nfs_subs.c revision 1.103.6.1 1 /* $NetBSD: nfs_subs.c,v 1.103.6.1 2003/10/04 08:34:22 tron Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
39 */
40
41 /*
42 * Copyright 2000 Wasabi Systems, Inc.
43 * All rights reserved.
44 *
45 * Written by Frank van der Linden for Wasabi Systems, Inc.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed for the NetBSD Project by
58 * Wasabi Systems, Inc.
59 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
60 * or promote products derived from this software without specific prior
61 * written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.103.6.1 2003/10/04 08:34:22 tron Exp $");
78
79 #include "fs_nfs.h"
80 #include "opt_nfs.h"
81 #include "opt_nfsserver.h"
82 #include "opt_iso.h"
83 #include "opt_inet.h"
84
85 /*
86 * These functions support the macros and help fiddle mbuf chains for
87 * the nfs op functions. They do things like create the rpc header and
88 * copy data between mbuf chains and uio lists.
89 */
90 #include <sys/param.h>
91 #include <sys/proc.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/mount.h>
95 #include <sys/vnode.h>
96 #include <sys/namei.h>
97 #include <sys/mbuf.h>
98 #include <sys/socket.h>
99 #include <sys/stat.h>
100 #include <sys/malloc.h>
101 #include <sys/filedesc.h>
102 #include <sys/time.h>
103 #include <sys/dirent.h>
104
105 #include <uvm/uvm_extern.h>
106
107 #include <nfs/rpcv2.h>
108 #include <nfs/nfsproto.h>
109 #include <nfs/nfsnode.h>
110 #include <nfs/nfs.h>
111 #include <nfs/xdr_subs.h>
112 #include <nfs/nfsm_subs.h>
113 #include <nfs/nfsmount.h>
114 #include <nfs/nqnfs.h>
115 #include <nfs/nfsrtt.h>
116 #include <nfs/nfs_var.h>
117
118 #include <miscfs/specfs/specdev.h>
119
120 #include <netinet/in.h>
121 #ifdef ISO
122 #include <netiso/iso.h>
123 #endif
124
125 /*
126 * Data items converted to xdr at startup, since they are constant
127 * This is kinda hokey, but may save a little time doing byte swaps
128 */
129 u_int32_t nfs_xdrneg1;
130 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
131 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
132 rpc_auth_kerb;
133 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
134
135 /* And other global data */
136 static u_int32_t nfs_xid = 0;
137 const nfstype nfsv2_type[9] =
138 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
139 const nfstype nfsv3_type[9] =
140 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
141 const enum vtype nv2tov_type[8] =
142 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
143 const enum vtype nv3tov_type[8] =
144 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
145 int nfs_ticks;
146 int nfs_commitsize;
147
148 /* NFS client/server stats. */
149 struct nfsstats nfsstats;
150
151 /*
152 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
153 */
154 const int nfsv3_procid[NFS_NPROCS] = {
155 NFSPROC_NULL,
156 NFSPROC_GETATTR,
157 NFSPROC_SETATTR,
158 NFSPROC_NOOP,
159 NFSPROC_LOOKUP,
160 NFSPROC_READLINK,
161 NFSPROC_READ,
162 NFSPROC_NOOP,
163 NFSPROC_WRITE,
164 NFSPROC_CREATE,
165 NFSPROC_REMOVE,
166 NFSPROC_RENAME,
167 NFSPROC_LINK,
168 NFSPROC_SYMLINK,
169 NFSPROC_MKDIR,
170 NFSPROC_RMDIR,
171 NFSPROC_READDIR,
172 NFSPROC_FSSTAT,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP,
177 NFSPROC_NOOP,
178 NFSPROC_NOOP,
179 NFSPROC_NOOP,
180 NFSPROC_NOOP
181 };
182
183 /*
184 * and the reverse mapping from generic to Version 2 procedure numbers
185 */
186 const int nfsv2_procid[NFS_NPROCS] = {
187 NFSV2PROC_NULL,
188 NFSV2PROC_GETATTR,
189 NFSV2PROC_SETATTR,
190 NFSV2PROC_LOOKUP,
191 NFSV2PROC_NOOP,
192 NFSV2PROC_READLINK,
193 NFSV2PROC_READ,
194 NFSV2PROC_WRITE,
195 NFSV2PROC_CREATE,
196 NFSV2PROC_MKDIR,
197 NFSV2PROC_SYMLINK,
198 NFSV2PROC_CREATE,
199 NFSV2PROC_REMOVE,
200 NFSV2PROC_RMDIR,
201 NFSV2PROC_RENAME,
202 NFSV2PROC_LINK,
203 NFSV2PROC_READDIR,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_STATFS,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 NFSV2PROC_NOOP,
209 NFSV2PROC_NOOP,
210 NFSV2PROC_NOOP,
211 NFSV2PROC_NOOP,
212 NFSV2PROC_NOOP,
213 };
214
215 /*
216 * Maps errno values to nfs error numbers.
217 * Use NFSERR_IO as the catch all for ones not specifically defined in
218 * RFC 1094.
219 */
220 static const u_char nfsrv_v2errmap[ELAST] = {
221 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
225 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
231 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
232 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
233 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
234 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
235 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
236 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
237 NFSERR_IO, NFSERR_IO,
238 };
239
240 /*
241 * Maps errno values to nfs error numbers.
242 * Although it is not obvious whether or not NFS clients really care if
243 * a returned error value is in the specified list for the procedure, the
244 * safest thing to do is filter them appropriately. For Version 2, the
245 * X/Open XNFS document is the only specification that defines error values
246 * for each RPC (The RFC simply lists all possible error values for all RPCs),
247 * so I have decided to not do this for Version 2.
248 * The first entry is the default error return and the rest are the valid
249 * errors for that RPC in increasing numeric order.
250 */
251 static const short nfsv3err_null[] = {
252 0,
253 0,
254 };
255
256 static const short nfsv3err_getattr[] = {
257 NFSERR_IO,
258 NFSERR_IO,
259 NFSERR_STALE,
260 NFSERR_BADHANDLE,
261 NFSERR_SERVERFAULT,
262 0,
263 };
264
265 static const short nfsv3err_setattr[] = {
266 NFSERR_IO,
267 NFSERR_PERM,
268 NFSERR_IO,
269 NFSERR_ACCES,
270 NFSERR_INVAL,
271 NFSERR_NOSPC,
272 NFSERR_ROFS,
273 NFSERR_DQUOT,
274 NFSERR_STALE,
275 NFSERR_BADHANDLE,
276 NFSERR_NOT_SYNC,
277 NFSERR_SERVERFAULT,
278 0,
279 };
280
281 static const short nfsv3err_lookup[] = {
282 NFSERR_IO,
283 NFSERR_NOENT,
284 NFSERR_IO,
285 NFSERR_ACCES,
286 NFSERR_NOTDIR,
287 NFSERR_NAMETOL,
288 NFSERR_STALE,
289 NFSERR_BADHANDLE,
290 NFSERR_SERVERFAULT,
291 0,
292 };
293
294 static const short nfsv3err_access[] = {
295 NFSERR_IO,
296 NFSERR_IO,
297 NFSERR_STALE,
298 NFSERR_BADHANDLE,
299 NFSERR_SERVERFAULT,
300 0,
301 };
302
303 static const short nfsv3err_readlink[] = {
304 NFSERR_IO,
305 NFSERR_IO,
306 NFSERR_ACCES,
307 NFSERR_INVAL,
308 NFSERR_STALE,
309 NFSERR_BADHANDLE,
310 NFSERR_NOTSUPP,
311 NFSERR_SERVERFAULT,
312 0,
313 };
314
315 static const short nfsv3err_read[] = {
316 NFSERR_IO,
317 NFSERR_IO,
318 NFSERR_NXIO,
319 NFSERR_ACCES,
320 NFSERR_INVAL,
321 NFSERR_STALE,
322 NFSERR_BADHANDLE,
323 NFSERR_SERVERFAULT,
324 NFSERR_JUKEBOX,
325 0,
326 };
327
328 static const short nfsv3err_write[] = {
329 NFSERR_IO,
330 NFSERR_IO,
331 NFSERR_ACCES,
332 NFSERR_INVAL,
333 NFSERR_FBIG,
334 NFSERR_NOSPC,
335 NFSERR_ROFS,
336 NFSERR_DQUOT,
337 NFSERR_STALE,
338 NFSERR_BADHANDLE,
339 NFSERR_SERVERFAULT,
340 NFSERR_JUKEBOX,
341 0,
342 };
343
344 static const short nfsv3err_create[] = {
345 NFSERR_IO,
346 NFSERR_IO,
347 NFSERR_ACCES,
348 NFSERR_EXIST,
349 NFSERR_NOTDIR,
350 NFSERR_NOSPC,
351 NFSERR_ROFS,
352 NFSERR_NAMETOL,
353 NFSERR_DQUOT,
354 NFSERR_STALE,
355 NFSERR_BADHANDLE,
356 NFSERR_NOTSUPP,
357 NFSERR_SERVERFAULT,
358 0,
359 };
360
361 static const short nfsv3err_mkdir[] = {
362 NFSERR_IO,
363 NFSERR_IO,
364 NFSERR_ACCES,
365 NFSERR_EXIST,
366 NFSERR_NOTDIR,
367 NFSERR_NOSPC,
368 NFSERR_ROFS,
369 NFSERR_NAMETOL,
