nfs_subs.c revision 1.108 1 /* $NetBSD: nfs_subs.c,v 1.108 2003/02/10 17:31:01 christos Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
39 */
40
41 /*
42 * Copyright 2000 Wasabi Systems, Inc.
43 * All rights reserved.
44 *
45 * Written by Frank van der Linden for Wasabi Systems, Inc.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed for the NetBSD Project by
58 * Wasabi Systems, Inc.
59 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
60 * or promote products derived from this software without specific prior
61 * written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.108 2003/02/10 17:31:01 christos Exp $");
78
79 #include "fs_nfs.h"
80 #include "opt_nfs.h"
81 #include "opt_nfsserver.h"
82 #include "opt_iso.h"
83 #include "opt_inet.h"
84
85 /*
86 * These functions support the macros and help fiddle mbuf chains for
87 * the nfs op functions. They do things like create the rpc header and
88 * copy data between mbuf chains and uio lists.
89 */
90 #include <sys/param.h>
91 #include <sys/proc.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/mount.h>
95 #include <sys/vnode.h>
96 #include <sys/namei.h>
97 #include <sys/mbuf.h>
98 #include <sys/socket.h>
99 #include <sys/stat.h>
100 #include <sys/malloc.h>
101 #include <sys/filedesc.h>
102 #include <sys/time.h>
103 #include <sys/dirent.h>
104
105 #include <uvm/uvm_extern.h>
106
107 #include <nfs/rpcv2.h>
108 #include <nfs/nfsproto.h>
109 #include <nfs/nfsnode.h>
110 #include <nfs/nfs.h>
111 #include <nfs/xdr_subs.h>
112 #include <nfs/nfsm_subs.h>
113 #include <nfs/nfsmount.h>
114 #include <nfs/nqnfs.h>
115 #include <nfs/nfsrtt.h>
116 #include <nfs/nfs_var.h>
117
118 #include <miscfs/specfs/specdev.h>
119
120 #include <netinet/in.h>
121 #ifdef ISO
122 #include <netiso/iso.h>
123 #endif
124
125 /*
126 * Data items converted to xdr at startup, since they are constant
127 * This is kinda hokey, but may save a little time doing byte swaps
128 */
129 u_int32_t nfs_xdrneg1;
130 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
131 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
132 rpc_auth_kerb;
133 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
134
135 /* And other global data */
136 static u_int32_t nfs_xid = 0;
137 const nfstype nfsv2_type[9] =
138 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
139 const nfstype nfsv3_type[9] =
140 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
141 const enum vtype nv2tov_type[8] =
142 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
143 const enum vtype nv3tov_type[8] =
144 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
145 int nfs_ticks;
146 int nfs_commitsize;
147
148 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
149
150 /* NFS client/server stats. */
151 struct nfsstats nfsstats;
152
153 /*
154 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
155 */
156 const int nfsv3_procid[NFS_NPROCS] = {
157 NFSPROC_NULL,
158 NFSPROC_GETATTR,
159 NFSPROC_SETATTR,
160 NFSPROC_NOOP,
161 NFSPROC_LOOKUP,
162 NFSPROC_READLINK,
163 NFSPROC_READ,
164 NFSPROC_NOOP,
165 NFSPROC_WRITE,
166 NFSPROC_CREATE,
167 NFSPROC_REMOVE,
168 NFSPROC_RENAME,
169 NFSPROC_LINK,
170 NFSPROC_SYMLINK,
171 NFSPROC_MKDIR,
172 NFSPROC_RMDIR,
173 NFSPROC_READDIR,
174 NFSPROC_FSSTAT,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP,
177 NFSPROC_NOOP,
178 NFSPROC_NOOP,
179 NFSPROC_NOOP,
180 NFSPROC_NOOP,
181 NFSPROC_NOOP,
182 NFSPROC_NOOP
183 };
184
185 /*
186 * and the reverse mapping from generic to Version 2 procedure numbers
187 */
188 const int nfsv2_procid[NFS_NPROCS] = {
189 NFSV2PROC_NULL,
190 NFSV2PROC_GETATTR,
191 NFSV2PROC_SETATTR,
192 NFSV2PROC_LOOKUP,
193 NFSV2PROC_NOOP,
194 NFSV2PROC_READLINK,
195 NFSV2PROC_READ,
196 NFSV2PROC_WRITE,
197 NFSV2PROC_CREATE,
198 NFSV2PROC_MKDIR,
199 NFSV2PROC_SYMLINK,
200 NFSV2PROC_CREATE,
201 NFSV2PROC_REMOVE,
202 NFSV2PROC_RMDIR,
203 NFSV2PROC_RENAME,
204 NFSV2PROC_LINK,
205 NFSV2PROC_READDIR,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_STATFS,
208 NFSV2PROC_NOOP,
209 NFSV2PROC_NOOP,
210 NFSV2PROC_NOOP,
211 NFSV2PROC_NOOP,
212 NFSV2PROC_NOOP,
213 NFSV2PROC_NOOP,
214 NFSV2PROC_NOOP,
215 };
216
217 /*
218 * Maps errno values to nfs error numbers.
219 * Use NFSERR_IO as the catch all for ones not specifically defined in
220 * RFC 1094.
221 */
222 static const u_char nfsrv_v2errmap[ELAST] = {
223 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
227 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
231 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
232 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
233 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
234 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
235 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
236 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
237 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
238 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
239 NFSERR_IO, NFSERR_IO,
240 };
241
242 /*
243 * Maps errno values to nfs error numbers.
244 * Although it is not obvious whether or not NFS clients really care if
245 * a returned error value is in the specified list for the procedure, the
246 * safest thing to do is filter them appropriately. For Version 2, the
247 * X/Open XNFS document is the only specification that defines error values
248 * for each RPC (The RFC simply lists all possible error values for all RPCs),
249 * so I have decided to not do this for Version 2.
250 * The first entry is the default error return and the rest are the valid
251 * errors for that RPC in increasing numeric order.
252 */
253 static const short nfsv3err_null[] = {
254 0,
255 0,
256 };
257
258 static const short nfsv3err_getattr[] = {
259 NFSERR_IO,
260 NFSERR_IO,
261 NFSERR_STALE,
262 NFSERR_BADHANDLE,
263 NFSERR_SERVERFAULT,
264 0,
265 };
266
267 static const short nfsv3err_setattr[] = {
268 NFSERR_IO,
269 NFSERR_PERM,
270 NFSERR_IO,
271 NFSERR_ACCES,
272 NFSERR_INVAL,
273 NFSERR_NOSPC,
274 NFSERR_ROFS,
275 NFSERR_DQUOT,
276 NFSERR_STALE,
277 NFSERR_BADHANDLE,
278 NFSERR_NOT_SYNC,
279 NFSERR_SERVERFAULT,
280 0,
281 };
282
283 static const short nfsv3err_lookup[] = {
284 NFSERR_IO,
285 NFSERR_NOENT,
286 NFSERR_IO,
287 NFSERR_ACCES,
288 NFSERR_NOTDIR,
289 NFSERR_NAMETOL,
290 NFSERR_STALE,
291 NFSERR_BADHANDLE,
292 NFSERR_SERVERFAULT,
293 0,
294 };
295
296 static const short nfsv3err_access[] = {
297 NFSERR_IO,
298 NFSERR_IO,
299 NFSERR_STALE,
300 NFSERR_BADHANDLE,
301 NFSERR_SERVERFAULT,
302 0,
303 };
304
305 static const short nfsv3err_readlink[] = {
306 NFSERR_IO,
307 NFSERR_IO,
308 NFSERR_ACCES,
309 NFSERR_INVAL,
310 NFSERR_STALE,
311 NFSERR_BADHANDLE,
312 NFSERR_NOTSUPP,
313 NFSERR_SERVERFAULT,
314 0,
315 };
316
317 static const short nfsv3err_read[] = {
318 NFSERR_IO,
319 NFSERR_IO,
320 NFSERR_NXIO,
321 NFSERR_ACCES,
322 NFSERR_INVAL,
323 NFSERR_STALE,
324 NFSERR_BADHANDLE,
325 NFSERR_SERVERFAULT,
326 NFSERR_JUKEBOX,
327 0,
328 };
329
330 static const short nfsv3err_write[] = {
331 NFSERR_IO,
332 NFSERR_IO,
333 NFSERR_ACCES,
334 NFSERR_INVAL,
335 NFSERR_FBIG,
336 NFSERR_NOSPC,
337 NFSERR_ROFS,
338 NFSERR_DQUOT,
339 NFSERR_STALE,
340 NFSERR_BADHANDLE,
341 NFSERR_SERVERFAULT,
342 NFSERR_JUKEBOX,
343 0,
344 };
345
346 static const short nfsv3err_create[] = {
347 NFSERR_IO,
348 NFSERR_IO,
349 NFSERR_ACCES,
350 NFSERR_EXIST,
351 NFSERR_NOTDIR,
352 NFSERR_NOSPC,
353 NFSERR_ROFS,
354 NFSERR_NAMETOL,
355 NFSERR_DQUOT,
356 NFSERR_STALE,
357 NFSERR_BADHANDLE,
358 NFSERR_NOTSUPP,
359 NFSERR_SERVERFAULT,
360 0,
361 };
362
363 static const short nfsv3err_mkdir[] = {
364 NFSERR_IO,
