nfs_socket.c revision 1.76 1 /* $NetBSD: nfs_socket.c,v 1.76 2002/09/27 15:38:00 provos Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1991, 1993, 1995
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
39 */
40
41 /*
42 * Socket operations for use by nfs
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.76 2002/09/27 15:38:00 provos Exp $");
47
48 #include "fs_nfs.h"
49 #include "opt_nfs.h"
50 #include "opt_nfsserver.h"
51 #include "opt_inet.h"
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/proc.h>
57 #include <sys/mount.h>
58 #include <sys/kernel.h>
59 #include <sys/mbuf.h>
60 #include <sys/vnode.h>
61 #include <sys/domain.h>
62 #include <sys/protosw.h>
63 #include <sys/socket.h>
64 #include <sys/socketvar.h>
65 #include <sys/syslog.h>
66 #include <sys/tprintf.h>
67 #include <sys/namei.h>
68 #include <sys/signal.h>
69 #include <sys/signalvar.h>
70
71 #include <netinet/in.h>
72 #include <netinet/tcp.h>
73
74 #include <nfs/rpcv2.h>
75 #include <nfs/nfsproto.h>
76 #include <nfs/nfs.h>
77 #include <nfs/xdr_subs.h>
78 #include <nfs/nfsm_subs.h>
79 #include <nfs/nfsmount.h>
80 #include <nfs/nfsnode.h>
81 #include <nfs/nfsrtt.h>
82 #include <nfs/nqnfs.h>
83 #include <nfs/nfs_var.h>
84
85 #define TRUE 1
86 #define FALSE 0
87
88 /*
89 * Estimate rto for an nfs rpc sent via. an unreliable datagram.
90 * Use the mean and mean deviation of rtt for the appropriate type of rpc
91 * for the frequent rpcs and a default for the others.
92 * The justification for doing "other" this way is that these rpcs
93 * happen so infrequently that timer est. would probably be stale.
94 * Also, since many of these rpcs are
95 * non-idempotent, a conservative timeout is desired.
96 * getattr, lookup - A+2D
97 * read, write - A+4D
98 * other - nm_timeo
99 */
100 #define NFS_RTO(n, t) \
101 ((t) == 0 ? (n)->nm_timeo : \
102 ((t) < 3 ? \
103 (((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
104 ((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
105 #define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
106 #define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
107 /*
108 * External data, mostly RPC constants in XDR form
109 */
110 extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
111 rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
112 rpc_auth_kerb;
113 extern u_int32_t nfs_prog, nqnfs_prog;
114 extern time_t nqnfsstarttime;
115 extern int nfsv3_procid[NFS_NPROCS];
116 extern int nfs_ticks;
117
118 /*
119 * Defines which timer to use for the procnum.
120 * 0 - default
121 * 1 - getattr
122 * 2 - lookup
123 * 3 - read
124 * 4 - write
125 */
126 static const int proct[NFS_NPROCS] = {
127 0, 1, 0, 2, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0,
128 0, 0, 0,
129 };
130
131 /*
132 * There is a congestion window for outstanding rpcs maintained per mount
133 * point. The cwnd size is adjusted in roughly the way that:
134 * Van Jacobson, Congestion avoidance and Control, In "Proceedings of
135 * SIGCOMM '88". ACM, August 1988.
136 * describes for TCP. The cwnd size is chopped in half on a retransmit timeout
137 * and incremented by 1/cwnd when each rpc reply is received and a full cwnd
138 * of rpcs is in progress.
139 * (The sent count and cwnd are scaled for integer arith.)
140 * Variants of "slow start" were tried and were found to be too much of a
141 * performance hit (ave. rtt 3 times larger),
142 * I suspect due to the large rtt that nfs rpcs have.
143 */
144 #define NFS_CWNDSCALE 256
145 #define NFS_MAXCWND (NFS_CWNDSCALE * 32)
146 static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
147 int nfsrtton = 0;
148 struct nfsrtt nfsrtt;
149 struct nfsreqhead nfs_reqq;
150
151 struct callout nfs_timer_ch = CALLOUT_INITIALIZER;
152
153 /*
154 * Initialize sockets and congestion for a new NFS connection.
155 * We do not free the sockaddr if error.
156 */
157 int
158 nfs_connect(nmp, rep)
159 struct nfsmount *nmp;
160 struct nfsreq *rep;
161 {
162 struct socket *so;
163 int s, error, rcvreserve, sndreserve;
164 struct sockaddr *saddr;
165 struct sockaddr_in *sin;
166 #ifdef INET6
167 struct sockaddr_in6 *sin6;
168 #endif
169 struct mbuf *m;
170
171 nmp->nm_so = (struct socket *)0;
172 saddr = mtod(nmp->nm_nam, struct sockaddr *);
173 error = socreate(saddr->sa_family, &nmp->nm_so, nmp->nm_sotype,
174 nmp->nm_soproto);
175 if (error)
176 goto bad;
177 so = nmp->nm_so;
178 nmp->nm_soflags = so->so_proto->pr_flags;
179
180 /*
181 * Some servers require that the client port be a reserved port number.
182 */
183 if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
184 MGET(m, M_WAIT, MT_SOOPTS);
185 *mtod(m, int32_t *) = IP_PORTRANGE_LOW;
186 m->m_len = sizeof(int32_t);
187 if ((error = sosetopt(so, IPPROTO_IP, IP_PORTRANGE, m)))
188 goto bad;
189 MGET(m, M_WAIT, MT_SONAME);
190 sin = mtod(m, struct sockaddr_in *);
191 sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
192 sin->sin_family = AF_INET;
193 sin->sin_addr.s_addr = INADDR_ANY;
194 sin->sin_port = 0;
195 error = sobind(so, m, &proc0);
196 m_freem(m);
197 if (error)
198 goto bad;
199 }
200 #ifdef INET6
201 if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) {
202 MGET(m, M_WAIT, MT_SOOPTS);
203 *mtod(m, int32_t *) = IPV6_PORTRANGE_LOW;
204 m->m_len = sizeof(int32_t);
205 if ((error = sosetopt(so, IPPROTO_IPV6, IPV6_PORTRANGE, m)))
206 goto bad;
207 MGET(m, M_WAIT, MT_SONAME);
208 sin6 = mtod(m, struct sockaddr_in6 *);
209 sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6);
210 sin6->sin6_family = AF_INET6;
211 sin6->sin6_addr = in6addr_any;
212 sin6->sin6_port = 0;
213 error = sobind(so, m, &proc0);
214 m_freem(m);
215 if (error)
216 goto bad;
217 }
218 #endif
219
220 /*
221 * Protocols that do not require connections may be optionally left
222 * unconnected for servers that reply from a port other than NFS_PORT.
223 */
224 if (nmp->nm_flag & NFSMNT_NOCONN) {
225 if (nmp->nm_soflags & PR_CONNREQUIRED) {
226 error = ENOTCONN;
227 goto bad;
228 }
229 } else {
230 error = soconnect(so, nmp->nm_nam);
231 if (error)
232 goto bad;
233
234 /*
235 * Wait for the connection to complete. Cribbed from the
236 * connect system call but with the wait timing out so
237 * that interruptible mounts don't hang here for a long time.
238 */
239 s = splsoftnet();
240 while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
241 (void) tsleep((caddr_t)&so->so_timeo, PSOCK,
242 "nfscn1", 2 * hz);
243 if ((so->so_state & SS_ISCONNECTING) &&
244 so->so_error == 0 && rep &&
245 (error = nfs_sigintr(nmp, rep, rep->r_procp)) != 0){
246 so->so_state &= ~SS_ISCONNECTING;
247 splx(s);
248 goto bad;
249 }
250 }
251 if (so->so_error) {
252 error = so->so_error;
253 so->so_error = 0;
254 splx(s);
255 goto bad;
256 }
257 splx(s);
258 }
259 if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
260 so->so_rcv.sb_timeo = (5 * hz);
261 so->so_snd.sb_timeo = (5 * hz);
262 } else {
263 so->so_rcv.sb_timeo = 0;
264 so->so_snd.sb_timeo = 0;
265 }
266 if (nmp->nm_sotype == SOCK_DGRAM) {
267 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
268 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
269 NFS_MAXPKTHDR) * 2;
270 } else if (nmp->nm_sotype == SOCK_SEQPACKET) {
271 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
272 rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
273 NFS_MAXPKTHDR) * 2;
274 } else {
275 if (nmp->nm_sotype != SOCK_STREAM)
276 panic("nfscon sotype");
277 if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
278 MGET(m, M_WAIT, MT_SOOPTS);
279 *mtod(m, int32_t *) = 1;
280 m->m_len = sizeof(int32_t);
281 sosetopt(so, SOL_SOCKET, SO_KEEPALIVE, m);
282 }
283 if (so->so_proto->pr_protocol == IPPROTO_TCP) {
284 MGET(m, M_WAIT, MT_SOOPTS);
285 *mtod(m, int32_t *) = 1;
286 m->m_len = sizeof(int32_t);
287 sosetopt(so, IPPROTO_TCP, TCP_NODELAY, m);
288 }
289 sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
290 sizeof (u_int32_t)) * 2;
291 rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
292 sizeof (u_int32_t)) * 2;
293 }
294 error = soreserve(so, sndreserve, rcvreserve);
295 if (error)
296 goto bad;
297 so->so_rcv.sb_flags |= SB_NOINTR;
298 so->so_snd.sb_flags |= SB_NOINTR;
299
300 /* Initialize other non-zero congestion variables */
301 nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
302 NFS_TIMEO << 3;
303 nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
304 nmp->nm_sdrtt[3] = 0;
305 nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
306 nmp->nm_sent = 0;
307 nmp->nm_timeouts = 0;
308 return (0);
309
310 bad:
311 nfs_disconnect(nmp);
312 return (error);
313 }
314
315 /*
316 * Reconnect routine:
317 * Called when a connection is broken on a reliable protocol.
