nfs_socket.c revision 1.66.2.2 1 /* $NetBSD: nfs_socket.c,v 1.66.2.2 2001/06/21 20:09:34 nathanw Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1991, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
39 */
40
41 /*
42 * Socket operations for use by nfs
43 */
44
45 #include "fs_nfs.h"
46 #include "opt_nfs.h"
47 #include "opt_nfsserver.h"
48 #include "opt_inet.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/callout.h>
53 #include <sys/lwp.h>
54 #include <sys/proc.h>
55 #include <sys/mount.h>
56 #include <sys/kernel.h>
57 #include <sys/mbuf.h>
58 #include <sys/vnode.h>
59 #include <sys/domain.h>
60 #include <sys/protosw.h>
61 #include <sys/socket.h>
62 #include <sys/socketvar.h>
63 #include <sys/syslog.h>
64 #include <sys/tprintf.h>
65 #include <sys/namei.h>
66 #include <sys/signal.h>
67 #include <sys/signalvar.h>
68
69 #include <netinet/in.h>
70 #include <netinet/tcp.h>
71
72 #include <nfs/rpcv2.h>
73 #include <nfs/nfsproto.h>
74 #include <nfs/nfs.h>
75 #include <nfs/xdr_subs.h>
76 #include <nfs/nfsm_subs.h>
77 #include <nfs/nfsmount.h>
78 #include <nfs/nfsnode.h>
79 #include <nfs/nfsrtt.h>
80 #include <nfs/nqnfs.h>
81 #include <nfs/nfs_var.h>
82
83 #define TRUE 1
84 #define FALSE 0
85
86 /*
87 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
88 * Use the mean and mean deviation of rtt for the appropriate type of rpc
89 * for the frequent rpcs and a default for the others.
90 * The justification for doing "other" this way is that these rpcs
91 * happen so infrequently that timer est. would probably be stale.
92 * Also, since many of these rpcs are
93 * non-idempotent, a conservative timeout is desired.
94 * getattr, lookup - A+2D
95 * read, write - A+4D
96 * other - nm_timeo
97 */
98 #define NFS_RTO(n, t) \
99 ((t) == 0 ? (n)->nm_timeo : \
100 ((t) < 3 ? \
101 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
102 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
103 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
104 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
105 /*
106 * External data, mostly RPC constants in XDR form
107 */
108 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
109 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
110 rpc_auth_kerb;
111 extern u_int32_t nfs_prog, nqnfs_prog;
112 extern time_t nqnfsstarttime;
113 extern struct nfsstats nfsstats;
114 extern int nfsv3_procid[NFS_NPROCS];
115 extern int nfs_ticks;
116
117 /*
118 * Defines which timer to use for the procnum.
119 * 0 - default
120 * 1 - getattr
121 * 2 - lookup
122 * 3 - read
123 * 4 - write
124 */
125 static const int proct[NFS_NPROCS] = {
126 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
127 0, 0, 0,
128 };
129
130 /*
131 * There is a congestion window for outstanding rpcs maintained per mount
132 * point. The cwnd size is adjusted in roughly the way that:
133 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
134 * SIGCOMM '88". ACM, August 1988.
135 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
136 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
137 * of rpcs is in progress.
138 * (The sent count and cwnd are scaled for integer arith.)
139 * Variants of "slow start" were tried and were found to be too much of a
140 * performance hit (ave. rtt 3 times larger),
141 * I suspect due to the large rtt that nfs rpcs have.
142 */
143 #define NFS_CWNDSCALE 256
144 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
145 static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
146 int nfsrtton = 0;
147 struct nfsrtt nfsrtt;
148
149 struct callout nfs_timer_ch = CALLOUT_INITIALIZER;
150
151 /*
152 * Initialize sockets and congestion for a new NFS connection.
153 * We do not free the sockaddr if error.
154 */
155 int
156 nfs_connect(nmp, rep)
157 struct nfsmount *nmp;
158 struct nfsreq *rep;
159 {
160 struct socket *so;
161 int s, error, rcvreserve, sndreserve;
162 struct sockaddr *saddr;
163 struct sockaddr_in *sin;
164 #ifdef INET6
165 struct sockaddr_in6 *sin6;
166 #endif
167 struct mbuf *m;
168 u_int16_t tport;
169
170 nmp->nm_so = (struct socket *)0;
171 saddr = mtod(nmp->nm_nam, struct sockaddr *);
172 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
173 nmp->nm_soproto);
174 if (error)
175 goto bad;
176 so = nmp->nm_so;
177 nmp->nm_soflags = so->so_proto->pr_flags;
178
179 /*
180 * Some servers require that the client port be a reserved port number.
181 */
182 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
183 MGET(m, M_WAIT, MT_SONAME);
184 sin = mtod(m, struct sockaddr_in *);
185 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
186 sin->sin_family = AF_INET;
187 sin->sin_addr.s_addr = INADDR_ANY;
188 tport = IPPORT_RESERVED - 1;
189 sin->sin_port = htons(tport);
190 while ((error = sobind(so, m, &proc0)) == EADDRINUSE &&
191 --tport > IPPORT_RESERVED / 2)
192 sin->sin_port = htons(tport);
193 m_freem(m);
194 if (error)
195 goto bad;
196 }
197 #ifdef INET6
198 if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) {
199 MGET(m, M_WAIT, MT_SONAME);
200 sin6 = mtod(m, struct sockaddr_in6 *);
201 sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6);
202 sin6->sin6_family = AF_INET6;
203 sin6->sin6_addr = in6addr_any;
204 tport = IPV6PORT_RESERVED - 1;
205 sin6->sin6_port = htons(tport);
206 while ((error = sobind(so, m, &proc0)) == EADDRINUSE &&
207 --tport > IPV6PORT_RESERVED / 2)
208 sin6->sin6_port = htons(tport);
209 m_freem(m);
210 if (error)
211 goto bad;
212 }
213 #endif
214
215 /*
216 * Protocols that do not require connections may be optionally left
217 * unconnected for servers that reply from a port other than NFS_PORT.
218 */
219 if (nmp->nm_flag & NFSMNT_NOCONN) {
220 if (nmp->nm_soflags & PR_CONNREQUIRED) {
221 error = ENOTCONN;
222 goto bad;
223 }
224 } else {
225 error = soconnect(so, nmp->nm_nam);
226 if (error)
227 goto bad;
228
229 /*
230 * Wait for the connection to complete. Cribbed from the
231 * connect system call but with the wait timing out so
232 * that interruptible mounts don't hang here for a long time.
233 */
234 s = splsoftnet();
235 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
236 (void) tsleep((caddr_t)&so->so_timeo, PSOCK,
237 "nfscn1", 2 * hz);
238 if ((so->so_state & SS_ISCONNECTING) &&
239 so->so_error == 0 && rep &&
240 (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){
241 so->so_state &= ~SS_ISCONNECTING;
242 splx(s);
243 goto bad;
244 }
245 }
246 if (so->so_error) {
247 error = so->so_error;
248 so->so_error = 0;
249 splx(s);
250 goto bad;
251 }
252 splx(s);
253 }
254 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
255 so->so_rcv.sb_timeo = (5 * hz);
256 so->so_snd.sb_timeo = (5 * hz);
257 } else {
258 so->so_rcv.sb_timeo = 0;
259 so->so_snd.sb_timeo = 0;
260 }
261 if (nmp->nm_sotype == SOCK_DGRAM) {
262 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
263 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
264 NFS_MAXPKTHDR) * 2;
265 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
266 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
267 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
268 NFS_MAXPKTHDR) * 2;
269 } else {
270 if (nmp->nm_sotype != SOCK_STREAM)
271 panic("nfscon sotype");
272 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
273 MGET(m, M_WAIT, MT_SOOPTS);
274 *mtod(m, int32_t *) = 1;
275 m->m_len = sizeof(int32_t);
276 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
277 }
278 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
279 MGET(m, M_WAIT, MT_SOOPTS);
280 *mtod(m, int32_t *) = 1;
281 m->m_len = sizeof(int32_t);
282 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
283 }
284 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
285 sizeof (u_int32_t)) * 2;
286 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
287 sizeof (u_int32_t)) * 2;
288 }
289 error = soreserve(so, sndreserve, rcvreserve);
290 if (error)
291 goto bad;
292 so->so_rcv.sb_flags |= SB_NOINTR;
293 so->so_snd.sb_flags |= SB_NOINTR;
294
295 /* Initialize other non-zero congestion variables */
296 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
297 nmp->nm_srtt[4] = (NFS_TIMEO << 3);
298 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
299 nmp->nm_sdrtt[3] = nmp->nm_sdrtt[4] = 0;
300 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
301 nmp->nm_sent = 0;
302 nmp->nm_timeouts = 0;
303 return (0);
304
305 bad:
306 nfs_disconnect(nmp);
307 return (error);
308 }
309
310 /*
311 * Reconnect routine:
312 * Called when a connection is broken on a reliable protocol.