370 NFSERR_DQUOT,
371 NFSERR_STALE,
372 NFSERR_BADHANDLE,
373 NFSERR_NOTSUPP,
374 NFSERR_SERVERFAULT,
375 0,
376 };
377
378 static const short nfsv3err_symlink[] = {
379 NFSERR_IO,
380 NFSERR_IO,
381 NFSERR_ACCES,
382 NFSERR_EXIST,
383 NFSERR_NOTDIR,
384 NFSERR_NOSPC,
385 NFSERR_ROFS,
386 NFSERR_NAMETOL,
387 NFSERR_DQUOT,
388 NFSERR_STALE,
389 NFSERR_BADHANDLE,
390 NFSERR_NOTSUPP,
391 NFSERR_SERVERFAULT,
392 0,
393 };
394
395 static const short nfsv3err_mknod[] = {
396 NFSERR_IO,
397 NFSERR_IO,
398 NFSERR_ACCES,
399 NFSERR_EXIST,
400 NFSERR_NOTDIR,
401 NFSERR_NOSPC,
402 NFSERR_ROFS,
403 NFSERR_NAMETOL,
404 NFSERR_DQUOT,
405 NFSERR_STALE,
406 NFSERR_BADHANDLE,
407 NFSERR_NOTSUPP,
408 NFSERR_SERVERFAULT,
409 NFSERR_BADTYPE,
410 0,
411 };
412
413 static const short nfsv3err_remove[] = {
414 NFSERR_IO,
415 NFSERR_NOENT,
416 NFSERR_IO,
417 NFSERR_ACCES,
418 NFSERR_NOTDIR,
419 NFSERR_ROFS,
420 NFSERR_NAMETOL,
421 NFSERR_STALE,
422 NFSERR_BADHANDLE,
423 NFSERR_SERVERFAULT,
424 0,
425 };
426
427 static const short nfsv3err_rmdir[] = {
428 NFSERR_IO,
429 NFSERR_NOENT,
430 NFSERR_IO,
431 NFSERR_ACCES,
432 NFSERR_EXIST,
433 NFSERR_NOTDIR,
434 NFSERR_INVAL,
435 NFSERR_ROFS,
436 NFSERR_NAMETOL,
437 NFSERR_NOTEMPTY,
438 NFSERR_STALE,
439 NFSERR_BADHANDLE,
440 NFSERR_NOTSUPP,
441 NFSERR_SERVERFAULT,
442 0,
443 };
444
445 static const short nfsv3err_rename[] = {
446 NFSERR_IO,
447 NFSERR_NOENT,
448 NFSERR_IO,
449 NFSERR_ACCES,
450 NFSERR_EXIST,
451 NFSERR_XDEV,
452 NFSERR_NOTDIR,
453 NFSERR_ISDIR,
454 NFSERR_INVAL,
455 NFSERR_NOSPC,
456 NFSERR_ROFS,
457 NFSERR_MLINK,
458 NFSERR_NAMETOL,
459 NFSERR_NOTEMPTY,
460 NFSERR_DQUOT,
461 NFSERR_STALE,
462 NFSERR_BADHANDLE,
463 NFSERR_NOTSUPP,
464 NFSERR_SERVERFAULT,
465 0,
466 };
467
468 static const short nfsv3err_link[] = {
469 NFSERR_IO,
470 NFSERR_IO,
471 NFSERR_ACCES,
472 NFSERR_EXIST,
473 NFSERR_XDEV,
474 NFSERR_NOTDIR,
475 NFSERR_INVAL,
476 NFSERR_NOSPC,
477 NFSERR_ROFS,
478 NFSERR_MLINK,
479 NFSERR_NAMETOL,
480 NFSERR_DQUOT,
481 NFSERR_STALE,
482 NFSERR_BADHANDLE,
483 NFSERR_NOTSUPP,
484 NFSERR_SERVERFAULT,
485 0,
486 };
487
488 static const short nfsv3err_readdir[] = {
489 NFSERR_IO,
490 NFSERR_IO,
491 NFSERR_ACCES,
492 NFSERR_NOTDIR,
493 NFSERR_STALE,
494 NFSERR_BADHANDLE,
495 NFSERR_BAD_COOKIE,
496 NFSERR_TOOSMALL,
497 NFSERR_SERVERFAULT,
498 0,
499 };
500
501 static const short nfsv3err_readdirplus[] = {
502 NFSERR_IO,
503 NFSERR_IO,
504 NFSERR_ACCES,
505 NFSERR_NOTDIR,
506 NFSERR_STALE,
507 NFSERR_BADHANDLE,
508 NFSERR_BAD_COOKIE,
509 NFSERR_NOTSUPP,
510 NFSERR_TOOSMALL,
511 NFSERR_SERVERFAULT,
512 0,
513 };
514
515 static const short nfsv3err_fsstat[] = {
516 NFSERR_IO,
517 NFSERR_IO,
518 NFSERR_STALE,
519 NFSERR_BADHANDLE,
520 NFSERR_SERVERFAULT,
521 0,
522 };
523
524 static const short nfsv3err_fsinfo[] = {
525 NFSERR_STALE,
526 NFSERR_STALE,
527 NFSERR_BADHANDLE,
528 NFSERR_SERVERFAULT,
529 0,
530 };
531
532 static const short nfsv3err_pathconf[] = {
533 NFSERR_STALE,
534 NFSERR_STALE,
535 NFSERR_BADHANDLE,
536 NFSERR_SERVERFAULT,
537 0,
538 };
539
540 static const short nfsv3err_commit[] = {
541 NFSERR_IO,
542 NFSERR_IO,
543 NFSERR_STALE,
544 NFSERR_BADHANDLE,
545 NFSERR_SERVERFAULT,
546 0,
547 };
548
549 static const short * const nfsrv_v3errmap[] = {
550 nfsv3err_null,
551 nfsv3err_getattr,
552 nfsv3err_setattr,
553 nfsv3err_lookup,
554 nfsv3err_access,
555 nfsv3err_readlink,
556 nfsv3err_read,
557 nfsv3err_write,
558 nfsv3err_create,
559 nfsv3err_mkdir,
560 nfsv3err_symlink,
561 nfsv3err_mknod,
562 nfsv3err_remove,
563 nfsv3err_rmdir,
564 nfsv3err_rename,
565 nfsv3err_link,
566 nfsv3err_readdir,
567 nfsv3err_readdirplus,
568 nfsv3err_fsstat,
569 nfsv3err_fsinfo,
570 nfsv3err_pathconf,
571 nfsv3err_commit,
572 };
573
574 extern struct nfsrtt nfsrtt;
575 extern time_t nqnfsstarttime;
576 extern int nqsrv_clockskew;
577 extern int nqsrv_writeslack;
578 extern int nqsrv_maxlease;
579 extern const int nqnfs_piggy[NFS_NPROCS];
580 extern struct nfsnodehashhead *nfsnodehashtbl;
581 extern u_long nfsnodehash;
582
583 LIST_HEAD(nfsnodehashhead, nfsnode);
584 u_long nfsdirhashmask;
585
586 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
587
588 /*
589 * Create the header for an rpc request packet
590 * The hsiz is the size of the rest of the nfs request header.
591 * (just used to decide if a cluster is a good idea)
592 */
593 struct mbuf *
594 nfsm_reqh(vp, procid, hsiz, bposp)
595 struct vnode *vp;
596 u_long procid;
597 int hsiz;
598 caddr_t *bposp;
599 {
600 struct mbuf *mb;
601 caddr_t bpos;
602 struct nfsmount *nmp;
603 #ifndef NFS_V2_ONLY
604 u_int32_t *tl;
605 struct mbuf *mb2;
606 int nqflag;
607 #endif
608
609 MGET(mb, M_WAIT, MT_DATA);
610 if (hsiz >= MINCLSIZE)
611 MCLGET(mb, M_WAIT);
612 mb->m_len = 0;
613 bpos = mtod(mb, caddr_t);
614
615 /*
616 * For NQNFS, add lease request.
617 */
618 if (vp) {
619 nmp = VFSTONFS(vp->v_mount);
620 #ifndef NFS_V2_ONLY
621 if (nmp->nm_flag & NFSMNT_NQNFS) {
622 nqflag = NQNFS_NEEDLEASE(vp, procid);
623 if (nqflag) {
624 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
625 *tl++ = txdr_unsigned(nqflag);
626 *tl = txdr_unsigned(nmp->nm_leaseterm);
627 } else {
628 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
629 *tl = 0;
630 }
631 }
632 #endif
633 }
634 /* Finally, return values */
635 *bposp = bpos;
636 return (mb);
637 }
638
639 /*
640 * Build the RPC header and fill in the authorization info.
641 * The authorization string argument is only used when the credentials
642 * come from outside of the kernel.
643 * Returns the head of the mbuf list.
644 */
645 struct mbuf *
646 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
647 verf_str, mrest, mrest_len, mbp, xidp)
648 struct ucred *cr;
649 int nmflag;
650 int procid;
651 int auth_type;
652 int auth_len;
653 char *auth_str;
654 int verf_len;
655 char *verf_str;
656 struct mbuf *mrest;
657 int mrest_len;
658 struct mbuf **mbp;
659 u_int32_t *xidp;
660 {
661 struct mbuf *mb;
662 u_int32_t *tl;
663 caddr_t bpos;
664 int i;
665 struct mbuf *mreq, *mb2;
666 int siz, grpsiz, authsiz;
667 struct timeval tv;
668 static u_int32_t base;
669
670 authsiz = nfsm_rndup(auth_len);
671 MGETHDR(mb, M_WAIT, MT_DATA);
672 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
673 MCLGET(mb, M_WAIT);
674 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
675 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
676 } else {
677 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
678 }
679 mb->m_len = 0;
680 mreq = mb;
681 bpos = mtod(mb, caddr_t);
682
683 /*
684 * First the RPC header.
685 */
686 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
687
688 /*
689 * derive initial xid from system time
690 * XXX time is invalid if root not yet mounted
691 */
692 if (!base && (rootvp)) {
693 microtime(&tv);
694 base = tv.tv_sec << 12;
695 nfs_xid = base;
696 }
697 /*
698 * Skip zero xid if it should ever happen.
699 */
700 if (++nfs_xid == 0)
701 nfs_xid++;
702
703 *tl++ = *xidp = txdr_unsigned(nfs_xid);
704 *tl++ = rpc_call;
705 *tl++ = rpc_vers;
706 if (nmflag & NFSMNT_NQNFS) {
707 *tl++ = txdr_unsigned(NQNFS_PROG);
708 *tl++ = txdr_unsigned(NQNFS_VER3);
709 } else {
710 *tl++ = txdr_unsigned(NFS_PROG);
711 if (nmflag & NFSMNT_NFSV3)
712 *tl++ = txdr_unsigned(NFS_VER3);
713 else
714 *tl++ = txdr_unsigned(NFS_VER2);
715 }
716 if (nmflag & NFSMNT_NFSV3)
717 *tl++ = txdr_unsigned(procid);
718 else
719 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
720
721 /*
722 * And then the authorization cred.
