&dummyreq, 0, sizeof(dummyreq));
388 dummyreq.r_nmp = nmp;
389 nfs_rcvlock(&dummyreq); /* XXX ignored error return */
390 nfs_disconnect(nmp);
391 nfs_rcvunlock(&nmp->nm_iflag);
392 }
393
394 /*
395 * This is the nfs send routine. For connection based socket types, it
396 * must be called with an nfs_sndlock() on the socket.
397 * "rep == NULL" indicates that it has been called from a server.
398 * For the client side:
399 * - return EINTR if the RPC is terminated, 0 otherwise
400 * - set R_MUSTRESEND if the send fails for any reason
401 * - do any cleanup required by recoverable socket errors (? ? ?)
402 * For the server side:
403 * - return EINTR or ERESTART if interrupted by a signal
404 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
405 * - do any cleanup required by recoverable socket errors (? ? ?)
406 */
407 int
408 nfs_send(so, nam, top, rep)
409 struct socket *so;
410 struct mbuf *nam;
411 struct mbuf *top;
412 struct nfsreq *rep;
413 {
414 struct mbuf *sendnam;
415 int error, soflags, flags;
416
417 if (rep) {
418 if (rep->r_flags & R_SOFTTERM) {
419 m_freem(top);
420 return (EINTR);
421 }
422 if ((so = rep->r_nmp->nm_so) == NULL) {
423 rep->r_flags |= R_MUSTRESEND;
424 m_freem(top);
425 return (0);
426 }
427 rep->r_flags &= ~R_MUSTRESEND;
428 soflags = rep->r_nmp->nm_soflags;
429 } else
430 soflags = so->so_proto->pr_flags;
431 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
432 sendnam = (struct mbuf *)0;
433 else
434 sendnam = nam;
435 if (so->so_type == SOCK_SEQPACKET)
436 flags = MSG_EOR;
437 else
438 flags = 0;
439
440 error = (*so->so_send)(so, sendnam, (struct uio *)0, top,
441 (struct mbuf *)0, flags);
442 if (error) {
443 if (rep) {
444 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
445 /*
446 * We're too fast for the network/driver,
447 * and UDP isn't flowcontrolled.
448 * We need to resend. This is not fatal,
449 * just try again.
450 *
451 * Could be smarter here by doing some sort
452 * of a backoff, but this is rare.
453 */
454 rep->r_flags |= R_MUSTRESEND;
455 } else {
456 log(LOG_INFO, "nfs send error %d for %s\n",
457 error,
458 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
459 /*
460 * Deal with errors for the client side.
461 */
462 if (rep->r_flags & R_SOFTTERM)
463 error = EINTR;
464 else
465 rep->r_flags |= R_MUSTRESEND;
466 }
467 } else
468 log(LOG_INFO, "nfsd send error %d\n", error);
469
470 /*
471 * Handle any recoverable (soft) socket errors here. (? ? ?)
472 */
473 if (error != EINTR && error != ERESTART &&
474 error != EWOULDBLOCK && error != EPIPE)
475 error = 0;
476 }
477 return (error);
478 }
479
480 #ifdef NFS
481 /*
482 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
483 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
484 * Mark and consolidate the data into a new mbuf list.
485 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
486 * small mbufs.
487 * For SOCK_STREAM we must be very careful to read an entire record once
488 * we have read any of it, even if the system call has been interrupted.
489 */
490 int
491 nfs_receive(rep, aname, mp)
492 struct nfsreq *rep;
493 struct mbuf **aname;
494 struct mbuf **mp;
495 {
496 struct socket *so;
497 struct uio auio;
498 struct iovec aio;
499 struct mbuf *m;
500 struct mbuf *control;
501 u_int32_t len;
502 struct mbuf **getnam;
503 int error, sotype, rcvflg;
504 struct proc *p = curproc; /* XXX */
505
506 /*
507 * Set up arguments for soreceive()
508 */
509 *mp = (struct mbuf *)0;
510 *aname = (struct mbuf *)0;
511 sotype = rep->r_nmp->nm_sotype;
512
513 /*
514 * For reliable protocols, lock against other senders/receivers
515 * in case a reconnect is necessary.
516 * For SOCK_STREAM, first get the Record Mark to find out how much
517 * more there is to get.
518 * We must lock the socket against other receivers
519 * until we have an entire rpc request/reply.
520 */
521 if (sotype != SOCK_DGRAM) {
522 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep);
523 if (error)
524 return (error);
525 tryagain:
526 /*
527 * Check for fatal errors and resending request.
528 */
529 /*
530 * Ugh: If a reconnect attempt just happened, nm_so
531 * would have changed. NULL indicates a failed
532 * attempt that has essentially shut down this
533 * mount point.
534 */
535 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
536 nfs_sndunlock(&rep->r_nmp->nm_iflag);
537 return (EINTR);
538 }
539 so = rep->r_nmp->nm_so;
540 if (!so) {
541 error = nfs_reconnect(rep);
542 if (error) {
543 nfs_sndunlock(&rep->r_nmp->nm_iflag);
544 return (error);
545 }
546 goto tryagain;
547 }
548 while (rep->r_flags & R_MUSTRESEND) {
549 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
550 nfsstats.rpcretries++;
551 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
552 if (error) {
553 if (error == EINTR || error == ERESTART ||
554 (error = nfs_reconnect(rep)) != 0) {
555 nfs_sndunlock(&rep->r_nmp->nm_iflag);
556 return (error);
557 }
558 goto tryagain;
559 }
560 }
561 nfs_sndunlock(&rep->r_nmp->nm_iflag);
562 if (sotype == SOCK_STREAM) {
563 aio.iov_base = (caddr_t) &len;
564 aio.iov_len = sizeof(u_int32_t);
565 auio.uio_iov = &aio;
566 auio.uio_iovcnt = 1;
567 auio.uio_segflg = UIO_SYSSPACE;
568 auio.uio_rw = UIO_READ;
569 auio.uio_offset = 0;
570 auio.uio_resid = sizeof(u_int32_t);
571 auio.uio_procp = p;
572 do {
573 rcvflg = MSG_WAITALL;
574 error = (*so->so_receive)(so, (struct mbuf **)0, &auio,
575 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
576 if (error == EWOULDBLOCK && rep) {
577 if (rep->r_flags & R_SOFTTERM)
578 return (EINTR);
579 }
580 } while (error == EWOULDBLOCK);
581 if (!error && auio.uio_resid > 0) {
582 /*
583 * Don't log a 0 byte receive; it means
584 * that the socket has been closed, and
585 * can happen during normal operation
586 * (forcible unmount or Solaris server).
587 */
588 if (auio.uio_resid != sizeof (u_int32_t))
589 log(LOG_INFO,
590 "short receive (%lu/%lu) from nfs server %s\n",
591 (u_long)sizeof(u_int32_t) - auio.uio_resid,
592 (u_long)sizeof(u_int32_t),
593 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
594 error = EPIPE;
595 }
596 if (error)
597 goto errout;
598 len = ntohl(len) & ~0x80000000;
599 /*
600 * This is SERIOUS! We are out of sync with the sender
601 * and forcing a disconnect/reconnect is all I can do.