313 * - clean up the old socket
314 * - nfs_connect() again
315 * - set R_MUSTRESEND for all outstanding requests on mount point
316 * If this fails the mount point is DEAD!
317 * nb: Must be called with the nfs_sndlock() set on the mount point.
318 */
319 int
320 nfs_reconnect(rep)
321 struct nfsreq *rep;
322 {
323 struct nfsreq *rp;
324 struct nfsmount *nmp = rep->r_nmp;
325 int error;
326
327 nfs_disconnect(nmp);
328 while ((error = nfs_connect(nmp, rep)) != 0) {
329 if (error == EINTR || error == ERESTART)
330 return (EINTR);
331 (void) tsleep((caddr_t)&lbolt, PSOCK, "nfscn2", 0);
332 }
333
334 /*
335 * Loop through outstanding request list and fix up all requests
336 * on old socket.
337 */
338 for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) {
339 if (rp->r_nmp == nmp)
340 rp->r_flags |= R_MUSTRESEND;
341 }
342 return (0);
343 }
344
345 /*
346 * NFS disconnect. Clean up and unlink.
347 */
348 void
349 nfs_disconnect(nmp)
350 struct nfsmount *nmp;
351 {
352 struct socket *so;
353 int drain = 0;
354
355 if (nmp->nm_so) {
356 so = nmp->nm_so;
357 nmp->nm_so = (struct socket *)0;
358 soshutdown(so, 2);
359 drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0;
360 if (drain) {
361 /*
362 * soshutdown() above should wake up the current
363 * listener.
364 * Now wake up those waiting for the recive lock, and
365 * wait for them to go away unhappy, to prevent *nmp
366 * from evaporating while they're sleeping.
367 */
368 while (nmp->nm_waiters > 0) {
369 wakeup (&nmp->nm_iflag);
370 (void) tsleep(&nmp->nm_waiters, PVFS,
371 "nfsdis", 0);
372 }
373 }
374 soclose(so);
375 }
376 #ifdef DIAGNOSTIC
377 if (drain && (nmp->nm_waiters > 0))
378 panic("nfs_disconnect: waiters left after drain?\n");
379 #endif
380 }
381
382 void
383 nfs_safedisconnect(nmp)
384 struct nfsmount *nmp;
385 {
386 struct nfsreq dummyreq;
387
388 memset(&dummyreq, 0, sizeof(dummyreq));
389 dummyreq.r_nmp = nmp;
390 nfs_rcvlock(&dummyreq); /* XXX ignored error return */
391 nfs_disconnect(nmp);
392 nfs_rcvunlock(&nmp->nm_iflag);
393 }
394
395 /*
396 * This is the nfs send routine. For connection based socket types, it
397 * must be called with an nfs_sndlock() on the socket.
398 * "rep == NULL" indicates that it has been called from a server.
399 * For the client side:
400 * - return EINTR if the RPC is terminated, 0 otherwise
401 * - set R_MUSTRESEND if the send fails for any reason
402 * - do any cleanup required by recoverable socket errors (? ? ?)
403 * For the server side:
404 * - return EINTR or ERESTART if interrupted by a signal
405 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
406 * - do any cleanup required by recoverable socket errors (? ? ?)
407 */
408 int
409 nfs_send(so, nam, top, rep)
410 struct socket *so;
411 struct mbuf *nam;
412 struct mbuf *top;
413 struct nfsreq *rep;
414 {
415 struct mbuf *sendnam;
416 int error, soflags, flags;
417
418 if (rep) {
419 if (rep->r_flags & R_SOFTTERM) {
420 m_freem(top);
421 return (EINTR);
422 }
423 if ((so = rep->r_nmp->nm_so) == NULL) {
424 rep->r_flags |= R_MUSTRESEND;
425 m_freem(top);
426 return (0);
427 }
428 rep->r_flags &= ~R_MUSTRESEND;
429 soflags = rep->r_nmp->nm_soflags;
430 } else
431 soflags = so->so_proto->pr_flags;
432 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
433 sendnam = (struct mbuf *)0;
434 else
435 sendnam = nam;
436 if (so->so_type == SOCK_SEQPACKET)
437 flags = MSG_EOR;
438 else
439 flags = 0;
440
441 error = (*so->so_send)(so, sendnam, (struct uio *)0, top,
442 (struct mbuf *)0, flags);
443 if (error) {
444 if (rep) {
445 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
446 /*
447 * We're too fast for the network/driver,
448 * and UDP isn't flowcontrolled.
449 * We need to resend. This is not fatal,
450 * just try again.
451 *
452 * Could be smarter here by doing some sort
453 * of a backoff, but this is rare.
454 */
455 rep->r_flags |= R_MUSTRESEND;
456 } else {
457 log(LOG_INFO, "nfs send error %d for %s\n",
458 error,
459 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
460 /*
461 * Deal with errors for the client side.
462 */
463 if (rep->r_flags & R_SOFTTERM)
464 error = EINTR;
465 else
466 rep->r_flags |= R_MUSTRESEND;
467 }
468 } else {
469 /*
470 * See above. This error can happen under normal
471 * circumstances and the log is too noisy.
472 * The error will still show up in nfsstat.
473 */
474 if (error != ENOBUFS || so->so_type != SOCK_DGRAM)
475 log(LOG_INFO, "nfsd send error %d\n", error);
476 }
477
478 /*
479 * Handle any recoverable (soft) socket errors here. (? ? ?)
480 */
481 if (error != EINTR && error != ERESTART &&
482 error != EWOULDBLOCK && error != EPIPE)
483 error = 0;
484 }
485 return (error);
486 }
487
488 #ifdef NFS
489 /*
490 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
491 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
492 * Mark and consolidate the data into a new mbuf list.
493 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
494 * small mbufs.
495 * For SOCK_STREAM we must be very careful to read an entire record once
496 * we have read any of it, even if the system call has been interrupted.
497 */
498 int
499 nfs_receive(rep, aname, mp)
500 struct nfsreq *rep;
501 struct mbuf **aname;
502 struct mbuf **mp;
503 {
504 struct socket *so;
505 struct uio auio;
506 struct iovec aio;
507 struct mbuf *m;
508 struct mbuf *control;
509 u_int32_t len;
510 struct mbuf **getnam;
511 int error, sotype, rcvflg;
512 struct proc *p = curproc->l_proc; /* XXX */
513
514 /*
515 * Set up arguments for soreceive()
516 */
517 *mp = (struct mbuf *)0;
518 *aname = (struct mbuf *)0;
519 sotype = rep->r_nmp->nm_sotype;
520
521 /*
522 * For reliable protocols, lock against other senders/receivers
523 * in case a reconnect is necessary.
524 * For SOCK_STREAM, first get the Record Mark to find out how much
525 * more there is to get.
526 * We must lock the socket against other receivers
527 * until we have an entire rpc request/reply.
528 */
529 if (sotype != SOCK_DGRAM) {
530 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep);
531 if (error)
532 return (error);
533 tryagain:
534 /*
535 * Check for fatal errors and resending request.
536 */
537 /*
538 * Ugh: If a reconnect attempt just happened, nm_so
539 * would have changed. NULL indicates a failed
540 * attempt that has essentially shut down this
541 * mount point.
542 */
543 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
544 nfs_sndunlock(&rep->r_nmp->nm_iflag);
545 return (EINTR);
546 }
547 so = rep->r_nmp->nm_so;
548 if (!so) {
549 error = nfs_reconnect(rep);
550 if (error) {
551 nfs_sndunlock(&rep->r_nmp->nm_iflag);
552 return (error);
553 }
554 goto tryagain;
555 }
556 while (rep->r_flags & R_MUSTRESEND) {
557 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
558 nfsstats.rpcretries++;
559 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
560 if (error) {
561 if (error == EINTR || error == ERESTART ||
562 (error = nfs_reconnect(rep)) != 0) {
563 nfs_sndunlock(&rep->r_nmp->nm_iflag);
564 return (error);
565 }
566 goto tryagain;
567 }
568 }
569 nfs_sndunlock(&rep->r_nmp->nm_iflag);
570 if (sotype == SOCK_STREAM) {
571 aio.iov_base = (caddr_t) &len;
572 aio.iov_len = sizeof(u_int32_t);
573 auio.uio_iov = &aio;
574 auio.uio_iovcnt = 1;
575 auio.uio_segflg = UIO_SYSSPACE;
576 auio.uio_rw = UIO_READ;
577 auio.uio_offset = 0;
578 auio.uio_resid = sizeof(u_int32_t);
579 auio.uio_procp = p;
580 do {
581 rcvflg = MSG_WAITALL;
582 error = (*so->so_receive)(so, (struct mbuf **)0, &auio,
583 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
584 if (error == EWOULDBLOCK && rep) {
585 if (rep->r_flags & R_SOFTTERM)
586 return (EINTR);
587 }
588 } while (error == EWOULDBLOCK);
589 if (!error && auio.uio_resid > 0) {
590 /*
591 * Don't log a 0 byte receive; it means
592 * that the socket has been closed, and
593 * can happen during normal operation
594 * (forcible unmount or Solaris server).
