nfs_socket.c revision 1.69 1 /* $NetBSD: nfs_socket.c,v 1.69 2001/11/10 10:59:10 lukem Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1991, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
39 */
40
41 /*
42 * Socket operations for use by nfs
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.69 2001/11/10 10:59:10 lukem Exp $");
47
48 #include "fs_nfs.h"
49 #include "opt_nfs.h"
50 #include "opt_nfsserver.h"
51 #include "opt_inet.h"
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/proc.h>
57 #include <sys/mount.h>
58 #include <sys/kernel.h>
59 #include <sys/mbuf.h>
60 #include <sys/vnode.h>
61 #include <sys/domain.h>
62 #include <sys/protosw.h>
63 #include <sys/socket.h>
64 #include <sys/socketvar.h>
65 #include <sys/syslog.h>
66 #include <sys/tprintf.h>
67 #include <sys/namei.h>
68 #include <sys/signal.h>
69 #include <sys/signalvar.h>
70
71 #include <netinet/in.h>
72 #include <netinet/tcp.h>
73
74 #include <nfs/rpcv2.h>
75 #include <nfs/nfsproto.h>
76 #include <nfs/nfs.h>
77 #include <nfs/xdr_subs.h>
78 #include <nfs/nfsm_subs.h>
79 #include <nfs/nfsmount.h>
80 #include <nfs/nfsnode.h>
81 #include <nfs/nfsrtt.h>
82 #include <nfs/nqnfs.h>
83 #include <nfs/nfs_var.h>
84
85 #define TRUE 1
86 #define FALSE 0
87
88 /*
89 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
90 * Use the mean and mean deviation of rtt for the appropriate type of rpc
91 * for the frequent rpcs and a default for the others.
92 * The justification for doing "other" this way is that these rpcs
93 * happen so infrequently that timer est. would probably be stale.
94 * Also, since many of these rpcs are
95 * non-idempotent, a conservative timeout is desired.
96 * getattr, lookup - A+2D
97 * read, write - A+4D
98 * other - nm_timeo
99 */
100 #define NFS_RTO(n, t) \
101 ((t) == 0 ? (n)->nm_timeo : \
102 ((t) < 3 ? \
103 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
104 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
105 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
106 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
107 /*
108 * External data, mostly RPC constants in XDR form
109 */
110 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
111 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
112 rpc_auth_kerb;
113 extern u_int32_t nfs_prog, nqnfs_prog;
114 extern time_t nqnfsstarttime;
115 extern struct nfsstats nfsstats;
116 extern int nfsv3_procid[NFS_NPROCS];
117 extern int nfs_ticks;
118
119 /*
120 * Defines which timer to use for the procnum.
121 * 0 - default
122 * 1 - getattr
123 * 2 - lookup
124 * 3 - read
125 * 4 - write
126 */
127 static const int proct[NFS_NPROCS] = {
128 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
129 0, 0, 0,
130 };
131
132 /*
133 * There is a congestion window for outstanding rpcs maintained per mount
134 * point. The cwnd size is adjusted in roughly the way that:
135 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
136 * SIGCOMM '88". ACM, August 1988.
137 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
138 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
139 * of rpcs is in progress.
140 * (The sent count and cwnd are scaled for integer arith.)
141 * Variants of "slow start" were tried and were found to be too much of a
142 * performance hit (ave. rtt 3 times larger),
143 * I suspect due to the large rtt that nfs rpcs have.
144 */
145 #define NFS_CWNDSCALE 256
146 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
147 static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
148 int nfsrtton = 0;
149 struct nfsrtt nfsrtt;
150
151 struct callout nfs_timer_ch = CALLOUT_INITIALIZER;
152
153 /*
154 * Initialize sockets and congestion for a new NFS connection.
155 * We do not free the sockaddr if error.
156 */
157 int
158 nfs_connect(nmp, rep)
159 struct nfsmount *nmp;
160 struct nfsreq *rep;
161 {
162 struct socket *so;
163 int s, error, rcvreserve, sndreserve;
164 struct sockaddr *saddr;
165 struct sockaddr_in *sin;
166 #ifdef INET6
167 struct sockaddr_in6 *sin6;
168 #endif
169 struct mbuf *m;
170 u_int16_t tport;
171
172 nmp->nm_so = (struct socket *)0;
173 saddr = mtod(nmp->nm_nam, struct sockaddr *);
174 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
175 nmp->nm_soproto);
176 if (error)
177 goto bad;
178 so = nmp->nm_so;
179 nmp->nm_soflags = so->so_proto->pr_flags;
180
181 /*
182 * Some servers require that the client port be a reserved port number.
183 */
184 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
185 MGET(m, M_WAIT, MT_SONAME);
186 sin = mtod(m, struct sockaddr_in *);
187 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
188 sin->sin_family = AF_INET;
189 sin->sin_addr.s_addr = INADDR_ANY;
190 tport = IPPORT_RESERVED - 1;
191 sin->sin_port = htons(tport);
192 while ((error = sobind(so, m, &proc0)) == EADDRINUSE &&
193 --tport > IPPORT_RESERVED / 2)
194 sin->sin_port = htons(tport);
195 m_freem(m);
196 if (error)
197 goto bad;
198 }
199 #ifdef INET6
200 if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) {
201 MGET(m, M_WAIT, MT_SONAME);
202 sin6 = mtod(m, struct sockaddr_in6 *);
203 sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6);
204 sin6->sin6_family = AF_INET6;
205 sin6->sin6_addr = in6addr_any;
206 tport = IPV6PORT_RESERVED - 1;
207 sin6->sin6_port = htons(tport);
208 while ((error = sobind(so, m, &proc0)) == EADDRINUSE &&
209 --tport > IPV6PORT_RESERVED / 2)
210 sin6->sin6_port = htons(tport);
211 m_freem(m);
212 if (error)
213 goto bad;
214 }
215 #endif
216
217 /*
218 * Protocols that do not require connections may be optionally left
219 * unconnected for servers that reply from a port other than NFS_PORT.
220 */
221 if (nmp->nm_flag & NFSMNT_NOCONN) {
222 if (nmp->nm_soflags & PR_CONNREQUIRED) {
223 error = ENOTCONN;
224 goto bad;
225 }
226 } else {
227 error = soconnect(so, nmp->nm_nam);
228 if (error)
229 goto bad;
230
231 /*
232 * Wait for the connection to complete. Cribbed from the
233 * connect system call but with the wait timing out so
234 * that interruptible mounts don't hang here for a long time.
235 */
236 s = splsoftnet();
237 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
238 (void) tsleep((caddr_t)&so->so_timeo, PSOCK,
239 "nfscn1", 2 * hz);
240 if ((so->so_state & SS_ISCONNECTING) &&
241 so->so_error == 0 && rep &&
242 (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){
243 so->so_state &= ~SS_ISCONNECTING;
244 splx(s);
245 goto bad;
246 }
247 }
248 if (so->so_error) {
249 error = so->so_error;
250 so->so_error = 0;
251 splx(s);
252 goto bad;
253 }
254 splx(s);
255 }
256 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
257 so->so_rcv.sb_timeo = (5 * hz);
258 so->so_snd.sb_timeo = (5 * hz);
259 } else {
260 so->so_rcv.sb_timeo = 0;
261 so->so_snd.sb_timeo = 0;
262 }
263 if (nmp->nm_sotype == SOCK_DGRAM) {
264 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
265 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
266 NFS_MAXPKTHDR) * 2;
267 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
268 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
269 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
270 NFS_MAXPKTHDR) * 2;
271 } else {
272 if (nmp->nm_sotype != SOCK_STREAM)
273 panic("nfscon sotype");
274 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
275 MGET(m, M_WAIT, MT_SOOPTS);
276 *mtod(m, int32_t *) = 1;
277 m->m_len = sizeof(int32_t);
278 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
279 }
280 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
281 MGET(m, M_WAIT, MT_SOOPTS);
282 *mtod(m, int32_t *) = 1;
283 m->m_len = sizeof(int32_t);
284 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
285 }
286 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
287 sizeof (u_int32_t)) * 2;
288 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
289 sizeof (u_int32_t)) * 2;
290 }
291 error = soreserve(so, sndreserve, rcvreserve);
292 if (error)
293 goto bad;
294 so->so_rcv.sb_flags |= SB_NOINTR;
295 so->so_snd.sb_flags |= SB_NOINTR;
296
297 /* Initialize other non-zero congestion variables */
298 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
299 NFS_TIMEO << 3;
300 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
301 nmp->nm_sdrtt[3] = 0;
302 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
303 nmp->nm_sent = 0;
304 nmp->nm_timeouts = 0;
305 return (0);
306
307 bad:
308 nfs_disconnect(nmp);
309 return (error);
310 }
311
312 /*
313 * Reconnect routine:
314 * Called when a connection is broken on a reliable protocol.
315 * - clean up the old socket
316 * - nfs_connect() again
317 * - set R_MUSTRESEND for all outstanding requests on mount point
318 * If this fails the mount point is DEAD!
