nfs_srvsocket.c revision 1.5 1 1.5 hannken /* $NetBSD: nfs_srvsocket.c,v 1.5 2022/12/20 09:40:09 hannken Exp $ */
2 1.1 ad
3 1.1 ad /*
4 1.1 ad * Copyright (c) 1989, 1991, 1993, 1995
5 1.1 ad * The Regents of the University of California. All rights reserved.
6 1.1 ad *
7 1.1 ad * This code is derived from software contributed to Berkeley by
8 1.1 ad * Rick Macklem at The University of Guelph.
9 1.1 ad *
10 1.1 ad * Redistribution and use in source and binary forms, with or without
11 1.1 ad * modification, are permitted provided that the following conditions
12 1.1 ad * are met:
13 1.1 ad * 1. Redistributions of source code must retain the above copyright
14 1.1 ad * notice, this list of conditions and the following disclaimer.
15 1.1 ad * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ad * notice, this list of conditions and the following disclaimer in the
17 1.1 ad * documentation and/or other materials provided with the distribution.
18 1.1 ad * 3. Neither the name of the University nor the names of its contributors
19 1.1 ad * may be used to endorse or promote products derived from this software
20 1.1 ad * without specific prior written permission.
21 1.1 ad *
22 1.1 ad * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 ad * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 ad * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 ad * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 ad * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 ad * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 ad * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 ad * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 ad * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 ad * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 ad * SUCH DAMAGE.
33 1.1 ad *
34 1.1 ad * @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
35 1.1 ad */
36 1.1 ad
37 1.1 ad /*
38 1.1 ad * Socket operations for use by nfs
39 1.1 ad */
40 1.1 ad
41 1.1 ad #include <sys/cdefs.h>
42 1.5 hannken __KERNEL_RCSID(0, "$NetBSD: nfs_srvsocket.c,v 1.5 2022/12/20 09:40:09 hannken Exp $");
43 1.1 ad
44 1.1 ad #include <sys/param.h>
45 1.1 ad #include <sys/systm.h>
46 1.1 ad #include <sys/evcnt.h>
47 1.1 ad #include <sys/callout.h>
48 1.1 ad #include <sys/proc.h>
49 1.1 ad #include <sys/mount.h>
50 1.1 ad #include <sys/kernel.h>
51 1.1 ad #include <sys/kmem.h>
52 1.1 ad #include <sys/mbuf.h>
53 1.1 ad #include <sys/vnode.h>
54 1.1 ad #include <sys/domain.h>
55 1.1 ad #include <sys/protosw.h>
56 1.1 ad #include <sys/socket.h>
57 1.1 ad #include <sys/socketvar.h>
58 1.1 ad #include <sys/syslog.h>
59 1.1 ad #include <sys/tprintf.h>
60 1.1 ad #include <sys/namei.h>
61 1.1 ad #include <sys/signal.h>
62 1.1 ad #include <sys/signalvar.h>
63 1.1 ad #include <sys/kauth.h>
64 1.1 ad
65 1.1 ad #include <netinet/in.h>
66 1.1 ad #include <netinet/tcp.h>
67 1.1 ad
68 1.1 ad #include <nfs/rpcv2.h>
69 1.1 ad #include <nfs/nfsproto.h>
70 1.1 ad #include <nfs/nfs.h>
71 1.1 ad #include <nfs/xdr_subs.h>
72 1.1 ad #include <nfs/nfsm_subs.h>
73 1.1 ad #include <nfs/nfsmount.h>
74 1.1 ad #include <nfs/nfsnode.h>
75 1.1 ad #include <nfs/nfsrtt.h>
76 1.1 ad #include <nfs/nfs_var.h>
77 1.1 ad
78 1.1 ad static void nfsrv_wakenfsd_locked(struct nfssvc_sock *);
79 1.1 ad
80 1.2 dsl int (*nfsrv3_procs[NFS_NPROCS])(struct nfsrv_descript *,
81 1.1 ad struct nfssvc_sock *, struct lwp *,
82 1.2 dsl struct mbuf **) = {
83 1.1 ad nfsrv_null,
84 1.1 ad nfsrv_getattr,
85 1.1 ad nfsrv_setattr,
86 1.1 ad nfsrv_lookup,
87 1.1 ad nfsrv3_access,
88 1.1 ad nfsrv_readlink,
89 1.1 ad nfsrv_read,
90 1.1 ad nfsrv_write,
91 1.1 ad nfsrv_create,
92 1.1 ad nfsrv_mkdir,
93 1.1 ad nfsrv_symlink,
94 1.1 ad nfsrv_mknod,
95 1.1 ad nfsrv_remove,
96 1.1 ad nfsrv_rmdir,
97 1.1 ad nfsrv_rename,
98 1.1 ad nfsrv_link,
99 1.1 ad nfsrv_readdir,
100 1.1 ad nfsrv_readdirplus,
101 1.1 ad nfsrv_statfs,
102 1.1 ad nfsrv_fsinfo,
103 1.1 ad nfsrv_pathconf,
104 1.1 ad nfsrv_commit,
105 1.1 ad nfsrv_noop
106 1.1 ad };
107 1.1 ad
108 1.1 ad /*
109 1.1 ad * Socket upcall routine for the nfsd sockets.
