nfs_subs.c revision 1.125 1 /* $NetBSD: nfs_subs.c,v 1.125 2003/06/29 22:32:18 fvdl Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
39 */
40
41 /*
42 * Copyright 2000 Wasabi Systems, Inc.
43 * All rights reserved.
44 *
45 * Written by Frank van der Linden for Wasabi Systems, Inc.
46 *
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. All advertising materials mentioning features or use of this software
56 * must display the following acknowledgement:
57 * This product includes software developed for the NetBSD Project by
58 * Wasabi Systems, Inc.
59 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
60 * or promote products derived from this software without specific prior
61 * written permission.
62 *
63 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
64 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
65 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
66 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
67 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
68 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
69 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
70 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
71 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
72 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
73 * POSSIBILITY OF SUCH DAMAGE.
74 */
75
76 #include <sys/cdefs.h>
77 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.125 2003/06/29 22:32:18 fvdl Exp $");
78
79 #include "fs_nfs.h"
80 #include "opt_nfs.h"
81 #include "opt_nfsserver.h"
82 #include "opt_iso.h"
83 #include "opt_inet.h"
84
85 /*
86 * These functions support the macros and help fiddle mbuf chains for
87 * the nfs op functions. They do things like create the rpc header and
88 * copy data between mbuf chains and uio lists.
89 */
90 #include <sys/param.h>
91 #include <sys/proc.h>
92 #include <sys/systm.h>
93 #include <sys/kernel.h>
94 #include <sys/mount.h>
95 #include <sys/vnode.h>
96 #include <sys/namei.h>
97 #include <sys/mbuf.h>
98 #include <sys/socket.h>
99 #include <sys/stat.h>
100 #include <sys/malloc.h>
101 #include <sys/filedesc.h>
102 #include <sys/time.h>
103 #include <sys/dirent.h>
104
105 #include <uvm/uvm_extern.h>
106
107 #include <nfs/rpcv2.h>
108 #include <nfs/nfsproto.h>
109 #include <nfs/nfsnode.h>
110 #include <nfs/nfs.h>
111 #include <nfs/xdr_subs.h>
112 #include <nfs/nfsm_subs.h>
113 #include <nfs/nfsmount.h>
114 #include <nfs/nqnfs.h>
115 #include <nfs/nfsrtt.h>
116 #include <nfs/nfs_var.h>
117
118 #include <miscfs/specfs/specdev.h>
119
120 #include <netinet/in.h>
121 #ifdef ISO
122 #include <netiso/iso.h>
123 #endif
124
125 /*
126 * Data items converted to xdr at startup, since they are constant
127 * This is kinda hokey, but may save a little time doing byte swaps
128 */
129 u_int32_t nfs_xdrneg1;
130 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
131 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
132 rpc_auth_kerb;
133 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
134
135 /* And other global data */
136 static u_int32_t nfs_xid = 0;
137 const nfstype nfsv2_type[9] =
138 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
139 const nfstype nfsv3_type[9] =
140 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
141 const enum vtype nv2tov_type[8] =
142 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
143 const enum vtype nv3tov_type[8] =
144 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
145 int nfs_ticks;
146 int nfs_commitsize;
147
148 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
149
150 /* NFS client/server stats. */
151 struct nfsstats nfsstats;
152
153 /*
154 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
155 */
156 const int nfsv3_procid[NFS_NPROCS] = {
157 NFSPROC_NULL,
158 NFSPROC_GETATTR,
159 NFSPROC_SETATTR,
160 NFSPROC_NOOP,
161 NFSPROC_LOOKUP,
162 NFSPROC_READLINK,
163 NFSPROC_READ,
164 NFSPROC_NOOP,
165 NFSPROC_WRITE,
166 NFSPROC_CREATE,
167 NFSPROC_REMOVE,
168 NFSPROC_RENAME,
169 NFSPROC_LINK,
170 NFSPROC_SYMLINK,
171 NFSPROC_MKDIR,
172 NFSPROC_RMDIR,
173 NFSPROC_READDIR,
174 NFSPROC_FSSTAT,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP,
177 NFSPROC_NOOP,
178 NFSPROC_NOOP,
179 NFSPROC_NOOP,
180 NFSPROC_NOOP,
181 NFSPROC_NOOP,
182 NFSPROC_NOOP
183 };
184
185 /*
186 * and the reverse mapping from generic to Version 2 procedure numbers
187 */
188 const int nfsv2_procid[NFS_NPROCS] = {
189 NFSV2PROC_NULL,
190 NFSV2PROC_GETATTR,
191 NFSV2PROC_SETATTR,
192 NFSV2PROC_LOOKUP,
193 NFSV2PROC_NOOP,
194 NFSV2PROC_READLINK,
195 NFSV2PROC_READ,
196 NFSV2PROC_WRITE,
197 NFSV2PROC_CREATE,
198 NFSV2PROC_MKDIR,
199 NFSV2PROC_SYMLINK,
200 NFSV2PROC_CREATE,
201 NFSV2PROC_REMOVE,
202 NFSV2PROC_RMDIR,
203 NFSV2PROC_RENAME,
204 NFSV2PROC_LINK,
205 NFSV2PROC_READDIR,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_STATFS,
208 NFSV2PROC_NOOP,
209 NFSV2PROC_NOOP,
210 NFSV2PROC_NOOP,
211 NFSV2PROC_NOOP,
212 NFSV2PROC_NOOP,
213 NFSV2PROC_NOOP,
214 NFSV2PROC_NOOP,
215 };
216
217 /*
218 * Maps errno values to nfs error numbers.
219 * Use NFSERR_IO as the catch all for ones not specifically defined in
220 * RFC 1094.
221 */
222 static const u_char nfsrv_v2errmap[ELAST] = {
223 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
227 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
231 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
232 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
233 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
234 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
235 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
236 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
237 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
238 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
239 NFSERR_IO, NFSERR_IO,
240 };
241
242 /*
243 * Maps errno values to nfs error numbers.
244 * Although it is not obvious whether or not NFS clients really care if
245 * a returned error value is in the specified list for the procedure, the
246 * safest thing to do is filter them appropriately. For Version 2, the
247 * X/Open XNFS document is the only specification that defines error values
248 * for each RPC (The RFC simply lists all possible error values for all RPCs),
249 * so I have decided to not do this for Version 2.
250 * The first entry is the default error return and the rest are the valid
251 * errors for that RPC in increasing numeric order.
252 */
253 static const short nfsv3err_null[] = {
254 0,
255 0,
256 };
257
258 static const short nfsv3err_getattr[] = {
259 NFSERR_IO,
260 NFSERR_IO,
261 NFSERR_STALE,
262 NFSERR_BADHANDLE,
263 NFSERR_SERVERFAULT,
264 0,
265 };
266
267 static const short nfsv3err_setattr[] = {
268 NFSERR_IO,
269 NFSERR_PERM,
270 NFSERR_IO,
271 NFSERR_ACCES,
272 NFSERR_INVAL,
273 NFSERR_NOSPC,
274 NFSERR_ROFS,
275 NFSERR_DQUOT,
276 NFSERR_STALE,
277 NFSERR_BADHANDLE,
278 NFSERR_NOT_SYNC,
279 NFSERR_SERVERFAULT,
280 0,
281 };
282
283 static const short nfsv3err_lookup[] = {
284 NFSERR_IO,
285 NFSERR_NOENT,
286 NFSERR_IO,
287 NFSERR_ACCES,
288 NFSERR_NOTDIR,
289 NFSERR_NAMETOL,
290 NFSERR_STALE,
291 NFSERR_BADHANDLE,
292 NFSERR_SERVERFAULT,
293 0,
294 };
295
296 static const short nfsv3err_access[] = {
297 NFSERR_IO,
298 NFSERR_IO,
299 NFSERR_STALE,
300 NFSERR_BADHANDLE,
301 NFSERR_SERVERFAULT,
302 0,
303 };
304
305 static const short nfsv3err_readlink[] = {
306 NFSERR_IO,
307 NFSERR_IO,
308 NFSERR_ACCES,
309 NFSERR_INVAL,
310 NFSERR_STALE,
311 NFSERR_BADHANDLE,
312 NFSERR_NOTSUPP,
313 NFSERR_SERVERFAULT,
314 0,
315 };
316