595 */
596 if (auio.uio_resid != sizeof (u_int32_t))
597 log(LOG_INFO,
598 "short receive (%lu/%lu) from nfs server %s\n",
599 (u_long)sizeof(u_int32_t) - auio.uio_resid,
600 (u_long)sizeof(u_int32_t),
601 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
602 error = EPIPE;
603 }
604 if (error)
605 goto errout;
606 len = ntohl(len) & ~0x80000000;
607 /*
608 * This is SERIOUS! We are out of sync with the sender
609 * and forcing a disconnect/reconnect is all I can do.
610 */
611 if (len > NFS_MAXPACKET) {
612 log(LOG_ERR, "%s (%d) from nfs server %s\n",
613 "impossible packet length",
614 len,
615 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
616 error = EFBIG;
617 goto errout;
618 }
619 auio.uio_resid = len;
620 do {
621 rcvflg = MSG_WAITALL;
622 error = (*so->so_receive)(so, (struct mbuf **)0,
623 &auio, mp, (struct mbuf **)0, &rcvflg);
624 } while (error == EWOULDBLOCK || error == EINTR ||
625 error == ERESTART);
626 if (!error && auio.uio_resid > 0) {
627 if (len != auio.uio_resid)
628 log(LOG_INFO,
629 "short receive (%lu/%d) from nfs server %s\n",
630 (u_long)len - auio.uio_resid, len,
631 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
632 error = EPIPE;
633 }
634 } else {
635 /*
636 * NB: Since uio_resid is big, MSG_WAITALL is ignored
637 * and soreceive() will return when it has either a
638 * control msg or a data msg.
639 * We have no use for control msg., but must grab them
640 * and then throw them away so we know what is going
641 * on.
642 */
643 auio.uio_resid = len = 100000000; /* Anything Big */
644 auio.uio_procp = p;
645 do {
646 rcvflg = 0;
647 error = (*so->so_receive)(so, (struct mbuf **)0,
648 &auio, mp, &control, &rcvflg);
649 if (control)
650 m_freem(control);
651 if (error == EWOULDBLOCK && rep) {
652 if (rep->r_flags & R_SOFTTERM)
653 return (EINTR);
654 }
655 } while (error == EWOULDBLOCK ||
656 (!error && *mp == NULL && control));
657 if ((rcvflg & MSG_EOR) == 0)
658 printf("Egad!!\n");
659 if (!error && *mp == NULL)
660 error = EPIPE;
661 len -= auio.uio_resid;
662 }
663 errout:
664 if (error && error != EINTR && error != ERESTART) {
665 m_freem(*mp);
666 *mp = (struct mbuf *)0;
667 if (error != EPIPE)
668 log(LOG_INFO,
669 "receive error %d from nfs server %s\n",
670 error,
671 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
672 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep);
673 if (!error)
674 error = nfs_reconnect(rep);
675 if (!error)
676 goto tryagain;
677 else
678 nfs_sndunlock(&rep->r_nmp->nm_iflag);
679 }
680 } else {
681 if ((so = rep->r_nmp->nm_so) == NULL)
682 return (EACCES);
683 if (so->so_state & SS_ISCONNECTED)
684 getnam = (struct mbuf **)0;
685 else
686 getnam = aname;
687 auio.uio_resid = len = 1000000;
688 auio.uio_procp = p;
689 do {
690 rcvflg = 0;
691 error = (*so->so_receive)(so, getnam, &auio, mp,
692 (struct mbuf **)0, &rcvflg);
693 if (error == EWOULDBLOCK &&
694 (rep->r_flags & R_SOFTTERM))
695 return (EINTR);
696 } while (error == EWOULDBLOCK);
697 len -= auio.uio_resid;
698 if (!error && *mp == NULL)
699 error = EPIPE;
700 }
701 if (error) {
702 m_freem(*mp);
703 *mp = (struct mbuf *)0;
704 }
705 return (error);
706 }
707
708 /*
709 * Implement receipt of reply on a socket.
710 * We must search through the list of received datagrams matching them
711 * with outstanding requests using the xid, until ours is found.
712 */
713 /* ARGSUSED */
714 int
715 nfs_reply(myrep)
716 struct nfsreq *myrep;
717 {
718 struct nfsreq *rep;
719 struct nfsmount *nmp = myrep->r_nmp;
720 int32_t t1;
721 struct mbuf *mrep, *nam, *md;
722 u_int32_t rxid, *tl;
723 caddr_t dpos, cp2;
724 int error;
725
726 /*
727 * Loop around until we get our own reply
728 */
729 for (;;) {
730 /*
731 * Lock against other receivers so that I don't get stuck in
732 * sbwait() after someone else has received my reply for me.
733 * Also necessary for connection based protocols to avoid
734 * race conditions during a reconnect.
735 */
736 error = nfs_rcvlock(myrep);
737 if (error == EALREADY)
738 return (0);
739 if (error)
740 return (error);
741 /*
742 * Get the next Rpc reply off the socket
743 */
744 nmp->nm_waiters++;
745 error = nfs_receive(myrep, &nam, &mrep);
746 nfs_rcvunlock(&nmp->nm_iflag);
747 if (error) {
748
749 if (nmp->nm_iflag & NFSMNT_DISMNT) {
750 /*
751 * Oops, we're going away now..
752 */
753 nmp->nm_waiters--;
754 wakeup (&nmp->nm_waiters);
755 return error;
756 }
757 nmp->nm_waiters--;
758 /*
759 * Ignore routing errors on connectionless protocols? ?
760 */
761 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
762 nmp->nm_so->so_error = 0;
763 #ifdef DEBUG
764 printf("nfs_reply: ignoring error %d\n", error);
765 #endif
766 if (myrep->r_flags & R_GETONEREP)
767 return (0);
768 continue;
769 }
770 return (error);
771 }
772 nmp->nm_waiters--;
773 if (nam)
774 m_freem(nam);
775
776 /*
777 * Get the xid and check that it is an rpc reply
778 */
779 md = mrep;
780 dpos = mtod(md, caddr_t);
781 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
782 rxid = *tl++;
783 if (*tl != rpc_reply) {
784 #ifndef NFS_V2_ONLY
785 if (nmp->nm_flag & NFSMNT_NQNFS) {
786 if (nqnfs_callback(nmp, mrep, md, dpos))
787 nfsstats.rpcinvalid++;
788 } else
789 #endif
790 {
791 nfsstats.rpcinvalid++;
792 m_freem(mrep);
793 }
794 nfsmout:
795 if (myrep->r_flags & R_GETONEREP)
796 return (0);
797 continue;
798 }
799
800 /*
801 * Loop through the request list to match up the reply
802 * Iff no match, just drop the datagram
803 */
804 for (rep = nfs_reqq.tqh_first; rep != 0;
805 rep = rep->r_chain.tqe_next) {
806 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
807 /* Found it.. */
808 rep->r_mrep = mrep;
809 rep->r_md = md;
810 rep->r_dpos = dpos;
811 if (nfsrtton) {
812 struct rttl *rt;
813
814 rt = &nfsrtt.rttl[nfsrtt.pos];
815 rt->proc = rep->r_procnum;
816 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
817 rt->sent = nmp->nm_sent;
818 rt->cwnd = nmp->nm_cwnd;
819 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
820 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
821 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
822 rt->tstamp = time;
823 if (rep->r_flags & R_TIMING)
824 rt->rtt = rep->r_rtt;
825 else
826 rt->rtt = 1000000;
827 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
828 }
829 /*
830 * Update congestion window.
831 * Do the additive increase of
832 * one rpc/rtt.
833 */
834 if (nmp->nm_cwnd <= nmp->nm_sent) {
835 nmp->nm_cwnd +=
836 (NFS_CWNDSCALE * NFS_CWNDSCALE +
837 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
838 if (nmp->nm_cwnd > NFS_MAXCWND)
839 nmp->nm_cwnd = NFS_MAXCWND;
840 }
841 rep->r_flags &= ~R_SENT;
842 nmp->nm_sent -= NFS_CWNDSCALE;
843 /*
844 * Update rtt using a gain of 0.125 on the mean
845 * and a gain of 0.25 on the deviation.
846 */
847 if (rep->r_flags & R_TIMING) {
848 /*
849 * Since the timer resolution of
850 * NFS_HZ is so course, it can often
851 * result in r_rtt == 0. Since
852 * r_rtt == N means that the actual
853 * rtt is between N+dt and N+2-dt ticks,
854 * add 1.
855 */
856 t1 = rep->r_rtt + 1;
857 t1 -= (NFS_SRTT(rep) >> 3);
858 NFS_SRTT(rep) += t1;
859 if (t1 < 0)
860 t1 = -t1;
861 t1 -= (NFS_SDRTT(rep) >> 2);
862 NFS_SDRTT(rep) += t1;
863 }
864 nmp->nm_timeouts = 0;
865 break;
866 }
867 }
868 /*
869 * If not matched to a request, drop it.
