nfs_subs.c revision 1.106 1 /* $NetBSD: nfs_subs.c,v 1.106 2002/10/23 09:14:50 jdolecek Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
39 */
40
41 /*
42 * Copyright 2000 Wasabi Systems, Inc.
43 * All rights reserved.
44 *
45 * Written by Frank van der Linden for Wasabi Systems, Inc.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed for the NetBSD Project by
58 * Wasabi Systems, Inc.
59 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
60 * or promote products derived from this software without specific prior
61 * written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.106 2002/10/23 09:14:50 jdolecek Exp $");
78
79 #include "fs_nfs.h"
80 #include "opt_nfs.h"
81 #include "opt_nfsserver.h"
82 #include "opt_iso.h"
83 #include "opt_inet.h"
84
85 /*
86 * These functions support the macros and help fiddle mbuf chains for
87 * the nfs op functions. They do things like create the rpc header and
88 * copy data between mbuf chains and uio lists.
89 */
90 #include <sys/param.h>
91 #include <sys/proc.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/mount.h>
95 #include <sys/vnode.h>
96 #include <sys/namei.h>
97 #include <sys/mbuf.h>
98 #include <sys/socket.h>
99 #include <sys/stat.h>
100 #include <sys/malloc.h>
101 #include <sys/filedesc.h>
102 #include <sys/time.h>
103 #include <sys/dirent.h>
104
105 #include <uvm/uvm_extern.h>
106
107 #include <nfs/rpcv2.h>
108 #include <nfs/nfsproto.h>
109 #include <nfs/nfsnode.h>
110 #include <nfs/nfs.h>
111 #include <nfs/xdr_subs.h>
112 #include <nfs/nfsm_subs.h>
113 #include <nfs/nfsmount.h>
114 #include <nfs/nqnfs.h>
115 #include <nfs/nfsrtt.h>
116 #include <nfs/nfs_var.h>
117
118 #include <miscfs/specfs/specdev.h>
119
120 #include <netinet/in.h>
121 #ifdef ISO
122 #include <netiso/iso.h>
123 #endif
124
125 /*
126 * Data items converted to xdr at startup, since they are constant
127 * This is kinda hokey, but may save a little time doing byte swaps
128 */
129 u_int32_t nfs_xdrneg1;
130 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
131 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
132 rpc_auth_kerb;
133 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
134
135 /* And other global data */
136 static u_int32_t nfs_xid = 0;
137 const nfstype nfsv2_type[9] =
138 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
139 const nfstype nfsv3_type[9] =
140 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
141 const enum vtype nv2tov_type[8] =
142 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
143 const enum vtype nv3tov_type[8] =
144 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
145 int nfs_ticks;
146 int nfs_commitsize;
147
148 /* NFS client/server stats. */
149 struct nfsstats nfsstats;
150
151 /*
152 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
153 */
154 const int nfsv3_procid[NFS_NPROCS] = {
155 NFSPROC_NULL,
156 NFSPROC_GETATTR,
157 NFSPROC_SETATTR,
158 NFSPROC_NOOP,
159 NFSPROC_LOOKUP,
160 NFSPROC_READLINK,
161 NFSPROC_READ,
162 NFSPROC_NOOP,
163 NFSPROC_WRITE,
164 NFSPROC_CREATE,
165 NFSPROC_REMOVE,
166 NFSPROC_RENAME,
167 NFSPROC_LINK,
168 NFSPROC_SYMLINK,
169 NFSPROC_MKDIR,
170 NFSPROC_RMDIR,
171 NFSPROC_READDIR,
172 NFSPROC_FSSTAT,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP,
177 NFSPROC_NOOP,
178 NFSPROC_NOOP,
179 NFSPROC_NOOP,
180 NFSPROC_NOOP
181 };
182
183 /*
184 * and the reverse mapping from generic to Version 2 procedure numbers
185 */
186 const int nfsv2_procid[NFS_NPROCS] = {
187 NFSV2PROC_NULL,
188 NFSV2PROC_GETATTR,
189 NFSV2PROC_SETATTR,
190 NFSV2PROC_LOOKUP,
191 NFSV2PROC_NOOP,
192 NFSV2PROC_READLINK,
193 NFSV2PROC_READ,
194 NFSV2PROC_WRITE,
195 NFSV2PROC_CREATE,
196 NFSV2PROC_MKDIR,
197 NFSV2PROC_SYMLINK,
198 NFSV2PROC_CREATE,
199 NFSV2PROC_REMOVE,
200 NFSV2PROC_RMDIR,
201 NFSV2PROC_RENAME,
202 NFSV2PROC_LINK,
203 NFSV2PROC_READDIR,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_STATFS,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 NFSV2PROC_NOOP,
209 NFSV2PROC_NOOP,
210 NFSV2PROC_NOOP,
211 NFSV2PROC_NOOP,
212 NFSV2PROC_NOOP,
213 };
214
215 /*
216 * Maps errno values to nfs error numbers.
217 * Use NFSERR_IO as the catch all for ones not specifically defined in
218 * RFC 1094.
219 */
220 static const u_char nfsrv_v2errmap[ELAST] = {
221 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
225 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
231 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
232 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
233 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
234 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
235 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
236 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
237 NFSERR_IO, NFSERR_IO,
238 };
239
240 /*
241 * Maps errno values to nfs error numbers.
242 * Although it is not obvious whether or not NFS clients really care if
243 * a returned error value is in the specified list for the procedure, the
244 * safest thing to do is filter them appropriately. For Version 2, the
245 * X/Open XNFS document is the only specification that defines error values
246 * for each RPC (The RFC simply lists all possible error values for all RPCs),
247 * so I have decided to not do this for Version 2.
248 * The first entry is the default error return and the rest are the valid
249 * errors for that RPC in increasing numeric order.
250 */
251 static const short nfsv3err_null[] = {
252 0,
253 0,
254 };
255
256 static const short nfsv3err_getattr[] = {
257 NFSERR_IO,
258 NFSERR_IO,
259 NFSERR_STALE,
260 NFSERR_BADHANDLE,
261 NFSERR_SERVERFAULT,
262 0,
263 };
264
265 static const short nfsv3err_setattr[] = {
266 NFSERR_IO,
267 NFSERR_PERM,
268 NFSERR_IO,
269 NFSERR_ACCES,
270 NFSERR_INVAL,
271 NFSERR_NOSPC,
272 NFSERR_ROFS,
273 NFSERR_DQUOT,
274 NFSERR_STALE,
275 NFSERR_BADHANDLE,
276 NFSERR_NOT_SYNC,
277 NFSERR_SERVERFAULT,
278 0,
279 };
280
281 static const short nfsv3err_lookup[] = {
282 NFSERR_IO,
283 NFSERR_NOENT,
284 NFSERR_IO,
285 NFSERR_ACCES,
286 NFSERR_NOTDIR,
287 NFSERR_NAMETOL,
288 NFSERR_STALE,
289 NFSERR_BADHANDLE,
290 NFSERR_SERVERFAULT,
291 0,
292 };
293
294 static const short nfsv3err_access[] = {
295 NFSERR_IO,
296 NFSERR_IO,
297 NFSERR_STALE,
298 NFSERR_BADHANDLE,
299 NFSERR_SERVERFAULT,
300 0,
301 };
302
303 static const short nfsv3err_readlink[] = {
304 NFSERR_IO,
305 NFSERR_IO,
306 NFSERR_ACCES,
307 NFSERR_INVAL,
308 NFSERR_STALE,
309 NFSERR_BADHANDLE,
310 NFSERR_NOTSUPP,
311 NFSERR_SERVERFAULT,
312 0,
313 };
314
315 static const short nfsv3err_read[] = {
316 NFSERR_IO,
317 NFSERR_IO,
318 NFSERR_NXIO,
319 NFSERR_ACCES,
320 NFSERR_INVAL,
321 NFSERR_STALE,
322 NFSERR_BADHANDLE,
323 NFSERR_SERVERFAULT,
324 NFSERR_JUKEBOX,
325 0,
326 };
327
328 static const short nfsv3err_write[] = {
329 NFSERR_IO,
330 NFSERR_IO,
331 NFSERR_ACCES,
332 NFSERR_INVAL,
333 NFSERR_FBIG,
334 NFSERR_NOSPC,
335 NFSERR_ROFS,
336 NFSERR_DQUOT,
337 NFSERR_STALE,
338 NFSERR_BADHANDLE,
339 NFSERR_SERVERFAULT,
340 NFSERR_JUKEBOX,
341 0,
342 };
343
344 static const short nfsv3err_create[] = {
345 NFSERR_IO,
346 NFSERR_IO,
347 NFSERR_ACCES,
348 NFSERR_EXIST,
349 NFSERR_NOTDIR,
350 NFSERR_NOSPC,
351 NFSERR_ROFS,
352 NFSERR_NAMETOL,
353 NFSERR_DQUOT,
354 NFSERR_STALE,
355 NFSERR_BADHANDLE,
356 NFSERR_NOTSUPP,
357 NFSERR_SERVERFAULT,
358 0,
359 };
360
361 static const short nfsv3err_mkdir[] = {
362 NFSERR_IO,
363 NFSERR_IO,
364 NFSERR_ACCES,
365 NFSERR_EXIST,
366 NFSERR_NOTDIR,
367 NFSERR_NOSPC,
368 NFSERR_ROFS,
369 NFSERR_NAMETOL,