317 static const short nfsv3err_read[] = {
318 NFSERR_IO,
319 NFSERR_IO,
320 NFSERR_NXIO,
321 NFSERR_ACCES,
322 NFSERR_INVAL,
323 NFSERR_STALE,
324 NFSERR_BADHANDLE,
325 NFSERR_SERVERFAULT,
326 NFSERR_JUKEBOX,
327 0,
328 };
329
330 static const short nfsv3err_write[] = {
331 NFSERR_IO,
332 NFSERR_IO,
333 NFSERR_ACCES,
334 NFSERR_INVAL,
335 NFSERR_FBIG,
336 NFSERR_NOSPC,
337 NFSERR_ROFS,
338 NFSERR_DQUOT,
339 NFSERR_STALE,
340 NFSERR_BADHANDLE,
341 NFSERR_SERVERFAULT,
342 NFSERR_JUKEBOX,
343 0,
344 };
345
346 static const short nfsv3err_create[] = {
347 NFSERR_IO,
348 NFSERR_IO,
349 NFSERR_ACCES,
350 NFSERR_EXIST,
351 NFSERR_NOTDIR,
352 NFSERR_NOSPC,
353 NFSERR_ROFS,
354 NFSERR_NAMETOL,
355 NFSERR_DQUOT,
356 NFSERR_STALE,
357 NFSERR_BADHANDLE,
358 NFSERR_NOTSUPP,
359 NFSERR_SERVERFAULT,
360 0,
361 };
362
363 static const short nfsv3err_mkdir[] = {
364 NFSERR_IO,
365 NFSERR_IO,
366 NFSERR_ACCES,
367 NFSERR_EXIST,
368 NFSERR_NOTDIR,
369 NFSERR_NOSPC,
370 NFSERR_ROFS,
371 NFSERR_NAMETOL,
372 NFSERR_DQUOT,
373 NFSERR_STALE,
374 NFSERR_BADHANDLE,
375 NFSERR_NOTSUPP,
376 NFSERR_SERVERFAULT,
377 0,
378 };
379
380 static const short nfsv3err_symlink[] = {
381 NFSERR_IO,
382 NFSERR_IO,
383 NFSERR_ACCES,
384 NFSERR_EXIST,
385 NFSERR_NOTDIR,
386 NFSERR_NOSPC,
387 NFSERR_ROFS,
388 NFSERR_NAMETOL,
389 NFSERR_DQUOT,
390 NFSERR_STALE,
391 NFSERR_BADHANDLE,
392 NFSERR_NOTSUPP,
393 NFSERR_SERVERFAULT,
394 0,
395 };
396
397 static const short nfsv3err_mknod[] = {
398 NFSERR_IO,
399 NFSERR_IO,
400 NFSERR_ACCES,
401 NFSERR_EXIST,
402 NFSERR_NOTDIR,
403 NFSERR_NOSPC,
404 NFSERR_ROFS,
405 NFSERR_NAMETOL,
406 NFSERR_DQUOT,
407 NFSERR_STALE,
408 NFSERR_BADHANDLE,
409 NFSERR_NOTSUPP,
410 NFSERR_SERVERFAULT,
411 NFSERR_BADTYPE,
412 0,
413 };
414
415 static const short nfsv3err_remove[] = {
416 NFSERR_IO,
417 NFSERR_NOENT,
418 NFSERR_IO,
419 NFSERR_ACCES,
420 NFSERR_NOTDIR,
421 NFSERR_ROFS,
422 NFSERR_NAMETOL,
423 NFSERR_STALE,
424 NFSERR_BADHANDLE,
425 NFSERR_SERVERFAULT,
426 0,
427 };
428
429 static const short nfsv3err_rmdir[] = {
430 NFSERR_IO,
431 NFSERR_NOENT,
432 NFSERR_IO,
433 NFSERR_ACCES,
434 NFSERR_EXIST,
435 NFSERR_NOTDIR,
436 NFSERR_INVAL,
437 NFSERR_ROFS,
438 NFSERR_NAMETOL,
439 NFSERR_NOTEMPTY,
440 NFSERR_STALE,
441 NFSERR_BADHANDLE,
442 NFSERR_NOTSUPP,
443 NFSERR_SERVERFAULT,
444 0,
445 };
446
447 static const short nfsv3err_rename[] = {
448 NFSERR_IO,
449 NFSERR_NOENT,
450 NFSERR_IO,
451 NFSERR_ACCES,
452 NFSERR_EXIST,
453 NFSERR_XDEV,
454 NFSERR_NOTDIR,
455 NFSERR_ISDIR,
456 NFSERR_INVAL,
457 NFSERR_NOSPC,
458 NFSERR_ROFS,
459 NFSERR_MLINK,
460 NFSERR_NAMETOL,
461 NFSERR_NOTEMPTY,
462 NFSERR_DQUOT,
463 NFSERR_STALE,
464 NFSERR_BADHANDLE,
465 NFSERR_NOTSUPP,
466 NFSERR_SERVERFAULT,
467 0,
468 };
469
470 static const short nfsv3err_link[] = {
471 NFSERR_IO,
472 NFSERR_IO,
473 NFSERR_ACCES,
474 NFSERR_EXIST,
475 NFSERR_XDEV,
476 NFSERR_NOTDIR,
477 NFSERR_INVAL,
478 NFSERR_NOSPC,
479 NFSERR_ROFS,
480 NFSERR_MLINK,
481 NFSERR_NAMETOL,
482 NFSERR_DQUOT,
483 NFSERR_STALE,
484 NFSERR_BADHANDLE,
485 NFSERR_NOTSUPP,
486 NFSERR_SERVERFAULT,
487 0,
488 };
489
490 static const short nfsv3err_readdir[] = {
491 NFSERR_IO,
492 NFSERR_IO,
493 NFSERR_ACCES,
494 NFSERR_NOTDIR,
495 NFSERR_STALE,
496 NFSERR_BADHANDLE,
497 NFSERR_BAD_COOKIE,
498 NFSERR_TOOSMALL,
499 NFSERR_SERVERFAULT,
500 0,
501 };
502
503 static const short nfsv3err_readdirplus[] = {
504 NFSERR_IO,
505 NFSERR_IO,
506 NFSERR_ACCES,
507 NFSERR_NOTDIR,
508 NFSERR_STALE,
509 NFSERR_BADHANDLE,
510 NFSERR_BAD_COOKIE,
511 NFSERR_NOTSUPP,
512 NFSERR_TOOSMALL,
513 NFSERR_SERVERFAULT,
514 0,
515 };
516
517 static const short nfsv3err_fsstat[] = {
518 NFSERR_IO,
519 NFSERR_IO,
520 NFSERR_STALE,
521 NFSERR_BADHANDLE,
522 NFSERR_SERVERFAULT,
523 0,
524 };
525
526 static const short nfsv3err_fsinfo[] = {
527 NFSERR_STALE,
528 NFSERR_STALE,
529 NFSERR_BADHANDLE,
530 NFSERR_SERVERFAULT,
531 0,
532 };
533
534 static const short nfsv3err_pathconf[] = {
535 NFSERR_STALE,
536 NFSERR_STALE,
537 NFSERR_BADHANDLE,
538 NFSERR_SERVERFAULT,
539 0,
540 };
541
542 static const short nfsv3err_commit[] = {
543 NFSERR_IO,
544 NFSERR_IO,
545 NFSERR_STALE,
546 NFSERR_BADHANDLE,
547 NFSERR_SERVERFAULT,
548 0,
549 };
550
551 static const short * const nfsrv_v3errmap[] = {
552 nfsv3err_null,
553 nfsv3err_getattr,
554 nfsv3err_setattr,
555 nfsv3err_lookup,
556 nfsv3err_access,
557 nfsv3err_readlink,
558 nfsv3err_read,
559 nfsv3err_write,
560 nfsv3err_create,
561 nfsv3err_mkdir,
562 nfsv3err_symlink,
563 nfsv3err_mknod,
564 nfsv3err_remove,
565 nfsv3err_rmdir,
566 nfsv3err_rename,
567 nfsv3err_link,
568 nfsv3err_readdir,
569 nfsv3err_readdirplus,
570 nfsv3err_fsstat,
571 nfsv3err_fsinfo,
572 nfsv3err_pathconf,
573 nfsv3err_commit,
574 };
575
576 extern struct nfsrtt nfsrtt;
577 extern time_t nqnfsstarttime;
578 extern int nqsrv_clockskew;
579 extern int nqsrv_writeslack;
580 extern int nqsrv_maxlease;
581 extern const int nqnfs_piggy[NFS_NPROCS];
582 extern struct nfsnodehashhead *nfsnodehashtbl;
583 extern u_long nfsnodehash;
584
585 u_long nfsdirhashmask;
586
587 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
588
589 /*
590 * Create the header for an rpc request packet
591 * The hsiz is the size of the rest of the nfs request header.
592 * (just used to decide if a cluster is a good idea)
593 */
594 struct mbuf *
595 nfsm_reqh(np, procid, hsiz, bposp)
596 struct nfsnode *np;
597 u_long procid;
598 int hsiz;
599 caddr_t *bposp;
600 {
601 struct mbuf *mb;
602 caddr_t bpos;
603 #ifndef NFS_V2_ONLY
604 struct nfsmount *nmp;
605 u_int32_t *tl;
606 int nqflag;
607 #endif
608
609 mb = m_get(M_WAIT, MT_DATA);
610 MCLAIM(mb, &nfs_mowner);
611 if (hsiz >= MINCLSIZE)
612 m_clget(mb, M_WAIT);
613 mb->m_len = 0;
614 bpos = mtod(mb, caddr_t);
615
616 #ifndef NFS_V2_ONLY
617 /*
618 * For NQNFS, add lease request.
619 */
620 if (np) {
621 nmp = VFSTONFS(np->n_vnode->v_mount);
622 if (nmp->nm_flag & NFSMNT_NQNFS) {
623 nqflag = NQNFS_NEEDLEASE(np, procid);
624 if (nqflag) {
625 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
626 *tl++ = txdr_unsigned(nqflag);
627 *tl = txdr_unsigned(nmp->nm_leaseterm);
628 } else {
629 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
630 *tl = 0;
631 }
632 }
633 }
634 #endif
635 /* Finally, return values */
636 *bposp = bpos;
637 return (mb);
638 }
639
640 /*
641 * Build the RPC header and fill in the authorization info.
642 * The authorization string argument is only used when the credentials
643 * come from outside of the kernel.
644 * Returns the head of the mbuf list.
645 */
646 struct mbuf *
647 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
648 verf_str, mrest, mrest_len, mbp, xidp)
649 struct ucred *cr;
650 int nmflag;
651 int procid;
652 int auth_type;
653 int auth_len;
654 char *auth_str;
655 int verf_len;
656 char *verf_str;
657 struct mbuf *mrest;
658 int mrest_len;
659 struct mbuf **mbp;
660 u_int32_t *xidp;
661 {
662 struct mbuf *mb;
663 u_int32_t *tl;
664 caddr_t bpos;
665 int i;
666 struct mbuf *mreq;
667 int siz, grpsiz, authsiz;
668 struct timeval tv;
669 static u_int32_t base;
670
671 authsiz = nfsm_rndup(auth_len);
672 mb = m_gethdr(M_WAIT, MT_DATA);
673 MCLAIM(mb, &nfs_mowner);
674 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
675 m_clget(mb, M_WAIT);
676 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
677 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
678 } else {
679 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
680 }
681 mb->m_len = 0;
682 mreq = mb;
683 bpos = mtod(mb, caddr_t);
684
685 /*
686 * First the RPC header.