318 * - clean up the old socket
319 * - nfs_connect() again
320 * - set R_MUSTRESEND for all outstanding requests on mount point
321 * If this fails the mount point is DEAD!
322 * nb: Must be called with the nfs_sndlock() set on the mount point.
323 */
324 int
325 nfs_reconnect(rep)
326 struct nfsreq *rep;
327 {
328 struct nfsreq *rp;
329 struct nfsmount *nmp = rep->r_nmp;
330 int error;
331
332 nfs_disconnect(nmp);
333 while ((error = nfs_connect(nmp, rep)) != 0) {
334 if (error == EINTR || error == ERESTART)
335 return (EINTR);
336 (void) tsleep((caddr_t)&lbolt, PSOCK, "nfscn2", 0);
337 }
338
339 /*
340 * Loop through outstanding request list and fix up all requests
341 * on old socket.
342 */
343 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) {
344 if (rp->r_nmp == nmp)
345 rp->r_flags |= R_MUSTRESEND;
346 }
347 return (0);
348 }
349
350 /*
351 * NFS disconnect. Clean up and unlink.
352 */
353 void
354 nfs_disconnect(nmp)
355 struct nfsmount *nmp;
356 {
357 struct socket *so;
358 int drain = 0;
359
360 if (nmp->nm_so) {
361 so = nmp->nm_so;
362 nmp->nm_so = (struct socket *)0;
363 soshutdown(so, 2);
364 drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0;
365 if (drain) {
366 /*
367 * soshutdown() above should wake up the current
368 * listener.
369 * Now wake up those waiting for the receive lock, and
370 * wait for them to go away unhappy, to prevent *nmp
371 * from evaporating while they're sleeping.
372 */
373 while (nmp->nm_waiters > 0) {
374 wakeup (&nmp->nm_iflag);
375 (void) tsleep(&nmp->nm_waiters, PVFS,
376 "nfsdis", 0);
377 }
378 }
379 soclose(so);
380 }
381 #ifdef DIAGNOSTIC
382 if (drain && (nmp->nm_waiters > 0))
383 panic("nfs_disconnect: waiters left after drain?");
384 #endif
385 }
386
387 void
388 nfs_safedisconnect(nmp)
389 struct nfsmount *nmp;
390 {
391 struct nfsreq dummyreq;
392
393 memset(&dummyreq, 0, sizeof(dummyreq));
394 dummyreq.r_nmp = nmp;
395 nfs_rcvlock(&dummyreq); /* XXX ignored error return */
396 nfs_disconnect(nmp);
397 nfs_rcvunlock(&nmp->nm_iflag);
398 }
399
400 /*
401 * This is the nfs send routine. For connection based socket types, it
402 * must be called with an nfs_sndlock() on the socket.
403 * "rep == NULL" indicates that it has been called from a server.
404 * For the client side:
405 * - return EINTR if the RPC is terminated, 0 otherwise
406 * - set R_MUSTRESEND if the send fails for any reason
407 * - do any cleanup required by recoverable socket errors (? ? ?)
408 * For the server side:
409 * - return EINTR or ERESTART if interrupted by a signal
410 * - return EPIPE if a connection is lost for connection based sockets (TCP...)
411 * - do any cleanup required by recoverable socket errors (? ? ?)
412 */
413 int
414 nfs_send(so, nam, top, rep)
415 struct socket *so;
416 struct mbuf *nam;
417 struct mbuf *top;
418 struct nfsreq *rep;
419 {
420 struct mbuf *sendnam;
421 int error, soflags, flags;
422
423 if (rep) {
424 if (rep->r_flags & R_SOFTTERM) {
425 m_freem(top);
426 return (EINTR);
427 }
428 if ((so = rep->r_nmp->nm_so) == NULL) {
429 rep->r_flags |= R_MUSTRESEND;
430 m_freem(top);
431 return (0);
432 }
433 rep->r_flags &= ~R_MUSTRESEND;
434 soflags = rep->r_nmp->nm_soflags;
435 } else
436 soflags = so->so_proto->pr_flags;
437 if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
438 sendnam = (struct mbuf *)0;
439 else
440 sendnam = nam;
441 if (so->so_type == SOCK_SEQPACKET)
442 flags = MSG_EOR;
443 else
444 flags = 0;
445
446 error = (*so->so_send)(so, sendnam, (struct uio *)0, top,
447 (struct mbuf *)0, flags);
448 if (error) {
449 if (rep) {
450 if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
451 /*
452 * We're too fast for the network/driver,
453 * and UDP isn't flowcontrolled.
454 * We need to resend. This is not fatal,
455 * just try again.
456 *
457 * Could be smarter here by doing some sort
458 * of a backoff, but this is rare.
459 */
460 rep->r_flags |= R_MUSTRESEND;
461 } else {
462 log(LOG_INFO, "nfs send error %d for %s\n",
463 error,
464 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
465 /*
466 * Deal with errors for the client side.
467 */
468 if (rep->r_flags & R_SOFTTERM)
469 error = EINTR;
470 else
471 rep->r_flags |= R_MUSTRESEND;
472 }
473 } else {
474 /*
475 * See above. This error can happen under normal
476 * circumstances and the log is too noisy.
477 * The error will still show up in nfsstat.
478 */
479 if (error != ENOBUFS || so->so_type != SOCK_DGRAM)
480 log(LOG_INFO, "nfsd send error %d\n", error);
481 }
482
483 /*
484 * Handle any recoverable (soft) socket errors here. (? ? ?)
485 */
486 if (error != EINTR && error != ERESTART &&
487 error != EWOULDBLOCK && error != EPIPE)
488 error = 0;
489 }
490 return (error);
491 }
492
493 #ifdef NFS
494 /*
495 * Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
496 * done by soreceive(), but for SOCK_STREAM we must deal with the Record
497 * Mark and consolidate the data into a new mbuf list.
498 * nb: Sometimes TCP passes the data up to soreceive() in long lists of
499 * small mbufs.
500 * For SOCK_STREAM we must be very careful to read an entire record once
501 * we have read any of it, even if the system call has been interrupted.
502 */
503 int
504 nfs_receive(rep, aname, mp)
505 struct nfsreq *rep;
506 struct mbuf **aname;
507 struct mbuf **mp;
508 {
509 struct socket *so;
510 struct uio auio;
511 struct iovec aio;
512 struct mbuf *m;
513 struct mbuf *control;
514 u_int32_t len;
515 struct mbuf **getnam;
516 int error, sotype, rcvflg;
517 struct proc *p = curproc; /* XXX */
518
519 /*
520 * Set up arguments for soreceive()
521 */
522 *mp = (struct mbuf *)0;
523 *aname = (struct mbuf *)0;
524 sotype = rep->r_nmp->nm_sotype;
525
526 /*
527 * For reliable protocols, lock against other senders/receivers
528 * in case a reconnect is necessary.
529 * For SOCK_STREAM, first get the Record Mark to find out how much
530 * more there is to get.
531 * We must lock the socket against other receivers
532 * until we have an entire rpc request/reply.
533 */
534 if (sotype != SOCK_DGRAM) {
535 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep);
536 if (error)
537 return (error);
538 tryagain:
539 /*
540 * Check for fatal errors and resending request.
541 */
542 /*
543 * Ugh: If a reconnect attempt just happened, nm_so
544 * would have changed. NULL indicates a failed
545 * attempt that has essentially shut down this
546 * mount point.
547 */
548 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
549 nfs_sndunlock(&rep->r_nmp->nm_iflag);
550 return (EINTR);
551 }
552 so = rep->r_nmp->nm_so;
553 if (!so) {
554 error = nfs_reconnect(rep);
555 if (error) {
556 nfs_sndunlock(&rep->r_nmp->nm_iflag);
557 return (error);
558 }
559 goto tryagain;
560 }
561 while (rep->r_flags & R_MUSTRESEND) {
562 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
563 nfsstats.rpcretries++;
564 error = nfs_send(so, rep->r_nmp->nm_nam, m, rep);
565 if (error) {
566 if (error == EINTR || error == ERESTART ||
567 (error = nfs_reconnect(rep)) != 0) {
568 nfs_sndunlock(&rep->r_nmp->nm_iflag);
569 return (error);
570 }
571 goto tryagain;
572 }
573 }
574 nfs_sndunlock(&rep->r_nmp->nm_iflag);
575 if (sotype == SOCK_STREAM) {
576 aio.iov_base = (caddr_t) &len;
577 aio.iov_len = sizeof(u_int32_t);
578 auio.uio_iov = &aio;
579 auio.uio_iovcnt = 1;
580 auio.uio_segflg = UIO_SYSSPACE;
581 auio.uio_rw = UIO_READ;
582 auio.uio_offset = 0;
583 auio.uio_resid = sizeof(u_int32_t);
584 auio.uio_procp = p;
585 do {
586 rcvflg = MSG_WAITALL;
587 error = (*so->so_receive)(so, (struct mbuf **)0, &auio,
588 (struct mbuf **)0, (struct mbuf **)0, &rcvflg);
589 if (error == EWOULDBLOCK && rep) {
590 if (rep->r_flags & R_SOFTTERM)
591 return (EINTR);
592 }
593 } while (error == EWOULDBLOCK);
594 if (!error && auio.uio_resid > 0) {
595 /*
596 * Don't log a 0 byte receive; it means
597 * that the socket has been closed, and
598 * can happen during normal operation
599 * (forcible unmount or Solaris server).