723 */
724 *tl++ = txdr_unsigned(auth_type);
725 *tl = txdr_unsigned(authsiz);
726 switch (auth_type) {
727 case RPCAUTH_UNIX:
728 nfsm_build(tl, u_int32_t *, auth_len);
729 *tl++ = 0; /* stamp ?? */
730 *tl++ = 0; /* NULL hostname */
731 *tl++ = txdr_unsigned(cr->cr_uid);
732 *tl++ = txdr_unsigned(cr->cr_gid);
733 grpsiz = (auth_len >> 2) - 5;
734 *tl++ = txdr_unsigned(grpsiz);
735 for (i = 0; i < grpsiz; i++)
736 *tl++ = txdr_unsigned(cr->cr_groups[i]);
737 break;
738 case RPCAUTH_KERB4:
739 siz = auth_len;
740 while (siz > 0) {
741 if (M_TRAILINGSPACE(mb) == 0) {
742 MGET(mb2, M_WAIT, MT_DATA);
743 if (siz >= MINCLSIZE)
744 MCLGET(mb2, M_WAIT);
745 mb->m_next = mb2;
746 mb = mb2;
747 mb->m_len = 0;
748 bpos = mtod(mb, caddr_t);
749 }
750 i = min(siz, M_TRAILINGSPACE(mb));
751 memcpy(bpos, auth_str, i);
752 mb->m_len += i;
753 auth_str += i;
754 bpos += i;
755 siz -= i;
756 }
757 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
758 for (i = 0; i < siz; i++)
759 *bpos++ = '\0';
760 mb->m_len += siz;
761 }
762 break;
763 };
764
765 /*
766 * And the verifier...
767 */
768 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
769 if (verf_str) {
770 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
771 *tl = txdr_unsigned(verf_len);
772 siz = verf_len;
773 while (siz > 0) {
774 if (M_TRAILINGSPACE(mb) == 0) {
775 MGET(mb2, M_WAIT, MT_DATA);
776 if (siz >= MINCLSIZE)
777 MCLGET(mb2, M_WAIT);
778 mb->m_next = mb2;
779 mb = mb2;
780 mb->m_len = 0;
781 bpos = mtod(mb, caddr_t);
782 }
783 i = min(siz, M_TRAILINGSPACE(mb));
784 memcpy(bpos, verf_str, i);
785 mb->m_len += i;
786 verf_str += i;
787 bpos += i;
788 siz -= i;
789 }
790 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
791 for (i = 0; i < siz; i++)
792 *bpos++ = '\0';
793 mb->m_len += siz;
794 }
795 } else {
796 *tl++ = txdr_unsigned(RPCAUTH_NULL);
797 *tl = 0;
798 }
799 mb->m_next = mrest;
800 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
801 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
802 *mbp = mb;
803 return (mreq);
804 }
805
806 /*
807 * copies mbuf chain to the uio scatter/gather list
808 */
809 int
810 nfsm_mbuftouio(mrep, uiop, siz, dpos)
811 struct mbuf **mrep;
812 struct uio *uiop;
813 int siz;
814 caddr_t *dpos;
815 {
816 char *mbufcp, *uiocp;
817 int xfer, left, len;
818 struct mbuf *mp;
819 long uiosiz, rem;
820 int error = 0;
821
822 mp = *mrep;
823 mbufcp = *dpos;
824 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
825 rem = nfsm_rndup(siz)-siz;
826 while (siz > 0) {
827 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
828 return (EFBIG);
829 left = uiop->uio_iov->iov_len;
830 uiocp = uiop->uio_iov->iov_base;
831 if (left > siz)
832 left = siz;
833 uiosiz = left;
834 while (left > 0) {
835 while (len == 0) {
836 mp = mp->m_next;
837 if (mp == NULL)
838 return (EBADRPC);
839 mbufcp = mtod(mp, caddr_t);
840 len = mp->m_len;
841 }
842 xfer = (left > len) ? len : left;
843 #ifdef notdef
844 /* Not Yet.. */
845 if (uiop->uio_iov->iov_op != NULL)
846 (*(uiop->uio_iov->iov_op))
847 (mbufcp, uiocp, xfer);
848 else
849 #endif
850 if (uiop->uio_segflg == UIO_SYSSPACE)
851 memcpy(uiocp, mbufcp, xfer);
852 else
853 copyout(mbufcp, uiocp, xfer);
854 left -= xfer;
855 len -= xfer;
856 mbufcp += xfer;
857 uiocp += xfer;
858 uiop->uio_offset += xfer;
859 uiop->uio_resid -= xfer;
860 }
861 if (uiop->uio_iov->iov_len <= siz) {
862 uiop->uio_iovcnt--;
863 uiop->uio_iov++;
864 } else {
865 uiop->uio_iov->iov_base =
866 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
867 uiop->uio_iov->iov_len -= uiosiz;
868 }
869 siz -= uiosiz;
870 }
871 *dpos = mbufcp;
872 *mrep = mp;
873 if (rem > 0) {
874 if (len < rem)
875 error = nfs_adv(mrep, dpos, rem, len);
876 else
877 *dpos += rem;
878 }
879 return (error);
880 }
881
882 /*
883 * copies a uio scatter/gather list to an mbuf chain.
884 * NOTE: can ony handle iovcnt == 1
885 */
886 int
887 nfsm_uiotombuf(uiop, mq, siz, bpos)
888 struct uio *uiop;
889 struct mbuf **mq;
890 int siz;
891 caddr_t *bpos;
892 {
893 char *uiocp;
894 struct mbuf *mp, *mp2;
895 int xfer, left, mlen;
896 int uiosiz, clflg, rem;
897 char *cp;
898
899 #ifdef DIAGNOSTIC
900 if (uiop->uio_iovcnt != 1)
901 panic("nfsm_uiotombuf: iovcnt != 1");
902 #endif
903
904 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
905 clflg = 1;
906 else
907 clflg = 0;
908 rem = nfsm_rndup(siz)-siz;
909 mp = mp2 = *mq;
910 while (siz > 0) {
911 left = uiop->uio_iov->iov_len;
912 uiocp = uiop->uio_iov->iov_base;
913 if (left > siz)
914 left = siz;
915 uiosiz = left;
916 while (left > 0) {
917 mlen = M_TRAILINGSPACE(mp);
918 if (mlen == 0) {
919 MGET(mp, M_WAIT, MT_DATA);
920 if (clflg)
921 MCLGET(mp, M_WAIT);
922 mp->m_len = 0;
923 mp2->m_next = mp;
924 mp2 = mp;
925 mlen = M_TRAILINGSPACE(mp);
926 }
927 xfer = (left > mlen) ? mlen : left;
928 #ifdef notdef
929 /* Not Yet.. */
930 if (uiop->uio_iov->iov_op != NULL)
931 (*(uiop->uio_iov->iov_op))
932 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
933 else
934 #endif
935 if (uiop->uio_segflg == UIO_SYSSPACE)
936 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
937 else
938 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
939 mp->m_len += xfer;
940 left -= xfer;
941 uiocp += xfer;
942 uiop->uio_offset += xfer;
943 uiop->uio_resid -= xfer;
944 }
945 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
946 uiosiz;
947 uiop->uio_iov->iov_len -= uiosiz;
948 siz -= uiosiz;
949 }
950 if (rem > 0) {
951 if (rem > M_TRAILINGSPACE(mp)) {
952 MGET(mp, M_WAIT, MT_DATA);
953 mp->m_len = 0;
954 mp2->m_next = mp;
955 }
956 cp = mtod(mp, caddr_t)+mp->m_len;
957 for (left = 0; left < rem; left++)
958 *cp++ = '\0';
959 mp->m_len += rem;
960 *bpos = cp;
961 } else
962 *bpos = mtod(mp, caddr_t)+mp->m_len;
963 *mq = mp;
964 return (0);
965 }
966
967 /*
968 * Get at least "siz" bytes of correctly aligned data.
969 * When called the mbuf pointers are not necessarily correct,
970 * dsosp points to what ought to be in m_data and left contains
971 * what ought to be in m_len.
972 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
973 * cases. (The macros use the vars. dpos and dpos2)
974 */
975 int
976 nfsm_disct(mdp, dposp, siz, left, cp2)
977 struct mbuf **mdp;
978 caddr_t *dposp;
979 int siz;
980 int left;
981 caddr_t *cp2;
982 {
983 struct mbuf *m1, *m2;
984 struct mbuf *havebuf = NULL;
985 caddr_t src = *dposp;
986 caddr_t dst;
987 int len;
988
989 #ifdef DEBUG
990 if (left < 0)
991 panic("nfsm_disct: left < 0");
992 #endif
993 m1 = *mdp;
994 /*
995 * Skip through the mbuf chain looking for an mbuf with
996 * some data. If the first mbuf found has enough data
997 * and it is correctly aligned return it.
998 */
999 while (left == 0) {
1000 havebuf = m1;
1001 *mdp = m1 = m1->m_next;
1002 if (m1 == NULL)
1003 return (EBADRPC);
1004 src = mtod(m1, caddr_t);
1005 left = m1->m_len;
1006 /*
1007 * If we start a new mbuf and it is big enough
1008 * and correctly aligned just return it, don't
1009 * do any pull up.
1010 */
1011 if (left >= siz && nfsm_aligned(src)) {
1012 *cp2 = src;
1013 *dposp = src + siz;
1014 return (0);
1015 }
1016 }
1017 if (m1->m_flags & M_EXT) {
1018 if (havebuf) {
1019 /* If the first mbuf with data has external data
1020 * and there is a previous empty mbuf use it
1021 * to move the data into.