365 NFSERR_IO,
366 NFSERR_ACCES,
367 NFSERR_EXIST,
368 NFSERR_NOTDIR,
369 NFSERR_NOSPC,
370 NFSERR_ROFS,
371 NFSERR_NAMETOL,
372 NFSERR_DQUOT,
373 NFSERR_STALE,
374 NFSERR_BADHANDLE,
375 NFSERR_NOTSUPP,
376 NFSERR_SERVERFAULT,
377 0,
378 };
379
380 static const short nfsv3err_symlink[] = {
381 NFSERR_IO,
382 NFSERR_IO,
383 NFSERR_ACCES,
384 NFSERR_EXIST,
385 NFSERR_NOTDIR,
386 NFSERR_NOSPC,
387 NFSERR_ROFS,
388 NFSERR_NAMETOL,
389 NFSERR_DQUOT,
390 NFSERR_STALE,
391 NFSERR_BADHANDLE,
392 NFSERR_NOTSUPP,
393 NFSERR_SERVERFAULT,
394 0,
395 };
396
397 static const short nfsv3err_mknod[] = {
398 NFSERR_IO,
399 NFSERR_IO,
400 NFSERR_ACCES,
401 NFSERR_EXIST,
402 NFSERR_NOTDIR,
403 NFSERR_NOSPC,
404 NFSERR_ROFS,
405 NFSERR_NAMETOL,
406 NFSERR_DQUOT,
407 NFSERR_STALE,
408 NFSERR_BADHANDLE,
409 NFSERR_NOTSUPP,
410 NFSERR_SERVERFAULT,
411 NFSERR_BADTYPE,
412 0,
413 };
414
415 static const short nfsv3err_remove[] = {
416 NFSERR_IO,
417 NFSERR_NOENT,
418 NFSERR_IO,
419 NFSERR_ACCES,
420 NFSERR_NOTDIR,
421 NFSERR_ROFS,
422 NFSERR_NAMETOL,
423 NFSERR_STALE,
424 NFSERR_BADHANDLE,
425 NFSERR_SERVERFAULT,
426 0,
427 };
428
429 static const short nfsv3err_rmdir[] = {
430 NFSERR_IO,
431 NFSERR_NOENT,
432 NFSERR_IO,
433 NFSERR_ACCES,
434 NFSERR_EXIST,
435 NFSERR_NOTDIR,
436 NFSERR_INVAL,
437 NFSERR_ROFS,
438 NFSERR_NAMETOL,
439 NFSERR_NOTEMPTY,
440 NFSERR_STALE,
441 NFSERR_BADHANDLE,
442 NFSERR_NOTSUPP,
443 NFSERR_SERVERFAULT,
444 0,
445 };
446
447 static const short nfsv3err_rename[] = {
448 NFSERR_IO,
449 NFSERR_NOENT,
450 NFSERR_IO,
451 NFSERR_ACCES,
452 NFSERR_EXIST,
453 NFSERR_XDEV,
454 NFSERR_NOTDIR,
455 NFSERR_ISDIR,
456 NFSERR_INVAL,
457 NFSERR_NOSPC,
458 NFSERR_ROFS,
459 NFSERR_MLINK,
460 NFSERR_NAMETOL,
461 NFSERR_NOTEMPTY,
462 NFSERR_DQUOT,
463 NFSERR_STALE,
464 NFSERR_BADHANDLE,
465 NFSERR_NOTSUPP,
466 NFSERR_SERVERFAULT,
467 0,
468 };
469
470 static const short nfsv3err_link[] = {
471 NFSERR_IO,
472 NFSERR_IO,
473 NFSERR_ACCES,
474 NFSERR_EXIST,
475 NFSERR_XDEV,
476 NFSERR_NOTDIR,
477 NFSERR_INVAL,
478 NFSERR_NOSPC,
479 NFSERR_ROFS,
480 NFSERR_MLINK,
481 NFSERR_NAMETOL,
482 NFSERR_DQUOT,
483 NFSERR_STALE,
484 NFSERR_BADHANDLE,
485 NFSERR_NOTSUPP,
486 NFSERR_SERVERFAULT,
487 0,
488 };
489
490 static const short nfsv3err_readdir[] = {
491 NFSERR_IO,
492 NFSERR_IO,
493 NFSERR_ACCES,
494 NFSERR_NOTDIR,
495 NFSERR_STALE,
496 NFSERR_BADHANDLE,
497 NFSERR_BAD_COOKIE,
498 NFSERR_TOOSMALL,
499 NFSERR_SERVERFAULT,
500 0,
501 };
502
503 static const short nfsv3err_readdirplus[] = {
504 NFSERR_IO,
505 NFSERR_IO,
506 NFSERR_ACCES,
507 NFSERR_NOTDIR,
508 NFSERR_STALE,
509 NFSERR_BADHANDLE,
510 NFSERR_BAD_COOKIE,
511 NFSERR_NOTSUPP,
512 NFSERR_TOOSMALL,
513 NFSERR_SERVERFAULT,
514 0,
515 };
516
517 static const short nfsv3err_fsstat[] = {
518 NFSERR_IO,
519 NFSERR_IO,
520 NFSERR_STALE,
521 NFSERR_BADHANDLE,
522 NFSERR_SERVERFAULT,
523 0,
524 };
525
526 static const short nfsv3err_fsinfo[] = {
527 NFSERR_STALE,
528 NFSERR_STALE,
529 NFSERR_BADHANDLE,
530 NFSERR_SERVERFAULT,
531 0,
532 };
533
534 static const short nfsv3err_pathconf[] = {
535 NFSERR_STALE,
536 NFSERR_STALE,
537 NFSERR_BADHANDLE,
538 NFSERR_SERVERFAULT,
539 0,
540 };
541
542 static const short nfsv3err_commit[] = {
543 NFSERR_IO,
544 NFSERR_IO,
545 NFSERR_STALE,
546 NFSERR_BADHANDLE,
547 NFSERR_SERVERFAULT,
548 0,
549 };
550
551 static const short * const nfsrv_v3errmap[] = {
552 nfsv3err_null,
553 nfsv3err_getattr,
554 nfsv3err_setattr,
555 nfsv3err_lookup,
556 nfsv3err_access,
557 nfsv3err_readlink,
558 nfsv3err_read,
559 nfsv3err_write,
560 nfsv3err_create,
561 nfsv3err_mkdir,
562 nfsv3err_symlink,
563 nfsv3err_mknod,
564 nfsv3err_remove,
565 nfsv3err_rmdir,
566 nfsv3err_rename,
567 nfsv3err_link,
568 nfsv3err_readdir,
569 nfsv3err_readdirplus,
570 nfsv3err_fsstat,
571 nfsv3err_fsinfo,
572 nfsv3err_pathconf,
573 nfsv3err_commit,
574 };
575
576 extern struct nfsrtt nfsrtt;
577 extern time_t nqnfsstarttime;
578 extern int nqsrv_clockskew;
579 extern int nqsrv_writeslack;
580 extern int nqsrv_maxlease;
581 extern const int nqnfs_piggy[NFS_NPROCS];
582 extern struct nfsnodehashhead *nfsnodehashtbl;
583 extern u_long nfsnodehash;
584
585 u_long nfsdirhashmask;
586
587 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
588
589 /*
590 * Create the header for an rpc request packet
591 * The hsiz is the size of the rest of the nfs request header.
592 * (just used to decide if a cluster is a good idea)
593 */
594 struct mbuf *
595 nfsm_reqh(vp, procid, hsiz, bposp)
596 struct vnode *vp;
597 u_long procid;
598 int hsiz;
599 caddr_t *bposp;
600 {
601 struct mbuf *mb;
602 caddr_t bpos;
603 struct nfsmount *nmp;
604 #ifndef NFS_V2_ONLY
605 u_int32_t *tl;
606 struct mbuf *mb2;
607 int nqflag;
608 #endif
609
610 MGET(mb, M_WAIT, MT_DATA);
611 if (hsiz >= MINCLSIZE)
612 MCLGET(mb, M_WAIT);
613 mb->m_len = 0;
614 bpos = mtod(mb, caddr_t);
615
616 /*
617 * For NQNFS, add lease request.
618 */
619 if (vp) {
620 nmp = VFSTONFS(vp->v_mount);
621 #ifndef NFS_V2_ONLY
622 if (nmp->nm_flag & NFSMNT_NQNFS) {
623 nqflag = NQNFS_NEEDLEASE(vp, procid);
624 if (nqflag) {
625 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
626 *tl++ = txdr_unsigned(nqflag);
627 *tl = txdr_unsigned(nmp->nm_leaseterm);
628 } else {
629 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
630 *tl = 0;
631 }
632 }
633 #endif
634 }
635 /* Finally, return values */
636 *bposp = bpos;
637 return (mb);
638 }
639
640 /*
641 * Build the RPC header and fill in the authorization info.
642 * The authorization string argument is only used when the credentials
643 * come from outside of the kernel.
644 * Returns the head of the mbuf list.
645 */
646 struct mbuf *
647 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
648 verf_str, mrest, mrest_len, mbp, xidp)
649 struct ucred *cr;
650 int nmflag;
651 int procid;
652 int auth_type;
653 int auth_len;
654 char *auth_str;
655 int verf_len;
656 char *verf_str;
657 struct mbuf *mrest;
658 int mrest_len;
659 struct mbuf **mbp;
660 u_int32_t *xidp;
661 {
662 struct mbuf *mb;
663 u_int32_t *tl;
664 caddr_t bpos;
665 int i;
666 struct mbuf *mreq, *mb2;
667 int siz, grpsiz, authsiz;
668 struct timeval tv;
669 static u_int32_t base;
670
671 authsiz = nfsm_rndup(auth_len);
672 MGETHDR(mb, M_WAIT, MT_DATA);
673 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
674 MCLGET(mb, M_WAIT);
675 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
676 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
677 } else {
678 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
679 }
680 mb->m_len = 0;
681 mreq = mb;
682 bpos = mtod(mb, caddr_t);
683
684 /*
685 * First the RPC header.
686 */
687 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
688
689 /*
690 * derive initial xid from system time
691 * XXX time is invalid if root not yet mounted
692 */
693 if (!base && (rootvp)) {
694 microtime(&tv);
695 base = tv.tv_sec << 12;
696 nfs_xid = base;
697 }
698 /*
699 * Skip zero xid if it should ever happen.
700 */
701 if (++nfs_xid == 0)
702 nfs_xid++;
703
704 *tl++ = *xidp = txdr_unsigned(nfs_xid);
705 *tl++ = rpc_call;
706 *tl++ = rpc_vers;
707 if (nmflag & NFSMNT_NQNFS) {
708 *tl++ = txdr_unsigned(NQNFS_PROG);
709 *tl++ = txdr_unsigned(NQNFS_VER3);
710 } else {
711 *tl++ = txdr_unsigned(NFS_PROG);
712 if (nmflag & NFSMNT_NFSV3)
713 *tl++ = txdr_unsigned(NFS_VER3);
714 else
715 *tl++ = txdr_unsigned(NFS_VER2);
716 }
717 if (nmflag & NFSMNT_NFSV3)
718 *tl++ = txdr_unsigned(procid);
719 else
720 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
721
722 /*
723 * And then the authorization cred.