319 * nb: Must be called with the nfs_sndlock() set on the mount point.
320 */
321 int
322 nfs_reconnect(rep)
323 struct nfsreq *rep;
324 {
325 struct nfsreq *rp;
326 struct nfsmount *nmp = rep->r_nmp;
327 int error;
328
329 nfs_disconnect(nmp);
330 while ((error = nfs_connect(nmp, rep)) != 0) {
331 if (error == EINTR || error == ERESTART)
332 return (EINTR);
333 (void) tsleep((caddr_t)&lbolt, PSOCK, "nfscn2", 0);
334 }
335
336 /*
337 * Loop through outstanding request list and fix up all requests
338 * on old socket.
339 */
340 for (rp = nfs_reqq.tqh_first; rp != 0; rp = rp->r_chain.tqe_next) {
341 if (rp->r_nmp == nmp)
342 rp->r_flags |= R_MUSTRESEND;
343 }
344 return (0);
345 }
346
347 /*
348 * NFS disconnect. Clean up and unlink.
349 */
350 void
351 nfs_disconnect(nmp)
352 struct nfsmount *nmp;
353 {
354 struct socket *so;
355 int drain = 0;
356
357 if (nmp->nm_so) {
358 so = nmp->nm_so;
359 nmp->nm_so = (struct socket *)0;
360 soshutdown(so, 2);
361 drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0;
362 if (drain) {
363 /*
364 * soshutdown() above should wake up the current
365 * listener.
366 * Now wake up those waiting for the recive lock, and
367 * wait for them to go away unhappy, to prevent *nmp
368 * from evaporating while they're sleeping.
369 */
370 while (nmp->nm_waiters > 0) {
371 wakeup (&nmp->nm_iflag);
372 (void) tsleep(&nmp->nm_waiters, PVFS,
373 "nfsdis", 0);
374 }
375 }
376 soclose(so);
377 }
378 #ifdef DIAGNOSTIC
379 if (drain && (nmp->nm_waiters > 0))
380 panic("nfs_disconnect: waiters left after drain?\n");
381 #endif
382 }
383
384 void
385 nfs_safedisconnect(nmp)
386 struct nfsmount *nmp;
387 {
388 struct nfsreq dummyreq;
389
390 memset(&dummyreq, 0, sizeof(dummyreq));
391 dummyreq.r_nmp = nmp;
392 nfs_rcvlock(&dummyreq); /* XXX ignored error return */
393 nfs_disconnect(nmp);
394 nfs_rcvunlock(&nmp->nm_iflag);
395 }
396
397 /*
398 * This is the nfs send routine. For connection based socket types, it
399 * must be called with an nfs_sndlock() on the socket.
400 * "rep == NULL" indicates that it has been called from a server.
401 * For the client side:
402 * - return EINTR if the RPC is terminated, 0 otherwise
403 * - set R_MUSTRESEND if the send fails for any reason
404 * - do any cleanup required by recoverable socket errors (? ? ?)
405 * For the server side:
406 * - return EINTR or ERESTART if interrupted by a signal
407 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
408 * - do any cleanup required by recoverable socket errors (? ? ?)
409 */
410 int
411 nfs_send(so, nam, top, rep)
412 struct socket *so;
413 struct mbuf *nam;
414 struct mbuf *top;
415 struct nfsreq *rep;
416 {
417 struct mbuf *sendnam;
418 int error, soflags, flags;
419
420 if (rep) {
421 if (rep->r_flags & R_SOFTTERM) {
422 m_freem(top);
423 return (EINTR);
424 }
425 if ((so = rep->r_nmp->nm_so) == NULL) {
426 rep->r_flags |= R_MUSTRESEND;
427 m_freem(top);
428 return (0);
429 }
430 rep->r_flags &= ~R_MUSTRESEND;
431 soflags = rep->r_nmp->nm_soflags;
432 } else
433 soflags = so->so_proto->pr_flags;
434 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
435 sendnam = (struct mbuf *)0;
436 else
437 sendnam = nam;
438 if (so->so_type == SOCK_SEQPACKET)
439 flags = MSG_EOR;
440 else
441 flags = 0;
442
443 error = (*so->so_send)(so, sendnam, (struct uio *)0, top,
444 (struct mbuf *)0, flags);
445 if (error) {
446 if (rep) {
447 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
448 /*
449 * We're too fast for the network/driver,
450 * and UDP isn't flowcontrolled.
451 * We need to resend. This is not fatal,
452 * just try again.
453 *
454 * Could be smarter here by doing some sort
455 * of a backoff, but this is rare.
456 */
457 rep->r_flags |= R_MUSTRESEND;
458 } else {
459 log(LOG_INFO, "nfs send error %d for %s\n",
460 error,
461 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
462 /*
463 * Deal with errors for the client side.
464 */
465 if (rep->r_flags & R_SOFTTERM)
466 error = EINTR;
467 else
468 rep->r_flags |= R_MUSTRESEND;
469 }
470 } else {
471 /*
472 * See above. This error can happen under normal
473 * circumstances and the log is too noisy.
474 * The error will still show up in nfsstat.
475 */
476 if (error != ENOBUFS || so->so_type != SOCK_DGRAM)
477 log(LOG_INFO, "nfsd send error %d\n", error);
478 }
479
480 /*
481 * Handle any recoverable (soft) socket errors here. (? ? ?)
482 */
483 if (error != EINTR && error != ERESTART &&
484 error != EWOULDBLOCK && error != EPIPE)
485 error = 0;
486 }
487 return (error);
488 }
489
490 #ifdef NFS
491 /*
492 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
493 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
494 * Mark and consolidate the data into a new mbuf list.
495 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
496 * small mbufs.
497 * For SOCK_STREAM we must be very careful to read an entire record once
498 * we have read any of it, even if the system call has been interrupted.
499 */
500 int
501 nfs_receive(rep, aname, mp)
502 struct nfsreq *rep;
503 struct mbuf **aname;
504 struct mbuf **mp;
505 {
506 struct socket *so;
507 struct uio auio;
508 struct iovec aio;
509 struct mbuf *m;
510 struct mbuf *control;
511 u_int32_t len;
512 struct mbuf **getnam;
513 int error, sotype, rcvflg;
514 struct proc *p = curproc; /* XXX */
515
516 /*
517 * Set up arguments for soreceive()
518 */
519 *mp = (struct mbuf *)0;
520 *aname = (struct mbuf *)0;
521 sotype = rep->r_nmp->nm_sotype;
522
523 /*
524 * For reliable protocols, lock against other senders/receivers
525 * in case a reconnect is necessary.
526 * For SOCK_STREAM, first get the Record Mark to find out how much
527 * more there is to get.
528 * We must lock the socket against other receivers
529 * until we have an entire rpc request/reply.
530 */
531 if (sotype != SOCK_DGRAM) {
532 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep);
533 if (error)
534 return (error);
535 tryagain:
536 /*
537 * Check for fatal errors and resending request.
538 */
539 /*
540 * Ugh: If a reconnect attempt just happened, nm_so
541 * would have changed. NULL indicates a failed
542 * attempt that has essentially shut down this
543 * mount point.
544 */
545 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
546 nfs_sndunlock(&rep->r_nmp->nm_iflag);
547 return (EINTR);
548 }
549 so = rep->r_nmp->nm_so;
550 if (!so) {
551 error = nfs_reconnect(rep);
552 if (error) {
553 nfs_sndunlock(&rep->r_nmp->nm_iflag);
554 return (error);
555 }
556 goto tryagain;
557 }
558 while (rep->r_flags & R_MUSTRESEND) {
559 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
560 nfsstats.rpcretries++;
561 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
562 if (error) {
563 if (error == EINTR || error == ERESTART ||
564 (error = nfs_reconnect(rep)) != 0) {
565 nfs_sndunlock(&rep->r_nmp->nm_iflag);
566 return (error);
567 }
568 goto tryagain;
569 }
570 }
571 nfs_sndunlock(&rep->r_nmp->nm_iflag);
572 if (sotype == SOCK_STREAM) {
573 aio.iov_base = (caddr_t) &len;
574 aio.iov_len = sizeof(u_int32_t);
575 auio.uio_iov = &aio;
576 auio.uio_iovcnt = 1;
577 auio.uio_segflg = UIO_SYSSPACE;
578 auio.uio_rw = UIO_READ;
579 auio.uio_offset = 0;
580 auio.uio_resid = sizeof(u_int32_t);
581 auio.uio_procp = p;
582 do {
583 rcvflg = MSG_WAITALL;
584 error = (*so->so_receive)(so, (struct mbuf **)0, &auio,
585 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
586 if (error == EWOULDBLOCK && rep) {
587 if (rep->r_flags & R_SOFTTERM)
588 return (EINTR);
589 }
590 } while (error == EWOULDBLOCK);
591 if (!error && auio.uio_resid > 0) {
592 /*
593 * Don't log a 0 byte receive; it means
594 * that the socket has been closed, and
595 * can happen during normal operation
596 * (forcible unmount or Solaris server).