602 */
603 if (len > NFS_MAXPACKET) {
604 log(LOG_ERR, "%s (%d) from nfs server %s\n",
605 "impossible packet length",
606 len,
607 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
608 error = EFBIG;
609 goto errout;
610 }
611 auio.uio_resid = len;
612 do {
613 rcvflg = MSG_WAITALL;
614 error = (*so->so_receive)(so, (struct mbuf **)0,
615 &auio, mp, (struct mbuf **)0, &rcvflg);
616 } while (error == EWOULDBLOCK || error == EINTR ||
617 error == ERESTART);
618 if (!error && auio.uio_resid > 0) {
619 if (len != auio.uio_resid)
620 log(LOG_INFO,
621 "short receive (%lu/%d) from nfs server %s\n",
622 (u_long)len - auio.uio_resid, len,
623 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
624 error = EPIPE;
625 }
626 } else {
627 /*
628 * NB: Since uio_resid is big, MSG_WAITALL is ignored
629 * and soreceive() will return when it has either a
630 * control msg or a data msg.
631 * We have no use for control msg., but must grab them
632 * and then throw them away so we know what is going
633 * on.
634 */
635 auio.uio_resid = len = 100000000; /* Anything Big */
636 auio.uio_procp = p;
637 do {
638 rcvflg = 0;
639 error = (*so->so_receive)(so, (struct mbuf **)0,
640 &auio, mp, &control, &rcvflg);
641 if (control)
642 m_freem(control);
643 if (error == EWOULDBLOCK && rep) {
644 if (rep->r_flags & R_SOFTTERM)
645 return (EINTR);
646 }
647 } while (error == EWOULDBLOCK ||
648 (!error && *mp == NULL && control));
649 if ((rcvflg & MSG_EOR) == 0)
650 printf("Egad!!\n");
651 if (!error && *mp == NULL)
652 error = EPIPE;
653 len -= auio.uio_resid;
654 }
655 errout:
656 if (error && error != EINTR && error != ERESTART) {
657 m_freem(*mp);
658 *mp = (struct mbuf *)0;
659 if (error != EPIPE)
660 log(LOG_INFO,
661 "receive error %d from nfs server %s\n",
662 error,
663 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
664 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep);
665 if (!error)
666 error = nfs_reconnect(rep);
667 if (!error)
668 goto tryagain;
669 else
670 nfs_sndunlock(&rep->r_nmp->nm_iflag);
671 }
672 } else {
673 if ((so = rep->r_nmp->nm_so) == NULL)
674 return (EACCES);
675 if (so->so_state & SS_ISCONNECTED)
676 getnam = (struct mbuf **)0;
677 else
678 getnam = aname;
679 auio.uio_resid = len = 1000000;
680 auio.uio_procp = p;
681 do {
682 rcvflg = 0;
683 error = (*so->so_receive)(so, getnam, &auio, mp,
684 (struct mbuf **)0, &rcvflg);
685 if (error == EWOULDBLOCK &&
686 (rep->r_flags & R_SOFTTERM))
687 return (EINTR);
688 } while (error == EWOULDBLOCK);
689 len -= auio.uio_resid;
690 if (!error && *mp == NULL)
691 error = EPIPE;
692 }
693 if (error) {
694 m_freem(*mp);
695 *mp = (struct mbuf *)0;
696 }
697 return (error);
698 }
699
700 /*
701 * Implement receipt of reply on a socket.
702 * We must search through the list of received datagrams matching them
703 * with outstanding requests using the xid, until ours is found.
704 */
705 /* ARGSUSED */
706 int
707 nfs_reply(myrep)
708 struct nfsreq *myrep;
709 {
710 struct nfsreq *rep;
711 struct nfsmount *nmp = myrep->r_nmp;
712 int32_t t1;
713 struct mbuf *mrep, *nam, *md;
714 u_int32_t rxid, *tl;
715 caddr_t dpos, cp2;
716 int error;
717
718 /*
719 * Loop around until we get our own reply
720 */
721 for (;;) {
722 /*
723 * Lock against other receivers so that I don't get stuck in
724 * sbwait() after someone else has received my reply for me.
725 * Also necessary for connection based protocols to avoid
726 * race conditions during a reconnect.
727 */
728 error = nfs_rcvlock(myrep);
729 if (error == EALREADY)
730 return (0);
731 if (error)
732 return (error);
733 /*
734 * Get the next Rpc reply off the socket
735 */
736 nmp->nm_waiters++;
737 error = nfs_receive(myrep, &nam, &mrep);
738 nfs_rcvunlock(&nmp->nm_iflag);
739 if (error) {
740
741 if (nmp->nm_iflag & NFSMNT_DISMNT) {
742 /*
743 * Oops, we're going away now..
744 */
745 nmp->nm_waiters--;
746 wakeup (&nmp->nm_waiters);
747 return error;
748 }
749 nmp->nm_waiters--;
750 /*
751 * Ignore routing errors on connectionless protocols? ?
752 */
753 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
754 nmp->nm_so->so_error = 0;
755 #ifdef DEBUG
756 printf("nfs_reply: ignoring error %d\n", error);
757 #endif
758 if (myrep->r_flags & R_GETONEREP)
759 return (0);
760 continue;
761 }
762 return (error);
763 }
764 nmp->nm_waiters--;
765 if (nam)
766 m_freem(nam);
767
768 /*
769 * Get the xid and check that it is an rpc reply
770 */
771 md = mrep;
772 dpos = mtod(md, caddr_t);
773 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
774 rxid = *tl++;
775 if (*tl != rpc_reply) {
776 #ifndef NFS_V2_ONLY
777 if (nmp->nm_flag & NFSMNT_NQNFS) {
778 if (nqnfs_callback(nmp, mrep, md, dpos))
779 nfsstats.rpcinvalid++;
780 } else
781 #endif
782 {
783 nfsstats.rpcinvalid++;
784 m_freem(mrep);
785 }
786 nfsmout:
787 if (myrep->r_flags & R_GETONEREP)
788 return (0);
789 continue;
790 }
791
792 /*
793 * Loop through the request list to match up the reply
794 * Iff no match, just drop the datagram
795 */
796 for (rep = nfs_reqq.tqh_first; rep != 0;
797 rep = rep->r_chain.tqe_next) {
798 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
799 /* Found it.. */
800 rep->r_mrep = mrep;
801 rep->r_md = md;
802 rep->r_dpos = dpos;
803 if (nfsrtton) {
804 struct rttl *rt;
805
806 rt = &nfsrtt.rttl[nfsrtt.pos];
807 rt->proc = rep->r_procnum;
808 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
809 rt->sent = nmp->nm_sent;
810 rt->cwnd = nmp->nm_cwnd;
811 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
812 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
813 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
814 rt->tstamp = time;
815 if (rep->r_flags & R_TIMING)
816 rt->rtt = rep->r_rtt;
817 else
818 rt->rtt = 1000000;
819 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
820 }
821 /*
822 * Update congestion window.
823 * Do the additive increase of
824 * one rpc/rtt.
825 */
826 if (nmp->nm_cwnd <= nmp->nm_sent) {
827 nmp->nm_cwnd +=
828 (NFS_CWNDSCALE * NFS_CWNDSCALE +
829 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
830 if (nmp->nm_cwnd > NFS_MAXCWND)
831 nmp->nm_cwnd = NFS_MAXCWND;
832 }
833 rep->r_flags &= ~R_SENT;
834 nmp->nm_sent -= NFS_CWNDSCALE;
835 /*
836 * Update rtt using a gain of 0.125 on the mean
837 * and a gain of 0.25 on the deviation.
838 */
839 if (rep->r_flags & R_TIMING) {
840 /*
841 * Since the timer resolution of
842 * NFS_HZ is so course, it can often
843 * result in r_rtt == 0. Since
844 * r_rtt == N means that the actual
845 * rtt is between N+dt and N+2-dt ticks,
846 * add 1.