724 */
725 *tl++ = txdr_unsigned(auth_type);
726 *tl = txdr_unsigned(authsiz);
727 switch (auth_type) {
728 case RPCAUTH_UNIX:
729 nfsm_build(tl, u_int32_t *, auth_len);
730 *tl++ = 0; /* stamp ?? */
731 *tl++ = 0; /* NULL hostname */
732 *tl++ = txdr_unsigned(cr->cr_uid);
733 *tl++ = txdr_unsigned(cr->cr_gid);
734 grpsiz = (auth_len >> 2) - 5;
735 *tl++ = txdr_unsigned(grpsiz);
736 for (i = 0; i < grpsiz; i++)
737 *tl++ = txdr_unsigned(cr->cr_groups[i]);
738 break;
739 case RPCAUTH_KERB4:
740 siz = auth_len;
741 while (siz > 0) {
742 if (M_TRAILINGSPACE(mb) == 0) {
743 MGET(mb2, M_WAIT, MT_DATA);
744 if (siz >= MINCLSIZE)
745 MCLGET(mb2, M_WAIT);
746 mb->m_next = mb2;
747 mb = mb2;
748 mb->m_len = 0;
749 bpos = mtod(mb, caddr_t);
750 }
751 i = min(siz, M_TRAILINGSPACE(mb));
752 memcpy(bpos, auth_str, i);
753 mb->m_len += i;
754 auth_str += i;
755 bpos += i;
756 siz -= i;
757 }
758 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
759 for (i = 0; i < siz; i++)
760 *bpos++ = '\0';
761 mb->m_len += siz;
762 }
763 break;
764 };
765
766 /*
767 * And the verifier...
768 */
769 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
770 if (verf_str) {
771 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
772 *tl = txdr_unsigned(verf_len);
773 siz = verf_len;
774 while (siz > 0) {
775 if (M_TRAILINGSPACE(mb) == 0) {
776 MGET(mb2, M_WAIT, MT_DATA);
777 if (siz >= MINCLSIZE)
778 MCLGET(mb2, M_WAIT);
779 mb->m_next = mb2;
780 mb = mb2;
781 mb->m_len = 0;
782 bpos = mtod(mb, caddr_t);
783 }
784 i = min(siz, M_TRAILINGSPACE(mb));
785 memcpy(bpos, verf_str, i);
786 mb->m_len += i;
787 verf_str += i;
788 bpos += i;
789 siz -= i;
790 }
791 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
792 for (i = 0; i < siz; i++)
793 *bpos++ = '\0';
794 mb->m_len += siz;
795 }
796 } else {
797 *tl++ = txdr_unsigned(RPCAUTH_NULL);
798 *tl = 0;
799 }
800 mb->m_next = mrest;
801 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
802 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
803 *mbp = mb;
804 return (mreq);
805 }
806
807 /*
808 * copies mbuf chain to the uio scatter/gather list
809 */
810 int
811 nfsm_mbuftouio(mrep, uiop, siz, dpos)
812 struct mbuf **mrep;
813 struct uio *uiop;
814 int siz;
815 caddr_t *dpos;
816 {
817 char *mbufcp, *uiocp;
818 int xfer, left, len;
819 struct mbuf *mp;
820 long uiosiz, rem;
821 int error = 0;
822
823 mp = *mrep;
824 mbufcp = *dpos;
825 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
826 rem = nfsm_rndup(siz)-siz;
827 while (siz > 0) {
828 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
829 return (EFBIG);
830 left = uiop->uio_iov->iov_len;
831 uiocp = uiop->uio_iov->iov_base;
832 if (left > siz)
833 left = siz;
834 uiosiz = left;
835 while (left > 0) {
836 while (len == 0) {
837 mp = mp->m_next;
838 if (mp == NULL)
839 return (EBADRPC);
840 mbufcp = mtod(mp, caddr_t);
841 len = mp->m_len;
842 }
843 xfer = (left > len) ? len : left;
844 #ifdef notdef
845 /* Not Yet.. */
846 if (uiop->uio_iov->iov_op != NULL)
847 (*(uiop->uio_iov->iov_op))
848 (mbufcp, uiocp, xfer);
849 else
850 #endif
851 if (uiop->uio_segflg == UIO_SYSSPACE)
852 memcpy(uiocp, mbufcp, xfer);
853 else
854 copyout(mbufcp, uiocp, xfer);
855 left -= xfer;
856 len -= xfer;
857 mbufcp += xfer;
858 uiocp += xfer;
859 uiop->uio_offset += xfer;
860 uiop->uio_resid -= xfer;
861 }
862 if (uiop->uio_iov->iov_len <= siz) {
863 uiop->uio_iovcnt--;
864 uiop->uio_iov++;
865 } else {
866 uiop->uio_iov->iov_base =
867 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
868 uiop->uio_iov->iov_len -= uiosiz;
869 }
870 siz -= uiosiz;
871 }
872 *dpos = mbufcp;
873 *mrep = mp;
874 if (rem > 0) {
875 if (len < rem)
876 error = nfs_adv(mrep, dpos, rem, len);
877 else
878 *dpos += rem;
879 }
880 return (error);
881 }
882
883 /*
884 * copies a uio scatter/gather list to an mbuf chain.
885 * NOTE: can ony handle iovcnt == 1
886 */
887 int
888 nfsm_uiotombuf(uiop, mq, siz, bpos)
889 struct uio *uiop;
890 struct mbuf **mq;
891 int siz;
892 caddr_t *bpos;
893 {
894 char *uiocp;
895 struct mbuf *mp, *mp2;
896 int xfer, left, mlen;
897 int uiosiz, clflg, rem;
898 char *cp;
899
900 #ifdef DIAGNOSTIC
901 if (uiop->uio_iovcnt != 1)
902 panic("nfsm_uiotombuf: iovcnt != 1");
903 #endif
904
905 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
906 clflg = 1;
907 else
908 clflg = 0;
909 rem = nfsm_rndup(siz)-siz;
910 mp = mp2 = *mq;
911 while (siz > 0) {
912 left = uiop->uio_iov->iov_len;
913 uiocp = uiop->uio_iov->iov_base;
914 if (left > siz)
915 left = siz;
916 uiosiz = left;
917 while (left > 0) {
918 mlen = M_TRAILINGSPACE(mp);
919 if (mlen == 0) {
920 MGET(mp, M_WAIT, MT_DATA);
921 if (clflg)
922 MCLGET(mp, M_WAIT);
923 mp->m_len = 0;
924 mp2->m_next = mp;
925 mp2 = mp;
926 mlen = M_TRAILINGSPACE(mp);
927 }
928 xfer = (left > mlen) ? mlen : left;
929 #ifdef notdef
930 /* Not Yet.. */
931 if (uiop->uio_iov->iov_op != NULL)
932 (*(uiop->uio_iov->iov_op))
933 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
934 else
935 #endif
936 if (uiop->uio_segflg == UIO_SYSSPACE)
937 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
938 else
939 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
940 mp->m_len += xfer;
941 left -= xfer;
942 uiocp += xfer;
943 uiop->uio_offset += xfer;
944 uiop->uio_resid -= xfer;
945 }
946 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
947 uiosiz;
948 uiop->uio_iov->iov_len -= uiosiz;
949 siz -= uiosiz;
950 }
951 if (rem > 0) {
952 if (rem > M_TRAILINGSPACE(mp)) {
953 MGET(mp, M_WAIT, MT_DATA);
954 mp->m_len = 0;
955 mp2->m_next = mp;
956 }
957 cp = mtod(mp, caddr_t)+mp->m_len;
958 for (left = 0; left < rem; left++)
959 *cp++ = '\0';
960 mp->m_len += rem;
961 *bpos = cp;
962 } else
963 *bpos = mtod(mp, caddr_t)+mp->m_len;
964 *mq = mp;
965 return (0);
966 }
967
968 /*
969 * Get at least "siz" bytes of correctly aligned data.
970 * When called the mbuf pointers are not necessarily correct,
971 * dsosp points to what ought to be in m_data and left contains
972 * what ought to be in m_len.
973 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
974 * cases. (The macros use the vars. dpos and dpos2)
975 */
976 int
977 nfsm_disct(mdp, dposp, siz, left, cp2)
978 struct mbuf **mdp;
979 caddr_t *dposp;
980 int siz;
981 int left;
982 caddr_t *cp2;
983 {
984 struct mbuf *m1, *m2;
985 struct mbuf *havebuf = NULL;
986 caddr_t src = *dposp;
987 caddr_t dst;
988 int len;
989
990 #ifdef DEBUG
991 if (left < 0)
992 panic("nfsm_disct: left < 0");
993 #endif
994 m1 = *mdp;
995 /*
996 * Skip through the mbuf chain looking for an mbuf with
997 * some data. If the first mbuf found has enough data
998 * and it is correctly aligned return it.
999 */
1000 while (left == 0) {
1001 havebuf = m1;
1002 *mdp = m1 = m1->m_next;
1003 if (m1 == NULL)
1004 return (EBADRPC);
1005 src = mtod(m1, caddr_t);
1006 left = m1->m_len;
1007 /*
1008 * If we start a new mbuf and it is big enough
1009 * and correctly aligned just return it, don't
1010 * do any pull up.
1011 */
1012 if (left >= siz && nfsm_aligned(src)) {
1013 *cp2 = src;
1014 *dposp = src + siz;
1015 return (0);
1016 }
1017 }
1018 if (m1->m_flags & M_EXT) {
1019 if (havebuf) {
1020 /* If the first mbuf with data has external data
1021 * and there is a previous empty mbuf use it
1022 * to move the data into.
1023 */
1024 m2 = m1;
1025 *mdp = m1 = havebuf;
1026 if (m1->m_flags & M_EXT) {
1027 MEXTREMOVE(m1);
1028 }
1029 } else {
1030 /*
1031 * If the first mbuf has a external data
1032 * and there is no previous empty mbuf
1033 * allocate a new mbuf and move the external
1034 * data to the new mbuf. Also make the first
1035 * mbuf look empty.