870 * If it's mine, get out.
871 */
872 if (rep == 0) {
873 nfsstats.rpcunexpected++;
874 m_freem(mrep);
875 } else if (rep == myrep) {
876 if (rep->r_mrep == NULL)
877 panic("nfsreply nil");
878 return (0);
879 }
880 if (myrep->r_flags & R_GETONEREP)
881 return (0);
882 }
883 }
884
885 /*
886 * nfs_request - goes something like this
887 * - fill in request struct
888 * - links it into list
889 * - calls nfs_send() for first transmit
890 * - calls nfs_receive() to get reply
891 * - break down rpc header and return with nfs reply pointed to
892 * by mrep or error
893 * nb: always frees up mreq mbuf list
894 */
895 int
896 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp)
897 struct vnode *vp;
898 struct mbuf *mrest;
899 int procnum;
900 struct proc *procp;
901 struct ucred *cred;
902 struct mbuf **mrp;
903 struct mbuf **mdp;
904 caddr_t *dposp;
905 {
906 struct mbuf *m, *mrep;
907 struct nfsreq *rep;
908 u_int32_t *tl;
909 int i;
910 struct nfsmount *nmp;
911 struct mbuf *md, *mheadend;
912 char nickv[RPCX_NICKVERF];
913 time_t reqtime, waituntil;
914 caddr_t dpos, cp2;
915 int t1, s, error = 0, mrest_len, auth_len, auth_type;
916 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
917 int verf_len, verf_type;
918 u_int32_t xid;
919 char *auth_str, *verf_str;
920 NFSKERBKEY_T key; /* save session key */
921 #ifndef NFS_V2_ONLY
922 int nqlflag, cachable;
923 u_quad_t frev;
924 struct nfsnode *np;
925 #endif
926
927 KASSERT(cred != NULL);
928 nmp = VFSTONFS(vp->v_mount);
929 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
930 rep->r_nmp = nmp;
931 rep->r_vp = vp;
932 rep->r_procp = procp;
933 rep->r_procnum = procnum;
934 i = 0;
935 m = mrest;
936 while (m) {
937 i += m->m_len;
938 m = m->m_next;
939 }
940 mrest_len = i;
941
942 /*
943 * Get the RPC header with authorization.
944 */
945 kerbauth:
946 verf_str = auth_str = (char *)0;
947 if (nmp->nm_flag & NFSMNT_KERB) {
948 verf_str = nickv;
949 verf_len = sizeof (nickv);
950 auth_type = RPCAUTH_KERB4;
951 memset((caddr_t)key, 0, sizeof (key));
952 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
953 &auth_len, verf_str, verf_len)) {
954 error = nfs_getauth(nmp, rep, cred, &auth_str,
955 &auth_len, verf_str, &verf_len, key);
956 if (error) {
957 free((caddr_t)rep, M_NFSREQ);
958 m_freem(mrest);
959 return (error);
960 }
961 }
962 } else {
963 auth_type = RPCAUTH_UNIX;
964 auth_len = (((cred->cr_ngroups > nmp->nm_numgrps) ?
965 nmp->nm_numgrps : cred->cr_ngroups) << 2) +
966 5 * NFSX_UNSIGNED;
967 }
968 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
969 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
970 if (auth_str)
971 free(auth_str, M_TEMP);
972
973 /*
974 * For stream protocols, insert a Sun RPC Record Mark.
975 */
976 if (nmp->nm_sotype == SOCK_STREAM) {
977 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
978 *mtod(m, u_int32_t *) = htonl(0x80000000 |
979 (m->m_pkthdr.len - NFSX_UNSIGNED));
980 }
981 rep->r_mreq = m;
982 rep->r_xid = xid;
983 tryagain:
984 if (nmp->nm_flag & NFSMNT_SOFT)
985 rep->r_retry = nmp->nm_retry;
986 else
987 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
988 rep->r_rtt = rep->r_rexmit = 0;
989 if (proct[procnum] > 0)
990 rep->r_flags = R_TIMING;
991 else
992 rep->r_flags = 0;
993 rep->r_mrep = NULL;
994
995 /*
996 * Do the client side RPC.
997 */
998 nfsstats.rpcrequests++;
999 /*
1000 * Chain request into list of outstanding requests. Be sure
1001 * to put it LAST so timer finds oldest requests first.
1002 */
1003 s = splsoftnet();
1004 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
1005
1006 /* Get send time for nqnfs */
1007 reqtime = time.tv_sec;
1008
1009 /*
1010 * If backing off another request or avoiding congestion, don't
1011 * send this one now but let timer do it. If not timing a request,
1012 * do it now.
1013 */
1014 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
1015 (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1016 nmp->nm_sent < nmp->nm_cwnd)) {
1017 splx(s);
1018 if (nmp->nm_soflags & PR_CONNREQUIRED)
1019 error = nfs_sndlock(&nmp->nm_iflag, rep);
1020 if (!error) {
1021 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
1022 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
1023 if (nmp->nm_soflags & PR_CONNREQUIRED)
1024 nfs_sndunlock(&nmp->nm_iflag);
1025 }
1026 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
1027 nmp->nm_sent += NFS_CWNDSCALE;
1028 rep->r_flags |= R_SENT;
1029 }
1030 } else {
1031 splx(s);
1032 rep->r_rtt = -1;
1033 }
1034
1035 /*
1036 * Wait for the reply from our send or the timer's.
1037 */
1038 if (!error || error == EPIPE)
1039 error = nfs_reply(rep);
1040
1041 /*
1042 * RPC done, unlink the request.
1043 */
1044 s = splsoftnet();
1045 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
1046 splx(s);
1047
1048 /*
1049 * Decrement the outstanding request count.
1050 */
1051 if (rep->r_flags & R_SENT) {
1052 rep->r_flags &= ~R_SENT; /* paranoia */
1053 nmp->nm_sent -= NFS_CWNDSCALE;
1054 }
1055
1056 /*
1057 * If there was a successful reply and a tprintf msg.
1058 * tprintf a response.
1059 */
1060 if (!error && (rep->r_flags & R_TPRINTFMSG))
1061 nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
1062 "is alive again");
1063 mrep = rep->r_mrep;
1064 md = rep->r_md;
1065 dpos = rep->r_dpos;
1066 if (error) {
1067 m_freem(rep->r_mreq);
1068 free((caddr_t)rep, M_NFSREQ);
1069 return (error);
1070 }
1071
1072 /*
1073 * break down the rpc header and check if ok
1074 */
1075 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1076 if (*tl++ == rpc_msgdenied) {
1077 if (*tl == rpc_mismatch)
1078 error = EOPNOTSUPP;
1079 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
1080 if (!failed_auth) {
1081 failed_auth++;
1082 mheadend->m_next = (struct mbuf *)0;
1083 m_freem(mrep);
1084 m_freem(rep->r_mreq);
1085 goto kerbauth;
1086 } else
1087 error = EAUTH;
1088 } else
1089 error = EACCES;
1090 m_freem(mrep);
1091 m_freem(rep->r_mreq);
1092 free((caddr_t)rep, M_NFSREQ);
1093 return (error);
1094 }
1095
1096 /*
1097 * Grab any Kerberos verifier, otherwise just throw it away.
1098 */
1099 verf_type = fxdr_unsigned(int, *tl++);
1100 i = fxdr_unsigned(int32_t, *tl);
1101 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1102 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1103 if (error)
1104 goto nfsmout;
1105 } else if (i > 0)
1106 nfsm_adv(nfsm_rndup(i));
1107 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1108 /* 0 == ok */
1109 if (*tl == 0) {
1110 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1111 if (*tl != 0) {
1112 error = fxdr_unsigned(int, *tl);
1113 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1114 error == NFSERR_TRYLATER) {
1115 m_freem(mrep);
1116 error = 0;
1117 waituntil = time.tv_sec + trylater_delay;
1118 while (time.tv_sec < waituntil)
1119 (void) tsleep((caddr_t)&lbolt,
1120 PSOCK, "nqnfstry", 0);
1121 trylater_delay *= nfs_backoff[trylater_cnt];
1122 if (trylater_cnt < 7)
1123 trylater_cnt++;
1124 goto tryagain;
1125 }
1126
1127 /*
1128 * If the File Handle was stale, invalidate the
1129 * lookup cache, just in case.