847 */
848 t1 = rep->r_rtt + 1;
849 t1 -= (NFS_SRTT(rep) >> 3);
850 NFS_SRTT(rep) += t1;
851 if (t1 < 0)
852 t1 = -t1;
853 t1 -= (NFS_SDRTT(rep) >> 2);
854 NFS_SDRTT(rep) += t1;
855 }
856 nmp->nm_timeouts = 0;
857 break;
858 }
859 }
860 /*
861 * If not matched to a request, drop it.
862 * If it's mine, get out.
863 */
864 if (rep == 0) {
865 nfsstats.rpcunexpected++;
866 m_freem(mrep);
867 } else if (rep == myrep) {
868 if (rep->r_mrep == NULL)
869 panic("nfsreply nil");
870 return (0);
871 }
872 if (myrep->r_flags & R_GETONEREP)
873 return (0);
874 }
875 }
876
877 /*
878 * nfs_request - goes something like this
879 * - fill in request struct
880 * - links it into list
881 * - calls nfs_send() for first transmit
882 * - calls nfs_receive() to get reply
883 * - break down rpc header and return with nfs reply pointed to
884 * by mrep or error
885 * nb: always frees up mreq mbuf list
886 */
887 int
888 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp)
889 struct vnode *vp;
890 struct mbuf *mrest;
891 int procnum;
892 struct proc *procp;
893 struct ucred *cred;
894 struct mbuf **mrp;
895 struct mbuf **mdp;
896 caddr_t *dposp;
897 {
898 struct mbuf *m, *mrep;
899 struct nfsreq *rep;
900 u_int32_t *tl;
901 int i;
902 struct nfsmount *nmp;
903 struct mbuf *md, *mheadend;
904 struct nfsnode *np;
905 char nickv[RPCX_NICKVERF];
906 time_t reqtime, waituntil;
907 caddr_t dpos, cp2;
908 int t1, nqlflag, cachable, s, error = 0, mrest_len, auth_len, auth_type;
909 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
910 int verf_len, verf_type;
911 u_int32_t xid;
912 u_quad_t frev;
913 char *auth_str, *verf_str;
914 NFSKERBKEY_T key; /* save session key */
915
916 nmp = VFSTONFS(vp->v_mount);
917 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
918 rep->r_nmp = nmp;
919 rep->r_vp = vp;
920 rep->r_procp = procp;
921 rep->r_procnum = procnum;
922 i = 0;
923 m = mrest;
924 while (m) {
925 i += m->m_len;
926 m = m->m_next;
927 }
928 mrest_len = i;
929
930 /*
931 * Get the RPC header with authorization.
932 */
933 kerbauth:
934 verf_str = auth_str = (char *)0;
935 if (nmp->nm_flag & NFSMNT_KERB) {
936 verf_str = nickv;
937 verf_len = sizeof (nickv);
938 auth_type = RPCAUTH_KERB4;
939 memset((caddr_t)key, 0, sizeof (key));
940 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
941 &auth_len, verf_str, verf_len)) {
942 error = nfs_getauth(nmp, rep, cred, &auth_str,
943 &auth_len, verf_str, &verf_len, key);
944 if (error) {
945 free((caddr_t)rep, M_NFSREQ);
946 m_freem(mrest);
947 return (error);
948 }
949 }
950 } else {
951 auth_type = RPCAUTH_UNIX;
952 auth_len = (((cred->cr_ngroups > nmp->nm_numgrps) ?
953 nmp->nm_numgrps : cred->cr_ngroups) << 2) +
954 5 * NFSX_UNSIGNED;
955 }
956 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
957 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
958 if (auth_str)
959 free(auth_str, M_TEMP);
960
961 /*
962 * For stream protocols, insert a Sun RPC Record Mark.
963 */
964 if (nmp->nm_sotype == SOCK_STREAM) {
965 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
966 *mtod(m, u_int32_t *) = htonl(0x80000000 |
967 (m->m_pkthdr.len - NFSX_UNSIGNED));
968 }
969 rep->r_mreq = m;
970 rep->r_xid = xid;
971 tryagain:
972 if (nmp->nm_flag & NFSMNT_SOFT)
973 rep->r_retry = nmp->nm_retry;
974 else
975 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
976 rep->r_rtt = rep->r_rexmit = 0;
977 if (proct[procnum] > 0)
978 rep->r_flags = R_TIMING;
979 else
980 rep->r_flags = 0;
981 rep->r_mrep = NULL;
982
983 /*
984 * Do the client side RPC.
985 */
986 nfsstats.rpcrequests++;
987 /*
988 * Chain request into list of outstanding requests. Be sure
989 * to put it LAST so timer finds oldest requests first.
990 */
991 s = splsoftnet();
992 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
993
994 /* Get send time for nqnfs */
995 reqtime = time.tv_sec;
996
997 /*
998 * If backing off another request or avoiding congestion, don't
999 * send this one now but let timer do it. If not timing a request,
1000 * do it now.
1001 */
1002 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
1003 (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1004 nmp->nm_sent < nmp->nm_cwnd)) {
1005 splx(s);
1006 if (nmp->nm_soflags & PR_CONNREQUIRED)
1007 error = nfs_sndlock(&nmp->nm_iflag, rep);
1008 if (!error) {
1009 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
1010 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
1011 if (nmp->nm_soflags & PR_CONNREQUIRED)
1012 nfs_sndunlock(&nmp->nm_iflag);
1013 }
1014 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
1015 nmp->nm_sent += NFS_CWNDSCALE;
1016 rep->r_flags |= R_SENT;
1017 }
1018 } else {
1019 splx(s);
1020 rep->r_rtt = -1;
1021 }
1022
1023 /*
1024 * Wait for the reply from our send or the timer's.
1025 */
1026 if (!error || error == EPIPE)
1027 error = nfs_reply(rep);
1028
1029 /*
1030 * RPC done, unlink the request.
1031 */
1032 s = splsoftnet();
1033 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
1034 splx(s);
1035
1036 /*
1037 * Decrement the outstanding request count.
1038 */
1039 if (rep->r_flags & R_SENT) {
1040 rep->r_flags &= ~R_SENT; /* paranoia */
1041 nmp->nm_sent -= NFS_CWNDSCALE;
1042 }
1043
1044 /*
1045 * If there was a successful reply and a tprintf msg.
1046 * tprintf a response.
1047 */
1048 if (!error && (rep->r_flags & R_TPRINTFMSG))
1049 nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
1050 "is alive again");
1051 mrep = rep->r_mrep;
1052 md = rep->r_md;
1053 dpos = rep->r_dpos;
1054 if (error) {
1055 m_freem(rep->r_mreq);
1056 free((caddr_t)rep, M_NFSREQ);
1057 return (error);
1058 }
1059
1060 /*
1061 * break down the rpc header and check if ok
1062 */
1063 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1064 if (*tl++ == rpc_msgdenied) {
1065 if (*tl == rpc_mismatch)
1066 error = EOPNOTSUPP;
1067 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
1068 if (!failed_auth) {
1069 failed_auth++;
1070 mheadend->m_next = (struct mbuf *)0;
1071 m_freem(mrep);
1072 m_freem(rep->r_mreq);
1073 goto kerbauth;
1074 } else
1075 error = EAUTH;
1076 } else
1077 error = EACCES;
1078 m_freem(mrep);
1079 m_freem(rep->r_mreq);
1080 free((caddr_t)rep, M_NFSREQ);
1081 return (error);
1082 }
1083
1084 /*
1085 * Grab any Kerberos verifier, otherwise just throw it away.