110 1.1 ad * The void *arg is a pointer to the "struct nfssvc_sock".
111 1.1 ad */
112 1.1 ad void
113 1.4 tls nfsrv_soupcall(struct socket *so, void *arg, int events, int waitflag)
114 1.1 ad {
115 1.1 ad struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
116 1.1 ad
117 1.1 ad nfsdsock_setbits(slp, SLP_A_NEEDQ);
118 1.1 ad nfsrv_wakenfsd(slp);
119 1.1 ad }
120 1.1 ad
121 1.1 ad void
122 1.1 ad nfsrv_rcv(struct nfssvc_sock *slp)
123 1.1 ad {
124 1.1 ad struct socket *so;
125 1.1 ad struct mbuf *m;
126 1.1 ad struct mbuf *mp, *nam;
127 1.1 ad struct uio auio;
128 1.1 ad int flags;
129 1.1 ad int error;
130 1.1 ad int setflags = 0;
131 1.1 ad
132 1.1 ad error = nfsdsock_lock(slp, true);
133 1.1 ad if (error) {
134 1.1 ad setflags |= SLP_A_NEEDQ;
135 1.1 ad goto dorecs_unlocked;
136 1.1 ad }
137 1.1 ad
138 1.1 ad nfsdsock_clearbits(slp, SLP_A_NEEDQ);
139 1.1 ad
140 1.1 ad so = slp->ns_so;
141 1.1 ad if (so->so_type == SOCK_STREAM) {
142 1.1 ad /*
143 1.1 ad * Do soreceive().
144 1.1 ad */
145 1.1 ad auio.uio_resid = 1000000000;
146 1.1 ad /* not need to setup uio_vmspace */
147 1.1 ad flags = MSG_DONTWAIT;
148 1.1 ad error = (*so->so_receive)(so, &nam, &auio, &mp, NULL, &flags);
149 1.1 ad if (error || mp == NULL) {
150 1.1 ad if (error == EWOULDBLOCK)
151 1.1 ad setflags |= SLP_A_NEEDQ;
152 1.1 ad else
153 1.1 ad setflags |= SLP_A_DISCONN;
154 1.1 ad goto dorecs;
155 1.1 ad }
156 1.1 ad m = mp;
157 1.1 ad m_claimm(m, &nfs_mowner);
158 1.1 ad if (slp->ns_rawend) {
159 1.1 ad slp->ns_rawend->m_next = m;
160 1.1 ad slp->ns_cc += 1000000000 - auio.uio_resid;
161 1.1 ad } else {
162 1.1 ad slp->ns_raw = m;
163 1.1 ad slp->ns_cc = 1000000000 - auio.uio_resid;
164 1.1 ad }
165 1.1 ad while (m->m_next)
166 1.1 ad m = m->m_next;
167 1.1 ad slp->ns_rawend = m;
168 1.1 ad
169 1.1 ad /*
170 1.1 ad * Now try and parse record(s) out of the raw stream data.