1036 */
1037 m2 = m_get(M_WAIT, MT_DATA);
1038 m2->m_ext = m1->m_ext;
1039 m2->m_data = src;
1040 m2->m_len = left;
1041 MCLADDREFERENCE(m1, m2);
1042 MEXTREMOVE(m1);
1043 m2->m_next = m1->m_next;
1044 m1->m_next = m2;
1045 }
1046 m1->m_len = 0;
1047 dst = m1->m_dat;
1048 } else {
1049 /*
1050 * If the first mbuf has no external data
1051 * move the data to the front of the mbuf.
1052 */
1053 if ((dst = m1->m_dat) != src)
1054 memmove(dst, src, left);
1055 dst += left;
1056 m1->m_len = left;
1057 m2 = m1->m_next;
1058 }
1059 m1->m_flags &= ~M_PKTHDR;
1060 *cp2 = m1->m_data = m1->m_dat; /* data is at beginning of buffer */
1061 *dposp = mtod(m1, caddr_t) + siz;
1062 /*
1063 * Loop through mbufs pulling data up into first mbuf until
1064 * the first mbuf is full or there is no more data to
1065 * pullup.
1066 */
1067 while ((len = (MLEN - m1->m_len)) != 0 && m2) {
1068 if ((len = min(len, m2->m_len)) != 0)
1069 memcpy(dst, m2->m_data, len);
1070 m1->m_len += len;
1071 dst += len;
1072 m2->m_data += len;
1073 m2->m_len -= len;
1074 m2 = m2->m_next;
1075 }
1076 if (m1->m_len < siz)
1077 return (EBADRPC);
1078 return (0);
1079 }
1080
1081 /*
1082 * Advance the position in the mbuf chain.
1083 */
1084 int
1085 nfs_adv(mdp, dposp, offs, left)
1086 struct mbuf **mdp;
1087 caddr_t *dposp;
1088 int offs;
1089 int left;
1090 {
1091 struct mbuf *m;
1092 int s;
1093
1094 m = *mdp;
1095 s = left;
1096 while (s < offs) {
1097 offs -= s;
1098 m = m->m_next;
1099 if (m == NULL)
1100 return (EBADRPC);
1101 s = m->m_len;
1102 }
1103 *mdp = m;
1104 *dposp = mtod(m, caddr_t)+offs;
1105 return (0);
1106 }
1107
1108 /*
1109 * Copy a string into mbufs for the hard cases...
1110 */
1111 int
1112 nfsm_strtmbuf(mb, bpos, cp, siz)
1113 struct mbuf **mb;
1114 char **bpos;
1115 const char *cp;
1116 long siz;
1117 {
1118 struct mbuf *m1 = NULL, *m2;
1119 long left, xfer, len, tlen;
1120 u_int32_t *tl;
1121 int putsize;
1122
1123 putsize = 1;
1124 m2 = *mb;
1125 left = M_TRAILINGSPACE(m2);
1126 if (left > 0) {
1127 tl = ((u_int32_t *)(*bpos));
1128 *tl++ = txdr_unsigned(siz);
1129 putsize = 0;
1130 left -= NFSX_UNSIGNED;
1131 m2->m_len += NFSX_UNSIGNED;
1132 if (left > 0) {
1133 memcpy((caddr_t) tl, cp, left);
1134 siz -= left;
1135 cp += left;
1136 m2->m_len += left;
1137 left = 0;
1138 }
1139 }
1140 /* Loop around adding mbufs */
1141 while (siz > 0) {
1142 MGET(m1, M_WAIT, MT_DATA);
1143 if (siz > MLEN)
1144 MCLGET(m1, M_WAIT);
1145 m1->m_len = NFSMSIZ(m1);
1146 m2->m_next = m1;
1147 m2 = m1;
1148 tl = mtod(m1, u_int32_t *);
1149 tlen = 0;
1150 if (putsize) {
1151 *tl++ = txdr_unsigned(siz);
1152 m1->m_len -= NFSX_UNSIGNED;
1153 tlen = NFSX_UNSIGNED;
1154 putsize = 0;
1155 }
1156 if (siz < m1->m_len) {
1157 len = nfsm_rndup(siz);
1158 xfer = siz;
1159 if (xfer < len)
1160 *(tl+(xfer>>2)) = 0;
1161 } else {
1162 xfer = len = m1->m_len;
1163 }
1164 memcpy((caddr_t) tl, cp, xfer);
1165 m1->m_len = len+tlen;
1166 siz -= xfer;
1167 cp += xfer;
1168 }
1169 *mb = m1;
1170 *bpos = mtod(m1, caddr_t)+m1->m_len;
1171 return (0);
1172 }
1173
1174 /*
1175 * Directory caching routines. They work as follows:
1176 * - a cache is maintained per VDIR nfsnode.
1177 * - for each offset cookie that is exported to userspace, and can
1178 * thus be thrown back at us as an offset to VOP_READDIR, store
1179 * information in the cache.
1180 * - cached are:
1181 * - cookie itself
1182 * - blocknumber (essentially just a search key in the buffer cache)
1183 * - entry number in block.
1184 * - offset cookie of block in which this entry is stored
1185 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1186 * - entries are looked up in a hash table
1187 * - also maintained is an LRU list of entries, used to determine
1188 * which ones to delete if the cache grows too large.
1189 * - if 32 <-> 64 translation mode is requested for a filesystem,
1190 * the cache also functions as a translation table
1191 * - in the translation case, invalidating the cache does not mean
1192 * flushing it, but just marking entries as invalid, except for
1193 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1194 * still be able to use the cache as a translation table.
1195 * - 32 bit cookies are uniquely created by combining the hash table
1196 * entry value, and one generation count per hash table entry,
1197 * incremented each time an entry is appended to the chain.
1198 * - the cache is invalidated each time a direcory is modified
1199 * - sanity checks are also done; if an entry in a block turns
1200 * out not to have a matching cookie, the cache is invalidated
1201 * and a new block starting from the wanted offset is fetched from
1202 * the server.
1203 * - directory entries as read from the server are extended to contain
1204 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1205 * the cache and exporting them to userspace through the cookie
1206 * argument to VOP_READDIR.
1207 */
1208
1209 u_long
1210 nfs_dirhash(off)
1211 off_t off;
1212 {
1213 int i;
1214 char *cp = (char *)&off;
1215 u_long sum = 0L;
1216
1217 for (i = 0 ; i < sizeof (off); i++)
1218 sum += *cp++;
1219
1220 return sum;
1221 }
1222
1223 void
1224 nfs_initdircache(vp)
1225 struct vnode *vp;
1226 {
1227 struct nfsnode *np = VTONFS(vp);
1228 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1229
1230 np->n_dircachesize = 0;
1231 np->n_dblkno = 1;
1232 np->n_dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1233 M_WAITOK, &nfsdirhashmask);
1234 TAILQ_INIT(&np->n_dirchain);
1235 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1236 MALLOC(np->n_dirgens, unsigned *,
1237 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1238 M_WAITOK);
1239 memset((caddr_t)np->n_dirgens, 0,
1240 NFS_DIRHASHSIZ * sizeof (unsigned));
1241 }
1242 }
1243
1244 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
1245
1246 struct nfsdircache *
1247 nfs_searchdircache(vp, off, do32, hashent)
1248 struct vnode *vp;
1249 off_t off;
1250 int do32;
1251 int *hashent;
1252 {
1253 struct nfsdirhashhead *ndhp;
1254 struct nfsdircache *ndp = NULL;
1255 struct nfsnode *np = VTONFS(vp);
1256 unsigned ent;
1257
1258 /*
1259 * Zero is always a valid cookie.
1260 */
1261 if (off == 0)
1262 return &dzero;
1263
1264 /*
1265 * We use a 32bit cookie as search key, directly reconstruct
1266 * the hashentry. Else use the hashfunction.
1267 */
1268 if (do32) {
1269 ent = (u_int32_t)off >> 24;
1270 if (ent >= NFS_DIRHASHSIZ)
1271 return NULL;
1272 ndhp = &np->n_dircache[ent];
1273 } else {
1274 ndhp = NFSDIRHASH(np, off);
1275 }
1276
1277 if (hashent)
1278 *hashent = (int)(ndhp - np->n_dircache);
1279 if (do32) {
1280 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next) {
1281 if (ndp->dc_cookie32 == (u_int32_t)off) {
1282 /*
1283 * An invalidated entry will become the
1284 * start of a new block fetched from
1285 * the server.
1286 */
1287 if (ndp->dc_blkno == -1) {
1288 ndp->dc_blkcookie = ndp->dc_cookie;
1289 ndp->dc_blkno = np->n_dblkno++;
1290 ndp->dc_entry = 0;
1291 }
1292 break;
1293 }
1294 }
1295 } else {
1296 for (ndp = ndhp->lh_first; ndp; ndp = ndp->dc_hash.le_next)
1297 if (ndp->dc_cookie == off)
1298 break;
1299 }
1300 return ndp;
1301 }
1302
1303
1304 struct nfsdircache *
1305 nfs_enterdircache(vp, off, blkoff, en, blkno)
1306 struct vnode *vp;
1307 off_t off, blkoff;
1308 int en;
1309 daddr_t blkno;
1310 {
1311 struct nfsnode *np = VTONFS(vp);
1312 struct nfsdirhashhead *ndhp;
1313 struct nfsdircache *ndp = NULL, *first;
1314 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1315 int hashent, gen, overwrite;
1316
1317 if (!np->n_dircache)
1318 /*
1319 * XXX would like to do this in nfs_nget but vtype
1320 * isn't known at that time.
1321 */
1322 nfs_initdircache(vp);
1323
1324 /*
1325 * XXX refuse entries for offset 0. amd(8) erroneously sets
1326 * cookie 0 for the '.' entry, making this necessary. This
1327 * isn't so bad, as 0 is a special case anyway.
1328 */
1329 if (off == 0)
1330 return &dzero;
1331
1332 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1333
1334 if (ndp && ndp->dc_blkno != -1) {
1335 /*
1336 * Overwriting an old entry. Check if it's the same.