370 NFSERR_DQUOT,
371 NFSERR_STALE,
372 NFSERR_BADHANDLE,
373 NFSERR_NOTSUPP,
374 NFSERR_SERVERFAULT,
375 0,
376 };
377
378 static const short nfsv3err_symlink[] = {
379 NFSERR_IO,
380 NFSERR_IO,
381 NFSERR_ACCES,
382 NFSERR_EXIST,
383 NFSERR_NOTDIR,
384 NFSERR_NOSPC,
385 NFSERR_ROFS,
386 NFSERR_NAMETOL,
387 NFSERR_DQUOT,
388 NFSERR_STALE,
389 NFSERR_BADHANDLE,
390 NFSERR_NOTSUPP,
391 NFSERR_SERVERFAULT,
392 0,
393 };
394
395 static const short nfsv3err_mknod[] = {
396 NFSERR_IO,
397 NFSERR_IO,
398 NFSERR_ACCES,
399 NFSERR_EXIST,
400 NFSERR_NOTDIR,
401 NFSERR_NOSPC,
402 NFSERR_ROFS,
403 NFSERR_NAMETOL,
404 NFSERR_DQUOT,
405 NFSERR_STALE,
406 NFSERR_BADHANDLE,
407 NFSERR_NOTSUPP,
408 NFSERR_SERVERFAULT,
409 NFSERR_BADTYPE,
410 0,
411 };
412
413 static const short nfsv3err_remove[] = {
414 NFSERR_IO,
415 NFSERR_NOENT,
416 NFSERR_IO,
417 NFSERR_ACCES,
418 NFSERR_NOTDIR,
419 NFSERR_ROFS,
420 NFSERR_NAMETOL,
421 NFSERR_STALE,
422 NFSERR_BADHANDLE,
423 NFSERR_SERVERFAULT,
424 0,
425 };
426
427 static const short nfsv3err_rmdir[] = {
428 NFSERR_IO,
429 NFSERR_NOENT,
430 NFSERR_IO,
431 NFSERR_ACCES,
432 NFSERR_EXIST,
433 NFSERR_NOTDIR,
434 NFSERR_INVAL,
435 NFSERR_ROFS,
436 NFSERR_NAMETOL,
437 NFSERR_NOTEMPTY,
438 NFSERR_STALE,
439 NFSERR_BADHANDLE,
440 NFSERR_NOTSUPP,
441 NFSERR_SERVERFAULT,
442 0,
443 };
444
445 static const short nfsv3err_rename[] = {
446 NFSERR_IO,
447 NFSERR_NOENT,
448 NFSERR_IO,
449 NFSERR_ACCES,
450 NFSERR_EXIST,
451 NFSERR_XDEV,
452 NFSERR_NOTDIR,
453 NFSERR_ISDIR,
454 NFSERR_INVAL,
455 NFSERR_NOSPC,
456 NFSERR_ROFS,
457 NFSERR_MLINK,
458 NFSERR_NAMETOL,
459 NFSERR_NOTEMPTY,
460 NFSERR_DQUOT,
461 NFSERR_STALE,
462 NFSERR_BADHANDLE,
463 NFSERR_NOTSUPP,
464 NFSERR_SERVERFAULT,
465 0,
466 };
467
468 static const short nfsv3err_link[] = {
469 NFSERR_IO,
470 NFSERR_IO,
471 NFSERR_ACCES,
472 NFSERR_EXIST,
473 NFSERR_XDEV,
474 NFSERR_NOTDIR,
475 NFSERR_INVAL,
476 NFSERR_NOSPC,
477 NFSERR_ROFS,
478 NFSERR_MLINK,
479 NFSERR_NAMETOL,
480 NFSERR_DQUOT,
481 NFSERR_STALE,
482 NFSERR_BADHANDLE,
483 NFSERR_NOTSUPP,
484 NFSERR_SERVERFAULT,
485 0,
486 };
487
488 static const short nfsv3err_readdir[] = {
489 NFSERR_IO,
490 NFSERR_IO,
491 NFSERR_ACCES,
492 NFSERR_NOTDIR,
493 NFSERR_STALE,
494 NFSERR_BADHANDLE,
495 NFSERR_BAD_COOKIE,
496 NFSERR_TOOSMALL,
497 NFSERR_SERVERFAULT,
498 0,
499 };
500
501 static const short nfsv3err_readdirplus[] = {
502 NFSERR_IO,
503 NFSERR_IO,
504 NFSERR_ACCES,
505 NFSERR_NOTDIR,
506 NFSERR_STALE,
507 NFSERR_BADHANDLE,
508 NFSERR_BAD_COOKIE,
509 NFSERR_NOTSUPP,
510 NFSERR_TOOSMALL,
511 NFSERR_SERVERFAULT,
512 0,
513 };
514
515 static const short nfsv3err_fsstat[] = {
516 NFSERR_IO,
517 NFSERR_IO,
518 NFSERR_STALE,
519 NFSERR_BADHANDLE,
520 NFSERR_SERVERFAULT,
521 0,
522 };
523
524 static const short nfsv3err_fsinfo[] = {
525 NFSERR_STALE,
526 NFSERR_STALE,
527 NFSERR_BADHANDLE,
528 NFSERR_SERVERFAULT,
529 0,
530 };
531
532 static const short nfsv3err_pathconf[] = {
533 NFSERR_STALE,
534 NFSERR_STALE,
535 NFSERR_BADHANDLE,
536 NFSERR_SERVERFAULT,
537 0,
538 };
539
540 static const short nfsv3err_commit[] = {
541 NFSERR_IO,
542 NFSERR_IO,
543 NFSERR_STALE,
544 NFSERR_BADHANDLE,
545 NFSERR_SERVERFAULT,
546 0,
547 };
548
549 static const short * const nfsrv_v3errmap[] = {
550 nfsv3err_null,
551 nfsv3err_getattr,
552 nfsv3err_setattr,
553 nfsv3err_lookup,
554 nfsv3err_access,
555 nfsv3err_readlink,
556 nfsv3err_read,
557 nfsv3err_write,
558 nfsv3err_create,
559 nfsv3err_mkdir,
560 nfsv3err_symlink,
561 nfsv3err_mknod,
562 nfsv3err_remove,
563 nfsv3err_rmdir,
564 nfsv3err_rename,
565 nfsv3err_link,
566 nfsv3err_readdir,
567 nfsv3err_readdirplus,
568 nfsv3err_fsstat,
569 nfsv3err_fsinfo,
570 nfsv3err_pathconf,
571 nfsv3err_commit,
572 };
573
574 extern struct nfsrtt nfsrtt;
575 extern time_t nqnfsstarttime;
576 extern int nqsrv_clockskew;
577 extern int nqsrv_writeslack;
578 extern int nqsrv_maxlease;
579 extern const int nqnfs_piggy[NFS_NPROCS];
580 extern struct nfsnodehashhead *nfsnodehashtbl;
581 extern u_long nfsnodehash;
582
583 LIST_HEAD(nfsnodehashhead, nfsnode);
584 u_long nfsdirhashmask;
585
586 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
587
588 /*
589 * Create the header for an rpc request packet
590 * The hsiz is the size of the rest of the nfs request header.
591 * (just used to decide if a cluster is a good idea)
592 */
593 struct mbuf *
594 nfsm_reqh(vp, procid, hsiz, bposp)
595 struct vnode *vp;
596 u_long procid;
597 int hsiz;
598 caddr_t *bposp;
599 {
600 struct mbuf *mb;
601 caddr_t bpos;
602 struct nfsmount *nmp;
603 #ifndef NFS_V2_ONLY
604 u_int32_t *tl;
605 struct mbuf *mb2;
606 int nqflag;
607 #endif
608
609 MGET(mb, M_WAIT, MT_DATA);
610 if (hsiz >= MINCLSIZE)
611 MCLGET(mb, M_WAIT);
612 mb->m_len = 0;
613 bpos = mtod(mb, caddr_t);
614
615 /*
616 * For NQNFS, add lease request.
617 */
618 if (vp) {
619 nmp = VFSTONFS(vp->v_mount);
620 #ifndef NFS_V2_ONLY
621 if (nmp->nm_flag & NFSMNT_NQNFS) {
622 nqflag = NQNFS_NEEDLEASE(vp, procid);
623 if (nqflag) {
624 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
625 *tl++ = txdr_unsigned(nqflag);
626 *tl = txdr_unsigned(nmp->nm_leaseterm);
627 } else {
628 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
629 *tl = 0;
630 }
631 }
632 #endif
633 }
634 /* Finally, return values */
635 *bposp = bpos;
636 return (mb);
637 }
638
639 /*
640 * Build the RPC header and fill in the authorization info.
641 * The authorization string argument is only used when the credentials
642 * come from outside of the kernel.
643 * Returns the head of the mbuf list.
644 */
645 struct mbuf *
646 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
647 verf_str, mrest, mrest_len, mbp, xidp)
648 struct ucred *cr;
649 int nmflag;
650 int procid;
651 int auth_type;
652 int auth_len;
653 char *auth_str;
654 int verf_len;
655 char *verf_str;
656 struct mbuf *mrest;
657 int mrest_len;
658 struct mbuf **mbp;
659 u_int32_t *xidp;
660 {
661 struct mbuf *mb;
662 u_int32_t *tl;
663 caddr_t bpos;
664 int i;
665 struct mbuf *mreq, *mb2;
666 int siz, grpsiz, authsiz;
667 struct timeval tv;
668 static u_int32_t base;
669
670 authsiz = nfsm_rndup(auth_len);
671 MGETHDR(mb, M_WAIT, MT_DATA);
672 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
673 MCLGET(mb, M_WAIT);
674 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
675 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
676 } else {
677 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
678 }
679 mb->m_len = 0;
680 mreq = mb;
681 bpos = mtod(mb, caddr_t);
682
683 /*
684 * First the RPC header.
685 */
686 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
687
688 /*
689 * derive initial xid from system time
690 * XXX time is invalid if root not yet mounted
691 */
692 if (!base && (rootvp)) {
693 microtime(&tv);
694 base = tv.tv_sec << 12;
695 nfs_xid = base;
696 }
697 /*
698 * Skip zero xid if it should ever happen.
699 */
700 if (++nfs_xid == 0)
701 nfs_xid++;
702
703 *tl++ = *xidp = txdr_unsigned(nfs_xid);
704 *tl++ = rpc_call;
705 *tl++ = rpc_vers;
706 if (nmflag & NFSMNT_NQNFS) {
707 *tl++ = txdr_unsigned(NQNFS_PROG);
708 *tl++ = txdr_unsigned(NQNFS_VER3);
709 } else {
710 *tl++ = txdr_unsigned(NFS_PROG);
711 if (nmflag & NFSMNT_NFSV3)
712 *tl++ = txdr_unsigned(NFS_VER3);
713 else
714 *tl++ = txdr_unsigned(NFS_VER2);
715 }
716 if (nmflag & NFSMNT_NFSV3)
717 *tl++ = txdr_unsigned(procid);
718 else
719 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
720
721 /*
722 * And then the authorization cred.