597 */
598 if (auio.uio_resid != sizeof (u_int32_t))
599 log(LOG_INFO,
600 "short receive (%lu/%lu) from nfs server %s\n",
601 (u_long)sizeof(u_int32_t) - auio.uio_resid,
602 (u_long)sizeof(u_int32_t),
603 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
604 error = EPIPE;
605 }
606 if (error)
607 goto errout;
608 len = ntohl(len) & ~0x80000000;
609 /*
610 * This is SERIOUS! We are out of sync with the sender
611 * and forcing a disconnect/reconnect is all I can do.
612 */
613 if (len > NFS_MAXPACKET) {
614 log(LOG_ERR, "%s (%d) from nfs server %s\n",
615 "impossible packet length",
616 len,
617 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
618 error = EFBIG;
619 goto errout;
620 }
621 auio.uio_resid = len;
622 do {
623 rcvflg = MSG_WAITALL;
624 error = (*so->so_receive)(so, (struct mbuf **)0,
625 &auio, mp, (struct mbuf **)0, &rcvflg);
626 } while (error == EWOULDBLOCK || error == EINTR ||
627 error == ERESTART);
628 if (!error && auio.uio_resid > 0) {
629 if (len != auio.uio_resid)
630 log(LOG_INFO,
631 "short receive (%lu/%d) from nfs server %s\n",
632 (u_long)len - auio.uio_resid, len,
633 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
634 error = EPIPE;
635 }
636 } else {
637 /*
638 * NB: Since uio_resid is big, MSG_WAITALL is ignored
639 * and soreceive() will return when it has either a
640 * control msg or a data msg.
641 * We have no use for control msg., but must grab them
642 * and then throw them away so we know what is going
643 * on.
644 */
645 auio.uio_resid = len = 100000000; /* Anything Big */
646 auio.uio_procp = p;
647 do {
648 rcvflg = 0;
649 error = (*so->so_receive)(so, (struct mbuf **)0,
650 &auio, mp, &control, &rcvflg);
651 if (control)
652 m_freem(control);
653 if (error == EWOULDBLOCK && rep) {
654 if (rep->r_flags & R_SOFTTERM)
655 return (EINTR);
656 }
657 } while (error == EWOULDBLOCK ||
658 (!error && *mp == NULL && control));
659 if ((rcvflg & MSG_EOR) == 0)
660 printf("Egad!!\n");
661 if (!error && *mp == NULL)
662 error = EPIPE;
663 len -= auio.uio_resid;
664 }
665 errout:
666 if (error && error != EINTR && error != ERESTART) {
667 m_freem(*mp);
668 *mp = (struct mbuf *)0;
669 if (error != EPIPE)
670 log(LOG_INFO,
671 "receive error %d from nfs server %s\n",
672 error,
673 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
674 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep);
675 if (!error)
676 error = nfs_reconnect(rep);
677 if (!error)
678 goto tryagain;
679 else
680 nfs_sndunlock(&rep->r_nmp->nm_iflag);
681 }
682 } else {
683 if ((so = rep->r_nmp->nm_so) == NULL)
684 return (EACCES);
685 if (so->so_state & SS_ISCONNECTED)
686 getnam = (struct mbuf **)0;
687 else
688 getnam = aname;
689 auio.uio_resid = len = 1000000;
690 auio.uio_procp = p;
691 do {
692 rcvflg = 0;
693 error = (*so->so_receive)(so, getnam, &auio, mp,
694 (struct mbuf **)0, &rcvflg);
695 if (error == EWOULDBLOCK &&
696 (rep->r_flags & R_SOFTTERM))
697 return (EINTR);
698 } while (error == EWOULDBLOCK);
699 len -= auio.uio_resid;
700 if (!error && *mp == NULL)
701 error = EPIPE;
702 }
703 if (error) {
704 m_freem(*mp);
705 *mp = (struct mbuf *)0;
706 }
707 return (error);
708 }
709
710 /*
711 * Implement receipt of reply on a socket.
712 * We must search through the list of received datagrams matching them
713 * with outstanding requests using the xid, until ours is found.
714 */
715 /* ARGSUSED */
716 int
717 nfs_reply(myrep)
718 struct nfsreq *myrep;
719 {
720 struct nfsreq *rep;
721 struct nfsmount *nmp = myrep->r_nmp;
722 int32_t t1;
723 struct mbuf *mrep, *nam, *md;
724 u_int32_t rxid, *tl;
725 caddr_t dpos, cp2;
726 int error;
727
728 /*
729 * Loop around until we get our own reply
730 */
731 for (;;) {
732 /*
733 * Lock against other receivers so that I don't get stuck in
734 * sbwait() after someone else has received my reply for me.
735 * Also necessary for connection based protocols to avoid
736 * race conditions during a reconnect.
737 */
738 error = nfs_rcvlock(myrep);
739 if (error == EALREADY)
740 return (0);
741 if (error)
742 return (error);
743 /*
744 * Get the next Rpc reply off the socket
745 */
746 nmp->nm_waiters++;
747 error = nfs_receive(myrep, &nam, &mrep);
748 nfs_rcvunlock(&nmp->nm_iflag);
749 if (error) {
750
751 if (nmp->nm_iflag & NFSMNT_DISMNT) {
752 /*
753 * Oops, we're going away now..
754 */
755 nmp->nm_waiters--;
756 wakeup (&nmp->nm_waiters);
757 return error;
758 }
759 nmp->nm_waiters--;
760 /*
761 * Ignore routing errors on connectionless protocols? ?
762 */
763 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
764 nmp->nm_so->so_error = 0;
765 #ifdef DEBUG
766 printf("nfs_reply: ignoring error %d\n", error);
767 #endif
768 if (myrep->r_flags & R_GETONEREP)
769 return (0);
770 continue;
771 }
772 return (error);
773 }
774 nmp->nm_waiters--;
775 if (nam)
776 m_freem(nam);
777
778 /*
779 * Get the xid and check that it is an rpc reply
780 */
781 md = mrep;
782 dpos = mtod(md, caddr_t);
783 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
784 rxid = *tl++;
785 if (*tl != rpc_reply) {
786 #ifndef NFS_V2_ONLY
787 if (nmp->nm_flag & NFSMNT_NQNFS) {
788 if (nqnfs_callback(nmp, mrep, md, dpos))
789 nfsstats.rpcinvalid++;
790 } else
791 #endif
792 {
793 nfsstats.rpcinvalid++;
794 m_freem(mrep);
795 }
796 nfsmout:
797 if (myrep->r_flags & R_GETONEREP)
798 return (0);
799 continue;
800 }
801
802 /*
803 * Loop through the request list to match up the reply
804 * Iff no match, just drop the datagram
805 */
806 for (rep = nfs_reqq.tqh_first; rep != 0;
807 rep = rep->r_chain.tqe_next) {
808 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
809 /* Found it.. */
810 rep->r_mrep = mrep;
811 rep->r_md = md;
812 rep->r_dpos = dpos;
813 if (nfsrtton) {
814 struct rttl *rt;
815
816 rt = &nfsrtt.rttl[nfsrtt.pos];
817 rt->proc = rep->r_procnum;
818 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
819 rt->sent = nmp->nm_sent;
820 rt->cwnd = nmp->nm_cwnd;
821 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
822 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
823 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
824 rt->tstamp = time;
825 if (rep->r_flags & R_TIMING)
826 rt->rtt = rep->r_rtt;
827 else
828 rt->rtt = 1000000;
829 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
830 }
831 /*
832 * Update congestion window.
833 * Do the additive increase of
834 * one rpc/rtt.
835 */
836 if (nmp->nm_cwnd <= nmp->nm_sent) {
837 nmp->nm_cwnd +=
838 (NFS_CWNDSCALE * NFS_CWNDSCALE +
839 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
840 if (nmp->nm_cwnd > NFS_MAXCWND)
841 nmp->nm_cwnd = NFS_MAXCWND;
842 }
843 rep->r_flags &= ~R_SENT;
844 nmp->nm_sent -= NFS_CWNDSCALE;
845 /*
846 * Update rtt using a gain of 0.125 on the mean
847 * and a gain of 0.25 on the deviation.
848 */
849 if (rep->r_flags & R_TIMING) {
850 /*
851 * Since the timer resolution of
852 * NFS_HZ is so course, it can often
853 * result in r_rtt == 0. Since
854 * r_rtt == N means that the actual
855 * rtt is between N+dt and N+2-dt ticks,
856 * add 1.
857 */
858 t1 = rep->r_rtt + 1;
859 t1 -= (NFS_SRTT(rep) >> 3);
860 NFS_SRTT(rep) += t1;
861 if (t1 < 0)
862 t1 = -t1;
863 t1 -= (NFS_SDRTT(rep) >> 2);
864 NFS_SDRTT(rep) += t1;
865 }
866 nmp->nm_timeouts = 0;
867 break;
868 }
869 }
870 /*
871 * If not matched to a request, drop it.
872 * If it's mine, get out.