600 */
601 if (auio.uio_resid != sizeof (u_int32_t))
602 log(LOG_INFO,
603 "short receive (%lu/%lu) from nfs server %s\n",
604 (u_long)sizeof(u_int32_t) - auio.uio_resid,
605 (u_long)sizeof(u_int32_t),
606 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
607 error = EPIPE;
608 }
609 if (error)
610 goto errout;
611 len = ntohl(len) & ~0x80000000;
612 /*
613 * This is SERIOUS! We are out of sync with the sender
614 * and forcing a disconnect/reconnect is all I can do.
615 */
616 if (len > NFS_MAXPACKET) {
617 log(LOG_ERR, "%s (%d) from nfs server %s\n",
618 "impossible packet length",
619 len,
620 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
621 error = EFBIG;
622 goto errout;
623 }
624 auio.uio_resid = len;
625 do {
626 rcvflg = MSG_WAITALL;
627 error = (*so->so_receive)(so, (struct mbuf **)0,
628 &auio, mp, (struct mbuf **)0, &rcvflg);
629 } while (error == EWOULDBLOCK || error == EINTR ||
630 error == ERESTART);
631 if (!error && auio.uio_resid > 0) {
632 if (len != auio.uio_resid)
633 log(LOG_INFO,
634 "short receive (%lu/%d) from nfs server %s\n",
635 (u_long)len - auio.uio_resid, len,
636 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
637 error = EPIPE;
638 }
639 } else {
640 /*
641 * NB: Since uio_resid is big, MSG_WAITALL is ignored
642 * and soreceive() will return when it has either a
643 * control msg or a data msg.
644 * We have no use for control msg., but must grab them
645 * and then throw them away so we know what is going
646 * on.
647 */
648 auio.uio_resid = len = 100000000; /* Anything Big */
649 auio.uio_procp = p;
650 do {
651 rcvflg = 0;
652 error = (*so->so_receive)(so, (struct mbuf **)0,
653 &auio, mp, &control, &rcvflg);
654 if (control)
655 m_freem(control);
656 if (error == EWOULDBLOCK && rep) {
657 if (rep->r_flags & R_SOFTTERM)
658 return (EINTR);
659 }
660 } while (error == EWOULDBLOCK ||
661 (!error && *mp == NULL && control));
662 if ((rcvflg & MSG_EOR) == 0)
663 printf("Egad!!\n");
664 if (!error && *mp == NULL)
665 error = EPIPE;
666 len -= auio.uio_resid;
667 }
668 errout:
669 if (error && error != EINTR && error != ERESTART) {
670 m_freem(*mp);
671 *mp = (struct mbuf *)0;
672 if (error != EPIPE)
673 log(LOG_INFO,
674 "receive error %d from nfs server %s\n",
675 error,
676 rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
677 error = nfs_sndlock(&rep->r_nmp->nm_iflag, rep);
678 if (!error)
679 error = nfs_reconnect(rep);
680 if (!error)
681 goto tryagain;
682 else
683 nfs_sndunlock(&rep->r_nmp->nm_iflag);
684 }
685 } else {
686 if ((so = rep->r_nmp->nm_so) == NULL)
687 return (EACCES);
688 if (so->so_state & SS_ISCONNECTED)
689 getnam = (struct mbuf **)0;
690 else
691 getnam = aname;
692 auio.uio_resid = len = 1000000;
693 auio.uio_procp = p;
694 do {
695 rcvflg = 0;
696 error = (*so->so_receive)(so, getnam, &auio, mp,
697 (struct mbuf **)0, &rcvflg);
698 if (error == EWOULDBLOCK &&
699 (rep->r_flags & R_SOFTTERM))
700 return (EINTR);
701 } while (error == EWOULDBLOCK);
702 len -= auio.uio_resid;
703 if (!error && *mp == NULL)
704 error = EPIPE;
705 }
706 if (error) {
707 m_freem(*mp);
708 *mp = (struct mbuf *)0;
709 }
710 return (error);
711 }
712
713 /*
714 * Implement receipt of reply on a socket.
715 * We must search through the list of received datagrams matching them
716 * with outstanding requests using the xid, until ours is found.
717 */
718 /* ARGSUSED */
719 int
720 nfs_reply(myrep)
721 struct nfsreq *myrep;
722 {
723 struct nfsreq *rep;
724 struct nfsmount *nmp = myrep->r_nmp;
725 int32_t t1;
726 struct mbuf *mrep, *nam, *md;
727 u_int32_t rxid, *tl;
728 caddr_t dpos, cp2;
729 int error;
730
731 /*
732 * Loop around until we get our own reply
733 */
734 for (;;) {
735 /*
736 * Lock against other receivers so that I don't get stuck in
737 * sbwait() after someone else has received my reply for me.
738 * Also necessary for connection based protocols to avoid
739 * race conditions during a reconnect.
740 */
741 error = nfs_rcvlock(myrep);
742 if (error == EALREADY)
743 return (0);
744 if (error)
745 return (error);
746 /*
747 * Get the next Rpc reply off the socket
748 */
749 nmp->nm_waiters++;
750 error = nfs_receive(myrep, &nam, &mrep);
751 nfs_rcvunlock(&nmp->nm_iflag);
752 if (error) {
753
754 if (nmp->nm_iflag & NFSMNT_DISMNT) {
755 /*
756 * Oops, we're going away now..
757 */
758 nmp->nm_waiters--;
759 wakeup (&nmp->nm_waiters);
760 return error;
761 }
762 nmp->nm_waiters--;
763 /*
764 * Ignore routing errors on connectionless protocols? ?
765 */
766 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
767 nmp->nm_so->so_error = 0;
768 #ifdef DEBUG
769 printf("nfs_reply: ignoring error %d\n", error);
770 #endif
771 if (myrep->r_flags & R_GETONEREP)
772 return (0);
773 continue;
774 }
775 return (error);
776 }
777 nmp->nm_waiters--;
778 if (nam)
779 m_freem(nam);
780
781 /*
782 * Get the xid and check that it is an rpc reply
783 */
784 md = mrep;
785 dpos = mtod(md, caddr_t);
786 nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
787 rxid = *tl++;
788 if (*tl != rpc_reply) {
789 #ifndef NFS_V2_ONLY
790 if (nmp->nm_flag & NFSMNT_NQNFS) {
791 if (nqnfs_callback(nmp, mrep, md, dpos))
792 nfsstats.rpcinvalid++;
793 } else
794 #endif
795 {
796 nfsstats.rpcinvalid++;
797 m_freem(mrep);
798 }
799 nfsmout:
800 if (myrep->r_flags & R_GETONEREP)
801 return (0);
802 continue;
803 }
804
805 /*
806 * Loop through the request list to match up the reply
807 * Iff no match, just drop the datagram
808 */
809 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
810 if (rep->r_mrep == NULL && rxid == rep->r_xid) {
811 /* Found it.. */
812 rep->r_mrep = mrep;
813 rep->r_md = md;
814 rep->r_dpos = dpos;
815 if (nfsrtton) {
816 struct rttl *rt;
817
818 rt = &nfsrtt.rttl[nfsrtt.pos];
819 rt->proc = rep->r_procnum;
820 rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
821 rt->sent = nmp->nm_sent;
822 rt->cwnd = nmp->nm_cwnd;
823 rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
824 rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
825 rt->fsid = nmp->nm_mountp->mnt_stat.f_fsid;
826 rt->tstamp = time;
827 if (rep->r_flags & R_TIMING)
828 rt->rtt = rep->r_rtt;
829 else
830 rt->rtt = 1000000;
831 nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
832 }
833 /*
834 * Update congestion window.
835 * Do the additive increase of
836 * one rpc/rtt.
837 */
838 if (nmp->nm_cwnd <= nmp->nm_sent) {
839 nmp->nm_cwnd +=
840 (NFS_CWNDSCALE * NFS_CWNDSCALE +
841 (nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
842 if (nmp->nm_cwnd > NFS_MAXCWND)
843 nmp->nm_cwnd = NFS_MAXCWND;
844 }
845 rep->r_flags &= ~R_SENT;
846 nmp->nm_sent -= NFS_CWNDSCALE;
847 /*
848 * Update rtt using a gain of 0.125 on the mean
849 * and a gain of 0.25 on the deviation.
850 */
851 if (rep->r_flags & R_TIMING) {
852 /*
853 * Since the timer resolution of
854 * NFS_HZ is so course, it can often
855 * result in r_rtt == 0. Since
856 * r_rtt == N means that the actual
857 * rtt is between N+dt and N+2-dt ticks,
858 * add 1.
859 */
860 t1 = rep->r_rtt + 1;
861 t1 -= (NFS_SRTT(rep) >> 3);
862 NFS_SRTT(rep) += t1;
863 if (t1 < 0)
864 t1 = -t1;
865 t1 -= (NFS_SDRTT(rep) >> 2);
866 NFS_SDRTT(rep) += t1;
867 }
868 nmp->nm_timeouts = 0;
869 break;
870 }
871 }
872 /*
873 * If not matched to a request, drop it.
874 * If it's mine, get out.