1086 */
1087 verf_type = fxdr_unsigned(int, *tl++);
1088 i = fxdr_unsigned(int32_t, *tl);
1089 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1090 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1091 if (error)
1092 goto nfsmout;
1093 } else if (i > 0)
1094 nfsm_adv(nfsm_rndup(i));
1095 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1096 /* 0 == ok */
1097 if (*tl == 0) {
1098 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1099 if (*tl != 0) {
1100 error = fxdr_unsigned(int, *tl);
1101 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1102 error == NFSERR_TRYLATER) {
1103 m_freem(mrep);
1104 error = 0;
1105 waituntil = time.tv_sec + trylater_delay;
1106 while (time.tv_sec < waituntil)
1107 (void) tsleep((caddr_t)&lbolt,
1108 PSOCK, "nqnfstry", 0);
1109 trylater_delay *= nfs_backoff[trylater_cnt];
1110 if (trylater_cnt < 7)
1111 trylater_cnt++;
1112 goto tryagain;
1113 }
1114
1115 /*
1116 * If the File Handle was stale, invalidate the
1117 * lookup cache, just in case.
1118 */
1119 if (error == ESTALE)
1120 cache_purge(vp);
1121 if (nmp->nm_flag & NFSMNT_NFSV3) {
1122 *mrp = mrep;
1123 *mdp = md;
1124 *dposp = dpos;
1125 error |= NFSERR_RETERR;
1126 } else
1127 m_freem(mrep);
1128 m_freem(rep->r_mreq);
1129 free((caddr_t)rep, M_NFSREQ);
1130 return (error);
1131 }
1132
1133 #ifndef NFS_V2_ONLY
1134 /*
1135 * For nqnfs, get any lease in reply
1136 */
1137 if (nmp->nm_flag & NFSMNT_NQNFS) {
1138 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1139 if (*tl) {
1140 np = VTONFS(vp);
1141 nqlflag = fxdr_unsigned(int, *tl);
1142 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED);
1143 cachable = fxdr_unsigned(int, *tl++);
1144 reqtime += fxdr_unsigned(int, *tl++);
1145 if (reqtime > time.tv_sec) {
1146 frev = fxdr_hyper(tl);
1147 nqnfs_clientlease(nmp, np, nqlflag,
1148 cachable, reqtime, frev);
1149 }
1150 }
1151 }
1152 #endif
1153 *mrp = mrep;
1154 *mdp = md;
1155 *dposp = dpos;
1156 m_freem(rep->r_mreq);
1157 FREE((caddr_t)rep, M_NFSREQ);
1158 return (0);
1159 }
1160 m_freem(mrep);
1161 error = EPROTONOSUPPORT;
1162 nfsmout:
1163 m_freem(rep->r_mreq);
1164 free((caddr_t)rep, M_NFSREQ);
1165 return (error);
1166 }
1167 #endif /* NFS */
1168
1169 /*
1170 * Generate the rpc reply header
1171 * siz arg. is used to decide if adding a cluster is worthwhile
1172 */
1173 int
1174 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1175 int siz;
1176 struct nfsrv_descript *nd;
1177 struct nfssvc_sock *slp;
1178 int err;
1179 int cache;
1180 u_quad_t *frev;
1181 struct mbuf **mrq;
1182 struct mbuf **mbp;
1183 caddr_t *bposp;
1184 {
1185 u_int32_t *tl;
1186 struct mbuf *mreq;
1187 caddr_t bpos;
1188 struct mbuf *mb, *mb2;
1189
1190 MGETHDR(mreq, M_WAIT, MT_DATA);
1191 mb = mreq;
1192 /*
1193 * If this is a big reply, use a cluster else
1194 * try and leave leading space for the lower level headers.
1195 */
1196 siz += RPC_REPLYSIZ;
1197 if (siz >= max_datalen) {
1198 MCLGET(mreq, M_WAIT);
1199 } else
1200 mreq->m_data += max_hdr;
1201 tl = mtod(mreq, u_int32_t *);
1202 mreq->m_len = 6 * NFSX_UNSIGNED;
1203 bpos = ((caddr_t)tl) + mreq->m_len;
1204 *tl++ = txdr_unsigned(nd->nd_retxid);
1205 *tl++ = rpc_reply;
1206 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1207 *tl++ = rpc_msgdenied;
1208 if (err & NFSERR_AUTHERR) {
1209 *tl++ = rpc_autherr;
1210 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1211 mreq->m_len -= NFSX_UNSIGNED;
1212 bpos -= NFSX_UNSIGNED;
1213 } else {
1214 *tl++ = rpc_mismatch;
1215 *tl++ = txdr_unsigned(RPC_VER2);
1216 *tl = txdr_unsigned(RPC_VER2);
1217 }
1218 } else {
1219 *tl++ = rpc_msgaccepted;
1220
1221 /*
1222 * For Kerberos authentication, we must send the nickname
1223 * verifier back, otherwise just RPCAUTH_NULL.
1224 */
1225 if (nd->nd_flag & ND_KERBFULL) {
1226 struct nfsuid *nuidp;
1227 struct timeval ktvin, ktvout;
1228
1229 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1230 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1231 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1232 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1233 &nuidp->nu_haddr, nd->nd_nam2)))
1234 break;
1235 }
1236 if (nuidp) {
1237 ktvin.tv_sec =
1238 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1239 ktvin.tv_usec =
1240 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1241
1242 /*
1243 * Encrypt the timestamp in ecb mode using the
1244 * session key.
1245 */
1246 #ifdef NFSKERB
1247 XXX
1248 #endif
1249
1250 *tl++ = rpc_auth_kerb;
1251 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1252 *tl = ktvout.tv_sec;
1253 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1254 *tl++ = ktvout.tv_usec;
1255 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1256 } else {
1257 *tl++ = 0;
1258 *tl++ = 0;
1259 }
1260 } else {
1261 *tl++ = 0;
1262 *tl++ = 0;
1263 }
1264 switch (err) {
1265 case EPROGUNAVAIL:
1266 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1267 break;
1268 case EPROGMISMATCH:
1269 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1270 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1271 if (nd->nd_flag & ND_NQNFS) {
1272 *tl++ = txdr_unsigned(3);
1273 *tl = txdr_unsigned(3);
1274 } else {
1275 *tl++ = txdr_unsigned(2);
1276 *tl = txdr_unsigned(3);
1277 }
1278 break;
1279 case EPROCUNAVAIL:
1280 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1281 break;
1282 case EBADRPC:
1283 *tl = txdr_unsigned(RPC_GARBAGE);
1284 break;
1285 default:
1286 *tl = 0;
1287 if (err != NFSERR_RETVOID) {
1288 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1289 if (err)
1290 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1291 else
1292 *tl = 0;
1293 }
1294 break;
1295 };
1296 }
1297
1298 /*
1299 * For nqnfs, piggyback lease as requested.