873 */
874 if (rep == 0) {
875 nfsstats.rpcunexpected++;
876 m_freem(mrep);
877 } else if (rep == myrep) {
878 if (rep->r_mrep == NULL)
879 panic("nfsreply nil");
880 return (0);
881 }
882 if (myrep->r_flags & R_GETONEREP)
883 return (0);
884 }
885 }
886
887 /*
888 * nfs_request - goes something like this
889 * - fill in request struct
890 * - links it into list
891 * - calls nfs_send() for first transmit
892 * - calls nfs_receive() to get reply
893 * - break down rpc header and return with nfs reply pointed to
894 * by mrep or error
895 * nb: always frees up mreq mbuf list
896 */
897 int
898 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp)
899 struct vnode *vp;
900 struct mbuf *mrest;
901 int procnum;
902 struct proc *procp;
903 struct ucred *cred;
904 struct mbuf **mrp;
905 struct mbuf **mdp;
906 caddr_t *dposp;
907 {
908 struct mbuf *m, *mrep;
909 struct nfsreq *rep;
910 u_int32_t *tl;
911 int i;
912 struct nfsmount *nmp;
913 struct mbuf *md, *mheadend;
914 char nickv[RPCX_NICKVERF];
915 time_t reqtime, waituntil;
916 caddr_t dpos, cp2;
917 int t1, s, error = 0, mrest_len, auth_len, auth_type;
918 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
919 int verf_len, verf_type;
920 u_int32_t xid;
921 char *auth_str, *verf_str;
922 NFSKERBKEY_T key; /* save session key */
923 #ifndef NFS_V2_ONLY
924 int nqlflag, cachable;
925 u_quad_t frev;
926 struct nfsnode *np;
927 #endif
928
929 KASSERT(cred != NULL);
930 nmp = VFSTONFS(vp->v_mount);
931 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
932 rep->r_nmp = nmp;
933 rep->r_vp = vp;
934 rep->r_procp = procp;
935 rep->r_procnum = procnum;
936 i = 0;
937 m = mrest;
938 while (m) {
939 i += m->m_len;
940 m = m->m_next;
941 }
942 mrest_len = i;
943
944 /*
945 * Get the RPC header with authorization.
946 */
947 kerbauth:
948 verf_str = auth_str = (char *)0;
949 if (nmp->nm_flag & NFSMNT_KERB) {
950 verf_str = nickv;
951 verf_len = sizeof (nickv);
952 auth_type = RPCAUTH_KERB4;
953 memset((caddr_t)key, 0, sizeof (key));
954 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
955 &auth_len, verf_str, verf_len)) {
956 error = nfs_getauth(nmp, rep, cred, &auth_str,
957 &auth_len, verf_str, &verf_len, key);
958 if (error) {
959 free((caddr_t)rep, M_NFSREQ);
960 m_freem(mrest);
961 return (error);
962 }
963 }
964 } else {
965 auth_type = RPCAUTH_UNIX;
966 auth_len = (((cred->cr_ngroups > nmp->nm_numgrps) ?
967 nmp->nm_numgrps : cred->cr_ngroups) << 2) +
968 5 * NFSX_UNSIGNED;
969 }
970 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
971 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
972 if (auth_str)
973 free(auth_str, M_TEMP);
974
975 /*
976 * For stream protocols, insert a Sun RPC Record Mark.
977 */
978 if (nmp->nm_sotype == SOCK_STREAM) {
979 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
980 *mtod(m, u_int32_t *) = htonl(0x80000000 |
981 (m->m_pkthdr.len - NFSX_UNSIGNED));
982 }
983 rep->r_mreq = m;
984 rep->r_xid = xid;
985 tryagain:
986 if (nmp->nm_flag & NFSMNT_SOFT)
987 rep->r_retry = nmp->nm_retry;
988 else
989 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
990 rep->r_rtt = rep->r_rexmit = 0;
991 if (proct[procnum] > 0)
992 rep->r_flags = R_TIMING;
993 else
994 rep->r_flags = 0;
995 rep->r_mrep = NULL;
996
997 /*
998 * Do the client side RPC.
999 */
1000 nfsstats.rpcrequests++;
1001 /*
1002 * Chain request into list of outstanding requests. Be sure
1003 * to put it LAST so timer finds oldest requests first.
1004 */
1005 s = splsoftnet();
1006 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
1007
1008 /* Get send time for nqnfs */
1009 reqtime = time.tv_sec;
1010
1011 /*
1012 * If backing off another request or avoiding congestion, don't
1013 * send this one now but let timer do it. If not timing a request,
1014 * do it now.
1015 */
1016 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
1017 (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1018 nmp->nm_sent < nmp->nm_cwnd)) {
1019 splx(s);
1020 if (nmp->nm_soflags & PR_CONNREQUIRED)
1021 error = nfs_sndlock(&nmp->nm_iflag, rep);
1022 if (!error) {
1023 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
1024 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
1025 if (nmp->nm_soflags & PR_CONNREQUIRED)
1026 nfs_sndunlock(&nmp->nm_iflag);
1027 }
1028 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
1029 nmp->nm_sent += NFS_CWNDSCALE;
1030 rep->r_flags |= R_SENT;
1031 }
1032 } else {
1033 splx(s);
1034 rep->r_rtt = -1;
1035 }
1036
1037 /*
1038 * Wait for the reply from our send or the timer's.
1039 */
1040 if (!error || error == EPIPE)
1041 error = nfs_reply(rep);
1042
1043 /*
1044 * RPC done, unlink the request.
1045 */
1046 s = splsoftnet();
1047 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
1048 splx(s);
1049
1050 /*
1051 * Decrement the outstanding request count.
1052 */
1053 if (rep->r_flags & R_SENT) {
1054 rep->r_flags &= ~R_SENT; /* paranoia */
1055 nmp->nm_sent -= NFS_CWNDSCALE;
1056 }
1057
1058 /*
1059 * If there was a successful reply and a tprintf msg.
1060 * tprintf a response.
1061 */
1062 if (!error && (rep->r_flags & R_TPRINTFMSG))
1063 nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
1064 "is alive again");
1065 mrep = rep->r_mrep;
1066 md = rep->r_md;
1067 dpos = rep->r_dpos;
1068 if (error) {
1069 m_freem(rep->r_mreq);
1070 free((caddr_t)rep, M_NFSREQ);
1071 return (error);
1072 }
1073
1074 /*
1075 * break down the rpc header and check if ok
1076 */
1077 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1078 if (*tl++ == rpc_msgdenied) {
1079 if (*tl == rpc_mismatch)
1080 error = EOPNOTSUPP;
1081 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
1082 if (!failed_auth) {
1083 failed_auth++;
1084 mheadend->m_next = (struct mbuf *)0;
1085 m_freem(mrep);
1086 m_freem(rep->r_mreq);
1087 goto kerbauth;
1088 } else
1089 error = EAUTH;
1090 } else
1091 error = EACCES;
1092 m_freem(mrep);
1093 m_freem(rep->r_mreq);
1094 free((caddr_t)rep, M_NFSREQ);
1095 return (error);
1096 }
1097
1098 /*
1099 * Grab any Kerberos verifier, otherwise just throw it away.
1100 */
1101 verf_type = fxdr_unsigned(int, *tl++);
1102 i = fxdr_unsigned(int32_t, *tl);
1103 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1104 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1105 if (error)
1106 goto nfsmout;
1107 } else if (i > 0)
1108 nfsm_adv(nfsm_rndup(i));
1109 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1110 /* 0 == ok */
1111 if (*tl == 0) {
1112 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1113 if (*tl != 0) {
1114 error = fxdr_unsigned(int, *tl);
1115 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1116 error == NFSERR_TRYLATER) {
1117 m_freem(mrep);
1118 error = 0;
1119 waituntil = time.tv_sec + trylater_delay;
1120 while (time.tv_sec < waituntil)
1121 (void) tsleep((caddr_t)&lbolt,
1122 PSOCK, "nqnfstry", 0);
1123 trylater_delay *= nfs_backoff[trylater_cnt];
1124 if (trylater_cnt < 7)
1125 trylater_cnt++;
1126 goto tryagain;
1127 }
1128
1129 /*
1130 * If the File Handle was stale, invalidate the
1131 * lookup cache, just in case.