1130 */
1131 if (error == ESTALE)
1132 cache_purge(vp);
1133 if (nmp->nm_flag & NFSMNT_NFSV3) {
1134 *mrp = mrep;
1135 *mdp = md;
1136 *dposp = dpos;
1137 error |= NFSERR_RETERR;
1138 } else
1139 m_freem(mrep);
1140 m_freem(rep->r_mreq);
1141 free((caddr_t)rep, M_NFSREQ);
1142 return (error);
1143 }
1144
1145 #ifndef NFS_V2_ONLY
1146 /*
1147 * For nqnfs, get any lease in reply
1148 */
1149 if (nmp->nm_flag & NFSMNT_NQNFS) {
1150 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1151 if (*tl) {
1152 np = VTONFS(vp);
1153 nqlflag = fxdr_unsigned(int, *tl);
1154 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED);
1155 cachable = fxdr_unsigned(int, *tl++);
1156 reqtime += fxdr_unsigned(int, *tl++);
1157 if (reqtime > time.tv_sec) {
1158 frev = fxdr_hyper(tl);
1159 nqnfs_clientlease(nmp, np, nqlflag,
1160 cachable, reqtime, frev);
1161 }
1162 }
1163 }
1164 #endif
1165 *mrp = mrep;
1166 *mdp = md;
1167 *dposp = dpos;
1168 m_freem(rep->r_mreq);
1169 FREE((caddr_t)rep, M_NFSREQ);
1170 return (0);
1171 }
1172 m_freem(mrep);
1173 error = EPROTONOSUPPORT;
1174 nfsmout:
1175 m_freem(rep->r_mreq);
1176 free((caddr_t)rep, M_NFSREQ);
1177 return (error);
1178 }
1179 #endif /* NFS */
1180
1181 /*
1182 * Generate the rpc reply header
1183 * siz arg. is used to decide if adding a cluster is worthwhile
1184 */
1185 int
1186 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1187 int siz;
1188 struct nfsrv_descript *nd;
1189 struct nfssvc_sock *slp;
1190 int err;
1191 int cache;
1192 u_quad_t *frev;
1193 struct mbuf **mrq;
1194 struct mbuf **mbp;
1195 caddr_t *bposp;
1196 {
1197 u_int32_t *tl;
1198 struct mbuf *mreq;
1199 caddr_t bpos;
1200 struct mbuf *mb, *mb2;
1201
1202 MGETHDR(mreq, M_WAIT, MT_DATA);
1203 mb = mreq;
1204 /*
1205 * If this is a big reply, use a cluster else
1206 * try and leave leading space for the lower level headers.
1207 */
1208 siz += RPC_REPLYSIZ;
1209 if (siz >= max_datalen) {
1210 MCLGET(mreq, M_WAIT);
1211 } else
1212 mreq->m_data += max_hdr;
1213 tl = mtod(mreq, u_int32_t *);
1214 mreq->m_len = 6 * NFSX_UNSIGNED;
1215 bpos = ((caddr_t)tl) + mreq->m_len;
1216 *tl++ = txdr_unsigned(nd->nd_retxid);
1217 *tl++ = rpc_reply;
1218 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1219 *tl++ = rpc_msgdenied;
1220 if (err & NFSERR_AUTHERR) {
1221 *tl++ = rpc_autherr;
1222 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1223 mreq->m_len -= NFSX_UNSIGNED;
1224 bpos -= NFSX_UNSIGNED;
1225 } else {
1226 *tl++ = rpc_mismatch;
1227 *tl++ = txdr_unsigned(RPC_VER2);
1228 *tl = txdr_unsigned(RPC_VER2);
1229 }
1230 } else {
1231 *tl++ = rpc_msgaccepted;
1232
1233 /*
1234 * For Kerberos authentication, we must send the nickname
1235 * verifier back, otherwise just RPCAUTH_NULL.
1236 */
1237 if (nd->nd_flag & ND_KERBFULL) {
1238 struct nfsuid *nuidp;
1239 struct timeval ktvin, ktvout;
1240
1241 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1242 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1243 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1244 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1245 &nuidp->nu_haddr, nd->nd_nam2)))
1246 break;
1247 }
1248 if (nuidp) {
1249 ktvin.tv_sec =
1250 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1251 ktvin.tv_usec =
1252 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1253
1254 /*
1255 * Encrypt the timestamp in ecb mode using the
1256 * session key.
1257 */
1258 #ifdef NFSKERB
1259 XXX
1260 #endif
1261
1262 *tl++ = rpc_auth_kerb;
1263 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1264 *tl = ktvout.tv_sec;
1265 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1266 *tl++ = ktvout.tv_usec;
1267 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1268 } else {
1269 *tl++ = 0;
1270 *tl++ = 0;
1271 }
1272 } else {
1273 *tl++ = 0;
1274 *tl++ = 0;
1275 }
1276 switch (err) {
1277 case EPROGUNAVAIL:
1278 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1279 break;
1280 case EPROGMISMATCH:
1281 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1282 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1283 if (nd->nd_flag & ND_NQNFS) {
1284 *tl++ = txdr_unsigned(3);
1285 *tl = txdr_unsigned(3);
1286 } else {
1287 *tl++ = txdr_unsigned(2);
1288 *tl = txdr_unsigned(3);
1289 }
1290 break;
1291 case EPROCUNAVAIL:
1292 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1293 break;
1294 case EBADRPC:
1295 *tl = txdr_unsigned(RPC_GARBAGE);
1296 break;
1297 default:
1298 *tl = 0;
1299 if (err != NFSERR_RETVOID) {
1300 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1301 if (err)
1302 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1303 else
1304 *tl = 0;
1305 }
1306 break;
1307 };
1308 }
1309
1310 /*
1311 * For nqnfs, piggyback lease as requested.
1312 */
1313 if ((nd->nd_flag & ND_NQNFS) && err == 0) {
1314 if (nd->nd_flag & ND_LEASE) {
1315 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1316 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE);
1317 *tl++ = txdr_unsigned(cache);
1318 *tl++ = txdr_unsigned(nd->nd_duration);
1319 txdr_hyper(*frev, tl);
1320 } else {
1321 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1322 *tl = 0;
1323 }
1324 }
1325 if (mrq != NULL)
1326 *mrq = mreq;
1327 *mbp = mb;
1328 *bposp = bpos;
1329 if (err != 0 && err != NFSERR_RETVOID)
1330 nfsstats.srvrpc_errs++;
1331 return (0);
1332 }
1333
1334 /*
1335 * Nfs timer routine
1336 * Scan the nfsreq list and retranmit any requests that have timed out
1337 * To avoid retransmission attempts on STREAM sockets (in the future) make
1338 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1339 */
1340 void
1341 nfs_timer(arg)
1342 void *arg; /* never used */
1343 {
1344 struct nfsreq *rep;
1345 struct mbuf *m;
1346 struct socket *so;
1347 struct nfsmount *nmp;
1348 int timeo;
1349 int s, error;
1350 #ifdef NFSSERVER
1351 struct nfssvc_sock *slp;
1352 static long lasttime = 0;
1353 u_quad_t cur_usec;
1354 #endif
1355
1356 s = splsoftnet();
1357 for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) {
1358 nmp = rep->r_nmp;
1359 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1360 continue;
1361 if (nfs_sigintr(nmp, rep, rep->r_procp)) {
1362 rep->r_flags |= R_SOFTTERM;
1363 continue;
1364 }
1365 if (rep->r_rtt >= 0) {
1366 rep->r_rtt++;
1367 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1368 timeo = nmp->nm_timeo;
1369 else
1370 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1371 if (nmp->nm_timeouts > 0)
1372 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1373 if (rep->r_rtt <= timeo)
1374 continue;
1375 if (nmp->nm_timeouts < 8)
1376 nmp->nm_timeouts++;
1377 }
1378 /*
1379 * Check for server not responding
1380 */
1381 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1382 rep->r_rexmit > nmp->nm_deadthresh) {
1383 nfs_msg(rep->r_procp,
1384 nmp->nm_mountp->mnt_stat.f_mntfromname,
1385 "not responding");
1386 rep->r_flags |= R_TPRINTFMSG;
1387 }
1388 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1389 nfsstats.rpctimeouts++;
1390 rep->r_flags |= R_SOFTTERM;
1391 continue;
1392 }
1393 if (nmp->nm_sotype != SOCK_DGRAM) {
1394 if (++rep->r_rexmit > NFS_MAXREXMIT)
1395 rep->r_rexmit = NFS_MAXREXMIT;
1396 continue;
1397 }
1398 if ((so = nmp->nm_so) == NULL)
1399 continue;
1400
1401 /*
1402 * If there is enough space and the window allows..
1403 * Resend it
1404 * Set r_rtt to -1 in case we fail to send it now.
1405 */
1406 rep->r_rtt = -1;
1407 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1408 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1409 (rep->r_flags & R_SENT) ||
1410 nmp->nm_sent < nmp->nm_cwnd) &&
1411 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1412 if (so->so_state & SS_ISCONNECTED)
1413 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1414 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1415 else
1416 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1417 nmp->nm_nam, (struct mbuf *)0, (struct proc *)0);
1418 if (error) {
1419 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
1420 #ifdef DEBUG
1421 printf("nfs_timer: ignoring error %d\n",
1422 error);
1423 #endif
1424 so->so_error = 0;
1425 }
1426 } else {
1427 /*
1428 * Iff first send, start timing
1429 * else turn timing off, backoff timer
1430 * and divide congestion window by 2.