687 */
688 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
689
690 /*
691 * derive initial xid from system time
692 * XXX time is invalid if root not yet mounted
693 */
694 if (!base && (rootvp)) {
695 microtime(&tv);
696 base = tv.tv_sec << 12;
697 nfs_xid = base;
698 }
699 /*
700 * Skip zero xid if it should ever happen.
701 */
702 if (++nfs_xid == 0)
703 nfs_xid++;
704
705 *tl++ = *xidp = txdr_unsigned(nfs_xid);
706 *tl++ = rpc_call;
707 *tl++ = rpc_vers;
708 if (nmflag & NFSMNT_NQNFS) {
709 *tl++ = txdr_unsigned(NQNFS_PROG);
710 *tl++ = txdr_unsigned(NQNFS_VER3);
711 } else {
712 *tl++ = txdr_unsigned(NFS_PROG);
713 if (nmflag & NFSMNT_NFSV3)
714 *tl++ = txdr_unsigned(NFS_VER3);
715 else
716 *tl++ = txdr_unsigned(NFS_VER2);
717 }
718 if (nmflag & NFSMNT_NFSV3)
719 *tl++ = txdr_unsigned(procid);
720 else
721 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
722
723 /*
724 * And then the authorization cred.
725 */
726 *tl++ = txdr_unsigned(auth_type);
727 *tl = txdr_unsigned(authsiz);
728 switch (auth_type) {
729 case RPCAUTH_UNIX:
730 nfsm_build(tl, u_int32_t *, auth_len);
731 *tl++ = 0; /* stamp ?? */
732 *tl++ = 0; /* NULL hostname */
733 *tl++ = txdr_unsigned(cr->cr_uid);
734 *tl++ = txdr_unsigned(cr->cr_gid);
735 grpsiz = (auth_len >> 2) - 5;
736 *tl++ = txdr_unsigned(grpsiz);
737 for (i = 0; i < grpsiz; i++)
738 *tl++ = txdr_unsigned(cr->cr_groups[i]);
739 break;
740 case RPCAUTH_KERB4:
741 siz = auth_len;
742 while (siz > 0) {
743 if (M_TRAILINGSPACE(mb) == 0) {
744 struct mbuf *mb2;
745 mb2 = m_get(M_WAIT, MT_DATA);
746 MCLAIM(mb2, &nfs_mowner);
747 if (siz >= MINCLSIZE)
748 m_clget(mb2, M_WAIT);
749 mb->m_next = mb2;
750 mb = mb2;
751 mb->m_len = 0;
752 bpos = mtod(mb, caddr_t);
753 }
754 i = min(siz, M_TRAILINGSPACE(mb));
755 memcpy(bpos, auth_str, i);
756 mb->m_len += i;
757 auth_str += i;
758 bpos += i;
759 siz -= i;
760 }
761 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
762 for (i = 0; i < siz; i++)
763 *bpos++ = '\0';
764 mb->m_len += siz;
765 }
766 break;
767 };
768
769 /*
770 * And the verifier...
771 */
772 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
773 if (verf_str) {
774 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
775 *tl = txdr_unsigned(verf_len);
776 siz = verf_len;
777 while (siz > 0) {
778 if (M_TRAILINGSPACE(mb) == 0) {
779 struct mbuf *mb2;
780 mb2 = m_get(M_WAIT, MT_DATA);
781 MCLAIM(mb2, &nfs_mowner);
782 if (siz >= MINCLSIZE)
783 m_clget(mb2, M_WAIT);
784 mb->m_next = mb2;
785 mb = mb2;
786 mb->m_len = 0;
787 bpos = mtod(mb, caddr_t);
788 }
789 i = min(siz, M_TRAILINGSPACE(mb));
790 memcpy(bpos, verf_str, i);
791 mb->m_len += i;
792 verf_str += i;
793 bpos += i;
794 siz -= i;
795 }
796 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
797 for (i = 0; i < siz; i++)
798 *bpos++ = '\0';
799 mb->m_len += siz;
800 }
801 } else {
802 *tl++ = txdr_unsigned(RPCAUTH_NULL);
803 *tl = 0;
804 }
805 mb->m_next = mrest;
806 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
807 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
808 *mbp = mb;
809 return (mreq);
810 }
811
812 /*
813 * copies mbuf chain to the uio scatter/gather list
814 */
815 int
816 nfsm_mbuftouio(mrep, uiop, siz, dpos)
817 struct mbuf **mrep;
818 struct uio *uiop;
819 int siz;
820 caddr_t *dpos;
821 {
822 char *mbufcp, *uiocp;
823 int xfer, left, len;
824 struct mbuf *mp;
825 long uiosiz, rem;
826 int error = 0;
827
828 mp = *mrep;
829 mbufcp = *dpos;
830 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
831 rem = nfsm_rndup(siz)-siz;
832 while (siz > 0) {
833 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
834 return (EFBIG);
835 left = uiop->uio_iov->iov_len;
836 uiocp = uiop->uio_iov->iov_base;
837 if (left > siz)
838 left = siz;
839 uiosiz = left;
840 while (left > 0) {
841 while (len == 0) {
842 mp = mp->m_next;
843 if (mp == NULL)
844 return (EBADRPC);
845 mbufcp = mtod(mp, caddr_t);
846 len = mp->m_len;
847 }
848 xfer = (left > len) ? len : left;
849 #ifdef notdef
850 /* Not Yet.. */
851 if (uiop->uio_iov->iov_op != NULL)
852 (*(uiop->uio_iov->iov_op))
853 (mbufcp, uiocp, xfer);
854 else
855 #endif
856 if (uiop->uio_segflg == UIO_SYSSPACE)
857 memcpy(uiocp, mbufcp, xfer);
858 else
859 copyout(mbufcp, uiocp, xfer);
860 left -= xfer;
861 len -= xfer;
862 mbufcp += xfer;
863 uiocp += xfer;
864 uiop->uio_offset += xfer;
865 uiop->uio_resid -= xfer;
866 }
867 if (uiop->uio_iov->iov_len <= siz) {
868 uiop->uio_iovcnt--;
869 uiop->uio_iov++;
870 } else {
871 uiop->uio_iov->iov_base =
872 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
873 uiop->uio_iov->iov_len -= uiosiz;
874 }
875 siz -= uiosiz;
876 }
877 *dpos = mbufcp;
878 *mrep = mp;
879 if (rem > 0) {
880 if (len < rem)
881 error = nfs_adv(mrep, dpos, rem, len);
882 else
883 *dpos += rem;
884 }
885 return (error);
886 }
887
888 /*
889 * copies a uio scatter/gather list to an mbuf chain.
890 * NOTE: can ony handle iovcnt == 1
891 */
892 int
893 nfsm_uiotombuf(uiop, mq, siz, bpos)
894 struct uio *uiop;
895 struct mbuf **mq;
896 int siz;
897 caddr_t *bpos;
898 {
899 char *uiocp;
900 struct mbuf *mp, *mp2;
901 int xfer, left, mlen;
902 int uiosiz, clflg, rem;
903 char *cp;
904
905 #ifdef DIAGNOSTIC
906 if (uiop->uio_iovcnt != 1)
907 panic("nfsm_uiotombuf: iovcnt != 1");
908 #endif
909
910 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
911 clflg = 1;
912 else
913 clflg = 0;
914 rem = nfsm_rndup(siz)-siz;
915 mp = mp2 = *mq;
916 while (siz > 0) {
917 left = uiop->uio_iov->iov_len;
918 uiocp = uiop->uio_iov->iov_base;
919 if (left > siz)
920 left = siz;
921 uiosiz = left;
922 while (left > 0) {
923 mlen = M_TRAILINGSPACE(mp);
924 if (mlen == 0) {
925 mp = m_get(M_WAIT, MT_DATA);
926 MCLAIM(mp, &nfs_mowner);
927 if (clflg)
928 m_clget(mp, M_WAIT);
929 mp->m_len = 0;
930 mp2->m_next = mp;
931 mp2 = mp;
932 mlen = M_TRAILINGSPACE(mp);
933 }
934 xfer = (left > mlen) ? mlen : left;
935 #ifdef notdef
936 /* Not Yet.. */
937 if (uiop->uio_iov->iov_op != NULL)
938 (*(uiop->uio_iov->iov_op))
939 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
940 else
941 #endif
942 if (uiop->uio_segflg == UIO_SYSSPACE)
943 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
944 else
945 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
946 mp->m_len += xfer;
947 left -= xfer;
948 uiocp += xfer;
949 uiop->uio_offset += xfer;
950 uiop->uio_resid -= xfer;
951 }
952 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
953 uiosiz;
954 uiop->uio_iov->iov_len -= uiosiz;
955 siz -= uiosiz;
956 }
957 if (rem > 0) {
958 if (rem > M_TRAILINGSPACE(mp)) {
959 mp = m_get(M_WAIT, MT_DATA);
960 MCLAIM(mp, &nfs_mowner);
961 mp->m_len = 0;
962 mp2->m_next = mp;
963 }
964 cp = mtod(mp, caddr_t)+mp->m_len;
965 for (left = 0; left < rem; left++)
966 *cp++ = '\0';
967 mp->m_len += rem;
968 *bpos = cp;
969 } else
970 *bpos = mtod(mp, caddr_t)+mp->m_len;
971 *mq = mp;
972 return (0);
973 }
974
975 /*
976 * Get at least "siz" bytes of correctly aligned data.
977 * When called the mbuf pointers are not necessarily correct,
978 * dsosp points to what ought to be in m_data and left contains
979 * what ought to be in m_len.