1022 */
1023 m2 = m1;
1024 *mdp = m1 = havebuf;
1025 if (m1->m_flags & M_EXT) {
1026 MEXTREMOVE(m1);
1027 }
1028 } else {
1029 /*
1030 * If the first mbuf has a external data
1031 * and there is no previous empty mbuf
1032 * allocate a new mbuf and move the external
1033 * data to the new mbuf. Also make the first
1034 * mbuf look empty.
1035 */
1036 m2 = m_get(M_WAIT, MT_DATA);
1037 m2->m_ext = m1->m_ext;
1038 m2->m_data = src;
1039 m2->m_len = left;
1040 MCLADDREFERENCE(m1, m2);
1041 MEXTREMOVE(m1);
1042 m2->m_next = m1->m_next;
1043 m1->m_next = m2;
1044 }
1045 m1->m_len = 0;
1046 if (m1->m_flags & M_PKTHDR)
1047 dst = m1->m_pktdat;
1048 else
1049 dst = m1->m_dat;
1050 m1->m_data = dst;
1051 } else {
1052 /*
1053 * If the first mbuf has no external data
1054 * move the data to the front of the mbuf.
1055 */
1056 if (m1->m_flags & M_PKTHDR)
1057 dst = m1->m_pktdat;
1058 else
1059 dst = m1->m_dat;
1060 m1->m_data = dst;
1061 if (dst != src)
1062 memmove(dst, src, left);
1063 dst += left;
1064 m1->m_len = left;
1065 m2 = m1->m_next;
1066 }
1067 *cp2 = m1->m_data;
1068 *dposp = mtod(m1, caddr_t) + siz;
1069 /*
1070 * Loop through mbufs pulling data up into first mbuf until
1071 * the first mbuf is full or there is no more data to
1072 * pullup.
1073 */
1074 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1075 if ((len = min(len, m2->m_len)) != 0)
1076 memcpy(dst, m2->m_data, len);
1077 m1->m_len += len;
1078 dst += len;
1079 m2->m_data += len;
1080 m2->m_len -= len;
1081 m2 = m2->m_next;
1082 }
1083 if (m1->m_len < siz)
1084 return (EBADRPC);
1085 return (0);
1086 }
1087
1088 /*
1089 * Advance the position in the mbuf chain.
1090 */
1091 int
1092 nfs_adv(mdp, dposp, offs, left)
1093 struct mbuf **mdp;
1094 caddr_t *dposp;
1095 int offs;
1096 int left;
1097 {
1098 struct mbuf *m;
1099 int s;
1100
1101 m = *mdp;
1102 s = left;
1103 while (s < offs) {
1104 offs -= s;
1105 m = m->m_next;
1106 if (m == NULL)
1107 return (EBADRPC);
1108 s = m->m_len;
1109 }
1110 *mdp = m;
1111 *dposp = mtod(m, caddr_t)+offs;
1112 return (0);
1113 }
1114
1115 /*
1116 * Copy a string into mbufs for the hard cases...
1117 */
1118 int
1119 nfsm_strtmbuf(mb, bpos, cp, siz)
1120 struct mbuf **mb;
1121 char **bpos;
1122 const char *cp;
1123 long siz;
1124 {
1125 struct mbuf *m1 = NULL, *m2;
1126 long left, xfer, len, tlen;
1127 u_int32_t *tl;
1128 int putsize;
1129
1130 putsize = 1;
1131 m2 = *mb;
1132 left = M_TRAILINGSPACE(m2);
1133 if (left > 0) {
1134 tl = ((u_int32_t *)(*bpos));
1135 *tl++ = txdr_unsigned(siz);
1136 putsize = 0;
1137 left -= NFSX_UNSIGNED;
1138 m2->m_len += NFSX_UNSIGNED;
1139 if (left > 0) {
1140 memcpy((caddr_t) tl, cp, left);
1141 siz -= left;
1142 cp += left;
1143 m2->m_len += left;
1144 left = 0;
1145 }
1146 }
1147 /* Loop around adding mbufs */
1148 while (siz > 0) {
1149 MGET(m1, M_WAIT, MT_DATA);
1150 if (siz > MLEN)
1151 MCLGET(m1, M_WAIT);
1152 m1->m_len = NFSMSIZ(m1);
1153 m2->m_next = m1;
1154 m2 = m1;
1155 tl = mtod(m1, u_int32_t *);
1156 tlen = 0;
1157 if (putsize) {
1158 *tl++ = txdr_unsigned(siz);
1159 m1->m_len -= NFSX_UNSIGNED;
1160 tlen = NFSX_UNSIGNED;
1161 putsize = 0;
1162 }
1163 if (siz < m1->m_len) {
1164 len = nfsm_rndup(siz);
1165 xfer = siz;
1166 if (xfer < len)
1167 *(tl+(xfer>>2)) = 0;
1168 } else {
1169 xfer = len = m1->m_len;
1170 }
1171 memcpy((caddr_t) tl, cp, xfer);
1172 m1->m_len = len+tlen;
1173 siz -= xfer;
1174 cp += xfer;
1175 }
1176 *mb = m1;
1177 *bpos = mtod(m1, caddr_t)+m1->m_len;
1178 return (0);
1179 }
1180
1181 /*
1182 * Directory caching routines. They work as follows:
1183 * - a cache is maintained per VDIR nfsnode.
1184 * - for each offset cookie that is exported to userspace, and can
1185 * thus be thrown back at us as an offset to VOP_READDIR, store
1186 * information in the cache.
1187 * - cached are:
1188 * - cookie itself
1189 * - blocknumber (essentially just a search key in the buffer cache)
1190 * - entry number in block.
1191 * - offset cookie of block in which this entry is stored
1192 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1193 * - entries are looked up in a hash table
1194 * - also maintained is an LRU list of entries, used to determine
1195 * which ones to delete if the cache grows too large.
1196 * - if 32 <-> 64 translation mode is requested for a filesystem,
1197 * the cache also functions as a translation table
1198 * - in the translation case, invalidating the cache does not mean
1199 * flushing it, but just marking entries as invalid, except for
1200 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1201 * still be able to use the cache as a translation table.
1202 * - 32 bit cookies are uniquely created by combining the hash table
1203 * entry value, and one generation count per hash table entry,
1204 * incremented each time an entry is appended to the chain.
1205 * - the cache is invalidated each time a direcory is modified
1206 * - sanity checks are also done; if an entry in a block turns
1207 * out not to have a matching cookie, the cache is invalidated
1208 * and a new block starting from the wanted offset is fetched from
1209 * the server.
1210 * - directory entries as read from the server are extended to contain
1211 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1212 * the cache and exporting them to userspace through the cookie
1213 * argument to VOP_READDIR.
1214 */
1215
1216 u_long
1217 nfs_dirhash(off)
1218 off_t off;
1219 {
1220 int i;
1221 char *cp = (char *)&off;
1222 u_long sum = 0L;
1223
1224 for (i = 0 ; i < sizeof (off); i++)
1225 sum += *cp++;
1226
1227 return sum;
1228 }
1229
1230 void
1231 nfs_initdircache(vp)
1232 struct vnode *vp;
1233 {
1234 struct nfsnode *np = VTONFS(vp);
1235 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1236
1237 np->n_dircachesize = 0;
1238 np->n_dblkno = 1;
1239 np->n_dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1240 M_WAITOK, &nfsdirhashmask);
1241 TAILQ_INIT(&np->n_dirchain);
1242 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1243 MALLOC(np->n_dirgens, unsigned *,
1244 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1245 M_WAITOK);
1246 memset((caddr_t)np->n_dirgens, 0,
1247 NFS_DIRHASHSIZ * sizeof (unsigned));
1248 }
1249 }
1250
1251 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
1252
1253 struct nfsdircache *
1254 nfs_searchdircache(vp, off, do32, hashent)
1255 struct vnode *vp;
1256 off_t off;
1257 int do32;
1258 int *hashent;
1259 {
1260 struct nfsdirhashhead *ndhp;
1261 struct nfsdircache *ndp = NULL;
1262 struct nfsnode *np = VTONFS(vp);
1263 unsigned ent;
1264
1265 /*
1266 * Zero is always a valid cookie.
1267 */
1268 if (off == 0)
1269 return &dzero;
1270
1271 /*
1272 * We use a 32bit cookie as search key, directly reconstruct
1273 * the hashentry. Else use the hashfunction.
1274 */
1275 if (do32) {
1276 ent = (u_int32_t)off >> 24;
1277 if (ent >= NFS_DIRHASHSIZ)
1278 return NULL;
1279 ndhp = &np->n_dircache[ent];
1280 } else {
1281 ndhp = NFSDIRHASH(np, off);
1282 }
1283
1284 if (hashent)
1285 *hashent = (int)(ndhp - np->n_dircache);
1286 if (do32) {
1287 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) {
1288 if (ndp->dc_cookie32 == (u_int32_t)off) {
1289 /*
1290 * An invalidated entry will become the
1291 * start of a new block fetched from
1292 * the server.
1293 */
1294 if (ndp->dc_blkno == -1) {
1295 ndp->dc_blkcookie = ndp->dc_cookie;
1296 ndp->dc_blkno = np->n_dblkno++;
1297 ndp->dc_entry = 0;
1298 }
1299 break;
1300 }
1301 }
1302 } else {
1303 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next)
1304 if (ndp->dc_cookie == off)
1305 break;
1306 }
1307 return ndp;
1308 }
1309
1310
1311 struct nfsdircache *
1312 nfs_enterdircache(vp, off, blkoff, en, blkno)
1313 struct vnode *vp;
1314 off_t off, blkoff;
1315 int en;
1316 daddr_t blkno;
1317 {
1318 struct nfsnode *np = VTONFS(vp);
1319 struct nfsdirhashhead *ndhp;
1320 struct nfsdircache *ndp = NULL, *first;
1321 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1322 int hashent, gen, overwrite;
1323
1324 if (!np->n_dircache)
1325 /*
1326 * XXX would like to do this in nfs_nget but vtype
1327 * isn't known at that time.