875 */
876 if (rep == 0) {
877 nfsstats.rpcunexpected++;
878 m_freem(mrep);
879 } else if (rep == myrep) {
880 if (rep->r_mrep == NULL)
881 panic("nfsreply nil");
882 return (0);
883 }
884 if (myrep->r_flags & R_GETONEREP)
885 return (0);
886 }
887 }
888
889 /*
890 * nfs_request - goes something like this
891 * - fill in request struct
892 * - links it into list
893 * - calls nfs_send() for first transmit
894 * - calls nfs_receive() to get reply
895 * - break down rpc header and return with nfs reply pointed to
896 * by mrep or error
897 * nb: always frees up mreq mbuf list
898 */
899 int
900 nfs_request(vp, mrest, procnum, procp, cred, mrp, mdp, dposp)
901 struct vnode *vp;
902 struct mbuf *mrest;
903 int procnum;
904 struct proc *procp;
905 struct ucred *cred;
906 struct mbuf **mrp;
907 struct mbuf **mdp;
908 caddr_t *dposp;
909 {
910 struct mbuf *m, *mrep;
911 struct nfsreq *rep;
912 u_int32_t *tl;
913 int i;
914 struct nfsmount *nmp;
915 struct mbuf *md, *mheadend;
916 char nickv[RPCX_NICKVERF];
917 time_t reqtime, waituntil;
918 caddr_t dpos, cp2;
919 int t1, s, error = 0, mrest_len, auth_len, auth_type;
920 int trylater_delay = NQ_TRYLATERDEL, trylater_cnt = 0, failed_auth = 0;
921 int verf_len, verf_type;
922 u_int32_t xid;
923 char *auth_str, *verf_str;
924 NFSKERBKEY_T key; /* save session key */
925 #ifndef NFS_V2_ONLY
926 int nqlflag, cachable;
927 u_quad_t frev;
928 struct nfsnode *np;
929 #endif
930
931 KASSERT(cred != NULL);
932 nmp = VFSTONFS(vp->v_mount);
933 MALLOC(rep, struct nfsreq *, sizeof(struct nfsreq), M_NFSREQ, M_WAITOK);
934 rep->r_nmp = nmp;
935 rep->r_vp = vp;
936 rep->r_procp = procp;
937 rep->r_procnum = procnum;
938 i = 0;
939 m = mrest;
940 while (m) {
941 i += m->m_len;
942 m = m->m_next;
943 }
944 mrest_len = i;
945
946 /*
947 * Get the RPC header with authorization.
948 */
949 kerbauth:
950 verf_str = auth_str = (char *)0;
951 if (nmp->nm_flag & NFSMNT_KERB) {
952 verf_str = nickv;
953 verf_len = sizeof (nickv);
954 auth_type = RPCAUTH_KERB4;
955 memset((caddr_t)key, 0, sizeof (key));
956 if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
957 &auth_len, verf_str, verf_len)) {
958 error = nfs_getauth(nmp, rep, cred, &auth_str,
959 &auth_len, verf_str, &verf_len, key);
960 if (error) {
961 free((caddr_t)rep, M_NFSREQ);
962 m_freem(mrest);
963 return (error);
964 }
965 }
966 } else {
967 auth_type = RPCAUTH_UNIX;
968 auth_len = (((cred->cr_ngroups > nmp->nm_numgrps) ?
969 nmp->nm_numgrps : cred->cr_ngroups) << 2) +
970 5 * NFSX_UNSIGNED;
971 }
972 m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
973 auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
974 if (auth_str)
975 free(auth_str, M_TEMP);
976
977 /*
978 * For stream protocols, insert a Sun RPC Record Mark.
979 */
980 if (nmp->nm_sotype == SOCK_STREAM) {
981 M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
982 *mtod(m, u_int32_t *) = htonl(0x80000000 |
983 (m->m_pkthdr.len - NFSX_UNSIGNED));
984 }
985 rep->r_mreq = m;
986 rep->r_xid = xid;
987 tryagain:
988 if (nmp->nm_flag & NFSMNT_SOFT)
989 rep->r_retry = nmp->nm_retry;
990 else
991 rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
992 rep->r_rtt = rep->r_rexmit = 0;
993 if (proct[procnum] > 0)
994 rep->r_flags = R_TIMING;
995 else
996 rep->r_flags = 0;
997 rep->r_mrep = NULL;
998
999 /*
1000 * Do the client side RPC.
1001 */
1002 nfsstats.rpcrequests++;
1003 /*
1004 * Chain request into list of outstanding requests. Be sure
1005 * to put it LAST so timer finds oldest requests first.
1006 */
1007 s = splsoftnet();
1008 TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
1009
1010 /* Get send time for nqnfs */
1011 reqtime = time.tv_sec;
1012
1013 /*
1014 * If backing off another request or avoiding congestion, don't
1015 * send this one now but let timer do it. If not timing a request,
1016 * do it now.
1017 */
1018 if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
1019 (nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1020 nmp->nm_sent < nmp->nm_cwnd)) {
1021 splx(s);
1022 if (nmp->nm_soflags & PR_CONNREQUIRED)
1023 error = nfs_sndlock(&nmp->nm_iflag, rep);
1024 if (!error) {
1025 m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
1026 error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep);
1027 if (nmp->nm_soflags & PR_CONNREQUIRED)
1028 nfs_sndunlock(&nmp->nm_iflag);
1029 }
1030 if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
1031 nmp->nm_sent += NFS_CWNDSCALE;
1032 rep->r_flags |= R_SENT;
1033 }
1034 } else {
1035 splx(s);
1036 rep->r_rtt = -1;
1037 }
1038
1039 /*
1040 * Wait for the reply from our send or the timer's.
1041 */
1042 if (!error || error == EPIPE)
1043 error = nfs_reply(rep);
1044
1045 /*
1046 * RPC done, unlink the request.
1047 */
1048 s = splsoftnet();
1049 TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
1050 splx(s);
1051
1052 /*
1053 * Decrement the outstanding request count.
1054 */
1055 if (rep->r_flags & R_SENT) {
1056 rep->r_flags &= ~R_SENT; /* paranoia */
1057 nmp->nm_sent -= NFS_CWNDSCALE;
1058 }
1059
1060 /*
1061 * If there was a successful reply and a tprintf msg.
1062 * tprintf a response.
1063 */
1064 if (!error && (rep->r_flags & R_TPRINTFMSG))
1065 nfs_msg(rep->r_procp, nmp->nm_mountp->mnt_stat.f_mntfromname,
1066 "is alive again");
1067 mrep = rep->r_mrep;
1068 md = rep->r_md;
1069 dpos = rep->r_dpos;
1070 if (error) {
1071 m_freem(rep->r_mreq);
1072 free((caddr_t)rep, M_NFSREQ);
1073 return (error);
1074 }
1075
1076 /*
1077 * break down the rpc header and check if ok
1078 */
1079 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1080 if (*tl++ == rpc_msgdenied) {
1081 if (*tl == rpc_mismatch)
1082 error = EOPNOTSUPP;
1083 else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
1084 if (!failed_auth) {
1085 failed_auth++;
1086 mheadend->m_next = (struct mbuf *)0;
1087 m_freem(mrep);
1088 m_freem(rep->r_mreq);
1089 goto kerbauth;
1090 } else
1091 error = EAUTH;
1092 } else
1093 error = EACCES;
1094 m_freem(mrep);
1095 m_freem(rep->r_mreq);
1096 free((caddr_t)rep, M_NFSREQ);
1097 return (error);
1098 }
1099
1100 /*
1101 * Grab any Kerberos verifier, otherwise just throw it away.
1102 */
1103 verf_type = fxdr_unsigned(int, *tl++);
1104 i = fxdr_unsigned(int32_t, *tl);
1105 if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
1106 error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
1107 if (error)
1108 goto nfsmout;
1109 } else if (i > 0)
1110 nfsm_adv(nfsm_rndup(i));
1111 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1112 /* 0 == ok */
1113 if (*tl == 0) {
1114 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1115 if (*tl != 0) {
1116 error = fxdr_unsigned(int, *tl);
1117 if ((nmp->nm_flag & NFSMNT_NFSV3) &&
1118 error == NFSERR_TRYLATER) {
1119 m_freem(mrep);
1120 error = 0;
1121 waituntil = time.tv_sec + trylater_delay;
1122 while (time.tv_sec < waituntil)
1123 (void) tsleep((caddr_t)&lbolt,
1124 PSOCK, "nqnfstry", 0);
1125 trylater_delay *= nfs_backoff[trylater_cnt];
1126 if (trylater_cnt < 7)
1127 trylater_cnt++;
1128 goto tryagain;
1129 }
1130
1131 /*
1132 * If the File Handle was stale, invalidate the
1133 * lookup cache, just in case.
1134 */
1135 if (error == ESTALE)
1136 cache_purge(vp);
1137 if (nmp->nm_flag & NFSMNT_NFSV3) {
1138 *mrp = mrep;
1139 *mdp = md;
1140 *dposp = dpos;
1141 error |= NFSERR_RETERR;
1142 } else
1143 m_freem(mrep);
1144 m_freem(rep->r_mreq);
1145 free((caddr_t)rep, M_NFSREQ);
1146 return (error);
1147 }
1148
1149 #ifndef NFS_V2_ONLY
1150 /*
1151 * For nqnfs, get any lease in reply
1152 */
1153 if (nmp->nm_flag & NFSMNT_NQNFS) {
1154 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1155 if (*tl) {
1156 np = VTONFS(vp);
1157 nqlflag = fxdr_unsigned(int, *tl);
1158 nfsm_dissect(tl, u_int32_t *, 4*NFSX_UNSIGNED);
1159 cachable = fxdr_unsigned(int, *tl++);
1160 reqtime += fxdr_unsigned(int, *tl++);
1161 if (reqtime > time.tv_sec) {
1162 frev = fxdr_hyper(tl);
1163 nqnfs_clientlease(nmp, np, nqlflag,
1164 cachable, reqtime, frev);
1165 }
1166 }
1167 }
1168 #endif
1169 *mrp = mrep;
1170 *mdp = md;
1171 *dposp = dpos;
1172 m_freem(rep->r_mreq);
1173 FREE((caddr_t)rep, M_NFSREQ);
1174 return (0);
1175 }
1176 m_freem(mrep);
1177 error = EPROTONOSUPPORT;
1178 nfsmout:
1179 m_freem(rep->r_mreq);
1180 free((caddr_t)rep, M_NFSREQ);
1181 return (error);
1182 }
1183 #endif /* NFS */
1184
1185 /*
1186 * Generate the rpc reply header
1187 * siz arg. is used to decide if adding a cluster is worthwhile
1188 */
1189 int
1190 nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
1191 int siz;
1192 struct nfsrv_descript *nd;
1193 struct nfssvc_sock *slp;
1194 int err;
1195 int cache;
1196 u_quad_t *frev;
1197 struct mbuf **mrq;
1198 struct mbuf **mbp;
1199 caddr_t *bposp;
1200 {
1201 u_int32_t *tl;
1202 struct mbuf *mreq;
1203 caddr_t bpos;
1204 struct mbuf *mb, *mb2;
1205
1206 MGETHDR(mreq, M_WAIT, MT_DATA);
1207 mb = mreq;
1208 /*
1209 * If this is a big reply, use a cluster else
1210 * try and leave leading space for the lower level headers.