1300 */
1301 if ((nd->nd_flag & ND_NQNFS) && err == 0) {
1302 if (nd->nd_flag & ND_LEASE) {
1303 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1304 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE);
1305 *tl++ = txdr_unsigned(cache);
1306 *tl++ = txdr_unsigned(nd->nd_duration);
1307 txdr_hyper(*frev, tl);
1308 } else {
1309 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1310 *tl = 0;
1311 }
1312 }
1313 if (mrq != NULL)
1314 *mrq = mreq;
1315 *mbp = mb;
1316 *bposp = bpos;
1317 if (err != 0 && err != NFSERR_RETVOID)
1318 nfsstats.srvrpc_errs++;
1319 return (0);
1320 }
1321
1322 /*
1323 * Nfs timer routine
1324 * Scan the nfsreq list and retranmit any requests that have timed out
1325 * To avoid retransmission attempts on STREAM sockets (in the future) make
1326 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1327 */
1328 void
1329 nfs_timer(arg)
1330 void *arg; /* never used */
1331 {
1332 struct nfsreq *rep;
1333 struct mbuf *m;
1334 struct socket *so;
1335 struct nfsmount *nmp;
1336 int timeo;
1337 int s, error;
1338 #ifdef NFSSERVER
1339 struct nfssvc_sock *slp;
1340 static long lasttime = 0;
1341 u_quad_t cur_usec;
1342 #endif
1343
1344 s = splsoftnet();
1345 for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) {
1346 nmp = rep->r_nmp;
1347 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1348 continue;
1349 if (nfs_sigintr(nmp, rep, rep->r_procp)) {
1350 rep->r_flags |= R_SOFTTERM;
1351 continue;
1352 }
1353 if (rep->r_rtt >= 0) {
1354 rep->r_rtt++;
1355 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1356 timeo = nmp->nm_timeo;
1357 else
1358 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1359 if (nmp->nm_timeouts > 0)
1360 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1361 if (rep->r_rtt <= timeo)
1362 continue;
1363 if (nmp->nm_timeouts < 8)
1364 nmp->nm_timeouts++;
1365 }
1366 /*
1367 * Check for server not responding
1368 */
1369 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1370 rep->r_rexmit > nmp->nm_deadthresh) {
1371 nfs_msg(rep->r_procp,
1372 nmp->nm_mountp->mnt_stat.f_mntfromname,
1373 "not responding");
1374 rep->r_flags |= R_TPRINTFMSG;
1375 }
1376 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1377 nfsstats.rpctimeouts++;
1378 rep->r_flags |= R_SOFTTERM;
1379 continue;
1380 }
1381 if (nmp->nm_sotype != SOCK_DGRAM) {
1382 if (++rep->r_rexmit > NFS_MAXREXMIT)
1383 rep->r_rexmit = NFS_MAXREXMIT;
1384 continue;
1385 }
1386 if ((so = nmp->nm_so) == NULL)
1387 continue;
1388
1389 /*
1390 * If there is enough space and the window allows..
1391 * Resend it
1392 * Set r_rtt to -1 in case we fail to send it now.
1393 */
1394 rep->r_rtt = -1;
1395 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1396 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1397 (rep->r_flags & R_SENT) ||
1398 nmp->nm_sent < nmp->nm_cwnd) &&
1399 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1400 if (so->so_state & SS_ISCONNECTED)
1401 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1402 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1403 else
1404 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1405 nmp->nm_nam, (struct mbuf *)0, (struct proc *)0);
1406 if (error) {
1407 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
1408 #ifdef DEBUG
1409 printf("nfs_timer: ignoring error %d\n",
1410 error);
1411 #endif
1412 so->so_error = 0;
1413 }
1414 } else {
1415 /*
1416 * Iff first send, start timing
1417 * else turn timing off, backoff timer
1418 * and divide congestion window by 2.
1419 */
1420 if (rep->r_flags & R_SENT) {
1421 rep->r_flags &= ~R_TIMING;
1422 if (++rep->r_rexmit > NFS_MAXREXMIT)
1423 rep->r_rexmit = NFS_MAXREXMIT;
1424 nmp->nm_cwnd >>= 1;
1425 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1426 nmp->nm_cwnd = NFS_CWNDSCALE;
1427 nfsstats.rpcretries++;
1428 } else {
1429 rep->r_flags |= R_SENT;
1430 nmp->nm_sent += NFS_CWNDSCALE;
1431 }
1432 rep->r_rtt = 0;
1433 }
1434 }
1435 }
1436
1437 #ifdef NFSSERVER
1438 /*
1439 * Call the nqnfs server timer once a second to handle leases.
1440 */
1441 if (lasttime != time.tv_sec) {
1442 lasttime = time.tv_sec;
1443 nqnfs_serverd();
1444 }
1445
1446 /*
1447 * Scan the write gathering queues for writes that need to be
1448 * completed now.
1449 */
1450 cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec;
1451 for (slp = nfssvc_sockhead.tqh_first; slp != 0;
1452 slp = slp->ns_chain.tqe_next) {
1453 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
1454 nfsrv_wakenfsd(slp);
1455 }
1456 #endif /* NFSSERVER */
1457 splx(s);
1458 callout_reset(&nfs_timer_ch, nfs_ticks, nfs_timer, NULL);
1459 }
1460
1461 /*
1462 * Test for a termination condition pending on the process.
1463 * This is used for NFSMNT_INT mounts.
1464 */
1465 int
1466 nfs_sigintr(nmp, rep, p)
1467 struct nfsmount *nmp;
1468 struct nfsreq *rep;
1469 struct proc *p;
1470 {
1471 sigset_t ss;
1472
1473 if (rep && (rep->r_flags & R_SOFTTERM))
1474 return (EINTR);
1475 if (!(nmp->nm_flag & NFSMNT_INT))
1476 return (0);
1477 if (p) {
1478 sigpending1(p, &ss);
1479 #if 0
1480 sigminusset(&p->p_sigignore, &ss);
1481 #endif
1482 if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) ||
1483 sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) ||
1484 sigismember(&ss, SIGQUIT))
1485 return (EINTR);
1486 }
1487 return (0);
1488 }
1489
1490 /*
1491 * Lock a socket against others.
1492 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1493 * and also to avoid race conditions between the processes with nfs requests
1494 * in progress when a reconnect is necessary.
1495 */
1496 int
1497 nfs_sndlock(flagp, rep)
1498 int *flagp;
1499 struct nfsreq *rep;
1500 {
1501 struct proc *p;
1502 int slpflag = 0, slptimeo = 0;
1503
1504 if (rep) {
1505 p = rep->r_procp;
1506 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1507 slpflag = PCATCH;
1508 } else
1509 p = (struct proc *)0;
1510 while (*flagp & NFSMNT_SNDLOCK) {
1511 if (nfs_sigintr(rep->r_nmp, rep, p))
1512 return (EINTR);
1513 *flagp |= NFSMNT_WANTSND;
1514 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck",
1515 slptimeo);
1516 if (slpflag == PCATCH) {
1517 slpflag = 0;
1518 slptimeo = 2 * hz;
1519 }
1520 }
1521 *flagp |= NFSMNT_SNDLOCK;
1522 return (0);
1523 }
1524
1525 /*
1526 * Unlock the stream socket for others.
1527 */
1528 void
1529 nfs_sndunlock(flagp)
1530 int *flagp;
1531 {
1532
1533 if ((*flagp & NFSMNT_SNDLOCK) == 0)
1534 panic("nfs sndunlock");
1535 *flagp &= ~NFSMNT_SNDLOCK;
1536 if (*flagp & NFSMNT_WANTSND) {
1537 *flagp &= ~NFSMNT_WANTSND;
1538 wakeup((caddr_t)flagp);
1539 }
1540 }
1541
1542 int
1543 nfs_rcvlock(rep)
1544 struct nfsreq *rep;
1545 {
1546 struct nfsmount *nmp = rep->r_nmp;
1547 int *flagp = &nmp->nm_iflag;
1548 int slpflag, slptimeo = 0;
1549
1550 if (*flagp & NFSMNT_DISMNT)
1551 return EIO;
1552
1553 if (*flagp & NFSMNT_INT)
1554 slpflag = PCATCH;
1555 else
1556 slpflag = 0;
1557 while (*flagp & NFSMNT_RCVLOCK) {
1558 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
1559 return (EINTR);
1560 *flagp |= NFSMNT_WANTRCV;
1561 nmp->nm_waiters++;
1562 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk",
1563 slptimeo);
1564 nmp->nm_waiters--;
1565 if (*flagp & NFSMNT_DISMNT) {
1566 wakeup(&nmp->nm_waiters);
1567 return EIO;
1568 }
1569 /* If our reply was received while we were sleeping,
1570 * then just return without taking the lock to avoid a
1571 * situation where a single iod could 'capture' the
1572 * receive lock.