980 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
981 * cases. (The macros use the vars. dpos and dpos2)
982 */
983 int
984 nfsm_disct(mdp, dposp, siz, left, cp2)
985 struct mbuf **mdp;
986 caddr_t *dposp;
987 int siz;
988 int left;
989 caddr_t *cp2;
990 {
991 struct mbuf *m1, *m2;
992 struct mbuf *havebuf = NULL;
993 caddr_t src = *dposp;
994 caddr_t dst;
995 int len;
996
997 #ifdef DEBUG
998 if (left < 0)
999 panic("nfsm_disct: left < 0");
1000 #endif
1001 m1 = *mdp;
1002 /*
1003 * Skip through the mbuf chain looking for an mbuf with
1004 * some data. If the first mbuf found has enough data
1005 * and it is correctly aligned return it.
1006 */
1007 while (left == 0) {
1008 havebuf = m1;
1009 *mdp = m1 = m1->m_next;
1010 if (m1 == NULL)
1011 return (EBADRPC);
1012 src = mtod(m1, caddr_t);
1013 left = m1->m_len;
1014 /*
1015 * If we start a new mbuf and it is big enough
1016 * and correctly aligned just return it, don't
1017 * do any pull up.
1018 */
1019 if (left >= siz && nfsm_aligned(src)) {
1020 *cp2 = src;
1021 *dposp = src + siz;
1022 return (0);
1023 }
1024 }
1025 if (m1->m_flags & M_EXT) {
1026 if (havebuf) {
1027 /* If the first mbuf with data has external data
1028 * and there is a previous empty mbuf use it
1029 * to move the data into.
1030 */
1031 m2 = m1;
1032 *mdp = m1 = havebuf;
1033 if (m1->m_flags & M_EXT) {
1034 MEXTREMOVE(m1);
1035 }
1036 } else {
1037 /*
1038 * If the first mbuf has a external data
1039 * and there is no previous empty mbuf
1040 * allocate a new mbuf and move the external
1041 * data to the new mbuf. Also make the first
1042 * mbuf look empty.
1043 */
1044 m2 = m_get(M_WAIT, MT_DATA);
1045 m2->m_ext = m1->m_ext;
1046 m2->m_data = src;
1047 m2->m_len = left;
1048 MCLADDREFERENCE(m1, m2);
1049 MEXTREMOVE(m1);
1050 m2->m_next = m1->m_next;
1051 m1->m_next = m2;
1052 }
1053 m1->m_len = 0;
1054 dst = m1->m_dat;
1055 } else {
1056 /*
1057 * If the first mbuf has no external data
1058 * move the data to the front of the mbuf.
1059 */
1060 if ((dst = m1->m_dat) != src)
1061 memmove(dst, src, left);
1062 dst += left;
1063 m1->m_len = left;
1064 m2 = m1->m_next;
1065 }
1066 m1->m_flags &= ~M_PKTHDR;
1067 *cp2 = m1->m_data = m1->m_dat; /* data is at beginning of buffer */
1068 *dposp = mtod(m1, caddr_t) + siz;
1069 /*
1070 * Loop through mbufs pulling data up into first mbuf until
1071 * the first mbuf is full or there is no more data to
1072 * pullup.
1073 */
1074 while ((len = (MLEN - m1->m_len)) != 0 && m2) {
1075 if ((len = min(len, m2->m_len)) != 0)
1076 memcpy(dst, m2->m_data, len);
1077 m1->m_len += len;
1078 dst += len;
1079 m2->m_data += len;
1080 m2->m_len -= len;
1081 m2 = m2->m_next;
1082 }
1083 if (m1->m_len < siz)
1084 return (EBADRPC);
1085 return (0);
1086 }
1087
1088 /*
1089 * Advance the position in the mbuf chain.
1090 */
1091 int
1092 nfs_adv(mdp, dposp, offs, left)
1093 struct mbuf **mdp;
1094 caddr_t *dposp;
1095 int offs;
1096 int left;
1097 {
1098 struct mbuf *m;
1099 int s;
1100
1101 m = *mdp;
1102 s = left;
1103 while (s < offs) {
1104 offs -= s;
1105 m = m->m_next;
1106 if (m == NULL)
1107 return (EBADRPC);
1108 s = m->m_len;
1109 }
1110 *mdp = m;
1111 *dposp = mtod(m, caddr_t)+offs;
1112 return (0);
1113 }
1114
1115 /*
1116 * Copy a string into mbufs for the hard cases...
1117 */
1118 int
1119 nfsm_strtmbuf(mb, bpos, cp, siz)
1120 struct mbuf **mb;
1121 char **bpos;
1122 const char *cp;
1123 long siz;
1124 {
1125 struct mbuf *m1 = NULL, *m2;
1126 long left, xfer, len, tlen;
1127 u_int32_t *tl;
1128 int putsize;
1129
1130 putsize = 1;
1131 m2 = *mb;
1132 left = M_TRAILINGSPACE(m2);
1133 if (left > 0) {
1134 tl = ((u_int32_t *)(*bpos));
1135 *tl++ = txdr_unsigned(siz);
1136 putsize = 0;
1137 left -= NFSX_UNSIGNED;
1138 m2->m_len += NFSX_UNSIGNED;
1139 if (left > 0) {
1140 memcpy((caddr_t) tl, cp, left);
1141 siz -= left;
1142 cp += left;
1143 m2->m_len += left;
1144 left = 0;
1145 }
1146 }
1147 /* Loop around adding mbufs */
1148 while (siz > 0) {
1149 m1 = m_get(M_WAIT, MT_DATA);
1150 MCLAIM(m1, &nfs_mowner);
1151 if (siz > MLEN)
1152 m_clget(m1, M_WAIT);
1153 m1->m_len = NFSMSIZ(m1);
1154 m2->m_next = m1;
1155 m2 = m1;
1156 tl = mtod(m1, u_int32_t *);
1157 tlen = 0;
1158 if (putsize) {
1159 *tl++ = txdr_unsigned(siz);
1160 m1->m_len -= NFSX_UNSIGNED;
1161 tlen = NFSX_UNSIGNED;
1162 putsize = 0;
1163 }
1164 if (siz < m1->m_len) {
1165 len = nfsm_rndup(siz);
1166 xfer = siz;
1167 if (xfer < len)
1168 *(tl+(xfer>>2)) = 0;
1169 } else {
1170 xfer = len = m1->m_len;
1171 }
1172 memcpy((caddr_t) tl, cp, xfer);
1173 m1->m_len = len+tlen;
1174 siz -= xfer;
1175 cp += xfer;
1176 }
1177 *mb = m1;
1178 *bpos = mtod(m1, caddr_t)+m1->m_len;
1179 return (0);
1180 }
1181
1182 /*
1183 * Directory caching routines. They work as follows:
1184 * - a cache is maintained per VDIR nfsnode.
1185 * - for each offset cookie that is exported to userspace, and can
1186 * thus be thrown back at us as an offset to VOP_READDIR, store
1187 * information in the cache.
1188 * - cached are:
1189 * - cookie itself
1190 * - blocknumber (essentially just a search key in the buffer cache)
1191 * - entry number in block.
1192 * - offset cookie of block in which this entry is stored
1193 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1194 * - entries are looked up in a hash table
1195 * - also maintained is an LRU list of entries, used to determine
1196 * which ones to delete if the cache grows too large.
1197 * - if 32 <-> 64 translation mode is requested for a filesystem,
1198 * the cache also functions as a translation table
1199 * - in the translation case, invalidating the cache does not mean
1200 * flushing it, but just marking entries as invalid, except for
1201 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1202 * still be able to use the cache as a translation table.
1203 * - 32 bit cookies are uniquely created by combining the hash table
1204 * entry value, and one generation count per hash table entry,
1205 * incremented each time an entry is appended to the chain.
1206 * - the cache is invalidated each time a direcory is modified
1207 * - sanity checks are also done; if an entry in a block turns
1208 * out not to have a matching cookie, the cache is invalidated
1209 * and a new block starting from the wanted offset is fetched from
1210 * the server.
1211 * - directory entries as read from the server are extended to contain
1212 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1213 * the cache and exporting them to userspace through the cookie
1214 * argument to VOP_READDIR.
1215 */
1216
1217 u_long
1218 nfs_dirhash(off)
1219 off_t off;
1220 {
1221 int i;
1222 char *cp = (char *)&off;
1223 u_long sum = 0L;
1224
1225 for (i = 0 ; i < sizeof (off); i++)
1226 sum += *cp++;
1227
1228 return sum;
1229 }
1230
1231 void
1232 nfs_initdircache(vp)
1233 struct vnode *vp;
1234 {
1235 struct nfsnode *np = VTONFS(vp);
1236
1237 KASSERT(np->n_dircache == NULL);
1238
1239 np->n_dircachesize = 0;
1240 np->n_dblkno = 1;
1241 np->n_dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1242 M_WAITOK, &nfsdirhashmask);
1243 TAILQ_INIT(&np->n_dirchain);
1244 }
1245
1246 void
1247 nfs_initdirxlatecookie(vp)
1248 struct vnode *vp;
1249 {
1250 struct nfsnode *np = VTONFS(vp);
1251
1252 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1253 KASSERT(np->n_dirgens == NULL);
1254
1255 MALLOC(np->n_dirgens, unsigned *,
1256 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF, M_WAITOK);
1257 memset((caddr_t)np->n_dirgens, 0, NFS_DIRHASHSIZ * sizeof (unsigned));
1258 }
1259
1260 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
1261
1262 struct nfsdircache *
1263 nfs_searchdircache(vp, off, do32, hashent)
1264 struct vnode *vp;
1265 off_t off;
1266 int do32;
1267 int *hashent;
1268 {
1269 struct nfsdirhashhead *ndhp;
1270 struct nfsdircache *ndp = NULL;
1271 struct nfsnode *np = VTONFS(vp);
1272 unsigned ent;
1273
1274 /*
1275 * Zero is always a valid cookie.
1276 */
1277 if (off == 0)
1278 return &dzero;
1279
1280 /*
1281 * We use a 32bit cookie as search key, directly reconstruct
1282 * the hashentry. Else use the hashfunction.