1211 */
1212 siz += RPC_REPLYSIZ;
1213 if (siz >= max_datalen) {
1214 MCLGET(mreq, M_WAIT);
1215 } else
1216 mreq->m_data += max_hdr;
1217 tl = mtod(mreq, u_int32_t *);
1218 mreq->m_len = 6 * NFSX_UNSIGNED;
1219 bpos = ((caddr_t)tl) + mreq->m_len;
1220 *tl++ = txdr_unsigned(nd->nd_retxid);
1221 *tl++ = rpc_reply;
1222 if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
1223 *tl++ = rpc_msgdenied;
1224 if (err & NFSERR_AUTHERR) {
1225 *tl++ = rpc_autherr;
1226 *tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
1227 mreq->m_len -= NFSX_UNSIGNED;
1228 bpos -= NFSX_UNSIGNED;
1229 } else {
1230 *tl++ = rpc_mismatch;
1231 *tl++ = txdr_unsigned(RPC_VER2);
1232 *tl = txdr_unsigned(RPC_VER2);
1233 }
1234 } else {
1235 *tl++ = rpc_msgaccepted;
1236
1237 /*
1238 * For Kerberos authentication, we must send the nickname
1239 * verifier back, otherwise just RPCAUTH_NULL.
1240 */
1241 if (nd->nd_flag & ND_KERBFULL) {
1242 struct nfsuid *nuidp;
1243 struct timeval ktvin, ktvout;
1244
1245 for (nuidp = NUIDHASH(slp, nd->nd_cr.cr_uid)->lh_first;
1246 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1247 if (nuidp->nu_cr.cr_uid == nd->nd_cr.cr_uid &&
1248 (!nd->nd_nam2 || netaddr_match(NU_NETFAM(nuidp),
1249 &nuidp->nu_haddr, nd->nd_nam2)))
1250 break;
1251 }
1252 if (nuidp) {
1253 ktvin.tv_sec =
1254 txdr_unsigned(nuidp->nu_timestamp.tv_sec - 1);
1255 ktvin.tv_usec =
1256 txdr_unsigned(nuidp->nu_timestamp.tv_usec);
1257
1258 /*
1259 * Encrypt the timestamp in ecb mode using the
1260 * session key.
1261 */
1262 #ifdef NFSKERB
1263 XXX
1264 #endif
1265
1266 *tl++ = rpc_auth_kerb;
1267 *tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
1268 *tl = ktvout.tv_sec;
1269 nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1270 *tl++ = ktvout.tv_usec;
1271 *tl++ = txdr_unsigned(nuidp->nu_cr.cr_uid);
1272 } else {
1273 *tl++ = 0;
1274 *tl++ = 0;
1275 }
1276 } else {
1277 *tl++ = 0;
1278 *tl++ = 0;
1279 }
1280 switch (err) {
1281 case EPROGUNAVAIL:
1282 *tl = txdr_unsigned(RPC_PROGUNAVAIL);
1283 break;
1284 case EPROGMISMATCH:
1285 *tl = txdr_unsigned(RPC_PROGMISMATCH);
1286 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1287 if (nd->nd_flag & ND_NQNFS) {
1288 *tl++ = txdr_unsigned(3);
1289 *tl = txdr_unsigned(3);
1290 } else {
1291 *tl++ = txdr_unsigned(2);
1292 *tl = txdr_unsigned(3);
1293 }
1294 break;
1295 case EPROCUNAVAIL:
1296 *tl = txdr_unsigned(RPC_PROCUNAVAIL);
1297 break;
1298 case EBADRPC:
1299 *tl = txdr_unsigned(RPC_GARBAGE);
1300 break;
1301 default:
1302 *tl = 0;
1303 if (err != NFSERR_RETVOID) {
1304 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1305 if (err)
1306 *tl = txdr_unsigned(nfsrv_errmap(nd, err));
1307 else
1308 *tl = 0;
1309 }
1310 break;
1311 };
1312 }
1313
1314 /*
1315 * For nqnfs, piggyback lease as requested.
1316 */
1317 if ((nd->nd_flag & ND_NQNFS) && err == 0) {
1318 if (nd->nd_flag & ND_LEASE) {
1319 nfsm_build(tl, u_int32_t *, 5 * NFSX_UNSIGNED);
1320 *tl++ = txdr_unsigned(nd->nd_flag & ND_LEASE);
1321 *tl++ = txdr_unsigned(cache);
1322 *tl++ = txdr_unsigned(nd->nd_duration);
1323 txdr_hyper(*frev, tl);
1324 } else {
1325 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
1326 *tl = 0;
1327 }
1328 }
1329 if (mrq != NULL)
1330 *mrq = mreq;
1331 *mbp = mb;
1332 *bposp = bpos;
1333 if (err != 0 && err != NFSERR_RETVOID)
1334 nfsstats.srvrpc_errs++;
1335 return (0);
1336 }
1337
1338 /*
1339 * Nfs timer routine
1340 * Scan the nfsreq list and retranmit any requests that have timed out
1341 * To avoid retransmission attempts on STREAM sockets (in the future) make
1342 * sure to set the r_retry field to 0 (implies nm_retry == 0).
1343 */
1344 void
1345 nfs_timer(arg)
1346 void *arg; /* never used */
1347 {
1348 struct nfsreq *rep;
1349 struct mbuf *m;
1350 struct socket *so;
1351 struct nfsmount *nmp;
1352 int timeo;
1353 int s, error;
1354 #ifdef NFSSERVER
1355 struct nfssvc_sock *slp;
1356 static long lasttime = 0;
1357 u_quad_t cur_usec;
1358 #endif
1359
1360 s = splsoftnet();
1361 TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
1362 nmp = rep->r_nmp;
1363 if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
1364 continue;
1365 if (nfs_sigintr(nmp, rep, rep->r_procp)) {
1366 rep->r_flags |= R_SOFTTERM;
1367 continue;
1368 }
1369 if (rep->r_rtt >= 0) {
1370 rep->r_rtt++;
1371 if (nmp->nm_flag & NFSMNT_DUMBTIMR)
1372 timeo = nmp->nm_timeo;
1373 else
1374 timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
1375 if (nmp->nm_timeouts > 0)
1376 timeo *= nfs_backoff[nmp->nm_timeouts - 1];
1377 if (rep->r_rtt <= timeo)
1378 continue;
1379 if (nmp->nm_timeouts < 8)
1380 nmp->nm_timeouts++;
1381 }
1382 /*
1383 * Check for server not responding
1384 */
1385 if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
1386 rep->r_rexmit > nmp->nm_deadthresh) {
1387 nfs_msg(rep->r_procp,
1388 nmp->nm_mountp->mnt_stat.f_mntfromname,
1389 "not responding");
1390 rep->r_flags |= R_TPRINTFMSG;
1391 }
1392 if (rep->r_rexmit >= rep->r_retry) { /* too many */
1393 nfsstats.rpctimeouts++;
1394 rep->r_flags |= R_SOFTTERM;
1395 continue;
1396 }
1397 if (nmp->nm_sotype != SOCK_DGRAM) {
1398 if (++rep->r_rexmit > NFS_MAXREXMIT)
1399 rep->r_rexmit = NFS_MAXREXMIT;
1400 continue;
1401 }
1402 if ((so = nmp->nm_so) == NULL)
1403 continue;
1404
1405 /*
1406 * If there is enough space and the window allows..
1407 * Resend it
1408 * Set r_rtt to -1 in case we fail to send it now.
1409 */
1410 rep->r_rtt = -1;
1411 if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
1412 ((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
1413 (rep->r_flags & R_SENT) ||
1414 nmp->nm_sent < nmp->nm_cwnd) &&
1415 (m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
1416 if (so->so_state & SS_ISCONNECTED)
1417 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1418 (struct mbuf *)0, (struct mbuf *)0, (struct proc *)0);
1419 else
1420 error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
1421 nmp->nm_nam, (struct mbuf *)0, (struct proc *)0);
1422 if (error) {
1423 if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
1424 #ifdef DEBUG
1425 printf("nfs_timer: ignoring error %d\n",
1426 error);
1427 #endif
1428 so->so_error = 0;
1429 }
1430 } else {
1431 /*
1432 * Iff first send, start timing
1433 * else turn timing off, backoff timer
1434 * and divide congestion window by 2.
1435 */
1436 if (rep->r_flags & R_SENT) {
1437 rep->r_flags &= ~R_TIMING;
1438 if (++rep->r_rexmit > NFS_MAXREXMIT)
1439 rep->r_rexmit = NFS_MAXREXMIT;
1440 nmp->nm_cwnd >>= 1;
1441 if (nmp->nm_cwnd < NFS_CWNDSCALE)
1442 nmp->nm_cwnd = NFS_CWNDSCALE;
1443 nfsstats.rpcretries++;
1444 } else {
1445 rep->r_flags |= R_SENT;
1446 nmp->nm_sent += NFS_CWNDSCALE;
1447 }
1448 rep->r_rtt = 0;
1449 }
1450 }
1451 }
1452
1453 #ifdef NFSSERVER
1454 /*
1455 * Call the nqnfs server timer once a second to handle leases.