1431 */
1432 if (rep->r_flags & R_SENT) {
1433 rep->r_flags &= ~R_TIMING;
1434 if (++rep->r_rexmit > NFS_MAXREXMIT)
1435 rep->r_rexmit = NFS_MAXREXMIT;
1436 nmp->nm_cwnd >>= 1;
1437 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1438 nmp->nm_cwnd = NFS_CWNDSCALE;
1439 nfsstats.rpcretries++;
1440 } else {
1441 rep->r_flags |= R_SENT;
1442 nmp->nm_sent += NFS_CWNDSCALE;
1443 }
1444 rep->r_rtt = 0;
1445 }
1446 }
1447 }
1448
1449 #ifdef NFSSERVER
1450 /*
1451 * Call the nqnfs server timer once a second to handle leases.
1452 */
1453 if (lasttime != time.tv_sec) {
1454 lasttime = time.tv_sec;
1455 nqnfs_serverd();
1456 }
1457
1458 /*
1459 * Scan the write gathering queues for writes that need to be
1460 * completed now.
1461 */
1462 cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec;
1463 for (slp = nfssvc_sockhead.tqh_first; slp != 0;
1464 slp = slp->ns_chain.tqe_next) {
1465 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
1466 nfsrv_wakenfsd(slp);
1467 }
1468 #endif /* NFSSERVER */
1469 splx(s);
1470 callout_reset(&nfs_timer_ch, nfs_ticks, nfs_timer, NULL);
1471 }
1472
1473 /*
1474 * Test for a termination condition pending on the process.
1475 * This is used for NFSMNT_INT mounts.
1476 */
1477 int
1478 nfs_sigintr(nmp, rep, p)
1479 struct nfsmount *nmp;
1480 struct nfsreq *rep;
1481 struct proc *p;
1482 {
1483 sigset_t ss;
1484
1485 if (rep && (rep->r_flags & R_SOFTTERM))
1486 return (EINTR);
1487 if (!(nmp->nm_flag & NFSMNT_INT))
1488 return (0);
1489 if (p) {
1490 sigpending1(p, &ss);
1491 #if 0
1492 sigminusset(&p->p_sigctx.ps_sigignore, &ss);
1493 #endif
1494 if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) ||
1495 sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) ||
1496 sigismember(&ss, SIGQUIT))
1497 return (EINTR);
1498 }
1499 return (0);
1500 }
1501
1502 /*
1503 * Lock a socket against others.
1504 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1505 * and also to avoid race conditions between the processes with nfs requests
1506 * in progress when a reconnect is necessary.
1507 */
1508 int
1509 nfs_sndlock(flagp, rep)
1510 int *flagp;
1511 struct nfsreq *rep;
1512 {
1513 struct proc *p;
1514 int slpflag = 0, slptimeo = 0;
1515
1516 if (rep) {
1517 p = rep->r_procp;
1518 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1519 slpflag = PCATCH;
1520 } else
1521 p = (struct proc *)0;
1522 while (*flagp & NFSMNT_SNDLOCK) {
1523 if (nfs_sigintr(rep->r_nmp, rep, p))
1524 return (EINTR);
1525 *flagp |= NFSMNT_WANTSND;
1526 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck",
1527 slptimeo);
1528 if (slpflag == PCATCH) {
1529 slpflag = 0;
1530 slptimeo = 2 * hz;
1531 }
1532 }
1533 *flagp |= NFSMNT_SNDLOCK;
1534 return (0);
1535 }
1536
1537 /*
1538 * Unlock the stream socket for others.
1539 */
1540 void
1541 nfs_sndunlock(flagp)
1542 int *flagp;
1543 {
1544
1545 if ((*flagp & NFSMNT_SNDLOCK) == 0)
1546 panic("nfs sndunlock");
1547 *flagp &= ~NFSMNT_SNDLOCK;
1548 if (*flagp & NFSMNT_WANTSND) {
1549 *flagp &= ~NFSMNT_WANTSND;
1550 wakeup((caddr_t)flagp);
1551 }
1552 }
1553
1554 int
1555 nfs_rcvlock(rep)
1556 struct nfsreq *rep;
1557 {
1558 struct nfsmount *nmp = rep->r_nmp;
1559 int *flagp = &nmp->nm_iflag;
1560 int slpflag, slptimeo = 0;
1561
1562 if (*flagp & NFSMNT_DISMNT)
1563 return EIO;
1564
1565 if (*flagp & NFSMNT_INT)
1566 slpflag = PCATCH;
1567 else
1568 slpflag = 0;
1569 while (*flagp & NFSMNT_RCVLOCK) {
1570 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
1571 return (EINTR);
1572 *flagp |= NFSMNT_WANTRCV;
1573 nmp->nm_waiters++;
1574 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk",
1575 slptimeo);
1576 nmp->nm_waiters--;
1577 if (*flagp & NFSMNT_DISMNT) {
1578 wakeup(&nmp->nm_waiters);
1579 return EIO;
1580 }
1581 /* If our reply was received while we were sleeping,
1582 * then just return without taking the lock to avoid a
1583 * situation where a single iod could 'capture' the
1584 * receive lock.
1585 */
1586 if (rep->r_mrep != NULL)
1587 return (EALREADY);
1588 if (slpflag == PCATCH) {
1589 slpflag = 0;
1590 slptimeo = 2 * hz;
1591 }
1592 }
1593 *flagp |= NFSMNT_RCVLOCK;
1594 return (0);
1595 }
1596
1597 /*
1598 * Unlock the stream socket for others.
1599 */
1600 void
1601 nfs_rcvunlock(flagp)
1602 int *flagp;
1603 {
1604
1605 if ((*flagp & NFSMNT_RCVLOCK) == 0)
1606 panic("nfs rcvunlock");
1607 *flagp &= ~NFSMNT_RCVLOCK;
1608 if (*flagp & NFSMNT_WANTRCV) {
1609 *flagp &= ~NFSMNT_WANTRCV;
1610 wakeup((caddr_t)flagp);
1611 }
1612 }
1613
1614 /*
1615 * Parse an RPC request
1616 * - verify it
1617 * - fill in the cred struct.
1618 */
1619 int
1620 nfs_getreq(nd, nfsd, has_header)
1621 struct nfsrv_descript *nd;
1622 struct nfsd *nfsd;
1623 int has_header;
1624 {
1625 int len, i;
1626 u_int32_t *tl;
1627 int32_t t1;
1628 struct uio uio;
1629 struct iovec iov;
1630 caddr_t dpos, cp2, cp;
1631 u_int32_t nfsvers, auth_type;
1632 uid_t nickuid;
1633 int error = 0, nqnfs = 0, ticklen;
1634 struct mbuf *mrep, *md;
1635 struct nfsuid *nuidp;
1636 struct timeval tvin, tvout;
1637
1638 mrep = nd->nd_mrep;
1639 md = nd->nd_md;
1640 dpos = nd->nd_dpos;
1641 if (has_header) {
1642 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1643 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1644 if (*tl++ != rpc_call) {
1645 m_freem(mrep);
1646 return (EBADRPC);
1647 }
1648 } else
1649 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1650 nd->nd_repstat = 0;
1651 nd->nd_flag = 0;
1652 if (*tl++ != rpc_vers) {
1653 nd->nd_repstat = ERPCMISMATCH;
1654 nd->nd_procnum = NFSPROC_NOOP;
1655 return (0);
1656 }
1657 if (*tl != nfs_prog) {
1658 if (*tl == nqnfs_prog)
1659 nqnfs++;
1660 else {
1661 nd->nd_repstat = EPROGUNAVAIL;
1662 nd->nd_procnum = NFSPROC_NOOP;
1663 return (0);
1664 }
1665 }
1666 tl++;
1667 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1668 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) ||
1669 (nfsvers != NQNFS_VER3 && nqnfs)) {
1670 nd->nd_repstat = EPROGMISMATCH;
1671 nd->nd_procnum = NFSPROC_NOOP;
1672 return (0);
1673 }
1674 if (nqnfs)
1675 nd->nd_flag = (ND_NFSV3 | ND_NQNFS);
1676 else if (nfsvers == NFS_VER3)
1677 nd->nd_flag = ND_NFSV3;
1678 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1679 if (nd->nd_procnum == NFSPROC_NULL)
1680 return (0);
1681 if (nd->nd_procnum >= NFS_NPROCS ||
1682 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
1683 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1684 nd->nd_repstat = EPROCUNAVAIL;
1685 nd->nd_procnum = NFSPROC_NOOP;
1686 return (0);
1687 }
1688 if ((nd->nd_flag & ND_NFSV3) == 0)
1689 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1690 auth_type = *tl++;
1691 len = fxdr_unsigned(int, *tl++);
1692 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1693 m_freem(mrep);
1694 return (EBADRPC);
1695 }
1696
1697 nd->nd_flag &= ~ND_KERBAUTH;
1698 /*
1699 * Handle auth_unix or auth_kerb.