1283 */
1284 if (do32) {
1285 ent = (u_int32_t)off >> 24;
1286 if (ent >= NFS_DIRHASHSIZ)
1287 return NULL;
1288 ndhp = &np->n_dircache[ent];
1289 } else {
1290 ndhp = NFSDIRHASH(np, off);
1291 }
1292
1293 if (hashent)
1294 *hashent = (int)(ndhp - np->n_dircache);
1295 if (do32) {
1296 LIST_FOREACH(ndp, ndhp, dc_hash) {
1297 if (ndp->dc_cookie32 == (u_int32_t)off) {
1298 /*
1299 * An invalidated entry will become the
1300 * start of a new block fetched from
1301 * the server.
1302 */
1303 if (ndp->dc_blkno == -1) {
1304 ndp->dc_blkcookie = ndp->dc_cookie;
1305 ndp->dc_blkno = np->n_dblkno++;
1306 ndp->dc_entry = 0;
1307 }
1308 break;
1309 }
1310 }
1311 } else {
1312 LIST_FOREACH(ndp, ndhp, dc_hash) {
1313 if (ndp->dc_cookie == off)
1314 break;
1315 }
1316 }
1317 return ndp;
1318 }
1319
1320
1321 struct nfsdircache *
1322 nfs_enterdircache(vp, off, blkoff, en, blkno)
1323 struct vnode *vp;
1324 off_t off, blkoff;
1325 int en;
1326 daddr_t blkno;
1327 {
1328 struct nfsnode *np = VTONFS(vp);
1329 struct nfsdirhashhead *ndhp;
1330 struct nfsdircache *ndp = NULL, *first;
1331 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1332 int hashent, gen, overwrite;
1333
1334 if (!np->n_dircache)
1335 /*
1336 * XXX would like to do this in nfs_nget but vtype
1337 * isn't known at that time.
1338 */
1339 nfs_initdircache(vp);
1340
1341 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1342 nfs_initdirxlatecookie(vp);
1343
1344 /*
1345 * XXX refuse entries for offset 0. amd(8) erroneously sets
1346 * cookie 0 for the '.' entry, making this necessary. This
1347 * isn't so bad, as 0 is a special case anyway.
1348 */
1349 if (off == 0)
1350 return &dzero;
1351
1352 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1353
1354 if (ndp && ndp->dc_blkno != -1) {
1355 /*
1356 * Overwriting an old entry. Check if it's the same.
1357 * If so, just return. If not, remove the old entry.
1358 */
1359 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1360 return ndp;
1361 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1362 LIST_REMOVE(ndp, dc_hash);
1363 FREE(ndp, M_NFSDIROFF);
1364 ndp = 0;
1365 }
1366
1367 ndhp = &np->n_dircache[hashent];
1368
1369 if (!ndp) {
1370 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
1371 M_WAITOK);
1372 overwrite = 0;
1373 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1374 /*
1375 * We're allocating a new entry, so bump the
1376 * generation number.
1377 */
1378 gen = ++np->n_dirgens[hashent];
1379 if (gen == 0) {
1380 np->n_dirgens[hashent]++;
1381 gen++;
1382 }
1383 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1384 }
1385 } else
1386 overwrite = 1;
1387
1388 /*
1389 * If the entry number is 0, we are at the start of a new block, so
1390 * allocate a new blocknumber.
1391 */
1392 if (en == 0)
1393 ndp->dc_blkno = np->n_dblkno++;
1394 else
1395 ndp->dc_blkno = blkno;
1396
1397 ndp->dc_cookie = off;
1398 ndp->dc_blkcookie = blkoff;
1399 ndp->dc_entry = en;
1400
1401 if (overwrite)
1402 return ndp;
1403
1404 /*
1405 * If the maximum directory cookie cache size has been reached
1406 * for this node, take one off the front. The idea is that
1407 * directories are typically read front-to-back once, so that
1408 * the oldest entries can be thrown away without much performance
1409 * loss.
1410 */
1411 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1412 first = TAILQ_FIRST(&np->n_dirchain);
1413 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
1414 LIST_REMOVE(first, dc_hash);
1415 FREE(first, M_NFSDIROFF);
1416 } else
1417 np->n_dircachesize++;
1418
1419 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1420 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1421 return ndp;
1422 }
1423
1424 void
1425 nfs_invaldircache(vp, forcefree)
1426 struct vnode *vp;
1427 int forcefree;
1428 {
1429 struct nfsnode *np = VTONFS(vp);
1430 struct nfsdircache *ndp = NULL;
1431 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1432
1433 #ifdef DIAGNOSTIC
1434 if (vp->v_type != VDIR)
1435 panic("nfs: invaldircache: not dir");
1436 #endif
1437
1438 if (!np->n_dircache)
1439 return;
1440
1441 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1442 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != 0) {
1443 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1444 LIST_REMOVE(ndp, dc_hash);
1445 FREE(ndp, M_NFSDIROFF);
1446 }
1447 np->n_dircachesize = 0;
1448 if (forcefree && np->n_dirgens) {
1449 FREE(np->n_dirgens, M_NFSDIROFF);
1450 np->n_dirgens = NULL;
1451 }
1452 } else {
1453 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain) {
1454 ndp->dc_blkno = -1;
1455 }
1456 }
1457
1458 np->n_dblkno = 1;
1459 }
1460
1461 /*
1462 * Called once before VFS init to initialize shared and
1463 * server-specific data structures.
1464 */
1465 void
1466 nfs_init()
1467 {
1468 nfsrtt.pos = 0;
1469 rpc_vers = txdr_unsigned(RPC_VER2);
1470 rpc_call = txdr_unsigned(RPC_CALL);
1471 rpc_reply = txdr_unsigned(RPC_REPLY);
1472 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1473 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1474 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1475 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1476 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1477 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1478 nfs_prog = txdr_unsigned(NFS_PROG);
1479 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1480 nfs_true = txdr_unsigned(TRUE);
1481 nfs_false = txdr_unsigned(FALSE);
1482 nfs_xdrneg1 = txdr_unsigned(-1);
1483 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1484 if (nfs_ticks < 1)
1485 nfs_ticks = 1;
1486 #ifdef NFSSERVER
1487 nfsrv_init(0); /* Init server data structures */
1488 nfsrv_initcache(); /* Init the server request cache */
1489 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
1490 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr);
1491 #endif /* NFSSERVER */
1492
1493 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1494 /*
1495 * Initialize the nqnfs data structures.
1496 */
1497 if (nqnfsstarttime == 0) {
1498 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1499 + nqsrv_clockskew + nqsrv_writeslack;
1500 NQLOADNOVRAM(nqnfsstarttime);
1501 CIRCLEQ_INIT(&nqtimerhead);
1502 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1503 M_WAITOK, &nqfhhash);
1504 }
1505 #endif
1506
1507 exithook_establish(nfs_exit, NULL);
1508
1509 /*
1510 * Initialize reply list and start timer
1511 */
1512 TAILQ_INIT(&nfs_reqq);
1513 nfs_timer(NULL);
1514 MOWNER_ATTACH(&nfs_mowner);
1515
1516 #ifdef NFS
1517 /* Initialize the kqueue structures */
1518 nfs_kqinit();
1519 /* Initialize the iod structures */
1520 nfs_iodinit();
1521 #endif
1522 }
1523
1524 #ifdef NFS
1525 /*
1526 * Called once at VFS init to initialize client-specific data structures.
1527 */
1528 void
1529 nfs_vfs_init()
1530 {
1531 nfs_nhinit(); /* Init the nfsnode table */
1532 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1533 }
1534
1535 void
1536 nfs_vfs_reinit()
1537 {
1538 nfs_nhreinit();
1539 }
1540
1541 void
1542 nfs_vfs_done()
1543 {
1544 nfs_nhdone();
1545 }
1546
1547 /*
1548 * Attribute cache routines.
1549 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1550 * that are on the mbuf list
1551 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1552 * error otherwise
1553 */
1554
1555 /*
1556 * Load the attribute cache (that lives in the nfsnode entry) with
1557 * the values on the mbuf list and
1558 * Iff vap not NULL
1559 * copy the attributes to *vaper
1560 */
1561 int
1562 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1563 struct vnode **vpp;
1564 struct mbuf **mdp;
1565 caddr_t *dposp;
1566 struct vattr *vaper;
1567 int flags;
1568 {
1569 int32_t t1;
1570 caddr_t cp2;
1571 int error = 0;
1572 struct mbuf *md;
1573 int v3 = NFS_ISV3(*vpp);
1574
1575 md = *mdp;
1576 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1577 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1578 if (error)
1579 return (error);
1580 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1581 }
1582
1583 int
1584 nfs_loadattrcache(vpp, fp, vaper, flags)
1585 struct vnode **vpp;
1586 struct nfs_fattr *fp;
1587 struct vattr *vaper;
1588 int flags;
1589 {
1590 struct vnode *vp = *vpp;
1591 struct vattr *vap;
1592 int v3 = NFS_ISV3(vp);
1593 enum vtype vtyp;
1594 u_short vmode;
1595 struct timespec mtime;
1596 struct vnode *nvp;
1597 int32_t rdev;
1598 struct nfsnode *np;
1599 extern int (**spec_nfsv2nodeop_p) __P((void *));
1600 uid_t uid;
1601 gid_t gid;
1602
1603 if (v3) {
1604 vtyp = nfsv3tov_type(fp->fa_type);
1605 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1606 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1607 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1608 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1609 } else {
1610 vtyp = nfsv2tov_type(fp->fa_type);
1611 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1612 if (vtyp == VNON || vtyp == VREG)
1613 vtyp = IFTOVT(vmode);
1614 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1615 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1616
1617 /*
1618 * Really ugly NFSv2 kludge.