1456 */
1457 if (lasttime != time.tv_sec) {
1458 lasttime = time.tv_sec;
1459 nqnfs_serverd();
1460 }
1461
1462 /*
1463 * Scan the write gathering queues for writes that need to be
1464 * completed now.
1465 */
1466 cur_usec = (u_quad_t)time.tv_sec * 1000000 + (u_quad_t)time.tv_usec;
1467 TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
1468 if (slp->ns_tq.lh_first && slp->ns_tq.lh_first->nd_time<=cur_usec)
1469 nfsrv_wakenfsd(slp);
1470 }
1471 #endif /* NFSSERVER */
1472 splx(s);
1473 callout_reset(&nfs_timer_ch, nfs_ticks, nfs_timer, NULL);
1474 }
1475
1476 /*ARGSUSED*/
1477 void
1478 nfs_exit(p, v)
1479 struct proc *p;
1480 void *v;
1481 {
1482 struct nfsreq *rp;
1483 int s = splsoftnet();
1484
1485 TAILQ_FOREACH(rp, &nfs_reqq, r_chain) {
1486 if (rp->r_procp == p)
1487 TAILQ_REMOVE(&nfs_reqq, rp, r_chain);
1488 }
1489 splx(s);
1490 }
1491
1492 /*
1493 * Test for a termination condition pending on the process.
1494 * This is used for NFSMNT_INT mounts.
1495 */
1496 int
1497 nfs_sigintr(nmp, rep, p)
1498 struct nfsmount *nmp;
1499 struct nfsreq *rep;
1500 struct proc *p;
1501 {
1502 sigset_t ss;
1503
1504 if (rep && (rep->r_flags & R_SOFTTERM))
1505 return (EINTR);
1506 if (!(nmp->nm_flag & NFSMNT_INT))
1507 return (0);
1508 if (p) {
1509 sigpending1(p, &ss);
1510 #if 0
1511 sigminusset(&p->p_sigctx.ps_sigignore, &ss);
1512 #endif
1513 if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) ||
1514 sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) ||
1515 sigismember(&ss, SIGQUIT))
1516 return (EINTR);
1517 }
1518 return (0);
1519 }
1520
1521 /*
1522 * Lock a socket against others.
1523 * Necessary for STREAM sockets to ensure you get an entire rpc request/reply
1524 * and also to avoid race conditions between the processes with nfs requests
1525 * in progress when a reconnect is necessary.
1526 */
1527 int
1528 nfs_sndlock(flagp, rep)
1529 int *flagp;
1530 struct nfsreq *rep;
1531 {
1532 struct proc *p;
1533 int slpflag = 0, slptimeo = 0;
1534
1535 if (rep) {
1536 p = rep->r_procp;
1537 if (rep->r_nmp->nm_flag & NFSMNT_INT)
1538 slpflag = PCATCH;
1539 } else
1540 p = (struct proc *)0;
1541 while (*flagp & NFSMNT_SNDLOCK) {
1542 if (nfs_sigintr(rep->r_nmp, rep, p))
1543 return (EINTR);
1544 *flagp |= NFSMNT_WANTSND;
1545 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsndlck",
1546 slptimeo);
1547 if (slpflag == PCATCH) {
1548 slpflag = 0;
1549 slptimeo = 2 * hz;
1550 }
1551 }
1552 *flagp |= NFSMNT_SNDLOCK;
1553 return (0);
1554 }
1555
1556 /*
1557 * Unlock the stream socket for others.
1558 */
1559 void
1560 nfs_sndunlock(flagp)
1561 int *flagp;
1562 {
1563
1564 if ((*flagp & NFSMNT_SNDLOCK) == 0)
1565 panic("nfs sndunlock");
1566 *flagp &= ~NFSMNT_SNDLOCK;
1567 if (*flagp & NFSMNT_WANTSND) {
1568 *flagp &= ~NFSMNT_WANTSND;
1569 wakeup((caddr_t)flagp);
1570 }
1571 }
1572
1573 int
1574 nfs_rcvlock(rep)
1575 struct nfsreq *rep;
1576 {
1577 struct nfsmount *nmp = rep->r_nmp;
1578 int *flagp = &nmp->nm_iflag;
1579 int slpflag, slptimeo = 0;
1580
1581 if (*flagp & NFSMNT_DISMNT)
1582 return EIO;
1583
1584 if (*flagp & NFSMNT_INT)
1585 slpflag = PCATCH;
1586 else
1587 slpflag = 0;
1588 while (*flagp & NFSMNT_RCVLOCK) {
1589 if (nfs_sigintr(rep->r_nmp, rep, rep->r_procp))
1590 return (EINTR);
1591 *flagp |= NFSMNT_WANTRCV;
1592 nmp->nm_waiters++;
1593 (void) tsleep((caddr_t)flagp, slpflag | (PZERO - 1), "nfsrcvlk",
1594 slptimeo);
1595 nmp->nm_waiters--;
1596 if (*flagp & NFSMNT_DISMNT) {
1597 wakeup(&nmp->nm_waiters);
1598 return EIO;
1599 }
1600 /* If our reply was received while we were sleeping,
1601 * then just return without taking the lock to avoid a
1602 * situation where a single iod could 'capture' the
1603 * receive lock.
1604 */
1605 if (rep->r_mrep != NULL)
1606 return (EALREADY);
1607 if (slpflag == PCATCH) {
1608 slpflag = 0;
1609 slptimeo = 2 * hz;
1610 }
1611 }
1612 *flagp |= NFSMNT_RCVLOCK;
1613 return (0);
1614 }
1615
1616 /*
1617 * Unlock the stream socket for others.
1618 */
1619 void
1620 nfs_rcvunlock(flagp)
1621 int *flagp;
1622 {
1623
1624 if ((*flagp & NFSMNT_RCVLOCK) == 0)
1625 panic("nfs rcvunlock");
1626 *flagp &= ~NFSMNT_RCVLOCK;
1627 if (*flagp & NFSMNT_WANTRCV) {
1628 *flagp &= ~NFSMNT_WANTRCV;
1629 wakeup((caddr_t)flagp);
1630 }
1631 }
1632
1633 /*
1634 * Parse an RPC request
1635 * - verify it
1636 * - fill in the cred struct.
1637 */
1638 int
1639 nfs_getreq(nd, nfsd, has_header)
1640 struct nfsrv_descript *nd;
1641 struct nfsd *nfsd;
1642 int has_header;
1643 {
1644 int len, i;
1645 u_int32_t *tl;
1646 int32_t t1;
1647 struct uio uio;
1648 struct iovec iov;
1649 caddr_t dpos, cp2, cp;
1650 u_int32_t nfsvers, auth_type;
1651 uid_t nickuid;
1652 int error = 0, nqnfs = 0, ticklen;
1653 struct mbuf *mrep, *md;
1654 struct nfsuid *nuidp;
1655 struct timeval tvin, tvout;
1656
1657 mrep = nd->nd_mrep;
1658 md = nd->nd_md;
1659 dpos = nd->nd_dpos;
1660 if (has_header) {
1661 nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
1662 nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
1663 if (*tl++ != rpc_call) {
1664 m_freem(mrep);
1665 return (EBADRPC);
1666 }
1667 } else
1668 nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
1669 nd->nd_repstat = 0;
1670 nd->nd_flag = 0;
1671 if (*tl++ != rpc_vers) {
1672 nd->nd_repstat = ERPCMISMATCH;
1673 nd->nd_procnum = NFSPROC_NOOP;
1674 return (0);
1675 }
1676 if (*tl != nfs_prog) {
1677 if (*tl == nqnfs_prog)
1678 nqnfs++;
1679 else {
1680 nd->nd_repstat = EPROGUNAVAIL;
1681 nd->nd_procnum = NFSPROC_NOOP;
1682 return (0);
1683 }
1684 }
1685 tl++;
1686 nfsvers = fxdr_unsigned(u_int32_t, *tl++);
1687 if (((nfsvers < NFS_VER2 || nfsvers > NFS_VER3) && !nqnfs) ||
1688 (nfsvers != NQNFS_VER3 && nqnfs)) {
1689 nd->nd_repstat = EPROGMISMATCH;
1690 nd->nd_procnum = NFSPROC_NOOP;
1691 return (0);
1692 }
1693 if (nqnfs)
1694 nd->nd_flag = (ND_NFSV3 | ND_NQNFS);
1695 else if (nfsvers == NFS_VER3)
1696 nd->nd_flag = ND_NFSV3;
1697 nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
1698 if (nd->nd_procnum == NFSPROC_NULL)
1699 return (0);
1700 if (nd->nd_procnum >= NFS_NPROCS ||
1701 (!nqnfs && nd->nd_procnum >= NQNFSPROC_GETLEASE) ||
1702 (!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
1703 nd->nd_repstat = EPROCUNAVAIL;
1704 nd->nd_procnum = NFSPROC_NOOP;
1705 return (0);
1706 }
1707 if ((nd->nd_flag & ND_NFSV3) == 0)
1708 nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
1709 auth_type = *tl++;
1710 len = fxdr_unsigned(int, *tl++);
1711 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1712 m_freem(mrep);
1713 return (EBADRPC);
1714 }
1715
1716 nd->nd_flag &= ~ND_KERBAUTH;
1717 /*
1718 * Handle auth_unix or auth_kerb.