723 */
724 *tl++ = txdr_unsigned(auth_type);
725 *tl = txdr_unsigned(authsiz);
726 switch (auth_type) {
727 case RPCAUTH_UNIX:
728 nfsm_build(tl, u_int32_t *, auth_len);
729 *tl++ = 0; /* stamp ?? */
730 *tl++ = 0; /* NULL hostname */
731 *tl++ = txdr_unsigned(cr->cr_uid);
732 *tl++ = txdr_unsigned(cr->cr_gid);
733 grpsiz = (auth_len >> 2) - 5;
734 *tl++ = txdr_unsigned(grpsiz);
735 for (i = 0; i < grpsiz; i++)
736 *tl++ = txdr_unsigned(cr->cr_groups[i]);
737 break;
738 case RPCAUTH_KERB4:
739 siz = auth_len;
740 while (siz > 0) {
741 if (M_TRAILINGSPACE(mb) == 0) {
742 MGET(mb2, M_WAIT, MT_DATA);
743 if (siz >= MINCLSIZE)
744 MCLGET(mb2, M_WAIT);
745 mb->m_next = mb2;
746 mb = mb2;
747 mb->m_len = 0;
748 bpos = mtod(mb, caddr_t);
749 }
750 i = min(siz, M_TRAILINGSPACE(mb));
751 memcpy(bpos, auth_str, i);
752 mb->m_len += i;
753 auth_str += i;
754 bpos += i;
755 siz -= i;
756 }
757 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
758 for (i = 0; i < siz; i++)
759 *bpos++ = '\0';
760 mb->m_len += siz;
761 }
762 break;
763 };
764
765 /*
766 * And the verifier...
767 */
768 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
769 if (verf_str) {
770 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
771 *tl = txdr_unsigned(verf_len);
772 siz = verf_len;
773 while (siz > 0) {
774 if (M_TRAILINGSPACE(mb) == 0) {
775 MGET(mb2, M_WAIT, MT_DATA);
776 if (siz >= MINCLSIZE)
777 MCLGET(mb2, M_WAIT);
778 mb->m_next = mb2;
779 mb = mb2;
780 mb->m_len = 0;
781 bpos = mtod(mb, caddr_t);
782 }
783 i = min(siz, M_TRAILINGSPACE(mb));
784 memcpy(bpos, verf_str, i);
785 mb->m_len += i;
786 verf_str += i;
787 bpos += i;
788 siz -= i;
789 }
790 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
791 for (i = 0; i < siz; i++)
792 *bpos++ = '\0';
793 mb->m_len += siz;
794 }
795 } else {
796 *tl++ = txdr_unsigned(RPCAUTH_NULL);
797 *tl = 0;
798 }
799 mb->m_next = mrest;
800 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
801 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
802 *mbp = mb;
803 return (mreq);
804 }
805
806 /*
807 * copies mbuf chain to the uio scatter/gather list
808 */
809 int
810 nfsm_mbuftouio(mrep, uiop, siz, dpos)
811 struct mbuf **mrep;
812 struct uio *uiop;
813 int siz;
814 caddr_t *dpos;
815 {
816 char *mbufcp, *uiocp;
817 int xfer, left, len;
818 struct mbuf *mp;
819 long uiosiz, rem;
820 int error = 0;
821
822 mp = *mrep;
823 mbufcp = *dpos;
824 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
825 rem = nfsm_rndup(siz)-siz;
826 while (siz > 0) {
827 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
828 return (EFBIG);
829 left = uiop->uio_iov->iov_len;
830 uiocp = uiop->uio_iov->iov_base;
831 if (left > siz)
832 left = siz;
833 uiosiz = left;
834 while (left > 0) {
835 while (len == 0) {
836 mp = mp->m_next;
837 if (mp == NULL)
838 return (EBADRPC);
839 mbufcp = mtod(mp, caddr_t);
840 len = mp->m_len;
841 }
842 xfer = (left > len) ? len : left;
843 #ifdef notdef
844 /* Not Yet.. */
845 if (uiop->uio_iov->iov_op != NULL)
846 (*(uiop->uio_iov->iov_op))
847 (mbufcp, uiocp, xfer);
848 else
849 #endif
850 if (uiop->uio_segflg == UIO_SYSSPACE)
851 memcpy(uiocp, mbufcp, xfer);
852 else
853 copyout(mbufcp, uiocp, xfer);
854 left -= xfer;
855 len -= xfer;
856 mbufcp += xfer;
857 uiocp += xfer;
858 uiop->uio_offset += xfer;
859 uiop->uio_resid -= xfer;
860 }
861 if (uiop->uio_iov->iov_len <= siz) {
862 uiop->uio_iovcnt--;
863 uiop->uio_iov++;
864 } else {
865 uiop->uio_iov->iov_base =
866 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
867 uiop->uio_iov->iov_len -= uiosiz;
868 }
869 siz -= uiosiz;
870 }
871 *dpos = mbufcp;
872 *mrep = mp;
873 if (rem > 0) {
874 if (len < rem)
875 error = nfs_adv(mrep, dpos, rem, len);
876 else
877 *dpos += rem;
878 }
879 return (error);
880 }
881
882 /*
883 * copies a uio scatter/gather list to an mbuf chain.
884 * NOTE: can ony handle iovcnt == 1
885 */
886 int
887 nfsm_uiotombuf(uiop, mq, siz, bpos)
888 struct uio *uiop;
889 struct mbuf **mq;
890 int siz;
891 caddr_t *bpos;
892 {
893 char *uiocp;
894 struct mbuf *mp, *mp2;
895 int xfer, left, mlen;
896 int uiosiz, clflg, rem;
897 char *cp;
898
899 #ifdef DIAGNOSTIC
900 if (uiop->uio_iovcnt != 1)
901 panic("nfsm_uiotombuf: iovcnt != 1");
902 #endif
903
904 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
905 clflg = 1;
906 else
907 clflg = 0;
908 rem = nfsm_rndup(siz)-siz;
909 mp = mp2 = *mq;
910 while (siz > 0) {
911 left = uiop->uio_iov->iov_len;
912 uiocp = uiop->uio_iov->iov_base;
913 if (left > siz)
914 left = siz;
915 uiosiz = left;
916 while (left > 0) {
917 mlen = M_TRAILINGSPACE(mp);
918 if (mlen == 0) {
919 MGET(mp, M_WAIT, MT_DATA);
920 if (clflg)
921 MCLGET(mp, M_WAIT);
922 mp->m_len = 0;
923 mp2->m_next = mp;
924 mp2 = mp;
925 mlen = M_TRAILINGSPACE(mp);
926 }
927 xfer = (left > mlen) ? mlen : left;
928 #ifdef notdef
929 /* Not Yet.. */
930 if (uiop->uio_iov->iov_op != NULL)
931 (*(uiop->uio_iov->iov_op))
932 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
933 else
934 #endif
935 if (uiop->uio_segflg == UIO_SYSSPACE)
936 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
937 else
938 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
939 mp->m_len += xfer;
940 left -= xfer;
941 uiocp += xfer;
942 uiop->uio_offset += xfer;
943 uiop->uio_resid -= xfer;
944 }
945 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
946 uiosiz;
947 uiop->uio_iov->iov_len -= uiosiz;
948 siz -= uiosiz;
949 }
950 if (rem > 0) {
951 if (rem > M_TRAILINGSPACE(mp)) {
952 MGET(mp, M_WAIT, MT_DATA);
953 mp->m_len = 0;
954 mp2->m_next = mp;
955 }
956 cp = mtod(mp, caddr_t)+mp->m_len;
957 for (left = 0; left < rem; left++)
958 *cp++ = '\0';
959 mp->m_len += rem;
960 *bpos = cp;
961 } else
962 *bpos = mtod(mp, caddr_t)+mp->m_len;
963 *mq = mp;
964 return (0);
965 }
966
967 /*
968 * Get at least "siz" bytes of correctly aligned data.
969 * When called the mbuf pointers are not necessarily correct,
970 * dsosp points to what ought to be in m_data and left contains
971 * what ought to be in m_len.
972 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
973 * cases. (The macros use the vars. dpos and dpos2)
974 */
975 int
976 nfsm_disct(mdp, dposp, siz, left, cp2)
977 struct mbuf **mdp;
978 caddr_t *dposp;
979 int siz;
980 int left;
981 caddr_t *cp2;
982 {
983 struct mbuf *m1, *m2;
984 struct mbuf *havebuf = NULL;
985 caddr_t src = *dposp;
986 caddr_t dst;
987 int len;
988
989 #ifdef DEBUG
990 if (left < 0)
991 panic("nfsm_disct: left < 0");
992 #endif
993 m1 = *mdp;
994 /*
995 * Skip through the mbuf chain looking for an mbuf with
996 * some data. If the first mbuf found has enough data
997 * and it is correctly aligned return it.
998 */
999 while (left == 0) {
1000 havebuf = m1;
1001 *mdp = m1 = m1->m_next;
1002 if (m1 == NULL)
1003 return (EBADRPC);
1004 src = mtod(m1, caddr_t);
1005 left = m1->m_len;
1006 /*
1007 * If we start a new mbuf and it is big enough
1008 * and correctly aligned just return it, don't
1009 * do any pull up.
1010 */
1011 if (left >= siz && nfsm_aligned(src)) {
1012 *cp2 = src;
1013 *dposp = src + siz;
1014 return (0);
1015 }
1016 }
1017 if (m1->m_flags & M_EXT) {
1018 if (havebuf) {
1019 /* If the first mbuf with data has external data
1020 * and there is a previous empty mbuf use it
1021 * to move the data into.
1022 */
1023 m2 = m1;
1024 *mdp = m1 = havebuf;
1025 if (m1->m_flags & M_EXT) {
1026 MEXTREMOVE(m1);
1027 }
1028 } else {
1029 /*
1030 * If the first mbuf has a external data
1031 * and there is no previous empty mbuf
1032 * allocate a new mbuf and move the external
1033 * data to the new mbuf. Also make the first
1034 * mbuf look empty.