1619 */
1620 if (vtyp == VCHR && rdev == 0xffffffff)
1621 vtyp = VFIFO;
1622 }
1623
1624 vmode &= ALLPERMS;
1625
1626 /*
1627 * If v_type == VNON it is a new node, so fill in the v_type,
1628 * n_mtime fields. Check to see if it represents a special
1629 * device, and if so, check for a possible alias. Once the
1630 * correct vnode has been obtained, fill in the rest of the
1631 * information.
1632 */
1633 np = VTONFS(vp);
1634 if (vp->v_type == VNON) {
1635 vp->v_type = vtyp;
1636 if (vp->v_type == VFIFO) {
1637 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1638 vp->v_op = fifo_nfsv2nodeop_p;
1639 }
1640 if (vp->v_type == VCHR || vp->v_type == VBLK) {
1641 vp->v_op = spec_nfsv2nodeop_p;
1642 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1643 if (nvp) {
1644 /*
1645 * Discard unneeded vnode, but save its nfsnode.
1646 * Since the nfsnode does not have a lock, its
1647 * vnode lock has to be carried over.
1648 */
1649 /*
1650 * XXX is the old node sure to be locked here?
1651 */
1652 KASSERT(lockstatus(&vp->v_lock) ==
1653 LK_EXCLUSIVE);
1654 nvp->v_data = vp->v_data;
1655 vp->v_data = NULL;
1656 VOP_UNLOCK(vp, 0);
1657 vp->v_op = spec_vnodeop_p;
1658 vrele(vp);
1659 vgone(vp);
1660 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1661 &nvp->v_interlock);
1662 /*
1663 * Reinitialize aliased node.
1664 */
1665 np->n_vnode = nvp;
1666 *vpp = vp = nvp;
1667 }
1668 }
1669 np->n_mtime = mtime.tv_sec;
1670 }
1671 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1672 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1673 vap = np->n_vattr;
1674
1675 /*
1676 * Invalidate access cache if uid, gid or mode changed.
1677 */
1678 if (np->n_accstamp != -1 &&
1679 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode))
1680 np->n_accstamp = -1;
1681
1682 vap->va_type = vtyp;
1683 vap->va_mode = vmode;
1684 vap->va_rdev = (dev_t)rdev;
1685 vap->va_mtime = mtime;
1686 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1687 switch (vtyp) {
1688 case VDIR:
1689 vap->va_blocksize = NFS_DIRFRAGSIZ;
1690 break;
1691 case VBLK:
1692 vap->va_blocksize = BLKDEV_IOSIZE;
1693 break;
1694 case VCHR:
1695 vap->va_blocksize = MAXBSIZE;
1696 break;
1697 default:
1698 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1699 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1700 break;
1701 }
1702 if (v3) {
1703 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1704 vap->va_uid = uid;
1705 vap->va_gid = gid;
1706 vap->va_size = fxdr_hyper(&fp->fa3_size);
1707 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1708 vap->va_fileid = fxdr_unsigned(int32_t,
1709 fp->fa3_fileid.nfsuquad[1]);
1710 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1711 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1712 vap->va_flags = 0;
1713 vap->va_filerev = 0;
1714 } else {
1715 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1716 vap->va_uid = uid;
1717 vap->va_gid = gid;
1718 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1719 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1720 * NFS_FABLKSIZE;
1721 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1722 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1723 vap->va_flags = 0;
1724 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1725 fp->fa2_ctime.nfsv2_sec);
1726 vap->va_ctime.tv_nsec = 0;
1727 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1728 vap->va_filerev = 0;
1729 }
1730 if (vap->va_size != np->n_size) {
1731 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1732 vap->va_size = np->n_size;
1733 } else {
1734 np->n_size = vap->va_size;
1735 if (vap->va_type == VREG) {
1736 if ((flags & NAC_NOTRUNC)
1737 && np->n_size < vp->v_size) {
1738 /*
1739 * we can't free pages now because
1740 * the pages can be owned by ourselves.
1741 */
1742 np->n_flag |= NTRUNCDELAYED;
1743 }
1744 else {
1745 uvm_vnp_setsize(vp, np->n_size);
1746 }
1747 }
1748 }
1749 }
1750 np->n_attrstamp = time.tv_sec;
1751 if (vaper != NULL) {
1752 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1753 if (np->n_flag & NCHG) {
1754 if (np->n_flag & NACC)
1755 vaper->va_atime = np->n_atim;
1756 if (np->n_flag & NUPD)
1757 vaper->va_mtime = np->n_mtim;
1758 }
1759 }
1760 return (0);
1761 }
1762
1763 /*
1764 * Check the time stamp
1765 * If the cache is valid, copy contents to *vap and return 0
1766 * otherwise return an error
1767 */
1768 int
1769 nfs_getattrcache(vp, vaper)
1770 struct vnode *vp;
1771 struct vattr *vaper;
1772 {
1773 struct nfsnode *np = VTONFS(vp);
1774 struct vattr *vap;
1775
1776 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1777 nfsstats.attrcache_misses++;
1778 return (ENOENT);
1779 }
1780 nfsstats.attrcache_hits++;
1781 vap = np->n_vattr;
1782 if (vap->va_size != np->n_size) {
1783 if (vap->va_type == VREG) {
1784 if (np->n_flag & NMODIFIED) {
1785 if (vap->va_size < np->n_size)
1786 vap->va_size = np->n_size;
1787 else
1788 np->n_size = vap->va_size;
1789 } else
1790 np->n_size = vap->va_size;
1791 uvm_vnp_setsize(vp, np->n_size);
1792 } else
1793 np->n_size = vap->va_size;
1794 }
1795 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1796 if (np->n_flag & NCHG) {
1797 if (np->n_flag & NACC)
1798 vaper->va_atime = np->n_atim;
1799 if (np->n_flag & NUPD)
1800 vaper->va_mtime = np->n_mtim;
1801 }
1802 return (0);
1803 }
1804
1805 void
1806 nfs_delayedtruncate(vp)
1807 struct vnode *vp;
1808 {
1809 struct nfsnode *np = VTONFS(vp);
1810
1811 if (np->n_flag & NTRUNCDELAYED) {
1812 np->n_flag &= ~NTRUNCDELAYED;
1813 uvm_vnp_setsize(vp, np->n_size);
1814 }
1815 }
1816
1817 /*
1818 * Heuristic to see if the server XDR encodes directory cookies or not.
1819 * it is not supposed to, but a lot of servers may do this. Also, since
1820 * most/all servers will implement V2 as well, it is expected that they
1821 * may return just 32 bits worth of cookie information, so we need to
1822 * find out in which 32 bits this information is available. We do this
1823 * to avoid trouble with emulated binaries that can't handle 64 bit
1824 * directory offsets.
1825 */
1826
1827 void
1828 nfs_cookieheuristic(vp, flagp, p, cred)
1829 struct vnode *vp;
1830 int *flagp;
1831 struct proc *p;
1832 struct ucred *cred;
1833 {
1834 struct uio auio;
1835 struct iovec aiov;
1836 caddr_t buf, cp;
1837 struct dirent *dp;
1838 off_t *cookies = NULL, *cop;
1839 int error, eof, nc, len;
1840
1841 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1842
1843 aiov.iov_base = buf;
1844 aiov.iov_len = NFS_DIRFRAGSIZ;
1845 auio.uio_iov = &aiov;
1846 auio.uio_iovcnt = 1;
1847 auio.uio_rw = UIO_READ;
1848 auio.uio_segflg = UIO_SYSSPACE;
1849 auio.uio_procp = p;
1850 auio.uio_resid = NFS_DIRFRAGSIZ;
1851 auio.uio_offset = 0;
1852
1853 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1854
1855 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1856 if (error || len == 0) {
1857 FREE(buf, M_TEMP);
1858 if (cookies)
1859 free(cookies, M_TEMP);
1860 return;
1861 }
1862
1863 /*
1864 * Find the first valid entry and look at its offset cookie.
1865 */
1866
1867 cp = buf;
1868 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1869 dp = (struct dirent *)cp;
1870 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1871 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1872 *flagp |= NFSMNT_SWAPCOOKIE;
1873 nfs_invaldircache(vp, 0);
1874 nfs_vinvalbuf(vp, 0, cred, p, 1);
1875 }
1876 break;
1877 }
1878 cop++;
1879 cp += dp->d_reclen;
1880 }
1881
1882 FREE(buf, M_TEMP);
1883 free(cookies, M_TEMP);
1884 }
1885 #endif /* NFS */
1886
1887 /*
1888 * Set up nameidata for a lookup() call and do it.
1889 *
1890 * If pubflag is set, this call is done for a lookup operation on the
1891 * public filehandle. In that case we allow crossing mountpoints and
1892 * absolute pathnames. However, the caller is expected to check that
1893 * the lookup result is within the public fs, and deny access if
1894 * it is not.
1895 */
1896 int
1897 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1898 struct nameidata *ndp;
1899 fhandle_t *fhp;
1900 uint32_t len;
1901 struct nfssvc_sock *slp;
1902 struct mbuf *nam;
1903 struct mbuf **mdp;
1904 caddr_t *dposp;
1905 struct vnode **retdirp;
1906 struct proc *p;
1907 int kerbflag, pubflag;
1908 {
1909 int i, rem;
1910 struct mbuf *md;
1911 char *fromcp, *tocp, *cp;
1912 struct iovec aiov;
1913 struct uio auio;
1914 struct vnode *dp;
1915 int error, rdonly, linklen;
1916 struct componentname *cnp = &ndp->ni_cnd;
1917
1918 *retdirp = (struct vnode *)0;
1919
1920 if ((len + 1) > MAXPATHLEN)
1921 return (ENAMETOOLONG);
1922 cnp->cn_pnbuf = PNBUF_GET();
1923
1924 /*
1925 * Copy the name from the mbuf list to ndp->ni_pnbuf
1926 * and set the various ndp fields appropriately.