1328 */
1329 nfs_initdircache(vp);
1330
1331 /*
1332 * XXX refuse entries for offset 0. amd(8) erroneously sets
1333 * cookie 0 for the '.' entry, making this necessary. This
1334 * isn't so bad, as 0 is a special case anyway.
1335 */
1336 if (off == 0)
1337 return &dzero;
1338
1339 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1340
1341 if (ndp && ndp->dc_blkno != -1) {
1342 /*
1343 * Overwriting an old entry. Check if it's the same.
1344 * If so, just return. If not, remove the old entry.
1345 */
1346 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1347 return ndp;
1348 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1349 LIST_REMOVE(ndp, dc_hash);
1350 FREE(ndp, M_NFSDIROFF);
1351 ndp = 0;
1352 }
1353
1354 ndhp = &np->n_dircache[hashent];
1355
1356 if (!ndp) {
1357 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
1358 M_WAITOK);
1359 overwrite = 0;
1360 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1361 /*
1362 * We're allocating a new entry, so bump the
1363 * generation number.
1364 */
1365 gen = ++np->n_dirgens[hashent];
1366 if (gen == 0) {
1367 np->n_dirgens[hashent]++;
1368 gen++;
1369 }
1370 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1371 }
1372 } else
1373 overwrite = 1;
1374
1375 /*
1376 * If the entry number is 0, we are at the start of a new block, so
1377 * allocate a new blocknumber.
1378 */
1379 if (en == 0)
1380 ndp->dc_blkno = np->n_dblkno++;
1381 else
1382 ndp->dc_blkno = blkno;
1383
1384 ndp->dc_cookie = off;
1385 ndp->dc_blkcookie = blkoff;
1386 ndp->dc_entry = en;
1387
1388 if (overwrite)
1389 return ndp;
1390
1391 /*
1392 * If the maximum directory cookie cache size has been reached
1393 * for this node, take one off the front. The idea is that
1394 * directories are typically read front-to-back once, so that
1395 * the oldest entries can be thrown away without much performance
1396 * loss.
1397 */
1398 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1399 first = np->n_dirchain.tqh_first;
1400 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
1401 LIST_REMOVE(first, dc_hash);
1402 FREE(first, M_NFSDIROFF);
1403 } else
1404 np->n_dircachesize++;
1405
1406 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1407 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1408 return ndp;
1409 }
1410
1411 void
1412 nfs_invaldircache(vp, forcefree)
1413 struct vnode *vp;
1414 int forcefree;
1415 {
1416 struct nfsnode *np = VTONFS(vp);
1417 struct nfsdircache *ndp = NULL;
1418 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1419
1420 #ifdef DIAGNOSTIC
1421 if (vp->v_type != VDIR)
1422 panic("nfs: invaldircache: not dir");
1423 #endif
1424
1425 if (!np->n_dircache)
1426 return;
1427
1428 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1429 while ((ndp = np->n_dirchain.tqh_first)) {
1430 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1431 LIST_REMOVE(ndp, dc_hash);
1432 FREE(ndp, M_NFSDIROFF);
1433 }
1434 np->n_dircachesize = 0;
1435 if (forcefree && np->n_dirgens) {
1436 FREE(np->n_dirgens, M_NFSDIROFF);
1437 }
1438 } else {
1439 for (ndp = np->n_dirchain.tqh_first; ndp;
1440 ndp = ndp->dc_chain.tqe_next)
1441 ndp->dc_blkno = -1;
1442 }
1443
1444 np->n_dblkno = 1;
1445 }
1446
1447 /*
1448 * Called once before VFS init to initialize shared and
1449 * server-specific data structures.
1450 */
1451 void
1452 nfs_init()
1453 {
1454 nfsrtt.pos = 0;
1455 rpc_vers = txdr_unsigned(RPC_VER2);
1456 rpc_call = txdr_unsigned(RPC_CALL);
1457 rpc_reply = txdr_unsigned(RPC_REPLY);
1458 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1459 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1460 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1461 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1462 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1463 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1464 nfs_prog = txdr_unsigned(NFS_PROG);
1465 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1466 nfs_true = txdr_unsigned(TRUE);
1467 nfs_false = txdr_unsigned(FALSE);
1468 nfs_xdrneg1 = txdr_unsigned(-1);
1469 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1470 if (nfs_ticks < 1)
1471 nfs_ticks = 1;
1472 #ifdef NFSSERVER
1473 nfsrv_init(0); /* Init server data structures */
1474 nfsrv_initcache(); /* Init the server request cache */
1475 #endif /* NFSSERVER */
1476
1477 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1478 /*
1479 * Initialize the nqnfs data structures.
1480 */
1481 if (nqnfsstarttime == 0) {
1482 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1483 + nqsrv_clockskew + nqsrv_writeslack;
1484 NQLOADNOVRAM(nqnfsstarttime);
1485 CIRCLEQ_INIT(&nqtimerhead);
1486 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1487 M_WAITOK, &nqfhhash);
1488 }
1489 #endif
1490
1491 exithook_establish(nfs_exit, NULL);
1492
1493 /*
1494 * Initialize reply list and start timer
1495 */
1496 TAILQ_INIT(&nfs_reqq);
1497 nfs_timer(NULL);
1498 }
1499
1500 #ifdef NFS
1501 /*
1502 * Called once at VFS init to initialize client-specific data structures.
1503 */
1504 void
1505 nfs_vfs_init()
1506 {
1507 nfs_nhinit(); /* Init the nfsnode table */
1508 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1509 }
1510
1511 void
1512 nfs_vfs_reinit()
1513 {
1514 nfs_nhreinit();
1515 }
1516
1517 void
1518 nfs_vfs_done()
1519 {
1520 nfs_nhdone();
1521 }
1522
1523 /*
1524 * Attribute cache routines.
1525 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1526 * that are on the mbuf list
1527 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1528 * error otherwise
1529 */
1530
1531 /*
1532 * Load the attribute cache (that lives in the nfsnode entry) with
1533 * the values on the mbuf list and
1534 * Iff vap not NULL
1535 * copy the attributes to *vaper
1536 */
1537 int
1538 nfsm_loadattrcache(vpp, mdp, dposp, vaper)
1539 struct vnode **vpp;
1540 struct mbuf **mdp;
1541 caddr_t *dposp;
1542 struct vattr *vaper;
1543 {
1544 int32_t t1;
1545 caddr_t cp2;
1546 int error = 0;
1547 struct mbuf *md;
1548 int v3 = NFS_ISV3(*vpp);
1549
1550 md = *mdp;
1551 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1552 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1553 if (error)
1554 return (error);
1555 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper);
1556 }
1557
1558 int
1559 nfs_loadattrcache(vpp, fp, vaper)
1560 struct vnode **vpp;
1561 struct nfs_fattr *fp;
1562 struct vattr *vaper;
1563 {
1564 struct vnode *vp = *vpp;
1565 struct vattr *vap;
1566 int v3 = NFS_ISV3(vp);
1567 enum vtype vtyp;
1568 u_short vmode;
1569 struct timespec mtime;
1570 struct vnode *nvp;
1571 int32_t rdev;
1572 struct nfsnode *np;
1573 extern int (**spec_nfsv2nodeop_p) __P((void *));
1574 uid_t uid;
1575 gid_t gid;
1576
1577 if (v3) {
1578 vtyp = nfsv3tov_type(fp->fa_type);
1579 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1580 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1581 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1582 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1583 } else {
1584 vtyp = nfsv2tov_type(fp->fa_type);
1585 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1586 if (vtyp == VNON || vtyp == VREG)
1587 vtyp = IFTOVT(vmode);
1588 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1589 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1590
1591 /*
1592 * Really ugly NFSv2 kludge.
1593 */
1594 if (vtyp == VCHR && rdev == 0xffffffff)
1595 vtyp = VFIFO;
1596 }
1597
1598 vmode &= ALLPERMS;
1599
1600 /*
1601 * If v_type == VNON it is a new node, so fill in the v_type,
1602 * n_mtime fields. Check to see if it represents a special
1603 * device, and if so, check for a possible alias. Once the
1604 * correct vnode has been obtained, fill in the rest of the
1605 * information.
1606 */
1607 np = VTONFS(vp);
1608 if (vp->v_type == VNON) {
1609 vp->v_type = vtyp;
1610 if (vp->v_type == VFIFO) {
1611 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1612 vp->v_op = fifo_nfsv2nodeop_p;
1613 }
1614 if (vp->v_type == VCHR || vp->v_type == VBLK) {
1615 vp->v_op = spec_nfsv2nodeop_p;
1616 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1617 if (nvp) {
1618 /*
1619 * Discard unneeded vnode, but save its nfsnode.
1620 * Since the nfsnode does not have a lock, its
1621 * vnode lock has to be carried over.
1622 */
1623 /*
1624 * XXX is the old node sure to be locked here?
1625 */
1626 KASSERT(lockstatus(&vp->v_lock) ==
1627 LK_EXCLUSIVE);
1628 nvp->v_data = vp->v_data;
1629 vp->v_data = NULL;
1630 VOP_UNLOCK(vp, 0);
1631 vp->v_op = spec_vnodeop_p;
1632 vrele(vp);
1633 vgone(vp);
1634 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1635 &nvp->v_interlock);
1636 /*
1637 * Reinitialize aliased node.
1638 */
1639 np->n_vnode = nvp;
1640 *vpp = vp = nvp;
1641 }
1642 }
1643 np->n_mtime = mtime.tv_sec;
1644 }
1645 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1646 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1647 vap = np->n_vattr;
1648
1649 /*
1650 * Invalidate access cache if uid, gid or mode changed.