1035 */
1036 m2 = m_get(M_WAIT, MT_DATA);
1037 m2->m_ext = m1->m_ext;
1038 m2->m_data = src;
1039 m2->m_len = left;
1040 MCLADDREFERENCE(m1, m2);
1041 MEXTREMOVE(m1);
1042 m2->m_next = m1->m_next;
1043 m1->m_next = m2;
1044 }
1045 m1->m_len = 0;
1046 dst = m1->m_dat;
1047 } else {
1048 /*
1049 * If the first mbuf has no external data
1050 * move the data to the front of the mbuf.
1051 */
1052 if ((dst = m1->m_dat) != src)
1053 memmove(dst, src, left);
1054 dst += left;
1055 m1->m_len = left;
1056 m2 = m1->m_next;
1057 }
1058 m1->m_flags &= ~M_PKTHDR;
1059 *cp2 = m1->m_data = m1->m_dat; /* data is at beginning of buffer */
1060 *dposp = mtod(m1, caddr_t) + siz;
1061 /*
1062 * Loop through mbufs pulling data up into first mbuf until
1063 * the first mbuf is full or there is no more data to
1064 * pullup.
1065 */
1066 while ((len = (MLEN - m1->m_len)) != 0 && m2) {
1067 if ((len = min(len, m2->m_len)) != 0)
1068 memcpy(dst, m2->m_data, len);
1069 m1->m_len += len;
1070 dst += len;
1071 m2->m_data += len;
1072 m2->m_len -= len;
1073 m2 = m2->m_next;
1074 }
1075 if (m1->m_len < siz)
1076 return (EBADRPC);
1077 return (0);
1078 }
1079
1080 /*
1081 * Advance the position in the mbuf chain.
1082 */
1083 int
1084 nfs_adv(mdp, dposp, offs, left)
1085 struct mbuf **mdp;
1086 caddr_t *dposp;
1087 int offs;
1088 int left;
1089 {
1090 struct mbuf *m;
1091 int s;
1092
1093 m = *mdp;
1094 s = left;
1095 while (s < offs) {
1096 offs -= s;
1097 m = m->m_next;
1098 if (m == NULL)
1099 return (EBADRPC);
1100 s = m->m_len;
1101 }
1102 *mdp = m;
1103 *dposp = mtod(m, caddr_t)+offs;
1104 return (0);
1105 }
1106
1107 /*
1108 * Copy a string into mbufs for the hard cases...
1109 */
1110 int
1111 nfsm_strtmbuf(mb, bpos, cp, siz)
1112 struct mbuf **mb;
1113 char **bpos;
1114 const char *cp;
1115 long siz;
1116 {
1117 struct mbuf *m1 = NULL, *m2;
1118 long left, xfer, len, tlen;
1119 u_int32_t *tl;
1120 int putsize;
1121
1122 putsize = 1;
1123 m2 = *mb;
1124 left = M_TRAILINGSPACE(m2);
1125 if (left > 0) {
1126 tl = ((u_int32_t *)(*bpos));
1127 *tl++ = txdr_unsigned(siz);
1128 putsize = 0;
1129 left -= NFSX_UNSIGNED;
1130 m2->m_len += NFSX_UNSIGNED;
1131 if (left > 0) {
1132 memcpy((caddr_t) tl, cp, left);
1133 siz -= left;
1134 cp += left;
1135 m2->m_len += left;
1136 left = 0;
1137 }
1138 }
1139 /* Loop around adding mbufs */
1140 while (siz > 0) {
1141 MGET(m1, M_WAIT, MT_DATA);
1142 if (siz > MLEN)
1143 MCLGET(m1, M_WAIT);
1144 m1->m_len = NFSMSIZ(m1);
1145 m2->m_next = m1;
1146 m2 = m1;
1147 tl = mtod(m1, u_int32_t *);
1148 tlen = 0;
1149 if (putsize) {
1150 *tl++ = txdr_unsigned(siz);
1151 m1->m_len -= NFSX_UNSIGNED;
1152 tlen = NFSX_UNSIGNED;
1153 putsize = 0;
1154 }
1155 if (siz < m1->m_len) {
1156 len = nfsm_rndup(siz);
1157 xfer = siz;
1158 if (xfer < len)
1159 *(tl+(xfer>>2)) = 0;
1160 } else {
1161 xfer = len = m1->m_len;
1162 }
1163 memcpy((caddr_t) tl, cp, xfer);
1164 m1->m_len = len+tlen;
1165 siz -= xfer;
1166 cp += xfer;
1167 }
1168 *mb = m1;
1169 *bpos = mtod(m1, caddr_t)+m1->m_len;
1170 return (0);
1171 }
1172
1173 /*
1174 * Directory caching routines. They work as follows:
1175 * - a cache is maintained per VDIR nfsnode.
1176 * - for each offset cookie that is exported to userspace, and can
1177 * thus be thrown back at us as an offset to VOP_READDIR, store
1178 * information in the cache.
1179 * - cached are:
1180 * - cookie itself
1181 * - blocknumber (essentially just a search key in the buffer cache)
1182 * - entry number in block.
1183 * - offset cookie of block in which this entry is stored
1184 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1185 * - entries are looked up in a hash table
1186 * - also maintained is an LRU list of entries, used to determine
1187 * which ones to delete if the cache grows too large.
1188 * - if 32 <-> 64 translation mode is requested for a filesystem,
1189 * the cache also functions as a translation table
1190 * - in the translation case, invalidating the cache does not mean
1191 * flushing it, but just marking entries as invalid, except for
1192 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1193 * still be able to use the cache as a translation table.
1194 * - 32 bit cookies are uniquely created by combining the hash table
1195 * entry value, and one generation count per hash table entry,
1196 * incremented each time an entry is appended to the chain.
1197 * - the cache is invalidated each time a direcory is modified
1198 * - sanity checks are also done; if an entry in a block turns
1199 * out not to have a matching cookie, the cache is invalidated
1200 * and a new block starting from the wanted offset is fetched from
1201 * the server.
1202 * - directory entries as read from the server are extended to contain
1203 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1204 * the cache and exporting them to userspace through the cookie
1205 * argument to VOP_READDIR.
1206 */
1207
1208 u_long
1209 nfs_dirhash(off)
1210 off_t off;
1211 {
1212 int i;
1213 char *cp = (char *)&off;
1214 u_long sum = 0L;
1215
1216 for (i = 0 ; i < sizeof (off); i++)
1217 sum += *cp++;
1218
1219 return sum;
1220 }
1221
1222 void
1223 nfs_initdircache(vp)
1224 struct vnode *vp;
1225 {
1226 struct nfsnode *np = VTONFS(vp);
1227 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1228
1229 np->n_dircachesize = 0;
1230 np->n_dblkno = 1;
1231 np->n_dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1232 M_WAITOK, &nfsdirhashmask);
1233 TAILQ_INIT(&np->n_dirchain);
1234 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1235 MALLOC(np->n_dirgens, unsigned *,
1236 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1237 M_WAITOK);
1238 memset((caddr_t)np->n_dirgens, 0,
1239 NFS_DIRHASHSIZ * sizeof (unsigned));
1240 }
1241 }
1242
1243 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
1244
1245 struct nfsdircache *
1246 nfs_searchdircache(vp, off, do32, hashent)
1247 struct vnode *vp;
1248 off_t off;
1249 int do32;
1250 int *hashent;
1251 {
1252 struct nfsdirhashhead *ndhp;
1253 struct nfsdircache *ndp = NULL;
1254 struct nfsnode *np = VTONFS(vp);
1255 unsigned ent;
1256
1257 /*
1258 * Zero is always a valid cookie.
1259 */
1260 if (off == 0)
1261 return &dzero;
1262
1263 /*
1264 * We use a 32bit cookie as search key, directly reconstruct
1265 * the hashentry. Else use the hashfunction.
1266 */
1267 if (do32) {
1268 ent = (u_int32_t)off >> 24;
1269 if (ent >= NFS_DIRHASHSIZ)
1270 return NULL;
1271 ndhp = &np->n_dircache[ent];
1272 } else {
1273 ndhp = NFSDIRHASH(np, off);
1274 }
1275
1276 if (hashent)
1277 *hashent = (int)(ndhp - np->n_dircache);
1278 if (do32) {
1279 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) {
1280 if (ndp->dc_cookie32 == (u_int32_t)off) {
1281 /*
1282 * An invalidated entry will become the
1283 * start of a new block fetched from
1284 * the server.
1285 */
1286 if (ndp->dc_blkno == -1) {
1287 ndp->dc_blkcookie = ndp->dc_cookie;
1288 ndp->dc_blkno = np->n_dblkno++;
1289 ndp->dc_entry = 0;
1290 }
1291 break;
1292 }
1293 }
1294 } else {
1295 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next)
1296 if (ndp->dc_cookie == off)
1297 break;
1298 }
1299 return ndp;
1300 }
1301
1302
1303 struct nfsdircache *
1304 nfs_enterdircache(vp, off, blkoff, en, blkno)
1305 struct vnode *vp;
1306 off_t off, blkoff;
1307 int en;
1308 daddr_t blkno;
1309 {
1310 struct nfsnode *np = VTONFS(vp);
1311 struct nfsdirhashhead *ndhp;
1312 struct nfsdircache *ndp = NULL, *first;
1313 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1314 int hashent, gen, overwrite;
1315
1316 if (!np->n_dircache)
1317 /*
1318 * XXX would like to do this in nfs_nget but vtype
1319 * isn't known at that time.
1320 */
1321 nfs_initdircache(vp);
1322
1323 /*
1324 * XXX refuse entries for offset 0. amd(8) erroneously sets
1325 * cookie 0 for the '.' entry, making this necessary. This
1326 * isn't so bad, as 0 is a special case anyway.
1327 */
1328 if (off == 0)
1329 return &dzero;
1330
1331 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1332
1333 if (ndp && ndp->dc_blkno != -1) {
1334 /*
1335 * Overwriting an old entry. Check if it's the same.
1336 * If so, just return. If not, remove the old entry.