1927 */
1928 fromcp = *dposp;
1929 tocp = cnp->cn_pnbuf;
1930 md = *mdp;
1931 rem = mtod(md, caddr_t) + md->m_len - fromcp;
1932 for (i = 0; i < len; i++) {
1933 while (rem == 0) {
1934 md = md->m_next;
1935 if (md == NULL) {
1936 error = EBADRPC;
1937 goto out;
1938 }
1939 fromcp = mtod(md, caddr_t);
1940 rem = md->m_len;
1941 }
1942 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1943 error = EACCES;
1944 goto out;
1945 }
1946 *tocp++ = *fromcp++;
1947 rem--;
1948 }
1949 *tocp = '\0';
1950 *mdp = md;
1951 *dposp = fromcp;
1952 len = nfsm_rndup(len)-len;
1953 if (len > 0) {
1954 if (rem >= len)
1955 *dposp += len;
1956 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1957 goto out;
1958 }
1959
1960 /*
1961 * Extract and set starting directory.
1962 */
1963 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1964 nam, &rdonly, kerbflag, pubflag);
1965 if (error)
1966 goto out;
1967 if (dp->v_type != VDIR) {
1968 vrele(dp);
1969 error = ENOTDIR;
1970 goto out;
1971 }
1972
1973 if (rdonly)
1974 cnp->cn_flags |= RDONLY;
1975
1976 *retdirp = dp;
1977
1978 if (pubflag) {
1979 /*
1980 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1981 * and the 'native path' indicator.
1982 */
1983 cp = PNBUF_GET();
1984 fromcp = cnp->cn_pnbuf;
1985 tocp = cp;
1986 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1987 switch ((unsigned char)*fromcp) {
1988 case WEBNFS_NATIVE_CHAR:
1989 /*
1990 * 'Native' path for us is the same
1991 * as a path according to the NFS spec,
1992 * just skip the escape char.
1993 */
1994 fromcp++;
1995 break;
1996 /*
1997 * More may be added in the future, range 0x80-0xff
1998 */
1999 default:
2000 error = EIO;
2001 PNBUF_PUT(cp);
2002 goto out;
2003 }
2004 }
2005 /*
2006 * Translate the '%' escapes, URL-style.
2007 */
2008 while (*fromcp != '\0') {
2009 if (*fromcp == WEBNFS_ESC_CHAR) {
2010 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2011 fromcp++;
2012 *tocp++ = HEXSTRTOI(fromcp);
2013 fromcp += 2;
2014 continue;
2015 } else {
2016 error = ENOENT;
2017 PNBUF_PUT(cp);
2018 goto out;
2019 }
2020 } else
2021 *tocp++ = *fromcp++;
2022 }
2023 *tocp = '\0';
2024 PNBUF_PUT(cnp->cn_pnbuf);
2025 cnp->cn_pnbuf = cp;
2026 }
2027
2028 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2029 ndp->ni_segflg = UIO_SYSSPACE;
2030 ndp->ni_rootdir = rootvnode;
2031
2032 if (pubflag) {
2033 ndp->ni_loopcnt = 0;
2034 if (cnp->cn_pnbuf[0] == '/')
2035 dp = rootvnode;
2036 } else {
2037 cnp->cn_flags |= NOCROSSMOUNT;
2038 }
2039
2040 cnp->cn_proc = p;
2041 VREF(dp);
2042
2043 for (;;) {
2044 cnp->cn_nameptr = cnp->cn_pnbuf;
2045 ndp->ni_startdir = dp;
2046 /*
2047 * And call lookup() to do the real work
2048 */
2049 error = lookup(ndp);
2050 if (error) {
2051 PNBUF_PUT(cnp->cn_pnbuf);
2052 return (error);
2053 }
2054 /*
2055 * Check for encountering a symbolic link
2056 */
2057 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2058 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2059 cnp->cn_flags |= HASBUF;
2060 else
2061 PNBUF_PUT(cnp->cn_pnbuf);
2062 return (0);
2063 } else {
2064 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
2065 VOP_UNLOCK(ndp->ni_dvp, 0);
2066 if (!pubflag) {
2067 error = EINVAL;
2068 break;
2069 }
2070
2071 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2072 error = ELOOP;
2073 break;
2074 }
2075 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2076 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2077 cnp->cn_proc);
2078 if (error != 0)
2079 break;
2080 }
2081 if (ndp->ni_pathlen > 1)
2082 cp = PNBUF_GET();
2083 else
2084 cp = cnp->cn_pnbuf;
2085 aiov.iov_base = cp;
2086 aiov.iov_len = MAXPATHLEN;
2087 auio.uio_iov = &aiov;
2088 auio.uio_iovcnt = 1;
2089 auio.uio_offset = 0;
2090 auio.uio_rw = UIO_READ;
2091 auio.uio_segflg = UIO_SYSSPACE;
2092 auio.uio_procp = (struct proc *)0;
2093 auio.uio_resid = MAXPATHLEN;
2094 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2095 if (error) {
2096 badlink:
2097 if (ndp->ni_pathlen > 1)
2098 PNBUF_PUT(cp);
2099 break;
2100 }
2101 linklen = MAXPATHLEN - auio.uio_resid;
2102 if (linklen == 0) {
2103 error = ENOENT;
2104 goto badlink;
2105 }
2106 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2107 error = ENAMETOOLONG;
2108 goto badlink;
2109 }
2110 if (ndp->ni_pathlen > 1) {
2111 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2112 PNBUF_PUT(cnp->cn_pnbuf);
2113 cnp->cn_pnbuf = cp;
2114 } else
2115 cnp->cn_pnbuf[linklen] = '\0';
2116 ndp->ni_pathlen += linklen;
2117 vput(ndp->ni_vp);
2118 dp = ndp->ni_dvp;
2119 /*
2120 * Check if root directory should replace current directory.
2121 */
2122 if (cnp->cn_pnbuf[0] == '/') {
2123 vrele(dp);
2124 dp = ndp->ni_rootdir;
2125 VREF(dp);
2126 }
2127 }
2128 }
2129 vrele(ndp->ni_dvp);
2130 vput(ndp->ni_vp);
2131 ndp->ni_vp = NULL;
2132 out:
2133 PNBUF_PUT(cnp->cn_pnbuf);
2134 return (error);
2135 }
2136
2137 /*
2138 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2139 * boundary and only trims off the back end
2140 *
2141 * 1. trim off 'len' bytes as m_adj(mp, -len).
2142 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2143 */
2144 void
2145 nfs_zeropad(mp, len, nul)
2146 struct mbuf *mp;
2147 int len;
2148 int nul;
2149 {
2150 struct mbuf *m;
2151 int count, i;
2152 char *cp;
2153
2154 /*
2155 * Trim from tail. Scan the mbuf chain,
2156 * calculating its length and finding the last mbuf.
2157 * If the adjustment only affects this mbuf, then just
2158 * adjust and return. Otherwise, rescan and truncate
2159 * after the remaining size.
2160 */
2161 count = 0;
2162 m = mp;
2163 for (;;) {
2164 count += m->m_len;
2165 if (m->m_next == NULL)
2166 break;
2167 m = m->m_next;
2168 }
2169
2170 KDASSERT(count >= len);
2171
2172 if (m->m_len >= len) {
2173 m->m_len -= len;
2174 } else {
2175 count -= len;
2176 /*
2177 * Correct length for chain is "count".
2178 * Find the mbuf with last data, adjust its length,
2179 * and toss data from remaining mbufs on chain.
2180 */
2181 for (m = mp; m; m = m->m_next) {
2182 if (m->m_len >= count) {
2183 m->m_len = count;
2184 break;
2185 }
2186 count -= m->m_len;
2187 }
2188 m_freem(m->m_next);
2189 m->m_next = NULL;
2190 }
2191
2192 /*
2193 * zero-padding.
2194 */
2195 if (nul > 0) {
2196 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2197 struct mbuf *n;
2198
2199 KDASSERT(MLEN >= nul);
2200 n = m_get(M_WAIT, MT_DATA);
2201 MCLAIM(n, &nfs_mowner);
2202 n->m_len = nul;
2203 n->m_next = m->m_next;
2204 m->m_next = n;
2205 m = n;
2206 cp = mtod(n, caddr_t);
2207 } else {
2208 cp = mtod(m, caddr_t) + m->m_len;
2209 m->m_len += nul;
2210 }
2211 for (i = 0; i < nul; i++)
2212 *cp++ = '\0';
2213 }
2214 return;
2215 }
2216
2217 /*
2218 * Make these functions instead of macros, so that the kernel text size
2219 * doesn't get too big...