1719 */
1720 if (auth_type == rpc_auth_unix) {
1721 len = fxdr_unsigned(int, *++tl);
1722 if (len < 0 || len > NFS_MAXNAMLEN) {
1723 m_freem(mrep);
1724 return (EBADRPC);
1725 }
1726 nfsm_adv(nfsm_rndup(len));
1727 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1728 memset((caddr_t)&nd->nd_cr, 0, sizeof (struct ucred));
1729 nd->nd_cr.cr_ref = 1;
1730 nd->nd_cr.cr_uid = fxdr_unsigned(uid_t, *tl++);
1731 nd->nd_cr.cr_gid = fxdr_unsigned(gid_t, *tl++);
1732 len = fxdr_unsigned(int, *tl);
1733 if (len < 0 || len > RPCAUTH_UNIXGIDS) {
1734 m_freem(mrep);
1735 return (EBADRPC);
1736 }
1737 nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
1738 for (i = 0; i < len; i++)
1739 if (i < NGROUPS)
1740 nd->nd_cr.cr_groups[i] = fxdr_unsigned(gid_t, *tl++);
1741 else
1742 tl++;
1743 nd->nd_cr.cr_ngroups = (len > NGROUPS) ? NGROUPS : len;
1744 if (nd->nd_cr.cr_ngroups > 1)
1745 nfsrvw_sort(nd->nd_cr.cr_groups, nd->nd_cr.cr_ngroups);
1746 len = fxdr_unsigned(int, *++tl);
1747 if (len < 0 || len > RPCAUTH_MAXSIZ) {
1748 m_freem(mrep);
1749 return (EBADRPC);
1750 }
1751 if (len > 0)
1752 nfsm_adv(nfsm_rndup(len));
1753 } else if (auth_type == rpc_auth_kerb) {
1754 switch (fxdr_unsigned(int, *tl++)) {
1755 case RPCAKN_FULLNAME:
1756 ticklen = fxdr_unsigned(int, *tl);
1757 *((u_int32_t *)nfsd->nfsd_authstr) = *tl;
1758 uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
1759 nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
1760 if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
1761 m_freem(mrep);
1762 return (EBADRPC);
1763 }
1764 uio.uio_offset = 0;
1765 uio.uio_iov = &iov;
1766 uio.uio_iovcnt = 1;
1767 uio.uio_segflg = UIO_SYSSPACE;
1768 iov.iov_base = (caddr_t)&nfsd->nfsd_authstr[4];
1769 iov.iov_len = RPCAUTH_MAXSIZ - 4;
1770 nfsm_mtouio(&uio, uio.uio_resid);
1771 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1772 if (*tl++ != rpc_auth_kerb ||
1773 fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
1774 printf("Bad kerb verifier\n");
1775 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1776 nd->nd_procnum = NFSPROC_NOOP;
1777 return (0);
1778 }
1779 nfsm_dissect(cp, caddr_t, 4 * NFSX_UNSIGNED);
1780 tl = (u_int32_t *)cp;
1781 if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
1782 printf("Not fullname kerb verifier\n");
1783 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1784 nd->nd_procnum = NFSPROC_NOOP;
1785 return (0);
1786 }
1787 cp += NFSX_UNSIGNED;
1788 memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED);
1789 nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
1790 nd->nd_flag |= ND_KERBFULL;
1791 nfsd->nfsd_flag |= NFSD_NEEDAUTH;
1792 break;
1793 case RPCAKN_NICKNAME:
1794 if (len != 2 * NFSX_UNSIGNED) {
1795 printf("Kerb nickname short\n");
1796 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
1797 nd->nd_procnum = NFSPROC_NOOP;
1798 return (0);
1799 }
1800 nickuid = fxdr_unsigned(uid_t, *tl);
1801 nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
1802 if (*tl++ != rpc_auth_kerb ||
1803 fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
1804 printf("Kerb nick verifier bad\n");
1805 nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
1806 nd->nd_procnum = NFSPROC_NOOP;
1807 return (0);
1808 }
1809 nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
1810 tvin.tv_sec = *tl++;
1811 tvin.tv_usec = *tl;
1812
1813 for (nuidp = NUIDHASH(nfsd->nfsd_slp,nickuid)->lh_first;
1814 nuidp != 0; nuidp = nuidp->nu_hash.le_next) {
1815 if (nuidp->nu_cr.cr_uid == nickuid &&
1816 (!nd->nd_nam2 ||
1817 netaddr_match(NU_NETFAM(nuidp),
1818 &nuidp->nu_haddr, nd->nd_nam2)))
1819 break;
1820 }
1821 if (!nuidp) {
1822 nd->nd_repstat =
1823 (NFSERR_AUTHERR|AUTH_REJECTCRED);
1824 nd->nd_procnum = NFSPROC_NOOP;
1825 return (0);
1826 }
1827
1828 /*
1829 * Now, decrypt the timestamp using the session key
1830 * and validate it.
1831 */
1832 #ifdef NFSKERB
1833 XXX
1834 #endif
1835
1836 tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
1837 tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
1838 if (nuidp->nu_expire < time.tv_sec ||
1839 nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
1840 (nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
1841 nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
1842 nuidp->nu_expire = 0;
1843 nd->nd_repstat =
1844 (NFSERR_AUTHERR|AUTH_REJECTVERF);
1845 nd->nd_procnum = NFSPROC_NOOP;
1846 return (0);
1847 }
1848 nfsrv_setcred(&nuidp->nu_cr, &nd->nd_cr);
1849 nd->nd_flag |= ND_KERBNICK;
1850 };
1851 } else {
1852 nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
1853 nd->nd_procnum = NFSPROC_NOOP;
1854 return (0);
1855 }
1856
1857 /*
1858 * For nqnfs, get piggybacked lease request.
1859 */
1860 if (nqnfs && nd->nd_procnum != NQNFSPROC_EVICTED) {
1861 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1862 nd->nd_flag |= fxdr_unsigned(int, *tl);
1863 if (nd->nd_flag & ND_LEASE) {
1864 nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
1865 nd->nd_duration = fxdr_unsigned(u_int32_t, *tl);
1866 } else
1867 nd->nd_duration = NQ_MINLEASE;
1868 } else
1869 nd->nd_duration = NQ_MINLEASE;
1870 nd->nd_md = md;
1871 nd->nd_dpos = dpos;
1872 return (0);
1873 nfsmout:
1874 return (error);
1875 }
1876
1877 int
1878 nfs_msg(p, server, msg)
1879 struct proc *p;
1880 char *server, *msg;
1881 {
1882 tpr_t tpr;
1883
1884 if (p)
1885 tpr = tprintf_open(p);
1886 else
1887 tpr = NULL;
1888 tprintf(tpr, "nfs server %s: %s\n", server, msg);
1889 tprintf_close(tpr);
1890 return (0);
1891 }
1892
1893 #ifdef NFSSERVER
1894 int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
1895 struct nfssvc_sock *, struct proc *,
1896 struct mbuf **)) = {
1897 nfsrv_null,
1898 nfsrv_getattr,
1899 nfsrv_setattr,
1900 nfsrv_lookup,
1901 nfsrv3_access,
1902 nfsrv_readlink,
1903 nfsrv_read,
1904 nfsrv_write,
1905 nfsrv_create,
1906 nfsrv_mkdir,
1907 nfsrv_symlink,
1908 nfsrv_mknod,
1909 nfsrv_remove,
1910 nfsrv_rmdir,
1911 nfsrv_rename,
1912 nfsrv_link,
1913 nfsrv_readdir,
1914 nfsrv_readdirplus,
1915 nfsrv_statfs,
1916 nfsrv_fsinfo,
1917 nfsrv_pathconf,
1918 nfsrv_commit,
1919 nqnfsrv_getlease,
1920 nqnfsrv_vacated,
1921 nfsrv_noop,
1922 nfsrv_noop
1923 };
1924
1925 /*
1926 * Socket upcall routine for the nfsd sockets.
1927 * The caddr_t arg is a pointer to the "struct nfssvc_sock".
1928 * Essentially do as much as possible non-blocking, else punt and it will
1929 * be called with M_WAIT from an nfsd.
1930 */
1931 void
1932 nfsrv_rcv(so, arg, waitflag)
1933 struct socket *so;
1934 caddr_t arg;
1935 int waitflag;
1936 {
1937 struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
1938 struct mbuf *m;
1939 struct mbuf *mp, *nam;
1940 struct uio auio;
1941 int flags, error;
1942
1943 if ((slp->ns_flag & SLP_VALID) == 0)
1944 return;
1945 #ifdef notdef
1946 /*
1947 * Define this to test for nfsds handling this under heavy load.
1948 */
1949 if (waitflag == M_DONTWAIT) {
1950 slp->ns_flag |= SLP_NEEDQ; goto dorecs;
1951 }
1952 #endif
1953 auio.uio_procp = NULL;
1954 if (so->so_type == SOCK_STREAM) {
1955 /*
1956 * If there are already records on the queue, defer soreceive()
1957 * to an nfsd so that there is feedback to the TCP layer that
1958 * the nfs servers are heavily loaded.
1959 */
1960 if (slp->ns_rec && waitflag == M_DONTWAIT) {
1961 slp->ns_flag |= SLP_NEEDQ;
1962 goto dorecs;
1963 }
1964
1965 /*
1966 * Do soreceive().
1967 */
1968 auio.uio_resid = 1000000000;
1969 flags = MSG_DONTWAIT;
1970 error = (*so->so_receive)(so, &nam, &auio, &mp, (struct mbuf **)0, &flags);
1971 if (error || mp == (struct mbuf *)0) {
1972 if (error == EWOULDBLOCK)
1973 slp->ns_flag |= SLP_NEEDQ;
1974 else
1975 slp->ns_flag |= SLP_DISCONN;
1976 goto dorecs;
1977 }
1978 m = mp;
1979 if (slp->ns_rawend) {
1980 slp->ns_rawend->m_next = m;
1981 slp->ns_cc += 1000000000 - auio.uio_resid;
1982 } else {
1983 slp->ns_raw = m;
1984 slp->ns_cc = 1000000000 - auio.uio_resid;
1985 }
1986 while (m->m_next)
1987 m = m->m_next;
1988 slp->ns_rawend = m;
1989
1990 /*
1991 * Now try and parse record(s) out of the raw stream data.