1337 */
1338 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1339 return ndp;
1340 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1341 LIST_REMOVE(ndp, dc_hash);
1342 FREE(ndp, M_NFSDIROFF);
1343 ndp = 0;
1344 }
1345
1346 ndhp = &np->n_dircache[hashent];
1347
1348 if (!ndp) {
1349 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
1350 M_WAITOK);
1351 overwrite = 0;
1352 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1353 /*
1354 * We're allocating a new entry, so bump the
1355 * generation number.
1356 */
1357 gen = ++np->n_dirgens[hashent];
1358 if (gen == 0) {
1359 np->n_dirgens[hashent]++;
1360 gen++;
1361 }
1362 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1363 }
1364 } else
1365 overwrite = 1;
1366
1367 /*
1368 * If the entry number is 0, we are at the start of a new block, so
1369 * allocate a new blocknumber.
1370 */
1371 if (en == 0)
1372 ndp->dc_blkno = np->n_dblkno++;
1373 else
1374 ndp->dc_blkno = blkno;
1375
1376 ndp->dc_cookie = off;
1377 ndp->dc_blkcookie = blkoff;
1378 ndp->dc_entry = en;
1379
1380 if (overwrite)
1381 return ndp;
1382
1383 /*
1384 * If the maximum directory cookie cache size has been reached
1385 * for this node, take one off the front. The idea is that
1386 * directories are typically read front-to-back once, so that
1387 * the oldest entries can be thrown away without much performance
1388 * loss.
1389 */
1390 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1391 first = np->n_dirchain.tqh_first;
1392 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
1393 LIST_REMOVE(first, dc_hash);
1394 FREE(first, M_NFSDIROFF);
1395 } else
1396 np->n_dircachesize++;
1397
1398 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1399 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1400 return ndp;
1401 }
1402
1403 void
1404 nfs_invaldircache(vp, forcefree)
1405 struct vnode *vp;
1406 int forcefree;
1407 {
1408 struct nfsnode *np = VTONFS(vp);
1409 struct nfsdircache *ndp = NULL;
1410 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1411
1412 #ifdef DIAGNOSTIC
1413 if (vp->v_type != VDIR)
1414 panic("nfs: invaldircache: not dir");
1415 #endif
1416
1417 if (!np->n_dircache)
1418 return;
1419
1420 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1421 while ((ndp = np->n_dirchain.tqh_first)) {
1422 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1423 LIST_REMOVE(ndp, dc_hash);
1424 FREE(ndp, M_NFSDIROFF);
1425 }
1426 np->n_dircachesize = 0;
1427 if (forcefree && np->n_dirgens) {
1428 FREE(np->n_dirgens, M_NFSDIROFF);
1429 }
1430 } else {
1431 for (ndp = np->n_dirchain.tqh_first; ndp;
1432 ndp = ndp->dc_chain.tqe_next)
1433 ndp->dc_blkno = -1;
1434 }
1435
1436 np->n_dblkno = 1;
1437 }
1438
1439 /*
1440 * Called once before VFS init to initialize shared and
1441 * server-specific data structures.
1442 */
1443 void
1444 nfs_init()
1445 {
1446 nfsrtt.pos = 0;
1447 rpc_vers = txdr_unsigned(RPC_VER2);
1448 rpc_call = txdr_unsigned(RPC_CALL);
1449 rpc_reply = txdr_unsigned(RPC_REPLY);
1450 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1451 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1452 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1453 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1454 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1455 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1456 nfs_prog = txdr_unsigned(NFS_PROG);
1457 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1458 nfs_true = txdr_unsigned(TRUE);
1459 nfs_false = txdr_unsigned(FALSE);
1460 nfs_xdrneg1 = txdr_unsigned(-1);
1461 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1462 if (nfs_ticks < 1)
1463 nfs_ticks = 1;
1464 #ifdef NFSSERVER
1465 nfsrv_init(0); /* Init server data structures */
1466 nfsrv_initcache(); /* Init the server request cache */
1467 #endif /* NFSSERVER */
1468
1469 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1470 /*
1471 * Initialize the nqnfs data structures.
1472 */
1473 if (nqnfsstarttime == 0) {
1474 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1475 + nqsrv_clockskew + nqsrv_writeslack;
1476 NQLOADNOVRAM(nqnfsstarttime);
1477 CIRCLEQ_INIT(&nqtimerhead);
1478 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1479 M_WAITOK, &nqfhhash);
1480 }
1481 #endif
1482
1483 exithook_establish(nfs_exit, NULL);
1484
1485 /*
1486 * Initialize reply list and start timer
1487 */
1488 TAILQ_INIT(&nfs_reqq);
1489 nfs_timer(NULL);
1490
1491 #ifdef NFS
1492 /* Initialize the kqueue structures */
1493 nfs_kqinit();
1494 #endif
1495 }
1496
1497 #ifdef NFS
1498 /*
1499 * Called once at VFS init to initialize client-specific data structures.
1500 */
1501 void
1502 nfs_vfs_init()
1503 {
1504 nfs_nhinit(); /* Init the nfsnode table */
1505 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1506 }
1507
1508 void
1509 nfs_vfs_reinit()
1510 {
1511 nfs_nhreinit();
1512 }
1513
1514 void
1515 nfs_vfs_done()
1516 {
1517 nfs_nhdone();
1518 }
1519
1520 /*
1521 * Attribute cache routines.
1522 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1523 * that are on the mbuf list
1524 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1525 * error otherwise
1526 */
1527
1528 /*
1529 * Load the attribute cache (that lives in the nfsnode entry) with
1530 * the values on the mbuf list and
1531 * Iff vap not NULL
1532 * copy the attributes to *vaper
1533 */
1534 int
1535 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1536 struct vnode **vpp;
1537 struct mbuf **mdp;
1538 caddr_t *dposp;
1539 struct vattr *vaper;
1540 int flags;
1541 {
1542 int32_t t1;
1543 caddr_t cp2;
1544 int error = 0;
1545 struct mbuf *md;
1546 int v3 = NFS_ISV3(*vpp);
1547
1548 md = *mdp;
1549 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1550 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1551 if (error)
1552 return (error);
1553 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1554 }
1555
1556 int
1557 nfs_loadattrcache(vpp, fp, vaper, flags)
1558 struct vnode **vpp;
1559 struct nfs_fattr *fp;
1560 struct vattr *vaper;
1561 int flags;
1562 {
1563 struct vnode *vp = *vpp;
1564 struct vattr *vap;
1565 int v3 = NFS_ISV3(vp);
1566 enum vtype vtyp;
1567 u_short vmode;
1568 struct timespec mtime;
1569 struct vnode *nvp;
1570 int32_t rdev;
1571 struct nfsnode *np;
1572 extern int (**spec_nfsv2nodeop_p) __P((void *));
1573 uid_t uid;
1574 gid_t gid;
1575
1576 if (v3) {
1577 vtyp = nfsv3tov_type(fp->fa_type);
1578 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1579 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1580 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1581 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1582 } else {
1583 vtyp = nfsv2tov_type(fp->fa_type);
1584 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1585 if (vtyp == VNON || vtyp == VREG)
1586 vtyp = IFTOVT(vmode);
1587 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1588 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1589
1590 /*
1591 * Really ugly NFSv2 kludge.
1592 */
1593 if (vtyp == VCHR && rdev == 0xffffffff)
1594 vtyp = VFIFO;
1595 }
1596
1597 vmode &= ALLPERMS;
1598
1599 /*
1600 * If v_type == VNON it is a new node, so fill in the v_type,
1601 * n_mtime fields. Check to see if it represents a special
1602 * device, and if so, check for a possible alias. Once the
1603 * correct vnode has been obtained, fill in the rest of the
1604 * information.
1605 */
1606 np = VTONFS(vp);
1607 if (vp->v_type == VNON) {
1608 vp->v_type = vtyp;
1609 if (vp->v_type == VFIFO) {
1610 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1611 vp->v_op = fifo_nfsv2nodeop_p;
1612 }
1613 if (vp->v_type == VCHR || vp->v_type == VBLK) {
1614 vp->v_op = spec_nfsv2nodeop_p;
1615 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1616 if (nvp) {
1617 /*
1618 * Discard unneeded vnode, but save its nfsnode.
1619 * Since the nfsnode does not have a lock, its
1620 * vnode lock has to be carried over.
1621 */
1622 /*
1623 * XXX is the old node sure to be locked here?
1624 */
1625 KASSERT(lockstatus(&vp->v_lock) ==
1626 LK_EXCLUSIVE);
1627 nvp->v_data = vp->v_data;
1628 vp->v_data = NULL;
1629 VOP_UNLOCK(vp, 0);
1630 vp->v_op = spec_vnodeop_p;
1631 vrele(vp);
1632 vgone(vp);
1633 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1634 &nvp->v_interlock);
1635 /*
1636 * Reinitialize aliased node.
1637 */
1638 np->n_vnode = nvp;
1639 *vpp = vp = nvp;
1640 }
1641 }
1642 np->n_mtime = mtime.tv_sec;
1643 }
1644 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1645 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1646 vap = np->n_vattr;
1647
1648 /*
1649 * Invalidate access cache if uid, gid or mode changed.