171 1.1 ad */
172 1.1 ad error = nfsrv_getstream(slp, M_WAIT);
173 1.1 ad if (error) {
174 1.1 ad if (error == EPERM)
175 1.1 ad setflags |= SLP_A_DISCONN;
176 1.1 ad else
177 1.1 ad setflags |= SLP_A_NEEDQ;
178 1.1 ad }
179 1.1 ad } else {
180 1.1 ad do {
181 1.1 ad auio.uio_resid = 1000000000;
182 1.1 ad /* not need to setup uio_vmspace */
183 1.1 ad flags = MSG_DONTWAIT;
184 1.1 ad error = (*so->so_receive)(so, &nam, &auio, &mp, NULL,
185 1.1 ad &flags);
186 1.1 ad if (mp) {
187 1.1 ad if (nam) {
188 1.1 ad m = nam;
189 1.1 ad m->m_next = mp;
190 1.1 ad } else
191 1.1 ad m = mp;
192 1.1 ad m_claimm(m, &nfs_mowner);
193 1.1 ad if (slp->ns_recend)
194 1.1 ad slp->ns_recend->m_nextpkt = m;
195 1.1 ad else
196 1.1 ad slp->ns_rec = m;
197 1.1 ad slp->ns_recend = m;
198 1.1 ad m->m_nextpkt = (struct mbuf *)0;
199 1.1 ad }
200 1.1 ad if (error) {
201 1.1 ad if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
202 1.1 ad && error != EWOULDBLOCK) {
203 1.1 ad setflags |= SLP_A_DISCONN;
204 1.1 ad goto dorecs;
205 1.1 ad }
206 1.1 ad }
207 1.1 ad } while (mp);
208 1.1 ad }
209 1.1 ad dorecs:
210 1.1 ad nfsdsock_unlock(slp);
211 1.1 ad
212 1.1 ad dorecs_unlocked:
213 1.1 ad if (setflags) {
214 1.1 ad nfsdsock_setbits(slp, setflags);
215 1.1 ad }
216 1.1 ad }
217 1.1 ad
218 1.1 ad int
219 1.1 ad nfsdsock_lock(struct nfssvc_sock *slp, bool waitok)
220 1.1 ad {
221 1.1 ad
222 1.1 ad mutex_enter(&slp->ns_lock);
223 1.1 ad while ((~slp->ns_flags & (SLP_BUSY|SLP_VALID)) == 0) {
224 1.1 ad if (!waitok) {
225 1.1 ad mutex_exit(&slp->ns_lock);
226 1.1 ad return EWOULDBLOCK;
227 1.1 ad }
228 1.1 ad cv_wait(&slp->ns_cv, &slp->ns_lock);
229 1.1 ad }
230 1.1 ad if ((slp->ns_flags & SLP_VALID) == 0) {
231 1.1 ad mutex_exit(&slp->ns_lock);
232 1.1 ad return EINVAL;
233 1.1 ad }
234 1.1 ad KASSERT((slp->ns_flags & SLP_BUSY) == 0);
235 1.1 ad slp->ns_flags |= SLP_BUSY;
236 1.1 ad mutex_exit(&slp->ns_lock);
237 1.1 ad
238 1.1 ad return 0;
239 1.1 ad }
240 1.1 ad
241 1.1 ad void
242 1.1 ad nfsdsock_unlock(struct nfssvc_sock *slp)
243 1.1 ad {
244 1.1 ad
245 1.1 ad mutex_enter(&slp->ns_lock);
246 1.1 ad KASSERT((slp->ns_flags & SLP_BUSY) != 0);
247 1.1 ad cv_broadcast(&slp->ns_cv);
248 1.1 ad slp->ns_flags &= ~SLP_BUSY;
249 1.1 ad mutex_exit(&slp->ns_lock);
250 1.1 ad }
251 1.1 ad
252 1.1 ad int
253 1.1 ad nfsdsock_drain(struct nfssvc_sock *slp)
254 1.1 ad {
255 1.1 ad int error = 0;
256 1.1 ad
257 1.1 ad mutex_enter(&slp->ns_lock);
258 1.1 ad if ((slp->ns_flags & SLP_VALID) == 0) {
259 1.1 ad error = EINVAL;
260 1.1 ad goto done;
261 1.1 ad }
262 1.1 ad slp->ns_flags &= ~SLP_VALID;
263 1.1 ad while ((slp->ns_flags & SLP_BUSY) != 0) {
264 1.1 ad cv_wait(&slp->ns_cv, &slp->ns_lock);
265 1.1 ad }
266 1.1 ad done:
267 1.1 ad mutex_exit(&slp->ns_lock);
268 1.1 ad
269 1.1 ad return error;
270 1.1 ad }
271 1.1 ad
272 1.1 ad /*
273 1.1 ad * Try and extract an RPC request from the mbuf data list received on a
274 1.1 ad * stream socket. The "waitflag" argument indicates whether or not it
275 1.1 ad * can sleep.