1992 */
1993 error = nfsrv_getstream(slp, waitflag);
1994 if (error) {
1995 if (error == EPERM)
1996 slp->ns_flag |= SLP_DISCONN;
1997 else
1998 slp->ns_flag |= SLP_NEEDQ;
1999 }
2000 } else {
2001 do {
2002 auio.uio_resid = 1000000000;
2003 flags = MSG_DONTWAIT;
2004 error = (*so->so_receive)(so, &nam, &auio, &mp,
2005 (struct mbuf **)0, &flags);
2006 if (mp) {
2007 if (nam) {
2008 m = nam;
2009 m->m_next = mp;
2010 } else
2011 m = mp;
2012 if (slp->ns_recend)
2013 slp->ns_recend->m_nextpkt = m;
2014 else
2015 slp->ns_rec = m;
2016 slp->ns_recend = m;
2017 m->m_nextpkt = (struct mbuf *)0;
2018 }
2019 if (error) {
2020 if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
2021 && error != EWOULDBLOCK) {
2022 slp->ns_flag |= SLP_DISCONN;
2023 goto dorecs;
2024 }
2025 }
2026 } while (mp);
2027 }
2028
2029 /*
2030 * Now try and process the request records, non-blocking.
2031 */
2032 dorecs:
2033 if (waitflag == M_DONTWAIT &&
2034 (slp->ns_rec || (slp->ns_flag & (SLP_NEEDQ | SLP_DISCONN))))
2035 nfsrv_wakenfsd(slp);
2036 }
2037
2038 /*
2039 * Try and extract an RPC request from the mbuf data list received on a
2040 * stream socket. The "waitflag" argument indicates whether or not it
2041 * can sleep.
2042 */
2043 int
2044 nfsrv_getstream(slp, waitflag)
2045 struct nfssvc_sock *slp;
2046 int waitflag;
2047 {
2048 struct mbuf *m, **mpp;
2049 char *cp1, *cp2;
2050 int len;
2051 struct mbuf *om, *m2, *recm;
2052 u_int32_t recmark;
2053
2054 if (slp->ns_flag & SLP_GETSTREAM)
2055 panic("nfs getstream");
2056 slp->ns_flag |= SLP_GETSTREAM;
2057 for (;;) {
2058 if (slp->ns_reclen == 0) {
2059 if (slp->ns_cc < NFSX_UNSIGNED) {
2060 slp->ns_flag &= ~SLP_GETSTREAM;
2061 return (0);
2062 }
2063 m = slp->ns_raw;
2064 if (m->m_len >= NFSX_UNSIGNED) {
2065 memcpy((caddr_t)&recmark, mtod(m, caddr_t), NFSX_UNSIGNED);
2066 m->m_data += NFSX_UNSIGNED;
2067 m->m_len -= NFSX_UNSIGNED;
2068 } else {
2069 cp1 = (caddr_t)&recmark;
2070 cp2 = mtod(m, caddr_t);
2071 while (cp1 < ((caddr_t)&recmark) + NFSX_UNSIGNED) {
2072 while (m->m_len == 0) {
2073 m = m->m_next;
2074 cp2 = mtod(m, caddr_t);
2075 }
2076 *cp1++ = *cp2++;
2077 m->m_data++;
2078 m->m_len--;
2079 }
2080 }
2081 slp->ns_cc -= NFSX_UNSIGNED;
2082 recmark = ntohl(recmark);
2083 slp->ns_reclen = recmark & ~0x80000000;
2084 if (recmark & 0x80000000)
2085 slp->ns_flag |= SLP_LASTFRAG;
2086 else
2087 slp->ns_flag &= ~SLP_LASTFRAG;
2088 if (slp->ns_reclen > NFS_MAXPACKET) {
2089 slp->ns_flag &= ~SLP_GETSTREAM;
2090 return (EPERM);
2091 }
2092 }
2093
2094 /*
2095 * Now get the record part.
2096 *
2097 * Note that slp->ns_reclen may be 0. Linux sometimes
2098 * generates 0-length records.
2099 */
2100 if (slp->ns_cc == slp->ns_reclen) {
2101 recm = slp->ns_raw;
2102 slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
2103 slp->ns_cc = slp->ns_reclen = 0;
2104 } else if (slp->ns_cc > slp->ns_reclen) {
2105 len = 0;
2106 m = slp->ns_raw;
2107 recm = om = NULL;
2108
2109 while (len < slp->ns_reclen) {
2110 if ((len + m->m_len) > slp->ns_reclen) {
2111 size_t left = slp->ns_reclen - len;
2112
2113 MGETHDR(m2, waitflag, m->m_type);
2114 if (m2 == NULL) {
2115 slp->ns_flag &= ~SLP_GETSTREAM;
2116 return (EWOULDBLOCK);
2117 }
2118 if (left > MHLEN) {
2119 MCLGET(m2, waitflag);
2120 if (!(m2->m_flags & M_EXT)) {
2121 m_freem(m2);
2122 slp->ns_flag &= ~SLP_GETSTREAM;
2123 return (EWOULDBLOCK);
2124 }
2125 }
2126 memcpy(mtod(m2, caddr_t), mtod(m, caddr_t),
2127 left);
2128 m2->m_len = left;
2129 m->m_data += left;
2130 m->m_len -= left;
2131 if (om) {
2132 om->m_next = m2;
2133 recm = slp->ns_raw;
2134 } else
2135 recm = m2;
2136 len = slp->ns_reclen;
2137 } else if ((len + m->m_len) == slp->ns_reclen) {
2138 om = m;
2139 len += m->m_len;
2140 m = m->m_next;
2141 recm = slp->ns_raw;
2142 om->m_next = (struct mbuf *)0;
2143 } else {
2144 om = m;
2145 len += m->m_len;
2146 m = m->m_next;
2147 }
2148 }
2149 slp->ns_raw = m;
2150 slp->ns_cc -= len;
2151 slp->ns_reclen = 0;
2152 } else {
2153 slp->ns_flag &= ~SLP_GETSTREAM;
2154 return (0);
2155 }
2156
2157 /*
2158 * Accumulate the fragments into a record.
2159 */
2160 mpp = &slp->ns_frag;
2161 while (*mpp)
2162 mpp = &((*mpp)->m_next);
2163 *mpp = recm;
2164 if (slp->ns_flag & SLP_LASTFRAG) {
2165 if (slp->ns_recend)
2166 slp->ns_recend->m_nextpkt = slp->ns_frag;
2167 else
2168 slp->ns_rec = slp->ns_frag;
2169 slp->ns_recend = slp->ns_frag;
2170 slp->ns_frag = (struct mbuf *)0;
2171 }
2172 }
2173 }
2174
2175 /*
2176 * Parse an RPC header.
2177 */
2178 int
2179 nfsrv_dorec(slp, nfsd, ndp)
2180 struct nfssvc_sock *slp;
2181 struct nfsd *nfsd;
2182 struct nfsrv_descript **ndp;
2183 {
2184 struct mbuf *m, *nam;
2185 struct nfsrv_descript *nd;
2186 int error;
2187
2188 *ndp = NULL;
2189 if ((slp->ns_flag & SLP_VALID) == 0 ||
2190 (m = slp->ns_rec) == (struct mbuf *)0)
2191 return (ENOBUFS);
2192 slp->ns_rec = m->m_nextpkt;
2193 if (slp->ns_rec)
2194 m->m_nextpkt = (struct mbuf *)0;
2195 else
2196 slp->ns_recend = (struct mbuf *)0;
2197 if (m->m_type == MT_SONAME) {
2198 nam = m;
2199 m = m->m_next;
2200 nam->m_next = NULL;
2201 } else
2202 nam = NULL;
2203 MALLOC(nd, struct nfsrv_descript *, sizeof (struct nfsrv_descript),
2204 M_NFSRVDESC, M_WAITOK);
2205 nd->nd_md = nd->nd_mrep = m;
2206 nd->nd_nam2 = nam;
2207 nd->nd_dpos = mtod(m, caddr_t);
2208 error = nfs_getreq(nd, nfsd, TRUE);
2209 if (error) {
2210 m_freem(nam);
2211 free((caddr_t)nd, M_NFSRVDESC);
2212 return (error);
2213 }
2214 *ndp = nd;
2215 nfsd->nfsd_nd = nd;
2216 return (0);
2217 }
2218
2219
2220 /*
2221 * Search for a sleeping nfsd and wake it up.
2222 * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
2223 * running nfsds will go look for the work in the nfssvc_sock list.
2224 */
2225 void
2226 nfsrv_wakenfsd(slp)
2227 struct nfssvc_sock *slp;
2228 {
2229 struct nfsd *nd;
2230
2231 if ((slp->ns_flag & SLP_VALID) == 0)
2232 return;
2233 TAILQ_FOREACH(nd, &nfsd_head, nfsd_chain) {
2234 if (nd->nfsd_flag & NFSD_WAITING) {
2235 nd->nfsd_flag &= ~NFSD_WAITING;
2236 if (nd->nfsd_slp)
2237 panic("nfsd wakeup");
2238 slp->ns_sref++;
2239 nd->nfsd_slp = slp;
2240 wakeup((caddr_t)nd);
2241 return;
2242 }
2243 }
2244 slp->ns_flag |= SLP_DOREC;
2245 nfsd_head_flag |= NFSD_CHECKSLP;
2246 }
2247 #endif /* NFSSERVER */
2248