1651 */
1652 if (np->n_accstamp != -1 &&
1653 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode))
1654 np->n_accstamp = -1;
1655
1656 vap->va_type = vtyp;
1657 vap->va_mode = vmode;
1658 vap->va_rdev = (dev_t)rdev;
1659 vap->va_mtime = mtime;
1660 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1661 switch (vtyp) {
1662 case VDIR:
1663 vap->va_blocksize = NFS_DIRFRAGSIZ;
1664 break;
1665 case VBLK:
1666 vap->va_blocksize = BLKDEV_IOSIZE;
1667 break;
1668 case VCHR:
1669 vap->va_blocksize = MAXBSIZE;
1670 break;
1671 default:
1672 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1673 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1674 break;
1675 }
1676 if (v3) {
1677 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1678 vap->va_uid = uid;
1679 vap->va_gid = gid;
1680 vap->va_size = fxdr_hyper(&fp->fa3_size);
1681 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1682 vap->va_fileid = fxdr_unsigned(int32_t,
1683 fp->fa3_fileid.nfsuquad[1]);
1684 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1685 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1686 vap->va_flags = 0;
1687 vap->va_filerev = 0;
1688 } else {
1689 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1690 vap->va_uid = uid;
1691 vap->va_gid = gid;
1692 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1693 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1694 * NFS_FABLKSIZE;
1695 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1696 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1697 vap->va_flags = 0;
1698 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1699 fp->fa2_ctime.nfsv2_sec);
1700 vap->va_ctime.tv_nsec = 0;
1701 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1702 vap->va_filerev = 0;
1703 }
1704 if (vap->va_size != np->n_size) {
1705 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1706 vap->va_size = np->n_size;
1707 } else {
1708 np->n_size = vap->va_size;
1709 if (vap->va_type == VREG) {
1710 uvm_vnp_setsize(vp, np->n_size);
1711 }
1712 }
1713 }
1714 np->n_attrstamp = time.tv_sec;
1715 if (vaper != NULL) {
1716 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1717 if (np->n_flag & NCHG) {
1718 if (np->n_flag & NACC)
1719 vaper->va_atime = np->n_atim;
1720 if (np->n_flag & NUPD)
1721 vaper->va_mtime = np->n_mtim;
1722 }
1723 }
1724 return (0);
1725 }
1726
1727 /*
1728 * Check the time stamp
1729 * If the cache is valid, copy contents to *vap and return 0
1730 * otherwise return an error
1731 */
1732 int
1733 nfs_getattrcache(vp, vaper)
1734 struct vnode *vp;
1735 struct vattr *vaper;
1736 {
1737 struct nfsnode *np = VTONFS(vp);
1738 struct vattr *vap;
1739
1740 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1741 nfsstats.attrcache_misses++;
1742 return (ENOENT);
1743 }
1744 nfsstats.attrcache_hits++;
1745 vap = np->n_vattr;
1746 if (vap->va_size != np->n_size) {
1747 if (vap->va_type == VREG) {
1748 if (np->n_flag & NMODIFIED) {
1749 if (vap->va_size < np->n_size)
1750 vap->va_size = np->n_size;
1751 else
1752 np->n_size = vap->va_size;
1753 } else
1754 np->n_size = vap->va_size;
1755 uvm_vnp_setsize(vp, np->n_size);
1756 } else
1757 np->n_size = vap->va_size;
1758 }
1759 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1760 if (np->n_flag & NCHG) {
1761 if (np->n_flag & NACC)
1762 vaper->va_atime = np->n_atim;
1763 if (np->n_flag & NUPD)
1764 vaper->va_mtime = np->n_mtim;
1765 }
1766 return (0);
1767 }
1768
1769 /*
1770 * Heuristic to see if the server XDR encodes directory cookies or not.
1771 * it is not supposed to, but a lot of servers may do this. Also, since
1772 * most/all servers will implement V2 as well, it is expected that they
1773 * may return just 32 bits worth of cookie information, so we need to
1774 * find out in which 32 bits this information is available. We do this
1775 * to avoid trouble with emulated binaries that can't handle 64 bit
1776 * directory offsets.
1777 */
1778
1779 void
1780 nfs_cookieheuristic(vp, flagp, p, cred)
1781 struct vnode *vp;
1782 int *flagp;
1783 struct proc *p;
1784 struct ucred *cred;
1785 {
1786 struct uio auio;
1787 struct iovec aiov;
1788 caddr_t buf, cp;
1789 struct dirent *dp;
1790 off_t *cookies = NULL, *cop;
1791 int error, eof, nc, len;
1792
1793 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1794
1795 aiov.iov_base = buf;
1796 aiov.iov_len = NFS_DIRFRAGSIZ;
1797 auio.uio_iov = &aiov;
1798 auio.uio_iovcnt = 1;
1799 auio.uio_rw = UIO_READ;
1800 auio.uio_segflg = UIO_SYSSPACE;
1801 auio.uio_procp = p;
1802 auio.uio_resid = NFS_DIRFRAGSIZ;
1803 auio.uio_offset = 0;
1804
1805 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1806
1807 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1808 if (error || len == 0) {
1809 FREE(buf, M_TEMP);
1810 if (cookies)
1811 free(cookies, M_TEMP);
1812 return;
1813 }
1814
1815 /*
1816 * Find the first valid entry and look at its offset cookie.
1817 */
1818
1819 cp = buf;
1820 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1821 dp = (struct dirent *)cp;
1822 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1823 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1824 *flagp |= NFSMNT_SWAPCOOKIE;
1825 nfs_invaldircache(vp, 0);
1826 nfs_vinvalbuf(vp, 0, cred, p, 1);
1827 }
1828 break;
1829 }
1830 cop++;
1831 cp += dp->d_reclen;
1832 }
1833
1834 FREE(buf, M_TEMP);
1835 free(cookies, M_TEMP);
1836 }
1837 #endif /* NFS */
1838
1839 /*
1840 * Set up nameidata for a lookup() call and do it.
1841 *
1842 * If pubflag is set, this call is done for a lookup operation on the
1843 * public filehandle. In that case we allow crossing mountpoints and
1844 * absolute pathnames. However, the caller is expected to check that
1845 * the lookup result is within the public fs, and deny access if
1846 * it is not.
1847 */
1848 int
1849 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1850 struct nameidata *ndp;
1851 fhandle_t *fhp;
1852 int len;
1853 struct nfssvc_sock *slp;
1854 struct mbuf *nam;
1855 struct mbuf **mdp;
1856 caddr_t *dposp;
1857 struct vnode **retdirp;
1858 struct proc *p;
1859 int kerbflag, pubflag;
1860 {
1861 int i, rem;
1862 struct mbuf *md;
1863 char *fromcp, *tocp, *cp;
1864 struct iovec aiov;
1865 struct uio auio;
1866 struct vnode *dp;
1867 int error, rdonly, linklen;
1868 struct componentname *cnp = &ndp->ni_cnd;
1869
1870 *retdirp = (struct vnode *)0;
1871
1872 if ((len + 1) > MAXPATHLEN)
1873 return (ENAMETOOLONG);
1874 cnp->cn_pnbuf = PNBUF_GET();
1875
1876 /*
1877 * Copy the name from the mbuf list to ndp->ni_pnbuf
1878 * and set the various ndp fields appropriately.
1879 */
1880 fromcp = *dposp;
1881 tocp = cnp->cn_pnbuf;
1882 md = *mdp;
1883 rem = mtod(md, caddr_t) + md->m_len - fromcp;
1884 for (i = 0; i < len; i++) {
1885 while (rem == 0) {
1886 md = md->m_next;
1887 if (md == NULL) {
1888 error = EBADRPC;
1889 goto out;
1890 }
1891 fromcp = mtod(md, caddr_t);
1892 rem = md->m_len;
1893 }
1894 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1895 error = EACCES;
1896 goto out;
1897 }
1898 *tocp++ = *fromcp++;
1899 rem--;
1900 }
1901 *tocp = '\0';
1902 *mdp = md;
1903 *dposp = fromcp;
1904 len = nfsm_rndup(len)-len;
1905 if (len > 0) {
1906 if (rem >= len)
1907 *dposp += len;
1908 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1909 goto out;
1910 }
1911
1912 /*
1913 * Extract and set starting directory.
1914 */
1915 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1916 nam, &rdonly, kerbflag, pubflag);
1917 if (error)
1918 goto out;
1919 if (dp->v_type != VDIR) {
1920 vrele(dp);
1921 error = ENOTDIR;
1922 goto out;
1923 }
1924
1925 if (rdonly)
1926 cnp->cn_flags |= RDONLY;
1927
1928 *retdirp = dp;
1929
1930 if (pubflag) {
1931 /*
1932 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1933 * and the 'native path' indicator.
1934 */
1935 cp = PNBUF_GET();
1936 fromcp = cnp->cn_pnbuf;
1937 tocp = cp;
1938 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1939 switch ((unsigned char)*fromcp) {
1940 case WEBNFS_NATIVE_CHAR:
1941 /*
1942 * 'Native' path for us is the same
1943 * as a path according to the NFS spec,
1944 * just skip the escape char.
1945 */
1946 fromcp++;
1947 break;
1948 /*
1949 * More may be added in the future, range 0x80-0xff
1950 */
1951 default:
1952 error = EIO;
1953 FREE(cp, M_NAMEI);
1954 goto out;
1955 }
1956 }
1957 /*
1958 * Translate the '%' escapes, URL-style.