1650 */
1651 if (np->n_accstamp != -1 &&
1652 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode))
1653 np->n_accstamp = -1;
1654
1655 vap->va_type = vtyp;
1656 vap->va_mode = vmode;
1657 vap->va_rdev = (dev_t)rdev;
1658 vap->va_mtime = mtime;
1659 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1660 switch (vtyp) {
1661 case VDIR:
1662 vap->va_blocksize = NFS_DIRFRAGSIZ;
1663 break;
1664 case VBLK:
1665 vap->va_blocksize = BLKDEV_IOSIZE;
1666 break;
1667 case VCHR:
1668 vap->va_blocksize = MAXBSIZE;
1669 break;
1670 default:
1671 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1672 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1673 break;
1674 }
1675 if (v3) {
1676 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1677 vap->va_uid = uid;
1678 vap->va_gid = gid;
1679 vap->va_size = fxdr_hyper(&fp->fa3_size);
1680 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1681 vap->va_fileid = fxdr_unsigned(int32_t,
1682 fp->fa3_fileid.nfsuquad[1]);
1683 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1684 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1685 vap->va_flags = 0;
1686 vap->va_filerev = 0;
1687 } else {
1688 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1689 vap->va_uid = uid;
1690 vap->va_gid = gid;
1691 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1692 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1693 * NFS_FABLKSIZE;
1694 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1695 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1696 vap->va_flags = 0;
1697 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1698 fp->fa2_ctime.nfsv2_sec);
1699 vap->va_ctime.tv_nsec = 0;
1700 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1701 vap->va_filerev = 0;
1702 }
1703 if (vap->va_size != np->n_size) {
1704 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1705 vap->va_size = np->n_size;
1706 } else {
1707 np->n_size = vap->va_size;
1708 if (vap->va_type == VREG) {
1709 if ((flags & NAC_NOTRUNC)
1710 && np->n_size < vp->v_size) {
1711 /*
1712 * we can't free pages now because
1713 * the pages can be owned by ourselves.
1714 */
1715 np->n_flag |= NTRUNCDELAYED;
1716 }
1717 else {
1718 uvm_vnp_setsize(vp, np->n_size);
1719 }
1720 }
1721 }
1722 }
1723 np->n_attrstamp = time.tv_sec;
1724 if (vaper != NULL) {
1725 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1726 if (np->n_flag & NCHG) {
1727 if (np->n_flag & NACC)
1728 vaper->va_atime = np->n_atim;
1729 if (np->n_flag & NUPD)
1730 vaper->va_mtime = np->n_mtim;
1731 }
1732 }
1733 return (0);
1734 }
1735
1736 /*
1737 * Check the time stamp
1738 * If the cache is valid, copy contents to *vap and return 0
1739 * otherwise return an error
1740 */
1741 int
1742 nfs_getattrcache(vp, vaper)
1743 struct vnode *vp;
1744 struct vattr *vaper;
1745 {
1746 struct nfsnode *np = VTONFS(vp);
1747 struct vattr *vap;
1748
1749 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1750 nfsstats.attrcache_misses++;
1751 return (ENOENT);
1752 }
1753 nfsstats.attrcache_hits++;
1754 vap = np->n_vattr;
1755 if (vap->va_size != np->n_size) {
1756 if (vap->va_type == VREG) {
1757 if (np->n_flag & NMODIFIED) {
1758 if (vap->va_size < np->n_size)
1759 vap->va_size = np->n_size;
1760 else
1761 np->n_size = vap->va_size;
1762 } else
1763 np->n_size = vap->va_size;
1764 uvm_vnp_setsize(vp, np->n_size);
1765 } else
1766 np->n_size = vap->va_size;
1767 }
1768 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1769 if (np->n_flag & NCHG) {
1770 if (np->n_flag & NACC)
1771 vaper->va_atime = np->n_atim;
1772 if (np->n_flag & NUPD)
1773 vaper->va_mtime = np->n_mtim;
1774 }
1775 return (0);
1776 }
1777
1778 void
1779 nfs_delayedtruncate(vp)
1780 struct vnode *vp;
1781 {
1782 struct nfsnode *np = VTONFS(vp);
1783
1784 if (np->n_flag & NTRUNCDELAYED) {
1785 np->n_flag &= ~NTRUNCDELAYED;
1786 uvm_vnp_setsize(vp, np->n_size);
1787 }
1788 }
1789
1790 /*
1791 * Heuristic to see if the server XDR encodes directory cookies or not.
1792 * it is not supposed to, but a lot of servers may do this. Also, since
1793 * most/all servers will implement V2 as well, it is expected that they
1794 * may return just 32 bits worth of cookie information, so we need to
1795 * find out in which 32 bits this information is available. We do this
1796 * to avoid trouble with emulated binaries that can't handle 64 bit
1797 * directory offsets.
1798 */
1799
1800 void
1801 nfs_cookieheuristic(vp, flagp, p, cred)
1802 struct vnode *vp;
1803 int *flagp;
1804 struct proc *p;
1805 struct ucred *cred;
1806 {
1807 struct uio auio;
1808 struct iovec aiov;
1809 caddr_t buf, cp;
1810 struct dirent *dp;
1811 off_t *cookies = NULL, *cop;
1812 int error, eof, nc, len;
1813
1814 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1815
1816 aiov.iov_base = buf;
1817 aiov.iov_len = NFS_DIRFRAGSIZ;
1818 auio.uio_iov = &aiov;
1819 auio.uio_iovcnt = 1;
1820 auio.uio_rw = UIO_READ;
1821 auio.uio_segflg = UIO_SYSSPACE;
1822 auio.uio_procp = p;
1823 auio.uio_resid = NFS_DIRFRAGSIZ;
1824 auio.uio_offset = 0;
1825
1826 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1827
1828 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1829 if (error || len == 0) {
1830 FREE(buf, M_TEMP);
1831 if (cookies)
1832 free(cookies, M_TEMP);
1833 return;
1834 }
1835
1836 /*
1837 * Find the first valid entry and look at its offset cookie.
1838 */
1839
1840 cp = buf;
1841 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1842 dp = (struct dirent *)cp;
1843 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1844 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1845 *flagp |= NFSMNT_SWAPCOOKIE;
1846 nfs_invaldircache(vp, 0);
1847 nfs_vinvalbuf(vp, 0, cred, p, 1);
1848 }
1849 break;
1850 }
1851 cop++;
1852 cp += dp->d_reclen;
1853 }
1854
1855 FREE(buf, M_TEMP);
1856 free(cookies, M_TEMP);
1857 }
1858 #endif /* NFS */
1859
1860 /*
1861 * Set up nameidata for a lookup() call and do it.
1862 *
1863 * If pubflag is set, this call is done for a lookup operation on the
1864 * public filehandle. In that case we allow crossing mountpoints and
1865 * absolute pathnames. However, the caller is expected to check that
1866 * the lookup result is within the public fs, and deny access if
1867 * it is not.
1868 */
1869 int
1870 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1871 struct nameidata *ndp;
1872 fhandle_t *fhp;
1873 int len;
1874 struct nfssvc_sock *slp;
1875 struct mbuf *nam;
1876 struct mbuf **mdp;
1877 caddr_t *dposp;
1878 struct vnode **retdirp;
1879 struct proc *p;
1880 int kerbflag, pubflag;
1881 {
1882 int i, rem;
1883 struct mbuf *md;
1884 char *fromcp, *tocp, *cp;
1885 struct iovec aiov;
1886 struct uio auio;
1887 struct vnode *dp;
1888 int error, rdonly, linklen;
1889 struct componentname *cnp = &ndp->ni_cnd;
1890
1891 *retdirp = (struct vnode *)0;
1892
1893 if ((len + 1) > MAXPATHLEN)
1894 return (ENAMETOOLONG);
1895 cnp->cn_pnbuf = PNBUF_GET();
1896
1897 /*
1898 * Copy the name from the mbuf list to ndp->ni_pnbuf
1899 * and set the various ndp fields appropriately.
1900 */
1901 fromcp = *dposp;
1902 tocp = cnp->cn_pnbuf;
1903 md = *mdp;
1904 rem = mtod(md, caddr_t) + md->m_len - fromcp;
1905 for (i = 0; i < len; i++) {
1906 while (rem == 0) {
1907 md = md->m_next;
1908 if (md == NULL) {
1909 error = EBADRPC;
1910 goto out;
1911 }
1912 fromcp = mtod(md, caddr_t);
1913 rem = md->m_len;
1914 }
1915 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1916 error = EACCES;
1917 goto out;
1918 }
1919 *tocp++ = *fromcp++;
1920 rem--;
1921 }
1922 *tocp = '\0';
1923 *mdp = md;
1924 *dposp = fromcp;
1925 len = nfsm_rndup(len)-len;
1926 if (len > 0) {
1927 if (rem >= len)
1928 *dposp += len;
1929 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1930 goto out;
1931 }
1932
1933 /*
1934 * Extract and set starting directory.
1935 */
1936 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1937 nam, &rdonly, kerbflag, pubflag);
1938 if (error)
1939 goto out;
1940 if (dp->v_type != VDIR) {
1941 vrele(dp);
1942 error = ENOTDIR;
1943 goto out;
1944 }
1945
1946 if (rdonly)
1947 cnp->cn_flags |= RDONLY;
1948
1949 *retdirp = dp;
1950
1951 if (pubflag) {
1952 /*
1953 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1954 * and the 'native path' indicator.
1955 */
1956 cp = PNBUF_GET();
1957 fromcp = cnp->cn_pnbuf;
1958 tocp = cp;
1959 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1960 switch ((unsigned char)*fromcp) {
1961 case WEBNFS_NATIVE_CHAR:
1962 /*
1963 * 'Native' path for us is the same
1964 * as a path according to the NFS spec,
1965 * just skip the escape char.
1966 */
1967 fromcp++;
1968 break;
1969 /*
1970 * More may be added in the future, range 0x80-0xff
1971 */
1972 default:
1973 error = EIO;
1974 PNBUF_PUT(cp);
1975 goto out;
1976 }
1977 }
1978 /*
1979 * Translate the '%' escapes, URL-style.