1132 */
1133 if (error == ESTALE)
1134 cache_purge(vp);
1135 if (nmp->nm_flag & NFSMNT_NFSV3) {
1136 *mrp = mrep;
1137 *mdp = md;
1138 *dposp = dpos;
1139 error |= NFSERR_RETERR;
1140 } else
1141 m_freem(mrep);
1142 m_freem(rep->r_mreq);
1143 free((caddr_t)rep, M_NFSREQ);
1144 return (error);
1145 }
1146
1147 #ifndef NFS_V2_ONLY
1148 /*
1149 * For nqnfs, get any lease in reply
1150 */
1151 if (nmp->nm_flag & NFSMNT_NQNFS) {
1152 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1153 if (*tl) {
1154 np = VTONFS(vp);
1155 nqlflag = fxdr_unsigned(int, *tl);
1156 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED);
1157 cachable = fxdr_unsigned(int, *tl++);
1158 reqtime += fxdr_unsigned(int, *tl++);
1159 if (reqtime > time.tv_sec) {
1160 frev = fxdr_hyper(tl);
1161 nqnfs_clientlease(nmp, np, nqlflag,
1162 cachable, reqtime, frev);
1163 }
1164 }
1165 }
1166 #endif
1167 *mrp = mrep;
1168 *mdp = md;
1169 *dposp = dpos;
1170 m_freem(rep->r_mreq);
1171 FREE((caddr_t)rep, M_NFSREQ);
1172 return (0);
1173 }
1174 m_freem(mrep);
1175 error = EPROTONOSUPPORT;
1176 nfsmout:
1177 m_freem(rep->r_mreq);
1178 free((caddr_t)rep, M_NFSREQ);
1179 return (error);
1180 }
1181 #endif /* NFS */
1182
1183 /*
1184 * Generate the rpc reply header
1185 * siz arg. is used to decide if adding a cluster is worthwhile
1186 */
1187 int
1188 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1189 int siz;
1190 struct nfsrv_descript *nd;
1191 struct nfssvc_sock *slp;
1192 int err;
1193 int cache;
1194 u_quad_t *frev;
1195 struct mbuf **mrq;
1196 struct mbuf **mbp;
1197 caddr_t *bposp;
1198 {
1199 u_int32_t *tl;
1200 struct mbuf *mreq;
1201 caddr_t bpos;
1202 struct mbuf *mb, *mb2;
1203
1204 MGETHDR(mreq, M_WAIT, MT_DATA);
1205 mb = mreq;
1206 /*
1207 * If this is a big reply, use a cluster else
1208 * try and leave leading space for the lower level headers.
1209 */
1210 siz += RPC_REPLYSIZ;
1211 if (siz >= max_datalen) {
1212 MCLGET(mreq, M_WAIT);
1213 } else
1214 mreq->m_data += max_hdr;
1215 tl = mtod(mreq, u_int32_t *);
1216 mreq->m_len = 6 * NFSX_UNSIGNED;
1217 bpos = ((caddr_t)tl) + mreq->m_len;
1218 *tl++ = txdr_unsigned(nd->nd_retxid);
1219 *tl++ = rpc_reply;
1220 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1221 *tl++ = rpc_msgdenied;
1222 if (err & NFSERR_AUTHERR) {
1223 *tl++ = rpc_autherr;
1224 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1225 mreq->m_len -= NFSX_UNSIGNED;
1226 bpos -= NFSX_UNSIGNED;
1227 } else {
1228 *tl++ = rpc_mismatch;
1229 *tl++ = txdr_unsigned(RPC_VER2);
1230 *tl = txdr_unsigned(RPC_VER2);
1231 }
1232 } else {
1233 *tl++ = rpc_msgaccepted;
1234
1235 /*
1236 * For Kerberos authentication, we must send the nickname
1237 * verifier back, otherwise just RPCAUTH_NULL.
1238 */
1239 if (nd->nd_flag & ND_KERBFULL) {
1240 struct nfsuid *nuidp;
1241 struct timeval ktvin, ktvout;
1242
1243 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1244 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1245 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1246 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1247 &nuidp->nu_haddr, nd->nd_nam2)))
1248 break;
1249 }
1250 if (nuidp) {
1251 ktvin.tv_sec =
1252 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1253 ktvin.tv_usec =
1254 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1255
1256 /*
1257 * Encrypt the timestamp in ecb mode using the
1258 * session key.
1259 */
1260 #ifdef NFSKERB
1261 XXX
1262 #endif
1263
1264 *tl++ = rpc_auth_kerb;
1265 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1266 *tl = ktvout.tv_sec;
1267 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1268 *tl++ = ktvout.tv_usec;
1269 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1270 } else {
1271 *tl++ = 0;
1272 *tl++ = 0;
1273 }
1274 } else {
1275 *tl++ = 0;
1276 *tl++ = 0;
1277 }
1278 switch (err) {
1279 case EPROGUNAVAIL:
1280 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1281 break;
1282 case EPROGMISMATCH:
1283 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1284 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1285 if (nd->nd_flag & ND_NQNFS) {
1286 *tl++ = txdr_unsigned(3);
1287 *tl = txdr_unsigned(3);
1288 } else {
1289 *tl++ = txdr_unsigned(2);
1290 *tl = txdr_unsigned(3);
1291 }
1292 break;
1293 case EPROCUNAVAIL:
1294 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1295 break;
1296 case EBADRPC:
1297 *tl = txdr_unsigned(RPC_GARBAGE);
1298 break;
1299 default:
1300 *tl = 0;
1301 if (err != NFSERR_RETVOID) {
1302 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1303 if (err)
1304 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1305 else
1306 *tl = 0;
1307 }
1308 break;
1309 };
1310 }
1311
1312 /*
1313 * For nqnfs, piggyback lease as requested.
1314 */
1315 if ((nd->nd_flag & ND_NQNFS) && err == 0) {
1316 if (nd->nd_flag & ND_LEASE) {
1317 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1318 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE);
1319 *tl++ = txdr_unsigned(cache);
1320 *tl++ = txdr_unsigned(nd->nd_duration);
1321 txdr_hyper(*frev, tl);
1322 } else {
1323 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1324 *tl = 0;
1325 }
1326 }
1327 if (mrq != NULL)
1328 *mrq = mreq;
1329 *mbp = mb;
1330 *bposp = bpos;
1331 if (err != 0 && err != NFSERR_RETVOID)
1332 nfsstats.srvrpc_errs++;
1333 return (0);
1334 }
1335
1336 /*
1337 * Nfs timer routine
1338 * Scan the nfsreq list and retranmit any requests that have timed out
1339 * To avoid retransmission attempts on STREAM sockets (in the future) make
1340 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1341 */
1342 void
1343 nfs_timer(arg)
1344 void *arg; /* never used */
1345 {
1346 struct nfsreq *rep;
1347 struct mbuf *m;
1348 struct socket *so;
1349 struct nfsmount *nmp;
1350 int timeo;
1351 int s, error;
1352 #ifdef NFSSERVER
1353 struct nfssvc_sock *slp;
1354 static long lasttime = 0;
1355 u_quad_t cur_usec;
1356 #endif
1357
1358 s = splsoftnet();
1359 for (rep = nfs_reqq.tqh_first; rep != 0; rep = rep->r_chain.tqe_next) {
1360 nmp = rep->r_nmp;
1361 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1362 continue;
1363 if (nfs_sigintr(nmp, rep, rep->r_procp)) {
1364 rep->r_flags |= R_SOFTTERM;
1365 continue;
1366 }
1367 if (rep->r_rtt >= 0) {
1368 rep->r_rtt++;
1369 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1370 timeo = nmp->nm_timeo;
1371 else
1372 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1373 if (nmp->nm_timeouts > 0)
1374 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1375 if (rep->r_rtt <= timeo)
1376 continue;
1377 if (nmp->nm_timeouts < 8)
1378 nmp->nm_timeouts++;
1379 }
1380 /*
1381 * Check for server not responding
1382 */
1383 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1384 rep->r_rexmit > nmp->nm_deadthresh) {
1385 nfs_msg(rep->r_procp,
1386 nmp->nm_mountp->mnt_stat.f_mntfromname,
1387 "not responding");
1388 rep->r_flags |= R_TPRINTFMSG;
1389 }
1390 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1391 nfsstats.rpctimeouts++;
1392 rep->r_flags |= R_SOFTTERM;
1393 continue;
1394 }
1395 if (nmp->nm_sotype != SOCK_DGRAM) {
1396 if (++rep->r_rexmit > NFS_MAXREXMIT)
1397 rep->r_rexmit = NFS_MAXREXMIT;
1398 continue;
1399 }
1400 if ((so = nmp->nm_so) == NULL)
1401 continue;
1402
1403 /*
1404 * If there is enough space and the window allows..
1405 * Resend it
1406 * Set r_rtt to -1 in case we fail to send it now.
1407 */
1408 rep->r_rtt = -1;
1409 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1410 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1411 (rep->r_flags & R_SENT) ||
1412 nmp->nm_sent < nmp->nm_cwnd) &&
1413 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1414 if (so->so_state & SS_ISCONNECTED)
1415 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1416 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1417 else
1418 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1419 nmp->nm_nam, (struct mbuf *)0, (struct proc *)0);
1420 if (error) {
1421 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
1422 #ifdef DEBUG
1423 printf("nfs_timer: ignoring error %d\n",
1424 error);
1425 #endif
1426 so->so_error = 0;
1427 }
1428 } else {
1429 /*
1430 * Iff first send, start timing
1431 * else turn timing off, backoff timer
1432 * and divide congestion window by 2.