1573 */
1574 if (rep->r_mrep != NULL)
1575 return (EALREADY);
1576 if (slpflag == PCATCH) {
1577 slpflag = 0;
1578 slptimeo = 2 * hz;
1579 }
1580 }
1581 *flagp |= NFSMNT_RCVLOCK;
1582 return (0);
1583 }
1584
1585 /*
1586 * Unlock the stream socket for others.
1587 */
1588 void
1589 nfs_rcvunlock(flagp)
1590 int *flagp;
1591 {
1592
1593 if ((*flagp & NFSMNT_RCVLOCK) == 0)
1594 panic("nfs rcvunlock");
1595 *flagp &= ~NFSMNT_RCVLOCK;
1596 if (*flagp & NFSMNT_WANTRCV) {
1597 *flagp &= ~NFSMNT_WANTRCV;
1598 wakeup((caddr_t)flagp);
1599 }
1600 }
1601
1602 /*
1603 * Parse an RPC request
1604 * - verify it
1605 * - fill in the cred struct.
1606 */
1607 int
1608 nfs_getreq(nd, nfsd, has_header)
1609 struct nfsrv_descript *nd;
1610 struct nfsd *nfsd;
1611 int has_header;
1612 {
1613 int len, i;
1614 u_int32_t *tl;
1615 int32_t t1;
1616 struct uio uio;
1617 struct iovec iov;
1618 caddr_t dpos, cp2, cp;
1619 u_int32_t nfsvers, auth_type;
1620 uid_t nickuid;
1621 int error = 0, nqnfs = 0, ticklen;
1622 struct mbuf *mrep, *md;
1623 struct nfsuid *nuidp;
1624 struct timeval tvin, tvout;
1625
1626 mrep = nd->nd_mrep;
1627 md = nd->nd_md;
1628 dpos = nd->nd_dpos;
1629 if (has_header) {
1630 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1631 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1632 if (*tl++ != rpc_call) {
1633 m_freem(mrep);
1634 return (EBADRPC);
1635 }
1636 } else
1637 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1638 nd->nd_repstat = 0;
1639 nd->nd_flag = 0;
1640 if (*tl++ != rpc_vers) {
1641 nd->nd_repstat = ERPCMISMATCH;
1642 nd->nd_procnum = NFSPROC_NOOP;
1643 return (0);
1644 }
1645 if (*tl != nfs_prog) {
1646 if (*tl == nqnfs_prog)
1647 nqnfs++;
1648 else {
1649 nd->nd_repstat = EPROGUNAVAIL;
1650 nd->nd_procnum = NFSPROC_NOOP;
1651 return (0);
1652 }
1653 }
1654 tl++;
1655 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1656 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) ||
1657 (nfsvers != NQNFS_VER3 && nqnfs)) {
1658 nd->nd_repstat = EPROGMISMATCH;
1659 nd->nd_procnum = NFSPROC_NOOP;
1660 return (0);
1661 }
1662 if (nqnfs)
1663 nd->nd_flag = (ND_NFSV3 | ND_NQNFS);
1664 else if (nfsvers == NFS_VER3)
1665 nd->nd_flag = ND_NFSV3;
1666 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1667 if (nd->nd_procnum == NFSPROC_NULL)
1668 return (0);
1669 if (nd->nd_procnum >= NFS_NPROCS ||
1670 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
1671 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1672 nd->nd_repstat = EPROCUNAVAIL;
1673 nd->nd_procnum = NFSPROC_NOOP;
1674 return (0);
1675 }
1676 if ((nd->nd_flag & ND_NFSV3) == 0)
1677 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1678 auth_type = *tl++;
1679 len = fxdr_unsigned(int, *tl++);
1680 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1681 m_freem(mrep);
1682 return (EBADRPC);
1683 }
1684
1685 nd->nd_flag &= ~ND_KERBAUTH;
1686 /*
1687 * Handle auth_unix or auth_kerb.
1688 */
1689 if (auth_type == rpc_auth_unix) {
1690 len = fxdr_unsigned(int, *++tl);
1691 if (len < 0 || len > NFS_MAXNAMLEN) {
1692 m_freem(mrep);
1693 return (EBADRPC);
1694 }
1695 nfsm_adv(nfsm_rndup(len));
1696 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1697 memset((caddr_t)&nd->nd_cr, 0, sizeof (struct ucred));
1698 nd->nd_cr.cr_ref = 1;
1699 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
1700 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
1701 len = fxdr_unsigned(int, *tl);
1702 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
1703 m_freem(mrep);
1704 return (EBADRPC);
1705 }
1706 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
1707 for (i = 0; i < len; i++)
1708 if (i < NGROUPS)
1709 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
1710 else
1711 tl++;
1712 nd->nd_cr.cr_ngroups = (len > NGROUPS) ? NGROUPS : len;
1713 if (nd->nd_cr.cr_ngroups > 1)
1714 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
1715 len = fxdr_unsigned(int, *++tl);
1716 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1717 m_freem(mrep);
1718 return (EBADRPC);
1719 }
1720 if (len > 0)
1721 nfsm_adv(nfsm_rndup(len));
1722 } else if (auth_type == rpc_auth_kerb) {
1723 switch (fxdr_unsigned(int, *tl++)) {
1724 case RPCAKN_FULLNAME:
1725 ticklen = fxdr_unsigned(int, *tl);
1726 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
1727 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
1728 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
1729 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
1730 m_freem(mrep);
1731 return (EBADRPC);
1732 }
1733 uio.uio_offset = 0;
1734 uio.uio_iov = &iov;
1735 uio.uio_iovcnt = 1;
1736 uio.uio_segflg = UIO_SYSSPACE;
1737 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
1738 iov.iov_len = RPCAUTH_MAXSIZ - 4;
1739 nfsm_mtouio(&uio, uio.uio_resid);
1740 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1741 if (*tl++ != rpc_auth_kerb ||
1742 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
1743 printf("Bad kerb verifier\n");
1744 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1745 nd->nd_procnum = NFSPROC_NOOP;
1746 return (0);
1747 }
1748 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
1749 tl = (u_int32_t *)cp;
1750 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
1751 printf("Not fullname kerb verifier\n");
1752 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1753 nd->nd_procnum = NFSPROC_NOOP;
1754 return (0);
1755 }
1756 cp += NFSX_UNSIGNED;
1757 memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED);
1758 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
1759 nd->nd_flag |= ND_KERBFULL;
1760 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
1761 break;
1762 case RPCAKN_NICKNAME:
1763 if (len != 2 * NFSX_UNSIGNED) {
1764 printf("Kerb nickname short\n");
1765 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
1766 nd->nd_procnum = NFSPROC_NOOP;
1767 return (0);
1768 }
1769 nickuid = fxdr_unsigned(uid_t, *tl);
1770 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1771 if (*tl++ != rpc_auth_kerb ||
1772 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
1773 printf("Kerb nick verifier bad\n");
1774 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1775 nd->nd_procnum = NFSPROC_NOOP;
1776 return (0);
1777 }
1778 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1779 tvin.tv_sec = *tl++;
1780 tvin.tv_usec = *tl;
1781
1782 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
1783 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1784 if (nuidp->nu_cr.cr_uid == nickuid &&
1785 (!nd->nd_nam2 ||
1786 netaddr_match(NU_NETFAM(nuidp),
1787 &nuidp->nu_haddr, nd->nd_nam2)))
1788 break;
1789 }
1790 if (!nuidp) {
1791 nd->nd_repstat =
1792 (NFSERR_AUTHERR|AUTH_REJECTCRED);
1793 nd->nd_procnum = NFSPROC_NOOP;
1794 return (0);
1795 }
1796
1797 /*
1798 * Now, decrypt the timestamp using the session key
1799 * and validate it.