276 1.1 ad */
277 1.1 ad int
278 1.3 dsl nfsrv_getstream(struct nfssvc_sock *slp, int waitflag)
279 1.1 ad {
280 1.1 ad struct mbuf *m, **mpp;
281 1.1 ad struct mbuf *recm;
282 1.1 ad u_int32_t recmark;
283 1.1 ad int error = 0;
284 1.1 ad
285 1.1 ad KASSERT((slp->ns_flags & SLP_BUSY) != 0);
286 1.1 ad for (;;) {
287 1.1 ad if (slp->ns_reclen == 0) {
288 1.1 ad if (slp->ns_cc < NFSX_UNSIGNED) {
289 1.1 ad break;
290 1.1 ad }
291 1.1 ad m = slp->ns_raw;
292 1.1 ad m_copydata(m, 0, NFSX_UNSIGNED, (void *)&recmark);
293 1.1 ad m_adj(m, NFSX_UNSIGNED);
294 1.1 ad slp->ns_cc -= NFSX_UNSIGNED;
295 1.1 ad recmark = ntohl(recmark);
296 1.1 ad slp->ns_reclen = recmark & ~0x80000000;
297 1.1 ad if (recmark & 0x80000000)
298 1.1 ad slp->ns_sflags |= SLP_S_LASTFRAG;
299 1.1 ad else
300 1.1 ad slp->ns_sflags &= ~SLP_S_LASTFRAG;
301 1.1 ad if (slp->ns_reclen > NFS_MAXPACKET) {
302 1.1 ad error = EPERM;
303 1.1 ad break;
304 1.1 ad }
305 1.1 ad }
306 1.1 ad
307 1.1 ad /*
308 1.1 ad * Now get the record part.
309 1.1 ad *
310 1.1 ad * Note that slp->ns_reclen may be 0. Linux sometimes
311 1.1 ad * generates 0-length records.
312 1.1 ad */
313 1.1 ad if (slp->ns_cc == slp->ns_reclen) {
314 1.1 ad recm = slp->ns_raw;
315 1.1 ad slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
316 1.1 ad slp->ns_cc = slp->ns_reclen = 0;
317 1.1 ad } else if (slp->ns_cc > slp->ns_reclen) {
318 1.1 ad recm = slp->ns_raw;
319 1.1 ad m = m_split(recm, slp->ns_reclen, waitflag);
320 1.1 ad if (m == NULL) {
321 1.1 ad error = EWOULDBLOCK;
322 1.1 ad break;
323 1.1 ad }
324 1.1 ad m_claimm(recm, &nfs_mowner);
325 1.1 ad slp->ns_raw = m;
326 1.5 hannken while (m->m_next)
327 1.5 hannken m = m->m_next;
328 1.5 hannken slp->ns_rawend = m;
329 1.1 ad slp->ns_cc -= slp->ns_reclen;
330 1.1 ad slp->ns_reclen = 0;
331 1.1 ad } else {
332 1.1 ad break;
333 1.1 ad }
334 1.1 ad
335 1.1 ad /*
336 1.1 ad * Accumulate the fragments into a record.
337 1.1 ad */
338 1.1 ad mpp = &slp->ns_frag;
339 1.1 ad while (*mpp)
340 1.1 ad mpp = &((*mpp)->m_next);
341 1.1 ad *mpp = recm;
342 1.1 ad if (slp->ns_sflags & SLP_S_LASTFRAG) {
343 1.1 ad if (slp->ns_recend)
344 1.1 ad slp->ns_recend->m_nextpkt = slp->ns_frag;
345 1.1 ad else
346 1.1 ad slp->ns_rec = slp->ns_frag;
347 1.1 ad slp->ns_recend = slp->ns_frag;
348 1.1 ad slp->ns_frag = NULL;
349 1.1 ad }
350 1.1 ad }
351 1.1 ad
352 1.1 ad return error;
353 1.1 ad }
354 1.1 ad
355 1.1 ad /*
356 1.1 ad * Parse an RPC header.