1980 */
1981 while (*fromcp != '\0') {
1982 if (*fromcp == WEBNFS_ESC_CHAR) {
1983 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1984 fromcp++;
1985 *tocp++ = HEXSTRTOI(fromcp);
1986 fromcp += 2;
1987 continue;
1988 } else {
1989 error = ENOENT;
1990 PNBUF_PUT(cp);
1991 goto out;
1992 }
1993 } else
1994 *tocp++ = *fromcp++;
1995 }
1996 *tocp = '\0';
1997 PNBUF_PUT(cnp->cn_pnbuf);
1998 cnp->cn_pnbuf = cp;
1999 }
2000
2001 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2002 ndp->ni_segflg = UIO_SYSSPACE;
2003 ndp->ni_rootdir = rootvnode;
2004
2005 if (pubflag) {
2006 ndp->ni_loopcnt = 0;
2007 if (cnp->cn_pnbuf[0] == '/')
2008 dp = rootvnode;
2009 } else {
2010 cnp->cn_flags |= NOCROSSMOUNT;
2011 }
2012
2013 cnp->cn_proc = p;
2014 VREF(dp);
2015
2016 for (;;) {
2017 cnp->cn_nameptr = cnp->cn_pnbuf;
2018 ndp->ni_startdir = dp;
2019 /*
2020 * And call lookup() to do the real work
2021 */
2022 error = lookup(ndp);
2023 if (error) {
2024 PNBUF_PUT(cnp->cn_pnbuf);
2025 return (error);
2026 }
2027 /*
2028 * Check for encountering a symbolic link
2029 */
2030 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2031 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2032 cnp->cn_flags |= HASBUF;
2033 else
2034 PNBUF_PUT(cnp->cn_pnbuf);
2035 return (0);
2036 } else {
2037 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
2038 VOP_UNLOCK(ndp->ni_dvp, 0);
2039 if (!pubflag) {
2040 error = EINVAL;
2041 break;
2042 }
2043
2044 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2045 error = ELOOP;
2046 break;
2047 }
2048 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2049 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2050 cnp->cn_proc);
2051 if (error != 0)
2052 break;
2053 }
2054 if (ndp->ni_pathlen > 1)
2055 cp = PNBUF_GET();
2056 else
2057 cp = cnp->cn_pnbuf;
2058 aiov.iov_base = cp;
2059 aiov.iov_len = MAXPATHLEN;
2060 auio.uio_iov = &aiov;
2061 auio.uio_iovcnt = 1;
2062 auio.uio_offset = 0;
2063 auio.uio_rw = UIO_READ;
2064 auio.uio_segflg = UIO_SYSSPACE;
2065 auio.uio_procp = (struct proc *)0;
2066 auio.uio_resid = MAXPATHLEN;
2067 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2068 if (error) {
2069 badlink:
2070 if (ndp->ni_pathlen > 1)
2071 PNBUF_PUT(cp);
2072 break;
2073 }
2074 linklen = MAXPATHLEN - auio.uio_resid;
2075 if (linklen == 0) {
2076 error = ENOENT;
2077 goto badlink;
2078 }
2079 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2080 error = ENAMETOOLONG;
2081 goto badlink;
2082 }
2083 if (ndp->ni_pathlen > 1) {
2084 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2085 PNBUF_PUT(cnp->cn_pnbuf);
2086 cnp->cn_pnbuf = cp;
2087 } else
2088 cnp->cn_pnbuf[linklen] = '\0';
2089 ndp->ni_pathlen += linklen;
2090 vput(ndp->ni_vp);
2091 dp = ndp->ni_dvp;
2092 /*
2093 * Check if root directory should replace current directory.
2094 */
2095 if (cnp->cn_pnbuf[0] == '/') {
2096 vrele(dp);
2097 dp = ndp->ni_rootdir;
2098 VREF(dp);
2099 }
2100 }
2101 }
2102 vrele(ndp->ni_dvp);
2103 vput(ndp->ni_vp);
2104 ndp->ni_vp = NULL;
2105 out:
2106 PNBUF_PUT(cnp->cn_pnbuf);
2107 return (error);
2108 }
2109
2110 /*
2111 * A fiddled version of m_adj() that ensures null fill to a long
2112 * boundary and only trims off the back end
2113 */
2114 void
2115 nfsm_adj(mp, len, nul)
2116 struct mbuf *mp;
2117 int len;
2118 int nul;
2119 {
2120 struct mbuf *m;
2121 int count, i;
2122 char *cp;
2123
2124 /*
2125 * Trim from tail. Scan the mbuf chain,
2126 * calculating its length and finding the last mbuf.
2127 * If the adjustment only affects this mbuf, then just
2128 * adjust and return. Otherwise, rescan and truncate
2129 * after the remaining size.
2130 */
2131 count = 0;
2132 m = mp;
2133 for (;;) {
2134 count += m->m_len;
2135 if (m->m_next == (struct mbuf *)0)
2136 break;
2137 m = m->m_next;
2138 }
2139 if (m->m_len > len) {
2140 m->m_len -= len;
2141 if (nul > 0) {
2142 cp = mtod(m, caddr_t)+m->m_len-nul;
2143 for (i = 0; i < nul; i++)
2144 *cp++ = '\0';
2145 }
2146 return;
2147 }
2148 count -= len;
2149 if (count < 0)
2150 count = 0;
2151 /*
2152 * Correct length for chain is "count".
2153 * Find the mbuf with last data, adjust its length,
2154 * and toss data from remaining mbufs on chain.
2155 */
2156 for (m = mp; m; m = m->m_next) {
2157 if (m->m_len >= count) {
2158 m->m_len = count;
2159 if (nul > 0) {
2160 cp = mtod(m, caddr_t)+m->m_len-nul;
2161 for (i = 0; i < nul; i++)
2162 *cp++ = '\0';
2163 }
2164 break;
2165 }
2166 count -= m->m_len;
2167 }
2168 for (m = m->m_next;m;m = m->m_next)
2169 m->m_len = 0;
2170 }
2171
2172 /*
2173 * Make these functions instead of macros, so that the kernel text size
2174 * doesn't get too big...
2175 */
2176 void
2177 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2178 struct nfsrv_descript *nfsd;
2179 int before_ret;
2180 struct vattr *before_vap;
2181 int after_ret;
2182 struct vattr *after_vap;
2183 struct mbuf **mbp;
2184 char **bposp;
2185 {
2186 struct mbuf *mb = *mbp, *mb2;
2187 char *bpos = *bposp;
2188 u_int32_t *tl;
2189
2190 if (before_ret) {
2191 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2192 *tl = nfs_false;
2193 } else {
2194 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2195 *tl++ = nfs_true;
2196 txdr_hyper(before_vap->va_size, tl);
2197 tl += 2;
2198 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2199 tl += 2;
2200 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2201 }
2202 *bposp = bpos;
2203 *mbp = mb;
2204 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2205 }
2206
2207 void
2208 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2209 struct nfsrv_descript *nfsd;
2210 int after_ret;
2211 struct vattr *after_vap;
2212 struct mbuf **mbp;
2213 char **bposp;
2214 {
2215 struct mbuf *mb = *mbp, *mb2;
2216 char *bpos = *bposp;
2217 u_int32_t *tl;
2218 struct nfs_fattr *fp;
2219
2220 if (after_ret) {
2221 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2222 *tl = nfs_false;
2223 } else {
2224 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2225 *tl++ = nfs_true;
2226 fp = (struct nfs_fattr *)tl;
2227 nfsm_srvfattr(nfsd, after_vap, fp);
2228 }
2229 *mbp = mb;
2230 *bposp = bpos;
2231 }
2232
2233 void
2234 nfsm_srvfattr(nfsd, vap, fp)
2235 struct nfsrv_descript *nfsd;
2236 struct vattr *vap;
2237 struct nfs_fattr *fp;
2238 {
2239
2240 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2241 fp->fa_uid = txdr_unsigned(vap->va_uid);
2242 fp->fa_gid = txdr_unsigned(vap->va_gid);
2243 if (nfsd->nd_flag & ND_NFSV3) {
2244 fp->fa_type = vtonfsv3_type(vap->va_type);
2245 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2246 txdr_hyper(vap->va_size, &fp->fa3_size);
2247 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2248 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2249 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2250 fp->fa3_fsid.nfsuquad[0] = 0;
2251 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2252 fp->fa3_fileid.nfsuquad[0] = 0;
2253 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2254 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2255 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2256 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2257 } else {
2258 fp->fa_type = vtonfsv2_type(vap->va_type);
2259 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2260 fp->fa2_size = txdr_unsigned(vap->va_size);
2261 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2262 if (vap->va_type == VFIFO)
2263 fp->fa2_rdev = 0xffffffff;
2264 else
2265 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2266 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2267 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2268 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2269 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2270 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2271 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2272 }
2273 }
2274
2275 /*
2276 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2277 * - look up fsid in mount list (if not found ret error)
2278 * - get vp and export rights by calling VFS_FHTOVP()
2279 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2280 * - if not lockflag unlock it with VOP_UNLOCK()
2281 */
2282 int
2283 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2284 fhandle_t *fhp;
2285 int lockflag;
2286 struct vnode **vpp;
2287 struct ucred *cred;
2288 struct nfssvc_sock *slp;
2289 struct mbuf *nam;
2290 int *rdonlyp;
2291 int kerbflag;
2292 {
2293 struct mount *mp;
2294 int i;
2295 struct ucred *credanon;
2296 int error, exflags;
2297 struct sockaddr_in *saddr;
2298
2299 *vpp = (struct vnode *)0;
2300
2301 if (nfs_ispublicfh(fhp)) {
2302 if (!pubflag || !nfs_pub.np_valid)
2303 return (ESTALE);
2304 fhp = &nfs_pub.np_handle;
2305 }
2306
2307 mp = vfs_getvfs(&fhp->fh_fsid);
2308 if (!mp)
2309 return (ESTALE);
2310 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2311 if (error)
2312 return (error);
2313 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2314 if (error)
2315 return (error);
2316
2317 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2318 saddr = mtod(nam, struct sockaddr_in *);
2319 if ((saddr->sin_family == AF_INET) &&
2320 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2321 vput(*vpp);
2322 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2323 }
2324 #ifdef INET6
2325 if ((saddr->sin_family == AF_INET6) &&
2326 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2327 vput(*vpp);
2328 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2329 }
2330 #endif
2331 }
2332 /*
2333 * Check/setup credentials.
2334 */
2335 if (exflags & MNT_EXKERB) {
2336 if (!kerbflag) {
2337 vput(*vpp);
2338 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2339 }
2340 } else if (kerbflag) {
2341 vput(*vpp);
2342 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2343 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2344 cred->cr_uid = credanon->cr_uid;
2345 cred->cr_gid = credanon->cr_gid;
2346 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2347 cred->cr_groups[i] = credanon->cr_groups[i];
2348 cred->cr_ngroups = i;
2349 }
2350 if (exflags & MNT_EXRDONLY)
2351 *rdonlyp = 1;
2352 else
2353 *rdonlyp = 0;
2354 if (!lockflag)
2355 VOP_UNLOCK(*vpp, 0);
2356 return (0);
2357 }
2358
2359 /*
2360 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2361 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2362 * transformed this to all zeroes in both cases, so check for it.