1700 */
1701 if (auth_type == rpc_auth_unix) {
1702 len = fxdr_unsigned(int, *++tl);
1703 if (len < 0 || len > NFS_MAXNAMLEN) {
1704 m_freem(mrep);
1705 return (EBADRPC);
1706 }
1707 nfsm_adv(nfsm_rndup(len));
1708 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1709 memset((caddr_t)&nd->nd_cr, 0, sizeof (struct ucred));
1710 nd->nd_cr.cr_ref = 1;
1711 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
1712 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
1713 len = fxdr_unsigned(int, *tl);
1714 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
1715 m_freem(mrep);
1716 return (EBADRPC);
1717 }
1718 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
1719 for (i = 0; i < len; i++)
1720 if (i < NGROUPS)
1721 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
1722 else
1723 tl++;
1724 nd->nd_cr.cr_ngroups = (len > NGROUPS) ? NGROUPS : len;
1725 if (nd->nd_cr.cr_ngroups > 1)
1726 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
1727 len = fxdr_unsigned(int, *++tl);
1728 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1729 m_freem(mrep);
1730 return (EBADRPC);
1731 }
1732 if (len > 0)
1733 nfsm_adv(nfsm_rndup(len));
1734 } else if (auth_type == rpc_auth_kerb) {
1735 switch (fxdr_unsigned(int, *tl++)) {
1736 case RPCAKN_FULLNAME:
1737 ticklen = fxdr_unsigned(int, *tl);
1738 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
1739 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
1740 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
1741 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
1742 m_freem(mrep);
1743 return (EBADRPC);
1744 }
1745 uio.uio_offset = 0;
1746 uio.uio_iov = &iov;
1747 uio.uio_iovcnt = 1;
1748 uio.uio_segflg = UIO_SYSSPACE;
1749 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
1750 iov.iov_len = RPCAUTH_MAXSIZ - 4;
1751 nfsm_mtouio(&uio, uio.uio_resid);
1752 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1753 if (*tl++ != rpc_auth_kerb ||
1754 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
1755 printf("Bad kerb verifier\n");
1756 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1757 nd->nd_procnum = NFSPROC_NOOP;
1758 return (0);
1759 }
1760 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
1761 tl = (u_int32_t *)cp;
1762 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
1763 printf("Not fullname kerb verifier\n");
1764 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1765 nd->nd_procnum = NFSPROC_NOOP;
1766 return (0);
1767 }
1768 cp += NFSX_UNSIGNED;
1769 memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED);
1770 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
1771 nd->nd_flag |= ND_KERBFULL;
1772 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
1773 break;
1774 case RPCAKN_NICKNAME:
1775 if (len != 2 * NFSX_UNSIGNED) {
1776 printf("Kerb nickname short\n");
1777 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
1778 nd->nd_procnum = NFSPROC_NOOP;
1779 return (0);
1780 }
1781 nickuid = fxdr_unsigned(uid_t, *tl);
1782 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1783 if (*tl++ != rpc_auth_kerb ||
1784 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
1785 printf("Kerb nick verifier bad\n");
1786 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1787 nd->nd_procnum = NFSPROC_NOOP;
1788 return (0);
1789 }
1790 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1791 tvin.tv_sec = *tl++;
1792 tvin.tv_usec = *tl;
1793
1794 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
1795 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1796 if (nuidp->nu_cr.cr_uid == nickuid &&
1797 (!nd->nd_nam2 ||
1798 netaddr_match(NU_NETFAM(nuidp),
1799 &nuidp->nu_haddr, nd->nd_nam2)))
1800 break;
1801 }
1802 if (!nuidp) {
1803 nd->nd_repstat =
1804 (NFSERR_AUTHERR|AUTH_REJECTCRED);
1805 nd->nd_procnum = NFSPROC_NOOP;
1806 return (0);
1807 }
1808
1809 /*
1810 * Now, decrypt the timestamp using the session key
1811 * and validate it.
1812 */
1813 #ifdef NFSKERB
1814 XXX
1815 #endif
1816
1817 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
1818 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
1819 if (nuidp->nu_expire < time.tv_sec ||
1820 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
1821 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
1822 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
1823 nuidp->nu_expire = 0;
1824 nd->nd_repstat =
1825 (NFSERR_AUTHERR|AUTH_REJECTVERF);
1826 nd->nd_procnum = NFSPROC_NOOP;
1827 return (0);
1828 }
1829 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
1830 nd->nd_flag |= ND_KERBNICK;
1831 };
1832 } else {
1833 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
1834 nd->nd_procnum = NFSPROC_NOOP;
1835 return (0);
1836 }
1837
1838 /*
1839 * For nqnfs, get piggybacked lease request.
1840 */
1841 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
1842 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1843 nd->nd_flag |= fxdr_unsigned(int, *tl);
1844 if (nd->nd_flag & ND_LEASE) {
1845 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1846 nd->nd_duration = fxdr_unsigned(u_int32_t, *tl);
1847 } else
1848 nd->nd_duration = NQ_MINLEASE;
1849 } else
1850 nd->nd_duration = NQ_MINLEASE;
1851 nd->nd_md = md;
1852 nd->nd_dpos = dpos;
1853 return (0);
1854 nfsmout:
1855 return (error);
1856 }
1857
1858 int
1859 nfs_msg(p, server, msg)
1860 struct proc *p;
1861 char *server, *msg;
1862 {
1863 tpr_t tpr;
1864
1865 if (p)
1866 tpr = tprintf_open(p);
1867 else
1868 tpr = NULL;
1869 tprintf(tpr, "nfs server %s: %s\n", server, msg);
1870 tprintf_close(tpr);
1871 return (0);
1872 }
1873
1874 #ifdef NFSSERVER
1875 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
1876 struct nfssvc_sock *, struct proc *,
1877 struct mbuf **)) = {
1878 nfsrv_null,
1879 nfsrv_getattr,
1880 nfsrv_setattr,
1881 nfsrv_lookup,
1882 nfsrv3_access,
1883 nfsrv_readlink,
1884 nfsrv_read,
1885 nfsrv_write,
1886 nfsrv_create,
1887 nfsrv_mkdir,
1888 nfsrv_symlink,
1889 nfsrv_mknod,
1890 nfsrv_remove,
1891 nfsrv_rmdir,
1892 nfsrv_rename,
1893 nfsrv_link,
1894 nfsrv_readdir,
1895 nfsrv_readdirplus,
1896 nfsrv_statfs,
1897 nfsrv_fsinfo,
1898 nfsrv_pathconf,
1899 nfsrv_commit,
1900 nqnfsrv_getlease,
1901 nqnfsrv_vacated,
1902 nfsrv_noop,
1903 nfsrv_noop
1904 };
1905
1906 /*
1907 * Socket upcall routine for the nfsd sockets.
1908 * The caddr_t arg is a pointer to the "struct nfssvc_sock".
1909 * Essentially do as much as possible non-blocking, else punt and it will
1910 * be called with M_WAIT from an nfsd.
1911 */
1912 void
1913 nfsrv_rcv(so, arg, waitflag)
1914 struct socket *so;
1915 caddr_t arg;
1916 int waitflag;
1917 {
1918 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
1919 struct mbuf *m;
1920 struct mbuf *mp, *nam;
1921 struct uio auio;
1922 int flags, error;
1923
1924 if ((slp->ns_flag & SLP_VALID) == 0)
1925 return;
1926 #ifdef notdef
1927 /*
1928 * Define this to test for nfsds handling this under heavy load.
1929 */
1930 if (waitflag == M_DONTWAIT) {
1931 slp->ns_flag |= SLP_NEEDQ; goto dorecs;
1932 }
1933 #endif
1934 auio.uio_procp = NULL;
1935 if (so->so_type == SOCK_STREAM) {
1936 /*
1937 * If there are already records on the queue, defer soreceive()
1938 * to an nfsd so that there is feedback to the TCP layer that
1939 * the nfs servers are heavily loaded.
1940 */
1941 if (slp->ns_rec && waitflag == M_DONTWAIT) {
1942 slp->ns_flag |= SLP_NEEDQ;
1943 goto dorecs;
1944 }
1945
1946 /*
1947 * Do soreceive().
1948 */
1949 auio.uio_resid = 1000000000;
1950 flags = MSG_DONTWAIT;
1951 error = (*so->so_receive)(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
1952 if (error || mp == (struct mbuf *)0) {
1953 if (error == EWOULDBLOCK)
1954 slp->ns_flag |= SLP_NEEDQ;
1955 else
1956 slp->ns_flag |= SLP_DISCONN;
1957 goto dorecs;
1958 }
1959 m = mp;
1960 if (slp->ns_rawend) {
1961 slp->ns_rawend->m_next = m;
1962 slp->ns_cc += 1000000000 - auio.uio_resid;
1963 } else {
1964 slp->ns_raw = m;
1965 slp->ns_cc = 1000000000 - auio.uio_resid;
1966 }
1967 while (m->m_next)
1968 m = m->m_next;
1969 slp->ns_rawend = m;
1970
1971 /*
1972 * Now try and parse record(s) out of the raw stream data.