357 1.1 ad */
358 1.1 ad int
359 1.1 ad nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
360 1.1 ad struct nfsrv_descript **ndp, bool *more)
361 1.1 ad {
362 1.1 ad struct mbuf *m, *nam;
363 1.1 ad struct nfsrv_descript *nd;
364 1.1 ad int error;
365 1.1 ad
366 1.1 ad *ndp = NULL;
367 1.1 ad *more = false;
368 1.1 ad
369 1.1 ad if (nfsdsock_lock(slp, true)) {
370 1.1 ad return ENOBUFS;
371 1.1 ad }
372 1.1 ad m = slp->ns_rec;
373 1.1 ad if (m == NULL) {
374 1.1 ad nfsdsock_unlock(slp);
375 1.1 ad return ENOBUFS;
376 1.1 ad }
377 1.1 ad slp->ns_rec = m->m_nextpkt;
378 1.1 ad if (slp->ns_rec) {
379 1.1 ad m->m_nextpkt = NULL;
380 1.1 ad *more = true;
381 1.1 ad } else {
382 1.1 ad slp->ns_recend = NULL;
383 1.1 ad }
384 1.1 ad nfsdsock_unlock(slp);
385 1.1 ad
386 1.1 ad if (m->m_type == MT_SONAME) {
387 1.1 ad nam = m;
388 1.1 ad m = m->m_next;
389 1.1 ad nam->m_next = NULL;
390 1.1 ad } else
391 1.1 ad nam = NULL;
392 1.1 ad nd = nfsdreq_alloc();
393 1.1 ad nd->nd_md = nd->nd_mrep = m;
394 1.1 ad nd->nd_nam2 = nam;
395 1.1 ad nd->nd_dpos = mtod(m, void *);
396 1.1 ad error = nfs_getreq(nd, nfsd, true);
397 1.1 ad if (error) {
398 1.1 ad m_freem(nam);
399 1.1 ad nfsdreq_free(nd);
400 1.1 ad return (error);
401 1.1 ad }
402 1.1 ad *ndp = nd;
403 1.1 ad nfsd->nfsd_nd = nd;
404 1.1 ad return (0);
405 1.1 ad }
406 1.1 ad
407 1.1 ad bool
408 1.1 ad nfsrv_timer(void)
409 1.1 ad {
410 1.1 ad struct timeval tv;
411 1.1 ad struct nfssvc_sock *slp;
412 1.1 ad u_quad_t cur_usec;
413 1.1 ad struct nfsrv_descript *nd;
414 1.1 ad bool more;
415 1.1 ad
416 1.1 ad /*
417 1.1 ad * Scan the write gathering queues for writes that need to be
418 1.1 ad * completed now.
419 1.1 ad */
420 1.1 ad getmicrotime(&tv);
421 1.1 ad cur_usec = (u_quad_t)tv.tv_sec * 1000000 + (u_quad_t)tv.tv_usec;
422 1.1 ad more = false;
423 1.1 ad mutex_enter(&nfsd_lock);
424 1.1 ad TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
425 1.1 ad nd = LIST_FIRST(&slp->ns_tq);
426 1.1 ad if (nd != NULL) {
427 1.1 ad if (nd->nd_time <= cur_usec) {
428 1.1 ad nfsrv_wakenfsd_locked(slp);
429 1.1 ad }
430 1.1 ad more = true;
431 1.1 ad }
432 1.1 ad }
433 1.1 ad mutex_exit(&nfsd_lock);
434 1.1 ad return more;
435 1.1 ad }
436 1.1 ad
437 1.1 ad /*
438 1.1 ad * Search for a sleeping nfsd and wake it up.
439 1.1 ad * SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
440 1.1 ad * running nfsds will go look for the work in the nfssvc_sock list.