1337 * If so, just return. If not, remove the old entry.
1338 */
1339 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1340 return ndp;
1341 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1342 LIST_REMOVE(ndp, dc_hash);
1343 FREE(ndp, M_NFSDIROFF);
1344 ndp = 0;
1345 }
1346
1347 ndhp = &np->n_dircache[hashent];
1348
1349 if (!ndp) {
1350 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
1351 M_WAITOK);
1352 overwrite = 0;
1353 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1354 /*
1355 * We're allocating a new entry, so bump the
1356 * generation number.
1357 */
1358 gen = ++np->n_dirgens[hashent];
1359 if (gen == 0) {
1360 np->n_dirgens[hashent]++;
1361 gen++;
1362 }
1363 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1364 }
1365 } else
1366 overwrite = 1;
1367
1368 /*
1369 * If the entry number is 0, we are at the start of a new block, so
1370 * allocate a new blocknumber.
1371 */
1372 if (en == 0)
1373 ndp->dc_blkno = np->n_dblkno++;
1374 else
1375 ndp->dc_blkno = blkno;
1376
1377 ndp->dc_cookie = off;
1378 ndp->dc_blkcookie = blkoff;
1379 ndp->dc_entry = en;
1380
1381 if (overwrite)
1382 return ndp;
1383
1384 /*
1385 * If the maximum directory cookie cache size has been reached
1386 * for this node, take one off the front. The idea is that
1387 * directories are typically read front-to-back once, so that
1388 * the oldest entries can be thrown away without much performance
1389 * loss.
1390 */
1391 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1392 first = np->n_dirchain.tqh_first;
1393 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
1394 LIST_REMOVE(first, dc_hash);
1395 FREE(first, M_NFSDIROFF);
1396 } else
1397 np->n_dircachesize++;
1398
1399 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1400 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1401 return ndp;
1402 }
1403
1404 void
1405 nfs_invaldircache(vp, forcefree)
1406 struct vnode *vp;
1407 int forcefree;
1408 {
1409 struct nfsnode *np = VTONFS(vp);
1410 struct nfsdircache *ndp = NULL;
1411 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1412
1413 #ifdef DIAGNOSTIC
1414 if (vp->v_type != VDIR)
1415 panic("nfs: invaldircache: not dir");
1416 #endif
1417
1418 if (!np->n_dircache)
1419 return;
1420
1421 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1422 while ((ndp = np->n_dirchain.tqh_first)) {
1423 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1424 LIST_REMOVE(ndp, dc_hash);
1425 FREE(ndp, M_NFSDIROFF);
1426 }
1427 np->n_dircachesize = 0;
1428 if (forcefree && np->n_dirgens) {
1429 FREE(np->n_dirgens, M_NFSDIROFF);
1430 }
1431 } else {
1432 for (ndp = np->n_dirchain.tqh_first; ndp;
1433 ndp = ndp->dc_chain.tqe_next)
1434 ndp->dc_blkno = -1;
1435 }
1436
1437 np->n_dblkno = 1;
1438 }
1439
1440 /*
1441 * Called once before VFS init to initialize shared and
1442 * server-specific data structures.
1443 */
1444 void
1445 nfs_init()
1446 {
1447 nfsrtt.pos = 0;
1448 rpc_vers = txdr_unsigned(RPC_VER2);
1449 rpc_call = txdr_unsigned(RPC_CALL);
1450 rpc_reply = txdr_unsigned(RPC_REPLY);
1451 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1452 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1453 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1454 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1455 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1456 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1457 nfs_prog = txdr_unsigned(NFS_PROG);
1458 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1459 nfs_true = txdr_unsigned(TRUE);
1460 nfs_false = txdr_unsigned(FALSE);
1461 nfs_xdrneg1 = txdr_unsigned(-1);
1462 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1463 if (nfs_ticks < 1)
1464 nfs_ticks = 1;
1465 #ifdef NFSSERVER
1466 nfsrv_init(0); /* Init server data structures */
1467 nfsrv_initcache(); /* Init the server request cache */
1468 #endif /* NFSSERVER */
1469
1470 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1471 /*
1472 * Initialize the nqnfs data structures.
1473 */
1474 if (nqnfsstarttime == 0) {
1475 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1476 + nqsrv_clockskew + nqsrv_writeslack;
1477 NQLOADNOVRAM(nqnfsstarttime);
1478 CIRCLEQ_INIT(&nqtimerhead);
1479 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1480 M_WAITOK, &nqfhhash);
1481 }
1482 #endif
1483
1484 exithook_establish(nfs_exit, NULL);
1485
1486 /*
1487 * Initialize reply list and start timer
1488 */
1489 TAILQ_INIT(&nfs_reqq);
1490 nfs_timer(NULL);
1491
1492 #ifdef NFS
1493 /* Initialize the kqueue structures */
1494 nfs_kqinit();
1495 #endif
1496 }
1497
1498 #ifdef NFS
1499 /*
1500 * Called once at VFS init to initialize client-specific data structures.
1501 */
1502 void
1503 nfs_vfs_init()
1504 {
1505 nfs_nhinit(); /* Init the nfsnode table */
1506 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1507 }
1508
1509 void
1510 nfs_vfs_reinit()
1511 {
1512 nfs_nhreinit();
1513 }
1514
1515 void
1516 nfs_vfs_done()
1517 {
1518 nfs_nhdone();
1519 }
1520
1521 /*
1522 * Attribute cache routines.
1523 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1524 * that are on the mbuf list
1525 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1526 * error otherwise
1527 */
1528
1529 /*
1530 * Load the attribute cache (that lives in the nfsnode entry) with
1531 * the values on the mbuf list and
1532 * Iff vap not NULL
1533 * copy the attributes to *vaper
1534 */
1535 int
1536 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1537 struct vnode **vpp;
1538 struct mbuf **mdp;
1539 caddr_t *dposp;
1540 struct vattr *vaper;
1541 int flags;
1542 {
1543 int32_t t1;
1544 caddr_t cp2;
1545 int error = 0;
1546 struct mbuf *md;
1547 int v3 = NFS_ISV3(*vpp);
1548
1549 md = *mdp;
1550 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1551 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1552 if (error)
1553 return (error);
1554 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1555 }
1556
1557 int
1558 nfs_loadattrcache(vpp, fp, vaper, flags)
1559 struct vnode **vpp;
1560 struct nfs_fattr *fp;
1561 struct vattr *vaper;
1562 int flags;
1563 {
1564 struct vnode *vp = *vpp;
1565 struct vattr *vap;
1566 int v3 = NFS_ISV3(vp);
1567 enum vtype vtyp;
1568 u_short vmode;
1569 struct timespec mtime;
1570 struct vnode *nvp;
1571 int32_t rdev;
1572 struct nfsnode *np;
1573 extern int (**spec_nfsv2nodeop_p) __P((void *));
1574 uid_t uid;
1575 gid_t gid;
1576
1577 if (v3) {
1578 vtyp = nfsv3tov_type(fp->fa_type);
1579 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1580 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1581 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1582 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1583 } else {
1584 vtyp = nfsv2tov_type(fp->fa_type);
1585 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1586 if (vtyp == VNON || vtyp == VREG)
1587 vtyp = IFTOVT(vmode);
1588 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1589 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1590
1591 /*
1592 * Really ugly NFSv2 kludge.
1593 */
1594 if (vtyp == VCHR && rdev == 0xffffffff)
1595 vtyp = VFIFO;
1596 }
1597
1598 vmode &= ALLPERMS;
1599
1600 /*
1601 * If v_type == VNON it is a new node, so fill in the v_type,
1602 * n_mtime fields. Check to see if it represents a special
1603 * device, and if so, check for a possible alias. Once the
1604 * correct vnode has been obtained, fill in the rest of the
1605 * information.
1606 */
1607 np = VTONFS(vp);
1608 if (vp->v_type == VNON) {
1609 vp->v_type = vtyp;
1610 if (vp->v_type == VFIFO) {
1611 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1612 vp->v_op = fifo_nfsv2nodeop_p;
1613 }
1614 if (vp->v_type == VCHR || vp->v_type == VBLK) {
1615 vp->v_op = spec_nfsv2nodeop_p;
1616 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1617 if (nvp) {
1618 /*
1619 * Discard unneeded vnode, but save its nfsnode.
1620 * Since the nfsnode does not have a lock, its
1621 * vnode lock has to be carried over.
1622 */
1623 /*
1624 * XXX is the old node sure to be locked here?
1625 */
1626 KASSERT(lockstatus(&vp->v_lock) ==
1627 LK_EXCLUSIVE);
1628 nvp->v_data = vp->v_data;
1629 vp->v_data = NULL;
1630 VOP_UNLOCK(vp, 0);
1631 vp->v_op = spec_vnodeop_p;
1632 vrele(vp);
1633 vgone(vp);
1634 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1635 &nvp->v_interlock);
1636 /*
1637 * Reinitialize aliased node.
1638 */
1639 np->n_vnode = nvp;
1640 *vpp = vp = nvp;
1641 }
1642 }
1643 np->n_mtime = mtime.tv_sec;
1644 }
1645 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1646 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1647 vap = np->n_vattr;
1648
1649 /*
1650 * Invalidate access cache if uid, gid or mode changed.