1973 */
1974 error = nfsrv_getstream(slp, waitflag);
1975 if (error) {
1976 if (error == EPERM)
1977 slp->ns_flag |= SLP_DISCONN;
1978 else
1979 slp->ns_flag |= SLP_NEEDQ;
1980 }
1981 } else {
1982 do {
1983 auio.uio_resid = 1000000000;
1984 flags = MSG_DONTWAIT;
1985 error = (*so->so_receive)(so, &nam, &auio, &mp,
1986 (struct mbuf **)0, &flags);
1987 if (mp) {
1988 if (nam) {
1989 m = nam;
1990 m->m_next = mp;
1991 } else
1992 m = mp;
1993 if (slp->ns_recend)
1994 slp->ns_recend->m_nextpkt = m;
1995 else
1996 slp->ns_rec = m;
1997 slp->ns_recend = m;
1998 m->m_nextpkt = (struct mbuf *)0;
1999 }
2000 if (error) {
2001 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2002 && error != EWOULDBLOCK) {
2003 slp->ns_flag |= SLP_DISCONN;
2004 goto dorecs;
2005 }
2006 }
2007 } while (mp);
2008 }
2009
2010 /*
2011 * Now try and process the request records, non-blocking.
2012 */
2013 dorecs:
2014 if (waitflag == M_DONTWAIT &&
2015 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
2016 nfsrv_wakenfsd(slp);
2017 }
2018
2019 /*
2020 * Try and extract an RPC request from the mbuf data list received on a
2021 * stream socket. The "waitflag" argument indicates whether or not it
2022 * can sleep.
2023 */
2024 int
2025 nfsrv_getstream(slp, waitflag)
2026 struct nfssvc_sock *slp;
2027 int waitflag;
2028 {
2029 struct mbuf *m, **mpp;
2030 char *cp1, *cp2;
2031 int len;
2032 struct mbuf *om, *m2, *recm = NULL;
2033 u_int32_t recmark;
2034
2035 if (slp->ns_flag & SLP_GETSTREAM)
2036 panic("nfs getstream");
2037 slp->ns_flag |= SLP_GETSTREAM;
2038 for (;;) {
2039 if (slp->ns_reclen == 0) {
2040 if (slp->ns_cc < NFSX_UNSIGNED) {
2041 slp->ns_flag &= ~SLP_GETSTREAM;
2042 return (0);
2043 }
2044 m = slp->ns_raw;
2045 if (m->m_len >= NFSX_UNSIGNED) {
2046 memcpy((caddr_t)&recmark, mtod(m, caddr_t), NFSX_UNSIGNED);
2047 m->m_data += NFSX_UNSIGNED;
2048 m->m_len -= NFSX_UNSIGNED;
2049 } else {
2050 cp1 = (caddr_t)&recmark;
2051 cp2 = mtod(m, caddr_t);
2052 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
2053 while (m->m_len == 0) {
2054 m = m->m_next;
2055 cp2 = mtod(m, caddr_t);
2056 }
2057 *cp1++ = *cp2++;
2058 m->m_data++;
2059 m->m_len--;
2060 }
2061 }
2062 slp->ns_cc -= NFSX_UNSIGNED;
2063 recmark = ntohl(recmark);
2064 slp->ns_reclen = recmark & ~0x80000000;
2065 if (recmark & 0x80000000)
2066 slp->ns_flag |= SLP_LASTFRAG;
2067 else
2068 slp->ns_flag &= ~SLP_LASTFRAG;
2069 if (slp->ns_reclen > NFS_MAXPACKET) {
2070 slp->ns_flag &= ~SLP_GETSTREAM;
2071 return (EPERM);
2072 }
2073 }
2074
2075 /*
2076 * Now get the record part.
2077 */
2078 if (slp->ns_cc == slp->ns_reclen) {
2079 recm = slp->ns_raw;
2080 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
2081 slp->ns_cc = slp->ns_reclen = 0;
2082 } else if (slp->ns_cc > slp->ns_reclen) {
2083 len = 0;
2084 m = slp->ns_raw;
2085 om = (struct mbuf *)0;
2086 while (len < slp->ns_reclen) {
2087 if ((len + m->m_len) > slp->ns_reclen) {
2088 size_t left = slp->ns_reclen - len;
2089
2090 MGETHDR(m2, waitflag, m->m_type);
2091 if (m2 == NULL) {
2092 slp->ns_flag &= ~SLP_GETSTREAM;
2093 return (EWOULDBLOCK);
2094 }
2095 if (left > MHLEN) {
2096 MCLGET(m2, waitflag);
2097 if (!(m2->m_flags & M_EXT)) {
2098 m_freem(m2);
2099 slp->ns_flag &= ~SLP_GETSTREAM;
2100 return (EWOULDBLOCK);
2101 }
2102 }
2103 memcpy(mtod(m2, caddr_t), mtod(m, caddr_t),
2104 left);
2105 m2->m_len = left;
2106 m->m_data += left;
2107 m->m_len -= left;
2108 if (om) {
2109 om->m_next = m2;
2110 recm = slp->ns_raw;
2111 } else
2112 recm = m2;
2113 len = slp->ns_reclen;
2114 } else if ((len + m->m_len) == slp->ns_reclen) {
2115 om = m;
2116 len += m->m_len;
2117 m = m->m_next;
2118 recm = slp->ns_raw;
2119 om->m_next = (struct mbuf *)0;
2120 } else {
2121 om = m;
2122 len += m->m_len;
2123 m = m->m_next;
2124 }
2125 }
2126 slp->ns_raw = m;
2127 slp->ns_cc -= len;
2128 slp->ns_reclen = 0;
2129 } else {
2130 slp->ns_flag &= ~SLP_GETSTREAM;
2131 return (0);
2132 }
2133
2134 /*
2135 * Accumulate the fragments into a record.
2136 */
2137 mpp = &slp->ns_frag;
2138 while (*mpp)
2139 mpp = &((*mpp)->m_next);
2140 *mpp = recm;
2141 if (slp->ns_flag & SLP_LASTFRAG) {
2142 if (slp->ns_recend)
2143 slp->ns_recend->m_nextpkt = slp->ns_frag;
2144 else
2145 slp->ns_rec = slp->ns_frag;
2146 slp->ns_recend = slp->ns_frag;
2147 slp->ns_frag = (struct mbuf *)0;
2148 }
2149 }
2150 }
2151
2152 /*
2153 * Parse an RPC header.
2154 */
2155 int
2156 nfsrv_dorec(slp, nfsd, ndp)
2157 struct nfssvc_sock *slp;
2158 struct nfsd *nfsd;
2159 struct nfsrv_descript **ndp;
2160 {
2161 struct mbuf *m, *nam;
2162 struct nfsrv_descript *nd;
2163 int error;
2164
2165 *ndp = NULL;
2166 if ((slp->ns_flag & SLP_VALID) == 0 ||
2167 (m = slp->ns_rec) == (struct mbuf *)0)
2168 return (ENOBUFS);
2169 slp->ns_rec = m->m_nextpkt;
2170 if (slp->ns_rec)
2171 m->m_nextpkt = (struct mbuf *)0;
2172 else
2173 slp->ns_recend = (struct mbuf *)0;
2174 if (m->m_type == MT_SONAME) {
2175 nam = m;
2176 m = m->m_next;
2177 nam->m_next = NULL;
2178 } else
2179 nam = NULL;
2180 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2181 M_NFSRVDESC, M_WAITOK);
2182 nd->nd_md = nd->nd_mrep = m;
2183 nd->nd_nam2 = nam;
2184 nd->nd_dpos = mtod(m, caddr_t);
2185 error = nfs_getreq(nd, nfsd, TRUE);
2186 if (error) {
2187 m_freem(nam);
2188 free((caddr_t)nd, M_NFSRVDESC);
2189 return (error);
2190 }
2191 *ndp = nd;
2192 nfsd->nfsd_nd = nd;
2193 return (0);
2194 }
2195
2196
2197 /*
2198 * Search for a sleeping nfsd and wake it up.
2199 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2200 * running nfsds will go look for the work in the nfssvc_sock list.
2201 */
2202 void
2203 nfsrv_wakenfsd(slp)
2204 struct nfssvc_sock *slp;
2205 {
2206 struct nfsd *nd;
2207
2208 if ((slp->ns_flag & SLP_VALID) == 0)
2209 return;
2210 for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) {
2211 if (nd->nfsd_flag & NFSD_WAITING) {
2212 nd->nfsd_flag &= ~NFSD_WAITING;
2213 if (nd->nfsd_slp)
2214 panic("nfsd wakeup");
2215 slp->ns_sref++;
2216 nd->nfsd_slp = slp;
2217 wakeup((caddr_t)nd);
2218 return;
2219 }
2220 }
2221 slp->ns_flag |= SLP_DOREC;
2222 nfsd_head_flag |= NFSD_CHECKSLP;
2223 }
2224 #endif /* NFSSERVER */
2225