1433 */
1434 if (rep->r_flags & R_SENT) {
1435 rep->r_flags &= ~R_TIMING;
1436 if (++rep->r_rexmit > NFS_MAXREXMIT)
1437 rep->r_rexmit = NFS_MAXREXMIT;
1438 nmp->nm_cwnd >>= 1;
1439 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1440 nmp->nm_cwnd = NFS_CWNDSCALE;
1441 nfsstats.rpcretries++;
1442 } else {
1443 rep->r_flags |= R_SENT;
1444 nmp->nm_sent += NFS_CWNDSCALE;
1445 }
1446 rep->r_rtt = 0;
1447 }
1448 }
1449 }
1450
1451 #ifdef NFSSERVER
1452 /*
1453 * Call the nqnfs server timer once a second to handle leases.
1454 */
1455 if (lasttime != time.tv_sec) {
1456 lasttime = time.tv_sec;
1457 nqnfs_serverd();
1458 }
1459
1460 /*
1461 * Scan the write gathering queues for writes that need to be
1462 * completed now.
1463 */
1464 cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec;
1465 for (slp = nfssvc_sockhead.tqh_first; slp != 0;
1466 slp = slp->ns_chain.tqe_next) {
1467 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
1468 nfsrv_wakenfsd(slp);
1469 }
1470 #endif /* NFSSERVER */
1471 splx(s);
1472 callout_reset(&nfs_timer_ch, nfs_ticks, nfs_timer, NULL);
1473 }
1474
1475 /*
1476 * Test for a termination condition pending on the process.
1477 * This is used for NFSMNT_INT mounts.
1478 */
1479 int
1480 nfs_sigintr(nmp, rep, p)
1481 struct nfsmount *nmp;
1482 struct nfsreq *rep;
1483 struct proc *p;
1484 {
1485 sigset_t ss;
1486
1487 if (rep && (rep->r_flags & R_SOFTTERM))
1488 return (EINTR);
1489 if (!(nmp->nm_flag & NFSMNT_INT))
1490 return (0);
1491 if (p) {
1492 sigpending1(p, &ss);
1493 #if 0
1494 sigminusset(&p->p_sigctx.ps_sigignore, &ss);
1495 #endif
1496 if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) ||
1497 sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) ||
1498 sigismember(&ss, SIGQUIT))
1499 return (EINTR);
1500 }
1501 return (0);
1502 }
1503
1504 /*
1505 * Lock a socket against others.
1506 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1507 * and also to avoid race conditions between the processes with nfs requests
1508 * in progress when a reconnect is necessary.
1509 */
1510 int
1511 nfs_sndlock(flagp, rep)
1512 int *flagp;
1513 struct nfsreq *rep;
1514 {
1515 struct proc *p;
1516 int slpflag = 0, slptimeo = 0;
1517
1518 if (rep) {
1519 p = rep->r_procp;
1520 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1521 slpflag = PCATCH;
1522 } else
1523 p = (struct proc *)0;
1524 while (*flagp & NFSMNT_SNDLOCK) {
1525 if (nfs_sigintr(rep->r_nmp, rep, p))
1526 return (EINTR);
1527 *flagp |= NFSMNT_WANTSND;
1528 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck",
1529 slptimeo);
1530 if (slpflag == PCATCH) {
1531 slpflag = 0;
1532 slptimeo = 2 * hz;
1533 }
1534 }
1535 *flagp |= NFSMNT_SNDLOCK;
1536 return (0);
1537 }
1538
1539 /*
1540 * Unlock the stream socket for others.
1541 */
1542 void
1543 nfs_sndunlock(flagp)
1544 int *flagp;
1545 {
1546
1547 if ((*flagp & NFSMNT_SNDLOCK) == 0)
1548 panic("nfs sndunlock");
1549 *flagp &= ~NFSMNT_SNDLOCK;
1550 if (*flagp & NFSMNT_WANTSND) {
1551 *flagp &= ~NFSMNT_WANTSND;
1552 wakeup((caddr_t)flagp);
1553 }
1554 }
1555
1556 int
1557 nfs_rcvlock(rep)
1558 struct nfsreq *rep;
1559 {
1560 struct nfsmount *nmp = rep->r_nmp;
1561 int *flagp = &nmp->nm_iflag;
1562 int slpflag, slptimeo = 0;
1563
1564 if (*flagp & NFSMNT_DISMNT)
1565 return EIO;
1566
1567 if (*flagp & NFSMNT_INT)
1568 slpflag = PCATCH;
1569 else
1570 slpflag = 0;
1571 while (*flagp & NFSMNT_RCVLOCK) {
1572 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
1573 return (EINTR);
1574 *flagp |= NFSMNT_WANTRCV;
1575 nmp->nm_waiters++;
1576 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk",
1577 slptimeo);
1578 nmp->nm_waiters--;
1579 if (*flagp & NFSMNT_DISMNT) {
1580 wakeup(&nmp->nm_waiters);
1581 return EIO;
1582 }
1583 /* If our reply was received while we were sleeping,
1584 * then just return without taking the lock to avoid a
1585 * situation where a single iod could 'capture' the
1586 * receive lock.
1587 */
1588 if (rep->r_mrep != NULL)
1589 return (EALREADY);
1590 if (slpflag == PCATCH) {
1591 slpflag = 0;
1592 slptimeo = 2 * hz;
1593 }
1594 }
1595 *flagp |= NFSMNT_RCVLOCK;
1596 return (0);
1597 }
1598
1599 /*
1600 * Unlock the stream socket for others.
1601 */
1602 void
1603 nfs_rcvunlock(flagp)
1604 int *flagp;
1605 {
1606
1607 if ((*flagp & NFSMNT_RCVLOCK) == 0)
1608 panic("nfs rcvunlock");
1609 *flagp &= ~NFSMNT_RCVLOCK;
1610 if (*flagp & NFSMNT_WANTRCV) {
1611 *flagp &= ~NFSMNT_WANTRCV;
1612 wakeup((caddr_t)flagp);
1613 }
1614 }
1615
1616 /*
1617 * Parse an RPC request
1618 * - verify it
1619 * - fill in the cred struct.
1620 */
1621 int
1622 nfs_getreq(nd, nfsd, has_header)
1623 struct nfsrv_descript *nd;
1624 struct nfsd *nfsd;
1625 int has_header;
1626 {
1627 int len, i;
1628 u_int32_t *tl;
1629 int32_t t1;
1630 struct uio uio;
1631 struct iovec iov;
1632 caddr_t dpos, cp2, cp;
1633 u_int32_t nfsvers, auth_type;
1634 uid_t nickuid;
1635 int error = 0, nqnfs = 0, ticklen;
1636 struct mbuf *mrep, *md;
1637 struct nfsuid *nuidp;
1638 struct timeval tvin, tvout;
1639
1640 mrep = nd->nd_mrep;
1641 md = nd->nd_md;
1642 dpos = nd->nd_dpos;
1643 if (has_header) {
1644 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1645 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1646 if (*tl++ != rpc_call) {
1647 m_freem(mrep);
1648 return (EBADRPC);
1649 }
1650 } else
1651 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1652 nd->nd_repstat = 0;
1653 nd->nd_flag = 0;
1654 if (*tl++ != rpc_vers) {
1655 nd->nd_repstat = ERPCMISMATCH;
1656 nd->nd_procnum = NFSPROC_NOOP;
1657 return (0);
1658 }
1659 if (*tl != nfs_prog) {
1660 if (*tl == nqnfs_prog)
1661 nqnfs++;
1662 else {
1663 nd->nd_repstat = EPROGUNAVAIL;
1664 nd->nd_procnum = NFSPROC_NOOP;
1665 return (0);
1666 }
1667 }
1668 tl++;
1669 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1670 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) ||
1671 (nfsvers != NQNFS_VER3 && nqnfs)) {
1672 nd->nd_repstat = EPROGMISMATCH;
1673 nd->nd_procnum = NFSPROC_NOOP;
1674 return (0);
1675 }
1676 if (nqnfs)
1677 nd->nd_flag = (ND_NFSV3 | ND_NQNFS);
1678 else if (nfsvers == NFS_VER3)
1679 nd->nd_flag = ND_NFSV3;
1680 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1681 if (nd->nd_procnum == NFSPROC_NULL)
1682 return (0);
1683 if (nd->nd_procnum >= NFS_NPROCS ||
1684 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
1685 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1686 nd->nd_repstat = EPROCUNAVAIL;
1687 nd->nd_procnum = NFSPROC_NOOP;
1688 return (0);
1689 }
1690 if ((nd->nd_flag & ND_NFSV3) == 0)
1691 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1692 auth_type = *tl++;
1693 len = fxdr_unsigned(int, *tl++);
1694 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1695 m_freem(mrep);
1696 return (EBADRPC);
1697 }
1698
1699 nd->nd_flag &= ~ND_KERBAUTH;
1700 /*
1701 * Handle auth_unix or auth_kerb.