2363 */
2364 int
2365 nfs_ispublicfh(fhp)
2366 fhandle_t *fhp;
2367 {
2368 char *cp = (char *)fhp;
2369 int i;
2370
2371 for (i = 0; i < NFSX_V3FH; i++)
2372 if (*cp++ != 0)
2373 return (FALSE);
2374 return (TRUE);
2375 }
2376
2377 /*
2378 * This function compares two net addresses by family and returns TRUE
2379 * if they are the same host.
2380 * If there is any doubt, return FALSE.
2381 * The AF_INET family is handled as a special case so that address mbufs
2382 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2383 */
2384 int
2385 netaddr_match(family, haddr, nam)
2386 int family;
2387 union nethostaddr *haddr;
2388 struct mbuf *nam;
2389 {
2390 struct sockaddr_in *inetaddr;
2391
2392 switch (family) {
2393 case AF_INET:
2394 inetaddr = mtod(nam, struct sockaddr_in *);
2395 if (inetaddr->sin_family == AF_INET &&
2396 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2397 return (1);
2398 break;
2399 #ifdef INET6
2400 case AF_INET6:
2401 {
2402 struct sockaddr_in6 *sin6_1, *sin6_2;
2403
2404 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2405 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2406 if (sin6_1->sin6_family == AF_INET6 &&
2407 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2408 return 1;
2409 }
2410 #endif
2411 #ifdef ISO
2412 case AF_ISO:
2413 {
2414 struct sockaddr_iso *isoaddr1, *isoaddr2;
2415
2416 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2417 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2418 if (isoaddr1->siso_family == AF_ISO &&
2419 isoaddr1->siso_nlen > 0 &&
2420 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2421 SAME_ISOADDR(isoaddr1, isoaddr2))
2422 return (1);
2423 break;
2424 }
2425 #endif /* ISO */
2426 default:
2427 break;
2428 };
2429 return (0);
2430 }
2431
2432 /*
2433 * The write verifier has changed (probably due to a server reboot), so all
2434 * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
2435 * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
2436 * flag. Once done the new write verifier can be set for the mount point.
2437 */
2438 void
2439 nfs_clearcommit(mp)
2440 struct mount *mp;
2441 {
2442 struct vnode *vp;
2443 struct nfsnode *np;
2444 struct vm_page *pg;
2445 int s;
2446
2447 s = splbio();
2448 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2449 KASSERT(vp->v_mount == mp);
2450 if (vp->v_type == VNON)
2451 continue;
2452 np = VTONFS(vp);
2453 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2454 np->n_pushedhi = 0;
2455 np->n_commitflags &=
2456 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2457 simple_lock(&vp->v_uobj.vmobjlock);
2458 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2459 pg->flags &= ~PG_NEEDCOMMIT;
2460 }
2461 simple_unlock(&vp->v_uobj.vmobjlock);
2462 }
2463 splx(s);
2464 }
2465
2466 void
2467 nfs_merge_commit_ranges(vp)
2468 struct vnode *vp;
2469 {
2470 struct nfsnode *np = VTONFS(vp);
2471
2472 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2473 np->n_pushedlo = np->n_pushlo;
2474 np->n_pushedhi = np->n_pushhi;
2475 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2476 } else {
2477 if (np->n_pushlo < np->n_pushedlo)
2478 np->n_pushedlo = np->n_pushlo;
2479 if (np->n_pushhi > np->n_pushedhi)
2480 np->n_pushedhi = np->n_pushhi;
2481 }
2482
2483 np->n_pushlo = np->n_pushhi = 0;
2484 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2485
2486 #ifdef fvdl_debug
2487 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2488 (unsigned)np->n_pushedhi);
2489 #endif
2490 }
2491
2492 int
2493 nfs_in_committed_range(vp, off, len)
2494 struct vnode *vp;
2495 off_t off, len;
2496 {
2497 struct nfsnode *np = VTONFS(vp);
2498 off_t lo, hi;
2499
2500 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2501 return 0;
2502 lo = off;
2503 hi = lo + len;
2504
2505 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2506 }
2507
2508 int
2509 nfs_in_tobecommitted_range(vp, off, len)
2510 struct vnode *vp;
2511 off_t off, len;
2512 {
2513 struct nfsnode *np = VTONFS(vp);
2514 off_t lo, hi;
2515
2516 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2517 return 0;
2518 lo = off;
2519 hi = lo + len;
2520
2521 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2522 }
2523
2524 void
2525 nfs_add_committed_range(vp, off, len)
2526 struct vnode *vp;
2527 off_t off, len;
2528 {
2529 struct nfsnode *np = VTONFS(vp);
2530 off_t lo, hi;
2531
2532 lo = off;
2533 hi = lo + len;
2534
2535 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2536 np->n_pushedlo = lo;
2537 np->n_pushedhi = hi;
2538 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2539 } else {
2540 if (hi > np->n_pushedhi)
2541 np->n_pushedhi = hi;
2542 if (lo < np->n_pushedlo)
2543 np->n_pushedlo = lo;
2544 }
2545 #ifdef fvdl_debug
2546 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2547 (unsigned)np->n_pushedhi);
2548 #endif
2549 }
2550
2551 void
2552 nfs_del_committed_range(vp, off, len)
2553 struct vnode *vp;
2554 off_t off, len;
2555 {
2556 struct nfsnode *np = VTONFS(vp);
2557 off_t lo, hi;
2558
2559 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2560 return;
2561
2562 lo = off;
2563 hi = lo + len;
2564
2565 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2566 return;
2567 if (lo <= np->n_pushedlo)
2568 np->n_pushedlo = hi;
2569 else if (hi >= np->n_pushedhi)
2570 np->n_pushedhi = lo;
2571 else {
2572 /*
2573 * XXX There's only one range. If the deleted range
2574 * is in the middle, pick the largest of the
2575 * contiguous ranges that it leaves.
2576 */
2577 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2578 np->n_pushedhi = lo;
2579 else
2580 np->n_pushedlo = hi;
2581 }
2582 #ifdef fvdl_debug
2583 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2584 (unsigned)np->n_pushedhi);
2585 #endif
2586 }
2587
2588 void
2589 nfs_add_tobecommitted_range(vp, off, len)
2590 struct vnode *vp;
2591 off_t off, len;
2592 {
2593 struct nfsnode *np = VTONFS(vp);
2594 off_t lo, hi;
2595
2596 lo = off;
2597 hi = lo + len;
2598
2599 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2600 np->n_pushlo = lo;
2601 np->n_pushhi = hi;
2602 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2603 } else {
2604 if (lo < np->n_pushlo)
2605 np->n_pushlo = lo;
2606 if (hi > np->n_pushhi)
2607 np->n_pushhi = hi;
2608 }
2609 #ifdef fvdl_debug
2610 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2611 (unsigned)np->n_pushhi);
2612 #endif
2613 }
2614
2615 void
2616 nfs_del_tobecommitted_range(vp, off, len)
2617 struct vnode *vp;
2618 off_t off, len;
2619 {
2620 struct nfsnode *np = VTONFS(vp);
2621 off_t lo, hi;
2622
2623 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2624 return;
2625
2626 lo = off;
2627 hi = lo + len;
2628
2629 if (lo > np->n_pushhi || hi < np->n_pushlo)
2630 return;
2631
2632 if (lo <= np->n_pushlo)
2633 np->n_pushlo = hi;
2634 else if (hi >= np->n_pushhi)
2635 np->n_pushhi = lo;
2636 else {
2637 /*
2638 * XXX There's only one range. If the deleted range
2639 * is in the middle, pick the largest of the
2640 * contiguous ranges that it leaves.
2641 */
2642 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2643 np->n_pushhi = lo;
2644 else
2645 np->n_pushlo = hi;
2646 }
2647 #ifdef fvdl_debug
2648 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2649 (unsigned)np->n_pushhi);
2650 #endif
2651 }
2652
2653 /*
2654 * Map errnos to NFS error numbers. For Version 3 also filter out error
2655 * numbers not specified for the associated procedure.
2656 */
2657 int
2658 nfsrv_errmap(nd, err)
2659 struct nfsrv_descript *nd;
2660 int err;
2661 {
2662 const short *defaulterrp, *errp;
2663
2664 if (nd->nd_flag & ND_NFSV3) {
2665 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2666 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2667 while (*++errp) {
2668 if (*errp == err)
2669 return (err);
2670 else if (*errp > err)
2671 break;
2672 }
2673 return ((int)*defaulterrp);
2674 } else
2675 return (err & 0xffff);
2676 }
2677 if (err <= ELAST)
2678 return ((int)nfsrv_v2errmap[err - 1]);
2679 return (NFSERR_IO);
2680 }
2681
2682 /*
2683 * Sort the group list in increasing numerical order.
2684 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2685 * that used to be here.)
2686 */
2687 void
2688 nfsrvw_sort(list, num)
2689 gid_t *list;
2690 int num;
2691 {
2692 int i, j;
2693 gid_t v;
2694
2695 /* Insertion sort. */
2696 for (i = 1; i < num; i++) {
2697 v = list[i];
2698 /* find correct slot for value v, moving others up */
2699 for (j = i; --j >= 0 && v < list[j];)
2700 list[j + 1] = list[j];
2701 list[j + 1] = v;
2702 }
2703 }
2704
2705 /*
2706 * copy credentials making sure that the result can be compared with memcmp().
2707 */
2708 void
2709 nfsrv_setcred(incred, outcred)
2710 struct ucred *incred, *outcred;
2711 {
2712 int i;
2713
2714 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2715 outcred->cr_ref = 1;
2716 outcred->cr_uid = incred->cr_uid;
2717 outcred->cr_gid = incred->cr_gid;
2718 outcred->cr_ngroups = incred->cr_ngroups;
2719 for (i = 0; i < incred->cr_ngroups; i++)
2720 outcred->cr_groups[i] = incred->cr_groups[i];
2721 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2722 }
2723