1800 */
1801 #ifdef NFSKERB
1802 XXX
1803 #endif
1804
1805 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
1806 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
1807 if (nuidp->nu_expire < time.tv_sec ||
1808 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
1809 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
1810 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
1811 nuidp->nu_expire = 0;
1812 nd->nd_repstat =
1813 (NFSERR_AUTHERR|AUTH_REJECTVERF);
1814 nd->nd_procnum = NFSPROC_NOOP;
1815 return (0);
1816 }
1817 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
1818 nd->nd_flag |= ND_KERBNICK;
1819 };
1820 } else {
1821 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
1822 nd->nd_procnum = NFSPROC_NOOP;
1823 return (0);
1824 }
1825
1826 /*
1827 * For nqnfs, get piggybacked lease request.
1828 */
1829 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
1830 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1831 nd->nd_flag |= fxdr_unsigned(int, *tl);
1832 if (nd->nd_flag & ND_LEASE) {
1833 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1834 nd->nd_duration = fxdr_unsigned(u_int32_t, *tl);
1835 } else
1836 nd->nd_duration = NQ_MINLEASE;
1837 } else
1838 nd->nd_duration = NQ_MINLEASE;
1839 nd->nd_md = md;
1840 nd->nd_dpos = dpos;
1841 return (0);
1842 nfsmout:
1843 return (error);
1844 }
1845
1846 int
1847 nfs_msg(p, server, msg)
1848 struct proc *p;
1849 char *server, *msg;
1850 {
1851 tpr_t tpr;
1852
1853 if (p)
1854 tpr = tprintf_open(p);
1855 else
1856 tpr = NULL;
1857 tprintf(tpr, "nfs server %s: %s\n", server, msg);
1858 tprintf_close(tpr);
1859 return (0);
1860 }
1861
1862 #ifdef NFSSERVER
1863 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
1864 struct nfssvc_sock *, struct proc *,
1865 struct mbuf **)) = {
1866 nfsrv_null,
1867 nfsrv_getattr,
1868 nfsrv_setattr,
1869 nfsrv_lookup,
1870 nfsrv3_access,
1871 nfsrv_readlink,
1872 nfsrv_read,
1873 nfsrv_write,
1874 nfsrv_create,
1875 nfsrv_mkdir,
1876 nfsrv_symlink,
1877 nfsrv_mknod,
1878 nfsrv_remove,
1879 nfsrv_rmdir,
1880 nfsrv_rename,
1881 nfsrv_link,
1882 nfsrv_readdir,
1883 nfsrv_readdirplus,
1884 nfsrv_statfs,
1885 nfsrv_fsinfo,
1886 nfsrv_pathconf,
1887 nfsrv_commit,
1888 nqnfsrv_getlease,
1889 nqnfsrv_vacated,
1890 nfsrv_noop,
1891 nfsrv_noop
1892 };
1893
1894 /*
1895 * Socket upcall routine for the nfsd sockets.
1896 * The caddr_t arg is a pointer to the "struct nfssvc_sock".
1897 * Essentially do as much as possible non-blocking, else punt and it will
1898 * be called with M_WAIT from an nfsd.
1899 */
1900 void
1901 nfsrv_rcv(so, arg, waitflag)
1902 struct socket *so;
1903 caddr_t arg;
1904 int waitflag;
1905 {
1906 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
1907 struct mbuf *m;
1908 struct mbuf *mp, *nam;
1909 struct uio auio;
1910 int flags, error;
1911
1912 if ((slp->ns_flag & SLP_VALID) == 0)
1913 return;
1914 #ifdef notdef
1915 /*
1916 * Define this to test for nfsds handling this under heavy load.
1917 */
1918 if (waitflag == M_DONTWAIT) {
1919 slp->ns_flag |= SLP_NEEDQ; goto dorecs;
1920 }
1921 #endif
1922 auio.uio_procp = NULL;
1923 if (so->so_type == SOCK_STREAM) {
1924 /*
1925 * If there are already records on the queue, defer soreceive()
1926 * to an nfsd so that there is feedback to the TCP layer that
1927 * the nfs servers are heavily loaded.
1928 */
1929 if (slp->ns_rec && waitflag == M_DONTWAIT) {
1930 slp->ns_flag |= SLP_NEEDQ;
1931 goto dorecs;
1932 }
1933
1934 /*
1935 * Do soreceive().
1936 */
1937 auio.uio_resid = 1000000000;
1938 flags = MSG_DONTWAIT;
1939 error = (*so->so_receive)(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
1940 if (error || mp == (struct mbuf *)0) {
1941 if (error == EWOULDBLOCK)
1942 slp->ns_flag |= SLP_NEEDQ;
1943 else
1944 slp->ns_flag |= SLP_DISCONN;
1945 goto dorecs;
1946 }
1947 m = mp;
1948 if (slp->ns_rawend) {
1949 slp->ns_rawend->m_next = m;
1950 slp->ns_cc += 1000000000 - auio.uio_resid;
1951 } else {
1952 slp->ns_raw = m;
1953 slp->ns_cc = 1000000000 - auio.uio_resid;
1954 }
1955 while (m->m_next)
1956 m = m->m_next;
1957 slp->ns_rawend = m;
1958
1959 /*
1960 * Now try and parse record(s) out of the raw stream data.
1961 */
1962 error = nfsrv_getstream(slp, waitflag);
1963 if (error) {
1964 if (error == EPERM)
1965 slp->ns_flag |= SLP_DISCONN;
1966 else
1967 slp->ns_flag |= SLP_NEEDQ;
1968 }
1969 } else {
1970 do {
1971 auio.uio_resid = 1000000000;
1972 flags = MSG_DONTWAIT;
1973 error = (*so->so_receive)(so, &nam, &auio, &mp,
1974 (struct mbuf **)0, &flags);
1975 if (mp) {
1976 if (nam) {
1977 m = nam;
1978 m->m_next = mp;
1979 } else
1980 m = mp;
1981 if (slp->ns_recend)
1982 slp->ns_recend->m_nextpkt = m;
1983 else
1984 slp->ns_rec = m;
1985 slp->ns_recend = m;
1986 m->m_nextpkt = (struct mbuf *)0;
1987 }
1988 if (error) {
1989 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
1990 && error != EWOULDBLOCK) {
1991 slp->ns_flag |= SLP_DISCONN;
1992 goto dorecs;
1993 }
1994 }
1995 } while (mp);
1996 }
1997
1998 /*
1999 * Now try and process the request records, non-blocking.
2000 */
2001 dorecs:
2002 if (waitflag == M_DONTWAIT &&
2003 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
2004 nfsrv_wakenfsd(slp);
2005 }
2006
2007 /*
2008 * Try and extract an RPC request from the mbuf data list received on a
2009 * stream socket. The "waitflag" argument indicates whether or not it
2010 * can sleep.