1702 */
1703 if (auth_type == rpc_auth_unix) {
1704 len = fxdr_unsigned(int, *++tl);
1705 if (len < 0 || len > NFS_MAXNAMLEN) {
1706 m_freem(mrep);
1707 return (EBADRPC);
1708 }
1709 nfsm_adv(nfsm_rndup(len));
1710 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1711 memset((caddr_t)&nd->nd_cr, 0, sizeof (struct ucred));
1712 nd->nd_cr.cr_ref = 1;
1713 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
1714 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
1715 len = fxdr_unsigned(int, *tl);
1716 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
1717 m_freem(mrep);
1718 return (EBADRPC);
1719 }
1720 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
1721 for (i = 0; i < len; i++)
1722 if (i < NGROUPS)
1723 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
1724 else
1725 tl++;
1726 nd->nd_cr.cr_ngroups = (len > NGROUPS) ? NGROUPS : len;
1727 if (nd->nd_cr.cr_ngroups > 1)
1728 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
1729 len = fxdr_unsigned(int, *++tl);
1730 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1731 m_freem(mrep);
1732 return (EBADRPC);
1733 }
1734 if (len > 0)
1735 nfsm_adv(nfsm_rndup(len));
1736 } else if (auth_type == rpc_auth_kerb) {
1737 switch (fxdr_unsigned(int, *tl++)) {
1738 case RPCAKN_FULLNAME:
1739 ticklen = fxdr_unsigned(int, *tl);
1740 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
1741 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
1742 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
1743 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
1744 m_freem(mrep);
1745 return (EBADRPC);
1746 }
1747 uio.uio_offset = 0;
1748 uio.uio_iov = &iov;
1749 uio.uio_iovcnt = 1;
1750 uio.uio_segflg = UIO_SYSSPACE;
1751 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
1752 iov.iov_len = RPCAUTH_MAXSIZ - 4;
1753 nfsm_mtouio(&uio, uio.uio_resid);
1754 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1755 if (*tl++ != rpc_auth_kerb ||
1756 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
1757 printf("Bad kerb verifier\n");
1758 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1759 nd->nd_procnum = NFSPROC_NOOP;
1760 return (0);
1761 }
1762 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
1763 tl = (u_int32_t *)cp;
1764 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
1765 printf("Not fullname kerb verifier\n");
1766 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1767 nd->nd_procnum = NFSPROC_NOOP;
1768 return (0);
1769 }
1770 cp += NFSX_UNSIGNED;
1771 memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED);
1772 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
1773 nd->nd_flag |= ND_KERBFULL;
1774 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
1775 break;
1776 case RPCAKN_NICKNAME:
1777 if (len != 2 * NFSX_UNSIGNED) {
1778 printf("Kerb nickname short\n");
1779 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
1780 nd->nd_procnum = NFSPROC_NOOP;
1781 return (0);
1782 }
1783 nickuid = fxdr_unsigned(uid_t, *tl);
1784 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1785 if (*tl++ != rpc_auth_kerb ||
1786 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
1787 printf("Kerb nick verifier bad\n");
1788 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1789 nd->nd_procnum = NFSPROC_NOOP;
1790 return (0);
1791 }
1792 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1793 tvin.tv_sec = *tl++;
1794 tvin.tv_usec = *tl;
1795
1796 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
1797 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1798 if (nuidp->nu_cr.cr_uid == nickuid &&
1799 (!nd->nd_nam2 ||
1800 netaddr_match(NU_NETFAM(nuidp),
1801 &nuidp->nu_haddr, nd->nd_nam2)))
1802 break;
1803 }
1804 if (!nuidp) {
1805 nd->nd_repstat =
1806 (NFSERR_AUTHERR|AUTH_REJECTCRED);
1807 nd->nd_procnum = NFSPROC_NOOP;
1808 return (0);
1809 }
1810
1811 /*
1812 * Now, decrypt the timestamp using the session key
1813 * and validate it.
1814 */
1815 #ifdef NFSKERB
1816 XXX
1817 #endif
1818
1819 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
1820 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
1821 if (nuidp->nu_expire < time.tv_sec ||
1822 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
1823 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
1824 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
1825 nuidp->nu_expire = 0;
1826 nd->nd_repstat =
1827 (NFSERR_AUTHERR|AUTH_REJECTVERF);
1828 nd->nd_procnum = NFSPROC_NOOP;
1829 return (0);
1830 }
1831 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
1832 nd->nd_flag |= ND_KERBNICK;
1833 };
1834 } else {
1835 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
1836 nd->nd_procnum = NFSPROC_NOOP;
1837 return (0);
1838 }
1839
1840 /*
1841 * For nqnfs, get piggybacked lease request.
1842 */
1843 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
1844 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1845 nd->nd_flag |= fxdr_unsigned(int, *tl);
1846 if (nd->nd_flag & ND_LEASE) {
1847 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1848 nd->nd_duration = fxdr_unsigned(u_int32_t, *tl);
1849 } else
1850 nd->nd_duration = NQ_MINLEASE;
1851 } else
1852 nd->nd_duration = NQ_MINLEASE;
1853 nd->nd_md = md;
1854 nd->nd_dpos = dpos;
1855 return (0);
1856 nfsmout:
1857 return (error);
1858 }
1859
1860 int
1861 nfs_msg(p, server, msg)
1862 struct proc *p;
1863 char *server, *msg;
1864 {
1865 tpr_t tpr;
1866
1867 if (p)
1868 tpr = tprintf_open(p);
1869 else
1870 tpr = NULL;
1871 tprintf(tpr, "nfs server %s: %s\n", server, msg);
1872 tprintf_close(tpr);
1873 return (0);
1874 }
1875
1876 #ifdef NFSSERVER
1877 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
1878 struct nfssvc_sock *, struct proc *,
1879 struct mbuf **)) = {
1880 nfsrv_null,
1881 nfsrv_getattr,
1882 nfsrv_setattr,
1883 nfsrv_lookup,
1884 nfsrv3_access,
1885 nfsrv_readlink,
1886 nfsrv_read,
1887 nfsrv_write,
1888 nfsrv_create,
1889 nfsrv_mkdir,
1890 nfsrv_symlink,
1891 nfsrv_mknod,
1892 nfsrv_remove,
1893 nfsrv_rmdir,
1894 nfsrv_rename,
1895 nfsrv_link,
1896 nfsrv_readdir,
1897 nfsrv_readdirplus,
1898 nfsrv_statfs,
1899 nfsrv_fsinfo,
1900 nfsrv_pathconf,
1901 nfsrv_commit,
1902 nqnfsrv_getlease,
1903 nqnfsrv_vacated,
1904 nfsrv_noop,
1905 nfsrv_noop
1906 };
1907
1908 /*
1909 * Socket upcall routine for the nfsd sockets.
1910 * The caddr_t arg is a pointer to the "struct nfssvc_sock".
1911 * Essentially do as much as possible non-blocking, else punt and it will
1912 * be called with M_WAIT from an nfsd.
1913 */
1914 void
1915 nfsrv_rcv(so, arg, waitflag)
1916 struct socket *so;
1917 caddr_t arg;
1918 int waitflag;
1919 {
1920 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
1921 struct mbuf *m;
1922 struct mbuf *mp, *nam;
1923 struct uio auio;
1924 int flags, error;
1925
1926 if ((slp->ns_flag & SLP_VALID) == 0)
1927 return;
1928 #ifdef notdef
1929 /*
1930 * Define this to test for nfsds handling this under heavy load.
1931 */
1932 if (waitflag == M_DONTWAIT) {
1933 slp->ns_flag |= SLP_NEEDQ; goto dorecs;
1934 }
1935 #endif
1936 auio.uio_procp = NULL;
1937 if (so->so_type == SOCK_STREAM) {
1938 /*
1939 * If there are already records on the queue, defer soreceive()
1940 * to an nfsd so that there is feedback to the TCP layer that
1941 * the nfs servers are heavily loaded.
1942 */
1943 if (slp->ns_rec && waitflag == M_DONTWAIT) {
1944 slp->ns_flag |= SLP_NEEDQ;
1945 goto dorecs;
1946 }
1947
1948 /*
1949 * Do soreceive().
1950 */
1951 auio.uio_resid = 1000000000;
1952 flags = MSG_DONTWAIT;
1953 error = (*so->so_receive)(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
1954 if (error || mp == (struct mbuf *)0) {
1955 if (error == EWOULDBLOCK)
1956 slp->ns_flag |= SLP_NEEDQ;
1957 else
1958 slp->ns_flag |= SLP_DISCONN;
1959 goto dorecs;
1960 }
1961 m = mp;
1962 if (slp->ns_rawend) {
1963 slp->ns_rawend->m_next = m;
1964 slp->ns_cc += 1000000000 - auio.uio_resid;
1965 } else {
1966 slp->ns_raw = m;
1967 slp->ns_cc = 1000000000 - auio.uio_resid;
1968 }
1969 while (m->m_next)
1970 m = m->m_next;
1971 slp->ns_rawend = m;
1972
1973 /*
1974 * Now try and parse record(s) out of the raw stream data.