1651 */
1652 if (np->n_accstamp != -1 &&
1653 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode))
1654 np->n_accstamp = -1;
1655
1656 vap->va_type = vtyp;
1657 vap->va_mode = vmode;
1658 vap->va_rdev = (dev_t)rdev;
1659 vap->va_mtime = mtime;
1660 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1661 switch (vtyp) {
1662 case VDIR:
1663 vap->va_blocksize = NFS_DIRFRAGSIZ;
1664 break;
1665 case VBLK:
1666 vap->va_blocksize = BLKDEV_IOSIZE;
1667 break;
1668 case VCHR:
1669 vap->va_blocksize = MAXBSIZE;
1670 break;
1671 default:
1672 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1673 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1674 break;
1675 }
1676 if (v3) {
1677 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1678 vap->va_uid = uid;
1679 vap->va_gid = gid;
1680 vap->va_size = fxdr_hyper(&fp->fa3_size);
1681 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1682 vap->va_fileid = fxdr_unsigned(int32_t,
1683 fp->fa3_fileid.nfsuquad[1]);
1684 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1685 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1686 vap->va_flags = 0;
1687 vap->va_filerev = 0;
1688 } else {
1689 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1690 vap->va_uid = uid;
1691 vap->va_gid = gid;
1692 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1693 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1694 * NFS_FABLKSIZE;
1695 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1696 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1697 vap->va_flags = 0;
1698 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1699 fp->fa2_ctime.nfsv2_sec);
1700 vap->va_ctime.tv_nsec = 0;
1701 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1702 vap->va_filerev = 0;
1703 }
1704 if (vap->va_size != np->n_size) {
1705 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1706 vap->va_size = np->n_size;
1707 } else {
1708 np->n_size = vap->va_size;
1709 if (vap->va_type == VREG) {
1710 if ((flags & NAC_NOTRUNC)
1711 && np->n_size < vp->v_size) {
1712 /*
1713 * we can't free pages now because
1714 * the pages can be owned by ourselves.
1715 */
1716 np->n_flag |= NTRUNCDELAYED;
1717 }
1718 else {
1719 uvm_vnp_setsize(vp, np->n_size);
1720 }
1721 }
1722 }
1723 }
1724 np->n_attrstamp = time.tv_sec;
1725 if (vaper != NULL) {
1726 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1727 if (np->n_flag & NCHG) {
1728 if (np->n_flag & NACC)
1729 vaper->va_atime = np->n_atim;
1730 if (np->n_flag & NUPD)
1731 vaper->va_mtime = np->n_mtim;
1732 }
1733 }
1734 return (0);
1735 }
1736
1737 /*
1738 * Check the time stamp
1739 * If the cache is valid, copy contents to *vap and return 0
1740 * otherwise return an error
1741 */
1742 int
1743 nfs_getattrcache(vp, vaper)
1744 struct vnode *vp;
1745 struct vattr *vaper;
1746 {
1747 struct nfsnode *np = VTONFS(vp);
1748 struct vattr *vap;
1749
1750 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1751 nfsstats.attrcache_misses++;
1752 return (ENOENT);
1753 }
1754 nfsstats.attrcache_hits++;
1755 vap = np->n_vattr;
1756 if (vap->va_size != np->n_size) {
1757 if (vap->va_type == VREG) {
1758 if (np->n_flag & NMODIFIED) {
1759 if (vap->va_size < np->n_size)
1760 vap->va_size = np->n_size;
1761 else
1762 np->n_size = vap->va_size;
1763 } else
1764 np->n_size = vap->va_size;
1765 uvm_vnp_setsize(vp, np->n_size);
1766 } else
1767 np->n_size = vap->va_size;
1768 }
1769 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1770 if (np->n_flag & NCHG) {
1771 if (np->n_flag & NACC)
1772 vaper->va_atime = np->n_atim;
1773 if (np->n_flag & NUPD)
1774 vaper->va_mtime = np->n_mtim;
1775 }
1776 return (0);
1777 }
1778
1779 void
1780 nfs_delayedtruncate(vp)
1781 struct vnode *vp;
1782 {
1783 struct nfsnode *np = VTONFS(vp);
1784
1785 if (np->n_flag & NTRUNCDELAYED) {
1786 np->n_flag &= ~NTRUNCDELAYED;
1787 uvm_vnp_setsize(vp, np->n_size);
1788 }
1789 }
1790
1791 /*
1792 * Heuristic to see if the server XDR encodes directory cookies or not.
1793 * it is not supposed to, but a lot of servers may do this. Also, since
1794 * most/all servers will implement V2 as well, it is expected that they
1795 * may return just 32 bits worth of cookie information, so we need to
1796 * find out in which 32 bits this information is available. We do this
1797 * to avoid trouble with emulated binaries that can't handle 64 bit
1798 * directory offsets.
1799 */
1800
1801 void
1802 nfs_cookieheuristic(vp, flagp, p, cred)
1803 struct vnode *vp;
1804 int *flagp;
1805 struct proc *p;
1806 struct ucred *cred;
1807 {
1808 struct uio auio;
1809 struct iovec aiov;
1810 caddr_t buf, cp;
1811 struct dirent *dp;
1812 off_t *cookies = NULL, *cop;
1813 int error, eof, nc, len;
1814
1815 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1816
1817 aiov.iov_base = buf;
1818 aiov.iov_len = NFS_DIRFRAGSIZ;
1819 auio.uio_iov = &aiov;
1820 auio.uio_iovcnt = 1;
1821 auio.uio_rw = UIO_READ;
1822 auio.uio_segflg = UIO_SYSSPACE;
1823 auio.uio_procp = p;
1824 auio.uio_resid = NFS_DIRFRAGSIZ;
1825 auio.uio_offset = 0;
1826
1827 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1828
1829 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1830 if (error || len == 0) {
1831 FREE(buf, M_TEMP);
1832 if (cookies)
1833 free(cookies, M_TEMP);
1834 return;
1835 }
1836
1837 /*
1838 * Find the first valid entry and look at its offset cookie.
1839 */
1840
1841 cp = buf;
1842 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1843 dp = (struct dirent *)cp;
1844 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1845 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1846 *flagp |= NFSMNT_SWAPCOOKIE;
1847 nfs_invaldircache(vp, 0);
1848 nfs_vinvalbuf(vp, 0, cred, p, 1);
1849 }
1850 break;
1851 }
1852 cop++;
1853 cp += dp->d_reclen;
1854 }
1855
1856 FREE(buf, M_TEMP);
1857 free(cookies, M_TEMP);
1858 }
1859 #endif /* NFS */
1860
1861 /*
1862 * Set up nameidata for a lookup() call and do it.
1863 *
1864 * If pubflag is set, this call is done for a lookup operation on the
1865 * public filehandle. In that case we allow crossing mountpoints and
1866 * absolute pathnames. However, the caller is expected to check that
1867 * the lookup result is within the public fs, and deny access if
1868 * it is not.
1869 */
1870 int
1871 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1872 struct nameidata *ndp;
1873 fhandle_t *fhp;
1874 int len;
1875 struct nfssvc_sock *slp;
1876 struct mbuf *nam;
1877 struct mbuf **mdp;
1878 caddr_t *dposp;
1879 struct vnode **retdirp;
1880 struct proc *p;
1881 int kerbflag, pubflag;
1882 {
1883 int i, rem;
1884 struct mbuf *md;
1885 char *fromcp, *tocp, *cp;
1886 struct iovec aiov;
1887 struct uio auio;
1888 struct vnode *dp;
1889 int error, rdonly, linklen;
1890 struct componentname *cnp = &ndp->ni_cnd;
1891
1892 *retdirp = (struct vnode *)0;
1893
1894 if ((len + 1) > MAXPATHLEN)
1895 return (ENAMETOOLONG);
1896 cnp->cn_pnbuf = PNBUF_GET();
1897
1898 /*
1899 * Copy the name from the mbuf list to ndp->ni_pnbuf
1900 * and set the various ndp fields appropriately.
1901 */
1902 fromcp = *dposp;
1903 tocp = cnp->cn_pnbuf;
1904 md = *mdp;
1905 rem = mtod(md, caddr_t) + md->m_len - fromcp;
1906 for (i = 0; i < len; i++) {
1907 while (rem == 0) {
1908 md = md->m_next;
1909 if (md == NULL) {
1910 error = EBADRPC;
1911 goto out;
1912 }
1913 fromcp = mtod(md, caddr_t);
1914 rem = md->m_len;
1915 }
1916 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1917 error = EACCES;
1918 goto out;
1919 }
1920 *tocp++ = *fromcp++;
1921 rem--;
1922 }
1923 *tocp = '\0';
1924 *mdp = md;
1925 *dposp = fromcp;
1926 len = nfsm_rndup(len)-len;
1927 if (len > 0) {
1928 if (rem >= len)
1929 *dposp += len;
1930 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1931 goto out;
1932 }
1933
1934 /*
1935 * Extract and set starting directory.
1936 */
1937 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1938 nam, &rdonly, kerbflag, pubflag);
1939 if (error)
1940 goto out;
1941 if (dp->v_type != VDIR) {
1942 vrele(dp);
1943 error = ENOTDIR;
1944 goto out;
1945 }
1946
1947 if (rdonly)
1948 cnp->cn_flags |= RDONLY;
1949
1950 *retdirp = dp;
1951
1952 if (pubflag) {
1953 /*
1954 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1955 * and the 'native path' indicator.
1956 */
1957 cp = PNBUF_GET();
1958 fromcp = cnp->cn_pnbuf;
1959 tocp = cp;
1960 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1961 switch ((unsigned char)*fromcp) {
1962 case WEBNFS_NATIVE_CHAR:
1963 /*
1964 * 'Native' path for us is the same
1965 * as a path according to the NFS spec,
1966 * just skip the escape char.
1967 */
1968 fromcp++;
1969 break;
1970 /*
1971 * More may be added in the future, range 0x80-0xff
1972 */
1973 default:
1974 error = EIO;
1975 PNBUF_PUT(cp);
1976 goto out;
1977 }
1978 }
1979 /*
1980 * Translate the '%' escapes, URL-style.