2011 */
2012 int
2013 nfsrv_getstream(slp, waitflag)
2014 struct nfssvc_sock *slp;
2015 int waitflag;
2016 {
2017 struct mbuf *m, **mpp;
2018 char *cp1, *cp2;
2019 int len;
2020 struct mbuf *om, *m2, *recm = NULL;
2021 u_int32_t recmark;
2022
2023 if (slp->ns_flag & SLP_GETSTREAM)
2024 panic("nfs getstream");
2025 slp->ns_flag |= SLP_GETSTREAM;
2026 for (;;) {
2027 if (slp->ns_reclen == 0) {
2028 if (slp->ns_cc < NFSX_UNSIGNED) {
2029 slp->ns_flag &= ~SLP_GETSTREAM;
2030 return (0);
2031 }
2032 m = slp->ns_raw;
2033 if (m->m_len >= NFSX_UNSIGNED) {
2034 memcpy((caddr_t)&recmark, mtod(m, caddr_t), NFSX_UNSIGNED);
2035 m->m_data += NFSX_UNSIGNED;
2036 m->m_len -= NFSX_UNSIGNED;
2037 } else {
2038 cp1 = (caddr_t)&recmark;
2039 cp2 = mtod(m, caddr_t);
2040 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
2041 while (m->m_len == 0) {
2042 m = m->m_next;
2043 cp2 = mtod(m, caddr_t);
2044 }
2045 *cp1++ = *cp2++;
2046 m->m_data++;
2047 m->m_len--;
2048 }
2049 }
2050 slp->ns_cc -= NFSX_UNSIGNED;
2051 recmark = ntohl(recmark);
2052 slp->ns_reclen = recmark & ~0x80000000;
2053 if (recmark & 0x80000000)
2054 slp->ns_flag |= SLP_LASTFRAG;
2055 else
2056 slp->ns_flag &= ~SLP_LASTFRAG;
2057 if (slp->ns_reclen > NFS_MAXPACKET) {
2058 slp->ns_flag &= ~SLP_GETSTREAM;
2059 return (EPERM);
2060 }
2061 }
2062
2063 /*
2064 * Now get the record part.
2065 */
2066 if (slp->ns_cc == slp->ns_reclen) {
2067 recm = slp->ns_raw;
2068 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
2069 slp->ns_cc = slp->ns_reclen = 0;
2070 } else if (slp->ns_cc > slp->ns_reclen) {
2071 len = 0;
2072 m = slp->ns_raw;
2073 om = (struct mbuf *)0;
2074 while (len < slp->ns_reclen) {
2075 if ((len + m->m_len) > slp->ns_reclen) {
2076 size_t left = slp->ns_reclen - len;
2077
2078 MGETHDR(m2, waitflag, m->m_type);
2079 if (m2 == NULL) {
2080 slp->ns_flag &= ~SLP_GETSTREAM;
2081 return (EWOULDBLOCK);
2082 }
2083 if (left > MHLEN) {
2084 MCLGET(m2, waitflag);
2085 if (!(m2->m_flags & M_EXT)) {
2086 m_freem(m2);
2087 slp->ns_flag &= ~SLP_GETSTREAM;
2088 return (EWOULDBLOCK);
2089 }
2090 }
2091 memcpy(mtod(m2, caddr_t), mtod(m, caddr_t),
2092 left);
2093 m2->m_len = left;
2094 m->m_data += left;
2095 m->m_len -= left;
2096 if (om) {
2097 om->m_next = m2;
2098 recm = slp->ns_raw;
2099 } else
2100 recm = m2;
2101 len = slp->ns_reclen;
2102 } else if ((len + m->m_len) == slp->ns_reclen) {
2103 om = m;
2104 len += m->m_len;
2105 m = m->m_next;
2106 recm = slp->ns_raw;
2107 om->m_next = (struct mbuf *)0;
2108 } else {
2109 om = m;
2110 len += m->m_len;
2111 m = m->m_next;
2112 }
2113 }
2114 slp->ns_raw = m;
2115 slp->ns_cc -= len;
2116 slp->ns_reclen = 0;
2117 } else {
2118 slp->ns_flag &= ~SLP_GETSTREAM;
2119 return (0);
2120 }
2121
2122 /*
2123 * Accumulate the fragments into a record.
2124 */
2125 mpp = &slp->ns_frag;
2126 while (*mpp)
2127 mpp = &((*mpp)->m_next);
2128 *mpp = recm;
2129 if (slp->ns_flag & SLP_LASTFRAG) {
2130 if (slp->ns_recend)
2131 slp->ns_recend->m_nextpkt = slp->ns_frag;
2132 else
2133 slp->ns_rec = slp->ns_frag;
2134 slp->ns_recend = slp->ns_frag;
2135 slp->ns_frag = (struct mbuf *)0;
2136 }
2137 }
2138 }
2139
2140 /*
2141 * Parse an RPC header.
2142 */
2143 int
2144 nfsrv_dorec(slp, nfsd, ndp)
2145 struct nfssvc_sock *slp;
2146 struct nfsd *nfsd;
2147 struct nfsrv_descript **ndp;
2148 {
2149 struct mbuf *m, *nam;
2150 struct nfsrv_descript *nd;
2151 int error;
2152
2153 *ndp = NULL;
2154 if ((slp->ns_flag & SLP_VALID) == 0 ||
2155 (m = slp->ns_rec) == (struct mbuf *)0)
2156 return (ENOBUFS);
2157 slp->ns_rec = m->m_nextpkt;
2158 if (slp->ns_rec)
2159 m->m_nextpkt = (struct mbuf *)0;
2160 else
2161 slp->ns_recend = (struct mbuf *)0;
2162 if (m->m_type == MT_SONAME) {
2163 nam = m;
2164 m = m->m_next;
2165 nam->m_next = NULL;
2166 } else
2167 nam = NULL;
2168 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2169 M_NFSRVDESC, M_WAITOK);
2170 nd->nd_md = nd->nd_mrep = m;
2171 nd->nd_nam2 = nam;
2172 nd->nd_dpos = mtod(m, caddr_t);
2173 error = nfs_getreq(nd, nfsd, TRUE);
2174 if (error) {
2175 m_freem(nam);
2176 free((caddr_t)nd, M_NFSRVDESC);
2177 return (error);
2178 }
2179 *ndp = nd;
2180 nfsd->nfsd_nd = nd;
2181 return (0);
2182 }
2183
2184
2185 /*
2186 * Search for a sleeping nfsd and wake it up.
2187 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2188 * running nfsds will go look for the work in the nfssvc_sock list.
2189 */
2190 void
2191 nfsrv_wakenfsd(slp)
2192 struct nfssvc_sock *slp;
2193 {
2194 struct nfsd *nd;
2195
2196 if ((slp->ns_flag & SLP_VALID) == 0)
2197 return;
2198 for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) {
2199 if (nd->nfsd_flag & NFSD_WAITING) {
2200 nd->nfsd_flag &= ~NFSD_WAITING;
2201 if (nd->nfsd_slp)
2202 panic("nfsd wakeup");
2203 slp->ns_sref++;
2204 nd->nfsd_slp = slp;
2205 wakeup((caddr_t)nd);
2206 return;
2207 }
2208 }
2209 slp->ns_flag |= SLP_DOREC;
2210 nfsd_head_flag |= NFSD_CHECKSLP;
2211 }
2212 #endif /* NFSSERVER */
2213