1975 */
1976 error = nfsrv_getstream(slp, waitflag);
1977 if (error) {
1978 if (error == EPERM)
1979 slp->ns_flag |= SLP_DISCONN;
1980 else
1981 slp->ns_flag |= SLP_NEEDQ;
1982 }
1983 } else {
1984 do {
1985 auio.uio_resid = 1000000000;
1986 flags = MSG_DONTWAIT;
1987 error = (*so->so_receive)(so, &nam, &auio, &mp,
1988 (struct mbuf **)0, &flags);
1989 if (mp) {
1990 if (nam) {
1991 m = nam;
1992 m->m_next = mp;
1993 } else
1994 m = mp;
1995 if (slp->ns_recend)
1996 slp->ns_recend->m_nextpkt = m;
1997 else
1998 slp->ns_rec = m;
1999 slp->ns_recend = m;
2000 m->m_nextpkt = (struct mbuf *)0;
2001 }
2002 if (error) {
2003 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2004 && error != EWOULDBLOCK) {
2005 slp->ns_flag |= SLP_DISCONN;
2006 goto dorecs;
2007 }
2008 }
2009 } while (mp);
2010 }
2011
2012 /*
2013 * Now try and process the request records, non-blocking.
2014 */
2015 dorecs:
2016 if (waitflag == M_DONTWAIT &&
2017 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
2018 nfsrv_wakenfsd(slp);
2019 }
2020
2021 /*
2022 * Try and extract an RPC request from the mbuf data list received on a
2023 * stream socket. The "waitflag" argument indicates whether or not it
2024 * can sleep.
2025 */
2026 int
2027 nfsrv_getstream(slp, waitflag)
2028 struct nfssvc_sock *slp;
2029 int waitflag;
2030 {
2031 struct mbuf *m, **mpp;
2032 char *cp1, *cp2;
2033 int len;
2034 struct mbuf *om, *m2, *recm = NULL;
2035 u_int32_t recmark;
2036
2037 if (slp->ns_flag & SLP_GETSTREAM)
2038 panic("nfs getstream");
2039 slp->ns_flag |= SLP_GETSTREAM;
2040 for (;;) {
2041 if (slp->ns_reclen == 0) {
2042 if (slp->ns_cc < NFSX_UNSIGNED) {
2043 slp->ns_flag &= ~SLP_GETSTREAM;
2044 return (0);
2045 }
2046 m = slp->ns_raw;
2047 if (m->m_len >= NFSX_UNSIGNED) {
2048 memcpy((caddr_t)&recmark, mtod(m, caddr_t), NFSX_UNSIGNED);
2049 m->m_data += NFSX_UNSIGNED;
2050 m->m_len -= NFSX_UNSIGNED;
2051 } else {
2052 cp1 = (caddr_t)&recmark;
2053 cp2 = mtod(m, caddr_t);
2054 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
2055 while (m->m_len == 0) {
2056 m = m->m_next;
2057 cp2 = mtod(m, caddr_t);
2058 }
2059 *cp1++ = *cp2++;
2060 m->m_data++;
2061 m->m_len--;
2062 }
2063 }
2064 slp->ns_cc -= NFSX_UNSIGNED;
2065 recmark = ntohl(recmark);
2066 slp->ns_reclen = recmark & ~0x80000000;
2067 if (recmark & 0x80000000)
2068 slp->ns_flag |= SLP_LASTFRAG;
2069 else
2070 slp->ns_flag &= ~SLP_LASTFRAG;
2071 if (slp->ns_reclen > NFS_MAXPACKET) {
2072 slp->ns_flag &= ~SLP_GETSTREAM;
2073 return (EPERM);
2074 }
2075 }
2076
2077 /*
2078 * Now get the record part.
2079 */
2080 if (slp->ns_cc == slp->ns_reclen) {
2081 recm = slp->ns_raw;
2082 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
2083 slp->ns_cc = slp->ns_reclen = 0;
2084 } else if (slp->ns_cc > slp->ns_reclen) {
2085 len = 0;
2086 m = slp->ns_raw;
2087 om = (struct mbuf *)0;
2088 while (len < slp->ns_reclen) {
2089 if ((len + m->m_len) > slp->ns_reclen) {
2090 size_t left = slp->ns_reclen - len;
2091
2092 MGETHDR(m2, waitflag, m->m_type);
2093 if (m2 == NULL) {
2094 slp->ns_flag &= ~SLP_GETSTREAM;
2095 return (EWOULDBLOCK);
2096 }
2097 if (left > MHLEN) {
2098 MCLGET(m2, waitflag);
2099 if (!(m2->m_flags & M_EXT)) {
2100 m_freem(m2);
2101 slp->ns_flag &= ~SLP_GETSTREAM;
2102 return (EWOULDBLOCK);
2103 }
2104 }
2105 memcpy(mtod(m2, caddr_t), mtod(m, caddr_t),
2106 left);
2107 m2->m_len = left;
2108 m->m_data += left;
2109 m->m_len -= left;
2110 if (om) {
2111 om->m_next = m2;
2112 recm = slp->ns_raw;
2113 } else
2114 recm = m2;
2115 len = slp->ns_reclen;
2116 } else if ((len + m->m_len) == slp->ns_reclen) {
2117 om = m;
2118 len += m->m_len;
2119 m = m->m_next;
2120 recm = slp->ns_raw;
2121 om->m_next = (struct mbuf *)0;
2122 } else {
2123 om = m;
2124 len += m->m_len;
2125 m = m->m_next;
2126 }
2127 }
2128 slp->ns_raw = m;
2129 slp->ns_cc -= len;
2130 slp->ns_reclen = 0;
2131 } else {
2132 slp->ns_flag &= ~SLP_GETSTREAM;
2133 return (0);
2134 }
2135
2136 /*
2137 * Accumulate the fragments into a record.
2138 */
2139 mpp = &slp->ns_frag;
2140 while (*mpp)
2141 mpp = &((*mpp)->m_next);
2142 *mpp = recm;
2143 if (slp->ns_flag & SLP_LASTFRAG) {
2144 if (slp->ns_recend)
2145 slp->ns_recend->m_nextpkt = slp->ns_frag;
2146 else
2147 slp->ns_rec = slp->ns_frag;
2148 slp->ns_recend = slp->ns_frag;
2149 slp->ns_frag = (struct mbuf *)0;
2150 }
2151 }
2152 }
2153
2154 /*
2155 * Parse an RPC header.
2156 */
2157 int
2158 nfsrv_dorec(slp, nfsd, ndp)
2159 struct nfssvc_sock *slp;
2160 struct nfsd *nfsd;
2161 struct nfsrv_descript **ndp;
2162 {
2163 struct mbuf *m, *nam;
2164 struct nfsrv_descript *nd;
2165 int error;
2166
2167 *ndp = NULL;
2168 if ((slp->ns_flag & SLP_VALID) == 0 ||
2169 (m = slp->ns_rec) == (struct mbuf *)0)
2170 return (ENOBUFS);
2171 slp->ns_rec = m->m_nextpkt;
2172 if (slp->ns_rec)
2173 m->m_nextpkt = (struct mbuf *)0;
2174 else
2175 slp->ns_recend = (struct mbuf *)0;
2176 if (m->m_type == MT_SONAME) {
2177 nam = m;
2178 m = m->m_next;
2179 nam->m_next = NULL;
2180 } else
2181 nam = NULL;
2182 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2183 M_NFSRVDESC, M_WAITOK);
2184 nd->nd_md = nd->nd_mrep = m;
2185 nd->nd_nam2 = nam;
2186 nd->nd_dpos = mtod(m, caddr_t);
2187 error = nfs_getreq(nd, nfsd, TRUE);
2188 if (error) {
2189 m_freem(nam);
2190 free((caddr_t)nd, M_NFSRVDESC);
2191 return (error);
2192 }
2193 *ndp = nd;
2194 nfsd->nfsd_nd = nd;
2195 return (0);
2196 }
2197
2198
2199 /*
2200 * Search for a sleeping nfsd and wake it up.
2201 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2202 * running nfsds will go look for the work in the nfssvc_sock list.
2203 */
2204 void
2205 nfsrv_wakenfsd(slp)
2206 struct nfssvc_sock *slp;
2207 {
2208 struct nfsd *nd;
2209
2210 if ((slp->ns_flag & SLP_VALID) == 0)
2211 return;
2212 for (nd = nfsd_head.tqh_first; nd != 0; nd = nd->nfsd_chain.tqe_next) {
2213 if (nd->nfsd_flag & NFSD_WAITING) {
2214 nd->nfsd_flag &= ~NFSD_WAITING;
2215 if (nd->nfsd_slp)
2216 panic("nfsd wakeup");
2217 slp->ns_sref++;
2218 nd->nfsd_slp = slp;
2219 wakeup((caddr_t)nd);
2220 return;
2221 }
2222 }
2223 slp->ns_flag |= SLP_DOREC;
2224 nfsd_head_flag |= NFSD_CHECKSLP;
2225 }
2226 #endif /* NFSSERVER */
2227