1981 */
1982 while (*fromcp != '\0') {
1983 if (*fromcp == WEBNFS_ESC_CHAR) {
1984 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1985 fromcp++;
1986 *tocp++ = HEXSTRTOI(fromcp);
1987 fromcp += 2;
1988 continue;
1989 } else {
1990 error = ENOENT;
1991 PNBUF_PUT(cp);
1992 goto out;
1993 }
1994 } else
1995 *tocp++ = *fromcp++;
1996 }
1997 *tocp = '\0';
1998 PNBUF_PUT(cnp->cn_pnbuf);
1999 cnp->cn_pnbuf = cp;
2000 }
2001
2002 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2003 ndp->ni_segflg = UIO_SYSSPACE;
2004 ndp->ni_rootdir = rootvnode;
2005
2006 if (pubflag) {
2007 ndp->ni_loopcnt = 0;
2008 if (cnp->cn_pnbuf[0] == '/')
2009 dp = rootvnode;
2010 } else {
2011 cnp->cn_flags |= NOCROSSMOUNT;
2012 }
2013
2014 cnp->cn_proc = p;
2015 VREF(dp);
2016
2017 for (;;) {
2018 cnp->cn_nameptr = cnp->cn_pnbuf;
2019 ndp->ni_startdir = dp;
2020 /*
2021 * And call lookup() to do the real work
2022 */
2023 error = lookup(ndp);
2024 if (error) {
2025 PNBUF_PUT(cnp->cn_pnbuf);
2026 return (error);
2027 }
2028 /*
2029 * Check for encountering a symbolic link
2030 */
2031 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2032 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2033 cnp->cn_flags |= HASBUF;
2034 else
2035 PNBUF_PUT(cnp->cn_pnbuf);
2036 return (0);
2037 } else {
2038 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
2039 VOP_UNLOCK(ndp->ni_dvp, 0);
2040 if (!pubflag) {
2041 error = EINVAL;
2042 break;
2043 }
2044
2045 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2046 error = ELOOP;
2047 break;
2048 }
2049 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2050 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2051 cnp->cn_proc);
2052 if (error != 0)
2053 break;
2054 }
2055 if (ndp->ni_pathlen > 1)
2056 cp = PNBUF_GET();
2057 else
2058 cp = cnp->cn_pnbuf;
2059 aiov.iov_base = cp;
2060 aiov.iov_len = MAXPATHLEN;
2061 auio.uio_iov = &aiov;
2062 auio.uio_iovcnt = 1;
2063 auio.uio_offset = 0;
2064 auio.uio_rw = UIO_READ;
2065 auio.uio_segflg = UIO_SYSSPACE;
2066 auio.uio_procp = (struct proc *)0;
2067 auio.uio_resid = MAXPATHLEN;
2068 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2069 if (error) {
2070 badlink:
2071 if (ndp->ni_pathlen > 1)
2072 PNBUF_PUT(cp);
2073 break;
2074 }
2075 linklen = MAXPATHLEN - auio.uio_resid;
2076 if (linklen == 0) {
2077 error = ENOENT;
2078 goto badlink;
2079 }
2080 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2081 error = ENAMETOOLONG;
2082 goto badlink;
2083 }
2084 if (ndp->ni_pathlen > 1) {
2085 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2086 PNBUF_PUT(cnp->cn_pnbuf);
2087 cnp->cn_pnbuf = cp;
2088 } else
2089 cnp->cn_pnbuf[linklen] = '\0';
2090 ndp->ni_pathlen += linklen;
2091 vput(ndp->ni_vp);
2092 dp = ndp->ni_dvp;
2093 /*
2094 * Check if root directory should replace current directory.
2095 */
2096 if (cnp->cn_pnbuf[0] == '/') {
2097 vrele(dp);
2098 dp = ndp->ni_rootdir;
2099 VREF(dp);
2100 }
2101 }
2102 }
2103 vrele(ndp->ni_dvp);
2104 vput(ndp->ni_vp);
2105 ndp->ni_vp = NULL;
2106 out:
2107 PNBUF_PUT(cnp->cn_pnbuf);
2108 return (error);
2109 }
2110
2111 /*
2112 * A fiddled version of m_adj() that ensures null fill to a long
2113 * boundary and only trims off the back end
2114 */
2115 void
2116 nfsm_adj(mp, len, nul)
2117 struct mbuf *mp;
2118 int len;
2119 int nul;
2120 {
2121 struct mbuf *m;
2122 int count, i;
2123 char *cp;
2124
2125 /*
2126 * Trim from tail. Scan the mbuf chain,
2127 * calculating its length and finding the last mbuf.
2128 * If the adjustment only affects this mbuf, then just
2129 * adjust and return. Otherwise, rescan and truncate
2130 * after the remaining size.
2131 */
2132 count = 0;
2133 m = mp;
2134 for (;;) {
2135 count += m->m_len;
2136 if (m->m_next == (struct mbuf *)0)
2137 break;
2138 m = m->m_next;
2139 }
2140 if (m->m_len > len) {
2141 m->m_len -= len;
2142 if (nul > 0) {
2143 cp = mtod(m, caddr_t)+m->m_len-nul;
2144 for (i = 0; i < nul; i++)
2145 *cp++ = '\0';
2146 }
2147 return;
2148 }
2149 count -= len;
2150 if (count < 0)
2151 count = 0;
2152 /*
2153 * Correct length for chain is "count".
2154 * Find the mbuf with last data, adjust its length,
2155 * and toss data from remaining mbufs on chain.
2156 */
2157 for (m = mp; m; m = m->m_next) {
2158 if (m->m_len >= count) {
2159 m->m_len = count;
2160 if (nul > 0) {
2161 cp = mtod(m, caddr_t)+m->m_len-nul;
2162 for (i = 0; i < nul; i++)
2163 *cp++ = '\0';
2164 }
2165 break;
2166 }
2167 count -= m->m_len;
2168 }
2169 for (m = m->m_next;m;m = m->m_next)
2170 m->m_len = 0;
2171 }
2172
2173 /*
2174 * Make these functions instead of macros, so that the kernel text size
2175 * doesn't get too big...
2176 */
2177 void
2178 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2179 struct nfsrv_descript *nfsd;
2180 int before_ret;
2181 struct vattr *before_vap;
2182 int after_ret;
2183 struct vattr *after_vap;
2184 struct mbuf **mbp;
2185 char **bposp;
2186 {
2187 struct mbuf *mb = *mbp, *mb2;
2188 char *bpos = *bposp;
2189 u_int32_t *tl;
2190
2191 if (before_ret) {
2192 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2193 *tl = nfs_false;
2194 } else {
2195 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2196 *tl++ = nfs_true;
2197 txdr_hyper(before_vap->va_size, tl);
2198 tl += 2;
2199 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2200 tl += 2;
2201 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2202 }
2203 *bposp = bpos;
2204 *mbp = mb;
2205 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2206 }
2207
2208 void
2209 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2210 struct nfsrv_descript *nfsd;
2211 int after_ret;
2212 struct vattr *after_vap;
2213 struct mbuf **mbp;
2214 char **bposp;
2215 {
2216 struct mbuf *mb = *mbp, *mb2;
2217 char *bpos = *bposp;
2218 u_int32_t *tl;
2219 struct nfs_fattr *fp;
2220
2221 if (after_ret) {
2222 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2223 *tl = nfs_false;
2224 } else {
2225 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2226 *tl++ = nfs_true;
2227 fp = (struct nfs_fattr *)tl;
2228 nfsm_srvfattr(nfsd, after_vap, fp);
2229 }
2230 *mbp = mb;
2231 *bposp = bpos;
2232 }
2233
2234 void
2235 nfsm_srvfattr(nfsd, vap, fp)
2236 struct nfsrv_descript *nfsd;
2237 struct vattr *vap;
2238 struct nfs_fattr *fp;
2239 {
2240
2241 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2242 fp->fa_uid = txdr_unsigned(vap->va_uid);
2243 fp->fa_gid = txdr_unsigned(vap->va_gid);
2244 if (nfsd->nd_flag & ND_NFSV3) {
2245 fp->fa_type = vtonfsv3_type(vap->va_type);
2246 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2247 txdr_hyper(vap->va_size, &fp->fa3_size);
2248 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2249 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2250 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2251 fp->fa3_fsid.nfsuquad[0] = 0;
2252 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2253 fp->fa3_fileid.nfsuquad[0] = 0;
2254 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2255 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2256 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2257 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2258 } else {
2259 fp->fa_type = vtonfsv2_type(vap->va_type);
2260 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2261 fp->fa2_size = txdr_unsigned(vap->va_size);
2262 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2263 if (vap->va_type == VFIFO)
2264 fp->fa2_rdev = 0xffffffff;
2265 else
2266 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2267 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2268 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2269 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2270 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2271 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2272 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2273 }
2274 }
2275
2276 /*
2277 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2278 * - look up fsid in mount list (if not found ret error)
2279 * - get vp and export rights by calling VFS_FHTOVP()
2280 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2281 * - if not lockflag unlock it with VOP_UNLOCK()
2282 */
2283 int
2284 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2285 fhandle_t *fhp;
2286 int lockflag;
2287 struct vnode **vpp;
2288 struct ucred *cred;
2289 struct nfssvc_sock *slp;
2290 struct mbuf *nam;
2291 int *rdonlyp;
2292 int kerbflag;
2293 {
2294 struct mount *mp;
2295 int i;
2296 struct ucred *credanon;
2297 int error, exflags;
2298 struct sockaddr_in *saddr;
2299
2300 *vpp = (struct vnode *)0;
2301
2302 if (nfs_ispublicfh(fhp)) {
2303 if (!pubflag || !nfs_pub.np_valid)
2304 return (ESTALE);
2305 fhp = &nfs_pub.np_handle;
2306 }
2307
2308 mp = vfs_getvfs(&fhp->fh_fsid);
2309 if (!mp)
2310 return (ESTALE);
2311 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2312 if (error)
2313 return (error);
2314 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2315 if (error)
2316 return (error);
2317
2318 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2319 saddr = mtod(nam, struct sockaddr_in *);
2320 if ((saddr->sin_family == AF_INET) &&
2321 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2322 vput(*vpp);
2323 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2324 }
2325 #ifdef INET6
2326 if ((saddr->sin_family == AF_INET6) &&
2327 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2328 vput(*vpp);
2329 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2330 }
2331 #endif
2332 }
2333 /*
2334 * Check/setup credentials.
2335 */
2336 if (exflags & MNT_EXKERB) {
2337 if (!kerbflag) {
2338 vput(*vpp);
2339 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2340 }
2341 } else if (kerbflag) {
2342 vput(*vpp);
2343 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2344 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2345 cred->cr_uid = credanon->cr_uid;
2346 cred->cr_gid = credanon->cr_gid;
2347 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2348 cred->cr_groups[i] = credanon->cr_groups[i];
2349 cred->cr_ngroups = i;
2350 }
2351 if (exflags & MNT_EXRDONLY)
2352 *rdonlyp = 1;
2353 else
2354 *rdonlyp = 0;
2355 if (!lockflag)
2356 VOP_UNLOCK(*vpp, 0);
2357 return (0);
2358 }
2359
2360 /*
2361 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2362 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2363 * transformed this to all zeroes in both cases, so check for it.