441 1.1 ad */
442 1.1 ad static void
443 1.1 ad nfsrv_wakenfsd_locked(struct nfssvc_sock *slp)
444 1.1 ad {
445 1.1 ad struct nfsd *nd;
446 1.1 ad
447 1.1 ad KASSERT(mutex_owned(&nfsd_lock));
448 1.1 ad
449 1.1 ad if ((slp->ns_flags & SLP_VALID) == 0)
450 1.1 ad return;
451 1.1 ad if (slp->ns_gflags & SLP_G_DOREC)
452 1.1 ad return;
453 1.1 ad nd = SLIST_FIRST(&nfsd_idle_head);
454 1.1 ad if (nd) {
455 1.1 ad SLIST_REMOVE_HEAD(&nfsd_idle_head, nfsd_idle);
456 1.1 ad if (nd->nfsd_slp)
457 1.1 ad panic("nfsd wakeup");
458 1.1 ad slp->ns_sref++;
459 1.1 ad KASSERT(slp->ns_sref > 0);
460 1.1 ad nd->nfsd_slp = slp;
461 1.1 ad cv_signal(&nd->nfsd_cv);
462 1.1 ad } else {
463 1.1 ad slp->ns_gflags |= SLP_G_DOREC;
464 1.1 ad nfsd_head_flag |= NFSD_CHECKSLP;
465 1.1 ad TAILQ_INSERT_TAIL(&nfssvc_sockpending, slp, ns_pending);
466 1.1 ad }
467 1.1 ad }
468 1.1 ad
469 1.1 ad void
470 1.1 ad nfsrv_wakenfsd(struct nfssvc_sock *slp)
471 1.1 ad {
472 1.1 ad
473 1.1 ad mutex_enter(&nfsd_lock);
474 1.1 ad nfsrv_wakenfsd_locked(slp);
475 1.1 ad mutex_exit(&nfsd_lock);
476 1.1 ad }
477 1.1 ad
478 1.1 ad int
479 1.1 ad nfsdsock_sendreply(struct nfssvc_sock *slp, struct nfsrv_descript *nd)
480 1.1 ad {
481 1.1 ad int error;
482 1.1 ad
483 1.1 ad if (nd->nd_mrep != NULL) {
484 1.1 ad m_freem(nd->nd_mrep);
485 1.1 ad nd->nd_mrep = NULL;
486 1.1 ad }
487 1.1 ad
488 1.1 ad mutex_enter(&slp->ns_lock);
489 1.1 ad if ((slp->ns_flags & SLP_SENDING) != 0) {
490 1.1 ad SIMPLEQ_INSERT_TAIL(&slp->ns_sendq, nd, nd_sendq);
491 1.1 ad mutex_exit(&slp->ns_lock);
492 1.1 ad return 0;
493 1.1 ad }
494 1.1 ad KASSERT(SIMPLEQ_EMPTY(&slp->ns_sendq));
495 1.1 ad slp->ns_flags |= SLP_SENDING;
496 1.1 ad mutex_exit(&slp->ns_lock);
497 1.1 ad
498 1.1 ad again:
499 1.1 ad error = nfs_send(slp->ns_so, nd->nd_nam2, nd->nd_mreq, NULL, curlwp);
500 1.1 ad if (nd->nd_nam2) {
501 1.1 ad m_free(nd->nd_nam2);
502 1.1 ad }
503 1.1 ad nfsdreq_free(nd);
504 1.1 ad
505 1.1 ad mutex_enter(&slp->ns_lock);
506 1.1 ad KASSERT((slp->ns_flags & SLP_SENDING) != 0);
507 1.1 ad nd = SIMPLEQ_FIRST(&slp->ns_sendq);
508 1.1 ad if (nd != NULL) {
509 1.1 ad SIMPLEQ_REMOVE_HEAD(&slp->ns_sendq, nd_sendq);
510 1.1 ad mutex_exit(&slp->ns_lock);
511 1.1 ad goto again;
512 1.1 ad }
513 1.1 ad slp->ns_flags &= ~SLP_SENDING;
514 1.1 ad mutex_exit(&slp->ns_lock);
515 1.1 ad
516 1.1 ad return error;
517 1.1 ad }
518 1.1 ad
519 1.1 ad void
520 1.1 ad nfsdsock_setbits(struct nfssvc_sock *slp, int bits)
521 1.1 ad {
522 1.1 ad
523 1.1 ad mutex_enter(&slp->ns_alock);
524 1.1 ad slp->ns_aflags |= bits;
525 1.1 ad mutex_exit(&slp->ns_alock);
526 1.1 ad }
527 1.1 ad
528 1.1 ad void
529 1.1 ad nfsdsock_clearbits(struct nfssvc_sock *slp, int bits)
530 1.1 ad {
531 1.1 ad
532 1.1 ad mutex_enter(&slp->ns_alock);
533 1.1 ad slp->ns_aflags &= ~bits;
534 1.1 ad mutex_exit(&slp->ns_alock);
535 1.1 ad }
536 1.1 ad
537 1.1 ad bool
538 1.1 ad nfsdsock_testbits(struct nfssvc_sock *slp, int bits)
539 1.1 ad {
540 1.1 ad
541 1.1 ad return (slp->ns_aflags & bits);
542 1.1 ad }
543