1959 */
1960 while (*fromcp != '\0') {
1961 if (*fromcp == WEBNFS_ESC_CHAR) {
1962 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1963 fromcp++;
1964 *tocp++ = HEXSTRTOI(fromcp);
1965 fromcp += 2;
1966 continue;
1967 } else {
1968 error = ENOENT;
1969 FREE(cp, M_NAMEI);
1970 goto out;
1971 }
1972 } else
1973 *tocp++ = *fromcp++;
1974 }
1975 *tocp = '\0';
1976 PNBUF_PUT(cnp->cn_pnbuf);
1977 cnp->cn_pnbuf = cp;
1978 }
1979
1980 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
1981 ndp->ni_segflg = UIO_SYSSPACE;
1982 ndp->ni_rootdir = rootvnode;
1983
1984 if (pubflag) {
1985 ndp->ni_loopcnt = 0;
1986 if (cnp->cn_pnbuf[0] == '/')
1987 dp = rootvnode;
1988 } else {
1989 cnp->cn_flags |= NOCROSSMOUNT;
1990 }
1991
1992 cnp->cn_proc = p;
1993 VREF(dp);
1994
1995 for (;;) {
1996 cnp->cn_nameptr = cnp->cn_pnbuf;
1997 ndp->ni_startdir = dp;
1998 /*
1999 * And call lookup() to do the real work
2000 */
2001 error = lookup(ndp);
2002 if (error) {
2003 PNBUF_PUT(cnp->cn_pnbuf);
2004 return (error);
2005 }
2006 /*
2007 * Check for encountering a symbolic link
2008 */
2009 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2010 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2011 cnp->cn_flags |= HASBUF;
2012 else
2013 PNBUF_PUT(cnp->cn_pnbuf);
2014 return (0);
2015 } else {
2016 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
2017 VOP_UNLOCK(ndp->ni_dvp, 0);
2018 if (!pubflag) {
2019 error = EINVAL;
2020 break;
2021 }
2022
2023 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2024 error = ELOOP;
2025 break;
2026 }
2027 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2028 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2029 cnp->cn_proc);
2030 if (error != 0)
2031 break;
2032 }
2033 if (ndp->ni_pathlen > 1)
2034 cp = PNBUF_GET();
2035 else
2036 cp = cnp->cn_pnbuf;
2037 aiov.iov_base = cp;
2038 aiov.iov_len = MAXPATHLEN;
2039 auio.uio_iov = &aiov;
2040 auio.uio_iovcnt = 1;
2041 auio.uio_offset = 0;
2042 auio.uio_rw = UIO_READ;
2043 auio.uio_segflg = UIO_SYSSPACE;
2044 auio.uio_procp = (struct proc *)0;
2045 auio.uio_resid = MAXPATHLEN;
2046 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2047 if (error) {
2048 badlink:
2049 if (ndp->ni_pathlen > 1)
2050 PNBUF_PUT(cp);
2051 break;
2052 }
2053 linklen = MAXPATHLEN - auio.uio_resid;
2054 if (linklen == 0) {
2055 error = ENOENT;
2056 goto badlink;
2057 }
2058 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2059 error = ENAMETOOLONG;
2060 goto badlink;
2061 }
2062 if (ndp->ni_pathlen > 1) {
2063 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2064 PNBUF_PUT(cnp->cn_pnbuf);
2065 cnp->cn_pnbuf = cp;
2066 } else
2067 cnp->cn_pnbuf[linklen] = '\0';
2068 ndp->ni_pathlen += linklen;
2069 vput(ndp->ni_vp);
2070 dp = ndp->ni_dvp;
2071 /*
2072 * Check if root directory should replace current directory.
2073 */
2074 if (cnp->cn_pnbuf[0] == '/') {
2075 vrele(dp);
2076 dp = ndp->ni_rootdir;
2077 VREF(dp);
2078 }
2079 }
2080 }
2081 vrele(ndp->ni_dvp);
2082 vput(ndp->ni_vp);
2083 ndp->ni_vp = NULL;
2084 out:
2085 PNBUF_PUT(cnp->cn_pnbuf);
2086 return (error);
2087 }
2088
2089 /*
2090 * A fiddled version of m_adj() that ensures null fill to a long
2091 * boundary and only trims off the back end
2092 */
2093 void
2094 nfsm_adj(mp, len, nul)
2095 struct mbuf *mp;
2096 int len;
2097 int nul;
2098 {
2099 struct mbuf *m;
2100 int count, i;
2101 char *cp;
2102
2103 /*
2104 * Trim from tail. Scan the mbuf chain,
2105 * calculating its length and finding the last mbuf.
2106 * If the adjustment only affects this mbuf, then just
2107 * adjust and return. Otherwise, rescan and truncate
2108 * after the remaining size.
2109 */
2110 count = 0;
2111 m = mp;
2112 for (;;) {
2113 count += m->m_len;
2114 if (m->m_next == (struct mbuf *)0)
2115 break;
2116 m = m->m_next;
2117 }
2118 if (m->m_len > len) {
2119 m->m_len -= len;
2120 if (nul > 0) {
2121 cp = mtod(m, caddr_t)+m->m_len-nul;
2122 for (i = 0; i < nul; i++)
2123 *cp++ = '\0';
2124 }
2125 return;
2126 }
2127 count -= len;
2128 if (count < 0)
2129 count = 0;
2130 /*
2131 * Correct length for chain is "count".
2132 * Find the mbuf with last data, adjust its length,
2133 * and toss data from remaining mbufs on chain.
2134 */
2135 for (m = mp; m; m = m->m_next) {
2136 if (m->m_len >= count) {
2137 m->m_len = count;
2138 if (nul > 0) {
2139 cp = mtod(m, caddr_t)+m->m_len-nul;
2140 for (i = 0; i < nul; i++)
2141 *cp++ = '\0';
2142 }
2143 break;
2144 }
2145 count -= m->m_len;
2146 }
2147 for (m = m->m_next;m;m = m->m_next)
2148 m->m_len = 0;
2149 }
2150
2151 /*
2152 * Make these functions instead of macros, so that the kernel text size
2153 * doesn't get too big...
2154 */
2155 void
2156 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2157 struct nfsrv_descript *nfsd;
2158 int before_ret;
2159 struct vattr *before_vap;
2160 int after_ret;
2161 struct vattr *after_vap;
2162 struct mbuf **mbp;
2163 char **bposp;
2164 {
2165 struct mbuf *mb = *mbp, *mb2;
2166 char *bpos = *bposp;
2167 u_int32_t *tl;
2168
2169 if (before_ret) {
2170 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2171 *tl = nfs_false;
2172 } else {
2173 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2174 *tl++ = nfs_true;
2175 txdr_hyper(before_vap->va_size, tl);
2176 tl += 2;
2177 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2178 tl += 2;
2179 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2180 }
2181 *bposp = bpos;
2182 *mbp = mb;
2183 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2184 }
2185
2186 void
2187 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2188 struct nfsrv_descript *nfsd;
2189 int after_ret;
2190 struct vattr *after_vap;
2191 struct mbuf **mbp;
2192 char **bposp;
2193 {
2194 struct mbuf *mb = *mbp, *mb2;
2195 char *bpos = *bposp;
2196 u_int32_t *tl;
2197 struct nfs_fattr *fp;
2198
2199 if (after_ret) {
2200 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2201 *tl = nfs_false;
2202 } else {
2203 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2204 *tl++ = nfs_true;
2205 fp = (struct nfs_fattr *)tl;
2206 nfsm_srvfattr(nfsd, after_vap, fp);
2207 }
2208 *mbp = mb;
2209 *bposp = bpos;
2210 }
2211
2212 void
2213 nfsm_srvfattr(nfsd, vap, fp)
2214 struct nfsrv_descript *nfsd;
2215 struct vattr *vap;
2216 struct nfs_fattr *fp;
2217 {
2218
2219 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2220 fp->fa_uid = txdr_unsigned(vap->va_uid);
2221 fp->fa_gid = txdr_unsigned(vap->va_gid);
2222 if (nfsd->nd_flag & ND_NFSV3) {
2223 fp->fa_type = vtonfsv3_type(vap->va_type);
2224 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2225 txdr_hyper(vap->va_size, &fp->fa3_size);
2226 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2227 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2228 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2229 fp->fa3_fsid.nfsuquad[0] = 0;
2230 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2231 fp->fa3_fileid.nfsuquad[0] = 0;
2232 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2233 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2234 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2235 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2236 } else {
2237 fp->fa_type = vtonfsv2_type(vap->va_type);
2238 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2239 fp->fa2_size = txdr_unsigned(vap->va_size);
2240 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2241 if (vap->va_type == VFIFO)
2242 fp->fa2_rdev = 0xffffffff;
2243 else
2244 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2245 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2246 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2247 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2248 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2249 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2250 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2251 }
2252 }
2253
2254 /*
2255 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2256 * - look up fsid in mount list (if not found ret error)
2257 * - get vp and export rights by calling VFS_FHTOVP()
2258 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2259 * - if not lockflag unlock it with VOP_UNLOCK()
2260 */
2261 int
2262 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2263 fhandle_t *fhp;
2264 int lockflag;
2265 struct vnode **vpp;
2266 struct ucred *cred;
2267 struct nfssvc_sock *slp;
2268 struct mbuf *nam;
2269 int *rdonlyp;
2270 int kerbflag;
2271 {
2272 struct mount *mp;
2273 int i;
2274 struct ucred *credanon;
2275 int error, exflags;
2276 struct sockaddr_in *saddr;
2277
2278 *vpp = (struct vnode *)0;
2279
2280 if (nfs_ispublicfh(fhp)) {
2281 if (!pubflag || !nfs_pub.np_valid)
2282 return (ESTALE);
2283 fhp = &nfs_pub.np_handle;
2284 }
2285
2286 mp = vfs_getvfs(&fhp->fh_fsid);
2287 if (!mp)
2288 return (ESTALE);
2289 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2290 if (error)
2291 return (error);
2292 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2293 if (error)
2294 return (error);
2295
2296 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2297 saddr = mtod(nam, struct sockaddr_in *);
2298 if ((saddr->sin_family == AF_INET) &&
2299 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2300 vput(*vpp);
2301 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2302 }
2303 #ifdef INET6
2304 if ((saddr->sin_family == AF_INET6) &&
2305 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2306 vput(*vpp);
2307 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2308 }
2309 #endif
2310 }
2311 /*
2312 * Check/setup credentials.
2313 */
2314 if (exflags & MNT_EXKERB) {
2315 if (!kerbflag) {
2316 vput(*vpp);
2317 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2318 }
2319 } else if (kerbflag) {
2320 vput(*vpp);
2321 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2322 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2323 cred->cr_uid = credanon->cr_uid;
2324 cred->cr_gid = credanon->cr_gid;
2325 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2326 cred->cr_groups[i] = credanon->cr_groups[i];
2327 cred->cr_ngroups = i;
2328 }
2329 if (exflags & MNT_EXRDONLY)
2330 *rdonlyp = 1;
2331 else
2332 *rdonlyp = 0;
2333 if (!lockflag)
2334 VOP_UNLOCK(*vpp, 0);
2335 return (0);
2336 }
2337
2338 /*
2339 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2340 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2341 * transformed this to all zeroes in both cases, so check for it.