2364 */
2365 int
2366 nfs_ispublicfh(fhp)
2367 fhandle_t *fhp;
2368 {
2369 char *cp = (char *)fhp;
2370 int i;
2371
2372 for (i = 0; i < NFSX_V3FH; i++)
2373 if (*cp++ != 0)
2374 return (FALSE);
2375 return (TRUE);
2376 }
2377
2378 /*
2379 * This function compares two net addresses by family and returns TRUE
2380 * if they are the same host.
2381 * If there is any doubt, return FALSE.
2382 * The AF_INET family is handled as a special case so that address mbufs
2383 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2384 */
2385 int
2386 netaddr_match(family, haddr, nam)
2387 int family;
2388 union nethostaddr *haddr;
2389 struct mbuf *nam;
2390 {
2391 struct sockaddr_in *inetaddr;
2392
2393 switch (family) {
2394 case AF_INET:
2395 inetaddr = mtod(nam, struct sockaddr_in *);
2396 if (inetaddr->sin_family == AF_INET &&
2397 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2398 return (1);
2399 break;
2400 #ifdef INET6
2401 case AF_INET6:
2402 {
2403 struct sockaddr_in6 *sin6_1, *sin6_2;
2404
2405 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2406 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2407 if (sin6_1->sin6_family == AF_INET6 &&
2408 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2409 return 1;
2410 }
2411 #endif
2412 #ifdef ISO
2413 case AF_ISO:
2414 {
2415 struct sockaddr_iso *isoaddr1, *isoaddr2;
2416
2417 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2418 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2419 if (isoaddr1->siso_family == AF_ISO &&
2420 isoaddr1->siso_nlen > 0 &&
2421 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2422 SAME_ISOADDR(isoaddr1, isoaddr2))
2423 return (1);
2424 break;
2425 }
2426 #endif /* ISO */
2427 default:
2428 break;
2429 };
2430 return (0);
2431 }
2432
2433 /*
2434 * The write verifier has changed (probably due to a server reboot), so all
2435 * B_NEEDCOMMIT blocks will have to be written again. Since they are on the
2436 * dirty block list as B_DELWRI, all this takes is clearing the B_NEEDCOMMIT
2437 * flag. Once done the new write verifier can be set for the mount point.
2438 */
2439 void
2440 nfs_clearcommit(mp)
2441 struct mount *mp;
2442 {
2443 struct vnode *vp;
2444 struct nfsnode *np;
2445 struct vm_page *pg;
2446 int s;
2447
2448 s = splbio();
2449 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2450 KASSERT(vp->v_mount == mp);
2451 if (vp->v_type == VNON)
2452 continue;
2453 np = VTONFS(vp);
2454 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2455 np->n_pushedhi = 0;
2456 np->n_commitflags &=
2457 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2458 simple_lock(&vp->v_uobj.vmobjlock);
2459 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2460 pg->flags &= ~PG_NEEDCOMMIT;
2461 }
2462 simple_unlock(&vp->v_uobj.vmobjlock);
2463 }
2464 splx(s);
2465 }
2466
2467 void
2468 nfs_merge_commit_ranges(vp)
2469 struct vnode *vp;
2470 {
2471 struct nfsnode *np = VTONFS(vp);
2472
2473 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2474 np->n_pushedlo = np->n_pushlo;
2475 np->n_pushedhi = np->n_pushhi;
2476 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2477 } else {
2478 if (np->n_pushlo < np->n_pushedlo)
2479 np->n_pushedlo = np->n_pushlo;
2480 if (np->n_pushhi > np->n_pushedhi)
2481 np->n_pushedhi = np->n_pushhi;
2482 }
2483
2484 np->n_pushlo = np->n_pushhi = 0;
2485 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2486
2487 #ifdef fvdl_debug
2488 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2489 (unsigned)np->n_pushedhi);
2490 #endif
2491 }
2492
2493 int
2494 nfs_in_committed_range(vp, off, len)
2495 struct vnode *vp;
2496 off_t off, len;
2497 {
2498 struct nfsnode *np = VTONFS(vp);
2499 off_t lo, hi;
2500
2501 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2502 return 0;
2503 lo = off;
2504 hi = lo + len;
2505
2506 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2507 }
2508
2509 int
2510 nfs_in_tobecommitted_range(vp, off, len)
2511 struct vnode *vp;
2512 off_t off, len;
2513 {
2514 struct nfsnode *np = VTONFS(vp);
2515 off_t lo, hi;
2516
2517 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2518 return 0;
2519 lo = off;
2520 hi = lo + len;
2521
2522 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2523 }
2524
2525 void
2526 nfs_add_committed_range(vp, off, len)
2527 struct vnode *vp;
2528 off_t off, len;
2529 {
2530 struct nfsnode *np = VTONFS(vp);
2531 off_t lo, hi;
2532
2533 lo = off;
2534 hi = lo + len;
2535
2536 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2537 np->n_pushedlo = lo;
2538 np->n_pushedhi = hi;
2539 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2540 } else {
2541 if (hi > np->n_pushedhi)
2542 np->n_pushedhi = hi;
2543 if (lo < np->n_pushedlo)
2544 np->n_pushedlo = lo;
2545 }
2546 #ifdef fvdl_debug
2547 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2548 (unsigned)np->n_pushedhi);
2549 #endif
2550 }
2551
2552 void
2553 nfs_del_committed_range(vp, off, len)
2554 struct vnode *vp;
2555 off_t off, len;
2556 {
2557 struct nfsnode *np = VTONFS(vp);
2558 off_t lo, hi;
2559
2560 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2561 return;
2562
2563 lo = off;
2564 hi = lo + len;
2565
2566 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2567 return;
2568 if (lo <= np->n_pushedlo)
2569 np->n_pushedlo = hi;
2570 else if (hi >= np->n_pushedhi)
2571 np->n_pushedhi = lo;
2572 else {
2573 /*
2574 * XXX There's only one range. If the deleted range
2575 * is in the middle, pick the largest of the
2576 * contiguous ranges that it leaves.
2577 */
2578 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2579 np->n_pushedhi = lo;
2580 else
2581 np->n_pushedlo = hi;
2582 }
2583 #ifdef fvdl_debug
2584 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2585 (unsigned)np->n_pushedhi);
2586 #endif
2587 }
2588
2589 void
2590 nfs_add_tobecommitted_range(vp, off, len)
2591 struct vnode *vp;
2592 off_t off, len;
2593 {
2594 struct nfsnode *np = VTONFS(vp);
2595 off_t lo, hi;
2596
2597 lo = off;
2598 hi = lo + len;
2599
2600 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2601 np->n_pushlo = lo;
2602 np->n_pushhi = hi;
2603 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2604 } else {
2605 if (lo < np->n_pushlo)
2606 np->n_pushlo = lo;
2607 if (hi > np->n_pushhi)
2608 np->n_pushhi = hi;
2609 }
2610 #ifdef fvdl_debug
2611 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2612 (unsigned)np->n_pushhi);
2613 #endif
2614 }
2615
2616 void
2617 nfs_del_tobecommitted_range(vp, off, len)
2618 struct vnode *vp;
2619 off_t off, len;
2620 {
2621 struct nfsnode *np = VTONFS(vp);
2622 off_t lo, hi;
2623
2624 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2625 return;
2626
2627 lo = off;
2628 hi = lo + len;
2629
2630 if (lo > np->n_pushhi || hi < np->n_pushlo)
2631 return;
2632
2633 if (lo <= np->n_pushlo)
2634 np->n_pushlo = hi;
2635 else if (hi >= np->n_pushhi)
2636 np->n_pushhi = lo;
2637 else {
2638 /*
2639 * XXX There's only one range. If the deleted range
2640 * is in the middle, pick the largest of the
2641 * contiguous ranges that it leaves.
2642 */
2643 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2644 np->n_pushhi = lo;
2645 else
2646 np->n_pushlo = hi;
2647 }
2648 #ifdef fvdl_debug
2649 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2650 (unsigned)np->n_pushhi);
2651 #endif
2652 }
2653
2654 /*
2655 * Map errnos to NFS error numbers. For Version 3 also filter out error
2656 * numbers not specified for the associated procedure.
2657 */
2658 int
2659 nfsrv_errmap(nd, err)
2660 struct nfsrv_descript *nd;
2661 int err;
2662 {
2663 const short *defaulterrp, *errp;
2664
2665 if (nd->nd_flag & ND_NFSV3) {
2666 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2667 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2668 while (*++errp) {
2669 if (*errp == err)
2670 return (err);
2671 else if (*errp > err)
2672 break;
2673 }
2674 return ((int)*defaulterrp);
2675 } else
2676 return (err & 0xffff);
2677 }
2678 if (err <= ELAST)
2679 return ((int)nfsrv_v2errmap[err - 1]);
2680 return (NFSERR_IO);
2681 }
2682
2683 /*
2684 * Sort the group list in increasing numerical order.
2685 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2686 * that used to be here.)
2687 */
2688 void
2689 nfsrvw_sort(list, num)
2690 gid_t *list;
2691 int num;
2692 {
2693 int i, j;
2694 gid_t v;
2695
2696 /* Insertion sort. */
2697 for (i = 1; i < num; i++) {
2698 v = list[i];
2699 /* find correct slot for value v, moving others up */
2700 for (j = i; --j >= 0 && v < list[j];)
2701 list[j + 1] = list[j];
2702 list[j + 1] = v;
2703 }
2704 }
2705
2706 /*
2707 * copy credentials making sure that the result can be compared with memcmp().
2708 */
2709 void
2710 nfsrv_setcred(incred, outcred)
2711 struct ucred *incred, *outcred;
2712 {
2713 int i;
2714
2715 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2716 outcred->cr_ref = 1;
2717 outcred->cr_uid = incred->cr_uid;
2718 outcred->cr_gid = incred->cr_gid;
2719 outcred->cr_ngroups = incred->cr_ngroups;
2720 for (i = 0; i < incred->cr_ngroups; i++)
2721 outcred->cr_groups[i] = incred->cr_groups[i];
2722 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2723 }
2724