2342 */
2343 int
2344 nfs_ispublicfh(fhp)
2345 fhandle_t *fhp;
2346 {
2347 char *cp = (char *)fhp;
2348 int i;
2349
2350 for (i = 0; i < NFSX_V3FH; i++)
2351 if (*cp++ != 0)
2352 return (FALSE);
2353 return (TRUE);
2354 }
2355
2356 /*
2357 * This function compares two net addresses by family and returns TRUE
2358 * if they are the same host.
2359 * If there is any doubt, return FALSE.
2360 * The AF_INET family is handled as a special case so that address mbufs
2361 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2362 */
2363 int
2364 netaddr_match(family, haddr, nam)
2365 int family;
2366 union nethostaddr *haddr;
2367 struct mbuf *nam;
2368 {
2369 struct sockaddr_in *inetaddr;
2370
2371 switch (family) {
2372 case AF_INET:
2373 inetaddr = mtod(nam, struct sockaddr_in *);
2374 if (inetaddr->sin_family == AF_INET &&
2375 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2376 return (1);
2377 break;
2378 #ifdef INET6
2379 case AF_INET6:
2380 {
2381 struct sockaddr_in6 *sin6_1, *sin6_2;
2382
2383 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2384 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2385 if (sin6_1->sin6_family == AF_INET6 &&
2386 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2387 return 1;
2388 }
2389 #endif
2390 #ifdef ISO
2391 case AF_ISO:
2392 {
2393 struct sockaddr_iso *isoaddr1, *isoaddr2;
2394
2395 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2396 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2397 if (isoaddr1->siso_family == AF_ISO &&
2398 isoaddr1->siso_nlen > 0 &&
2399 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2400 SAME_ISOADDR(isoaddr1, isoaddr2))
2401 return (1);
2402 break;
2403 }
2404 #endif /* ISO */
2405 default:
2406 break;
2407 };
2408 return (0);
2409 }
2410
2411 /*
2412 * The write verifier has changed (probably due to a server reboot), so all
2413 * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
2414 * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
2415 * flag. Once done the new write verifier can be set for the mount point.
2416 */
2417 void
2418 nfs_clearcommit(mp)
2419 struct mount *mp;
2420 {
2421 struct vnode *vp;
2422 struct nfsnode *np;
2423 struct vm_page *pg;
2424 int s;
2425
2426 s = splbio();
2427 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2428 KASSERT(vp->v_mount == mp);
2429 if (vp->v_type == VNON)
2430 continue;
2431 np = VTONFS(vp);
2432 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2433 np->n_pushedhi = 0;
2434 np->n_commitflags &=
2435 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2436 simple_lock(&vp->v_uobj.vmobjlock);
2437 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2438 pg->flags &= ~PG_NEEDCOMMIT;
2439 }
2440 simple_unlock(&vp->v_uobj.vmobjlock);
2441 }
2442 splx(s);
2443 }
2444
2445 void
2446 nfs_merge_commit_ranges(vp)
2447 struct vnode *vp;
2448 {
2449 struct nfsnode *np = VTONFS(vp);
2450
2451 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2452 np->n_pushedlo = np->n_pushlo;
2453 np->n_pushedhi = np->n_pushhi;
2454 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2455 } else {
2456 if (np->n_pushlo < np->n_pushedlo)
2457 np->n_pushedlo = np->n_pushlo;
2458 if (np->n_pushhi > np->n_pushedhi)
2459 np->n_pushedhi = np->n_pushhi;
2460 }
2461
2462 np->n_pushlo = np->n_pushhi = 0;
2463 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2464
2465 #ifdef fvdl_debug
2466 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2467 (unsigned)np->n_pushedhi);
2468 #endif
2469 }
2470
2471 int
2472 nfs_in_committed_range(vp, off, len)
2473 struct vnode *vp;
2474 off_t off, len;
2475 {
2476 struct nfsnode *np = VTONFS(vp);
2477 off_t lo, hi;
2478
2479 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2480 return 0;
2481 lo = off;
2482 hi = lo + len;
2483
2484 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2485 }
2486
2487 int
2488 nfs_in_tobecommitted_range(vp, off, len)
2489 struct vnode *vp;
2490 off_t off, len;
2491 {
2492 struct nfsnode *np = VTONFS(vp);
2493 off_t lo, hi;
2494
2495 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2496 return 0;
2497 lo = off;
2498 hi = lo + len;
2499
2500 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2501 }
2502
2503 void
2504 nfs_add_committed_range(vp, off, len)
2505 struct vnode *vp;
2506 off_t off, len;
2507 {
2508 struct nfsnode *np = VTONFS(vp);
2509 off_t lo, hi;
2510
2511 lo = off;
2512 hi = lo + len;
2513
2514 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2515 np->n_pushedlo = lo;
2516 np->n_pushedhi = hi;
2517 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2518 } else {
2519 if (hi > np->n_pushedhi)
2520 np->n_pushedhi = hi;
2521 if (lo < np->n_pushedlo)
2522 np->n_pushedlo = lo;
2523 }
2524 #ifdef fvdl_debug
2525 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2526 (unsigned)np->n_pushedhi);
2527 #endif
2528 }
2529
2530 void
2531 nfs_del_committed_range(vp, off, len)
2532 struct vnode *vp;
2533 off_t off, len;
2534 {
2535 struct nfsnode *np = VTONFS(vp);
2536 off_t lo, hi;
2537
2538 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2539 return;
2540
2541 lo = off;
2542 hi = lo + len;
2543
2544 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2545 return;
2546 if (lo <= np->n_pushedlo)
2547 np->n_pushedlo = hi;
2548 else if (hi >= np->n_pushedhi)
2549 np->n_pushedhi = lo;
2550 else {
2551 /*
2552 * XXX There's only one range. If the deleted range
2553 * is in the middle, pick the largest of the
2554 * contiguous ranges that it leaves.
2555 */
2556 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2557 np->n_pushedhi = lo;
2558 else
2559 np->n_pushedlo = hi;
2560 }
2561 #ifdef fvdl_debug
2562 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2563 (unsigned)np->n_pushedhi);
2564 #endif
2565 }
2566
2567 void
2568 nfs_add_tobecommitted_range(vp, off, len)
2569 struct vnode *vp;
2570 off_t off, len;
2571 {
2572 struct nfsnode *np = VTONFS(vp);
2573 off_t lo, hi;
2574
2575 lo = off;
2576 hi = lo + len;
2577
2578 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2579 np->n_pushlo = lo;
2580 np->n_pushhi = hi;
2581 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2582 } else {
2583 if (lo < np->n_pushlo)
2584 np->n_pushlo = lo;
2585 if (hi > np->n_pushhi)
2586 np->n_pushhi = hi;
2587 }
2588 #ifdef fvdl_debug
2589 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2590 (unsigned)np->n_pushhi);
2591 #endif
2592 }
2593
2594 void
2595 nfs_del_tobecommitted_range(vp, off, len)
2596 struct vnode *vp;
2597 off_t off, len;
2598 {
2599 struct nfsnode *np = VTONFS(vp);
2600 off_t lo, hi;
2601
2602 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2603 return;
2604
2605 lo = off;
2606 hi = lo + len;
2607
2608 if (lo > np->n_pushhi || hi < np->n_pushlo)
2609 return;
2610
2611 if (lo <= np->n_pushlo)
2612 np->n_pushlo = hi;
2613 else if (hi >= np->n_pushhi)
2614 np->n_pushhi = lo;
2615 else {
2616 /*
2617 * XXX There's only one range. If the deleted range
2618 * is in the middle, pick the largest of the
2619 * contiguous ranges that it leaves.
2620 */
2621 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2622 np->n_pushhi = lo;
2623 else
2624 np->n_pushlo = hi;
2625 }
2626 #ifdef fvdl_debug
2627 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2628 (unsigned)np->n_pushhi);
2629 #endif
2630 }
2631
2632 /*
2633 * Map errnos to NFS error numbers. For Version 3 also filter out error
2634 * numbers not specified for the associated procedure.
2635 */
2636 int
2637 nfsrv_errmap(nd, err)
2638 struct nfsrv_descript *nd;
2639 int err;
2640 {
2641 const short *defaulterrp, *errp;
2642
2643 if (nd->nd_flag & ND_NFSV3) {
2644 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2645 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2646 while (*++errp) {
2647 if (*errp == err)
2648 return (err);
2649 else if (*errp > err)
2650 break;
2651 }
2652 return ((int)*defaulterrp);
2653 } else
2654 return (err & 0xffff);
2655 }
2656 if (err <= ELAST)
2657 return ((int)nfsrv_v2errmap[err - 1]);
2658 return (NFSERR_IO);
2659 }
2660
2661 /*
2662 * Sort the group list in increasing numerical order.
2663 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2664 * that used to be here.)
2665 */
2666 void
2667 nfsrvw_sort(list, num)
2668 gid_t *list;
2669 int num;
2670 {
2671 int i, j;
2672 gid_t v;
2673
2674 /* Insertion sort. */
2675 for (i = 1; i < num; i++) {
2676 v = list[i];
2677 /* find correct slot for value v, moving others up */
2678 for (j = i; --j >= 0 && v < list[j];)
2679 list[j + 1] = list[j];
2680 list[j + 1] = v;
2681 }
2682 }
2683
2684 /*
2685 * copy credentials making sure that the result can be compared with memcmp().
2686 */
2687 void
2688 nfsrv_setcred(incred, outcred)
2689 struct ucred *incred, *outcred;
2690 {
2691 int i;
2692
2693 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2694 outcred->cr_ref = 1;
2695 outcred->cr_uid = incred->cr_uid;
2696 outcred->cr_gid = incred->cr_gid;
2697 outcred->cr_ngroups = incred->cr_ngroups;
2698 for (i = 0; i < incred->cr_ngroups; i++)
2699 outcred->cr_groups[i] = incred->cr_groups[i];
2700 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2701 }
2702