2220 */
2221 void
2222 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2223 struct nfsrv_descript *nfsd;
2224 int before_ret;
2225 struct vattr *before_vap;
2226 int after_ret;
2227 struct vattr *after_vap;
2228 struct mbuf **mbp;
2229 char **bposp;
2230 {
2231 struct mbuf *mb = *mbp;
2232 char *bpos = *bposp;
2233 u_int32_t *tl;
2234
2235 if (before_ret) {
2236 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2237 *tl = nfs_false;
2238 } else {
2239 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2240 *tl++ = nfs_true;
2241 txdr_hyper(before_vap->va_size, tl);
2242 tl += 2;
2243 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2244 tl += 2;
2245 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2246 }
2247 *bposp = bpos;
2248 *mbp = mb;
2249 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2250 }
2251
2252 void
2253 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2254 struct nfsrv_descript *nfsd;
2255 int after_ret;
2256 struct vattr *after_vap;
2257 struct mbuf **mbp;
2258 char **bposp;
2259 {
2260 struct mbuf *mb = *mbp;
2261 char *bpos = *bposp;
2262 u_int32_t *tl;
2263 struct nfs_fattr *fp;
2264
2265 if (after_ret) {
2266 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2267 *tl = nfs_false;
2268 } else {
2269 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2270 *tl++ = nfs_true;
2271 fp = (struct nfs_fattr *)tl;
2272 nfsm_srvfattr(nfsd, after_vap, fp);
2273 }
2274 *mbp = mb;
2275 *bposp = bpos;
2276 }
2277
2278 void
2279 nfsm_srvfattr(nfsd, vap, fp)
2280 struct nfsrv_descript *nfsd;
2281 struct vattr *vap;
2282 struct nfs_fattr *fp;
2283 {
2284
2285 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2286 fp->fa_uid = txdr_unsigned(vap->va_uid);
2287 fp->fa_gid = txdr_unsigned(vap->va_gid);
2288 if (nfsd->nd_flag & ND_NFSV3) {
2289 fp->fa_type = vtonfsv3_type(vap->va_type);
2290 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2291 txdr_hyper(vap->va_size, &fp->fa3_size);
2292 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2293 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2294 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2295 fp->fa3_fsid.nfsuquad[0] = 0;
2296 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2297 fp->fa3_fileid.nfsuquad[0] = 0;
2298 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2299 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2300 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2301 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2302 } else {
2303 fp->fa_type = vtonfsv2_type(vap->va_type);
2304 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2305 fp->fa2_size = txdr_unsigned(vap->va_size);
2306 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2307 if (vap->va_type == VFIFO)
2308 fp->fa2_rdev = 0xffffffff;
2309 else
2310 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2311 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2312 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2313 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2314 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2315 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2316 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2317 }
2318 }
2319
2320 /*
2321 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2322 * - look up fsid in mount list (if not found ret error)
2323 * - get vp and export rights by calling VFS_FHTOVP()
2324 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2325 * - if not lockflag unlock it with VOP_UNLOCK()
2326 */
2327 int
2328 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2329 fhandle_t *fhp;
2330 int lockflag;
2331 struct vnode **vpp;
2332 struct ucred *cred;
2333 struct nfssvc_sock *slp;
2334 struct mbuf *nam;
2335 int *rdonlyp;
2336 int kerbflag;
2337 {
2338 struct mount *mp;
2339 int i;
2340 struct ucred *credanon;
2341 int error, exflags;
2342 struct sockaddr_in *saddr;
2343
2344 *vpp = (struct vnode *)0;
2345
2346 if (nfs_ispublicfh(fhp)) {
2347 if (!pubflag || !nfs_pub.np_valid)
2348 return (ESTALE);
2349 fhp = &nfs_pub.np_handle;
2350 }
2351
2352 mp = vfs_getvfs(&fhp->fh_fsid);
2353 if (!mp)
2354 return (ESTALE);
2355 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2356 if (error)
2357 return (error);
2358 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2359 if (error)
2360 return (error);
2361
2362 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2363 saddr = mtod(nam, struct sockaddr_in *);
2364 if ((saddr->sin_family == AF_INET) &&
2365 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2366 vput(*vpp);
2367 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2368 }
2369 #ifdef INET6
2370 if ((saddr->sin_family == AF_INET6) &&
2371 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2372 vput(*vpp);
2373 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2374 }
2375 #endif
2376 }
2377 /*
2378 * Check/setup credentials.
2379 */
2380 if (exflags & MNT_EXKERB) {
2381 if (!kerbflag) {
2382 vput(*vpp);
2383 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2384 }
2385 } else if (kerbflag) {
2386 vput(*vpp);
2387 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2388 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2389 cred->cr_uid = credanon->cr_uid;
2390 cred->cr_gid = credanon->cr_gid;
2391 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2392 cred->cr_groups[i] = credanon->cr_groups[i];
2393 cred->cr_ngroups = i;
2394 }
2395 if (exflags & MNT_EXRDONLY)
2396 *rdonlyp = 1;
2397 else
2398 *rdonlyp = 0;
2399 if (!lockflag)
2400 VOP_UNLOCK(*vpp, 0);
2401 return (0);
2402 }
2403
2404 /*
2405 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2406 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2407 * transformed this to all zeroes in both cases, so check for it.
2408 */
2409 int
2410 nfs_ispublicfh(fhp)
2411 fhandle_t *fhp;
2412 {
2413 char *cp = (char *)fhp;
2414 int i;
2415
2416 for (i = 0; i < NFSX_V3FH; i++)
2417 if (*cp++ != 0)
2418 return (FALSE);
2419 return (TRUE);
2420 }
2421
2422 /*
2423 * This function compares two net addresses by family and returns TRUE
2424 * if they are the same host.
2425 * If there is any doubt, return FALSE.
2426 * The AF_INET family is handled as a special case so that address mbufs
2427 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2428 */
2429 int
2430 netaddr_match(family, haddr, nam)
2431 int family;
2432 union nethostaddr *haddr;
2433 struct mbuf *nam;
2434 {
2435 struct sockaddr_in *inetaddr;
2436
2437 switch (family) {
2438 case AF_INET:
2439 inetaddr = mtod(nam, struct sockaddr_in *);
2440 if (inetaddr->sin_family == AF_INET &&
2441 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2442 return (1);
2443 break;
2444 #ifdef INET6
2445 case AF_INET6:
2446 {
2447 struct sockaddr_in6 *sin6_1, *sin6_2;
2448
2449 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2450 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2451 if (sin6_1->sin6_family == AF_INET6 &&
2452 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2453 return 1;
2454 }
2455 #endif
2456 #ifdef ISO
2457 case AF_ISO:
2458 {
2459 struct sockaddr_iso *isoaddr1, *isoaddr2;
2460
2461 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2462 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2463 if (isoaddr1->siso_family == AF_ISO &&
2464 isoaddr1->siso_nlen > 0 &&
2465 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2466 SAME_ISOADDR(isoaddr1, isoaddr2))
2467 return (1);
2468 break;
2469 }
2470 #endif /* ISO */
2471 default:
2472 break;
2473 };
2474 return (0);
2475 }
2476
2477 /*
2478 * The write verifier has changed (probably due to a server reboot), so all
2479 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2480 * as dirty or are being written out just now, all this takes is clearing
2481 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2482 * the mount point.
2483 */
2484 void
2485 nfs_clearcommit(mp)
2486 struct mount *mp;
2487 {
2488 struct vnode *vp;
2489 struct nfsnode *np;
2490 struct vm_page *pg;
2491 struct nfsmount *nmp = VFSTONFS(mp);
2492
2493 lockmgr(&nmp->nm_writeverflock, LK_EXCLUSIVE, NULL);
2494
2495 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2496 KASSERT(vp->v_mount == mp);
2497 if (vp->v_type == VNON)
2498 continue;
2499 np = VTONFS(vp);
2500 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2501 np->n_pushedhi = 0;
2502 np->n_commitflags &=
2503 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2504 simple_lock(&vp->v_uobj.vmobjlock);
2505 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2506 pg->flags &= ~PG_NEEDCOMMIT;
2507 }
2508 simple_unlock(&vp->v_uobj.vmobjlock);
2509 }
2510 simple_lock(&nmp->nm_slock);
2511 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2512 simple_unlock(&nmp->nm_slock);
2513 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
2514 }
2515
2516 void
2517 nfs_merge_commit_ranges(vp)
2518 struct vnode *vp;
2519 {
2520 struct nfsnode *np = VTONFS(vp);
2521
2522 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2523
2524 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2525 np->n_pushedlo = np->n_pushlo;
2526 np->n_pushedhi = np->n_pushhi;
2527 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2528 } else {
2529 if (np->n_pushlo < np->n_pushedlo)
2530 np->n_pushedlo = np->n_pushlo;
2531 if (np->n_pushhi > np->n_pushedhi)
2532 np->n_pushedhi = np->n_pushhi;
2533 }
2534
2535 np->n_pushlo = np->n_pushhi = 0;
2536 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2537
2538 #ifdef NFS_DEBUG_COMMIT
2539 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2540 (unsigned)np->n_pushedhi);
2541 #endif
2542 }
2543
2544 int
2545 nfs_in_committed_range(vp, off, len)
2546 struct vnode *vp;
2547 off_t off, len;
2548 {
2549 struct nfsnode *np = VTONFS(vp);
2550 off_t lo, hi;
2551
2552 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2553 return 0;
2554 lo = off;
2555 hi = lo + len;
2556
2557 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2558 }
2559
2560 int
2561 nfs_in_tobecommitted_range(vp, off, len)
2562 struct vnode *vp;
2563 off_t off, len;
2564 {
2565 struct nfsnode *np = VTONFS(vp);
2566 off_t lo, hi;
2567
2568 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2569 return 0;
2570 lo = off;
2571 hi = lo + len;
2572
2573 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2574 }
2575
2576 void
2577 nfs_add_committed_range(vp, off, len)
2578 struct vnode *vp;
2579 off_t off, len;
2580 {
2581 struct nfsnode *np = VTONFS(vp);
2582 off_t lo, hi;
2583
2584 lo = off;
2585 hi = lo + len;
2586
2587 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2588 np->n_pushedlo = lo;
2589 np->n_pushedhi = hi;
2590 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2591 } else {
2592 if (hi > np->n_pushedhi)
2593 np->n_pushedhi = hi;
2594 if (lo < np->n_pushedlo)
2595 np->n_pushedlo = lo;
2596 }
2597 #ifdef NFS_DEBUG_COMMIT
2598 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2599 (unsigned)np->n_pushedhi);
2600 #endif
2601 }
2602
2603 void
2604 nfs_del_committed_range(vp, off, len)
2605 struct vnode *vp;
2606 off_t off, len;
2607 {
2608 struct nfsnode *np = VTONFS(vp);
2609 off_t lo, hi;
2610
2611 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2612 return;
2613
2614 lo = off;
2615 hi = lo + len;
2616
2617 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2618 return;
2619 if (lo <= np->n_pushedlo)
2620 np->n_pushedlo = hi;
2621 else if (hi >= np->n_pushedhi)
2622 np->n_pushedhi = lo;
2623 else {
2624 /*
2625 * XXX There's only one range. If the deleted range
2626 * is in the middle, pick the largest of the
2627 * contiguous ranges that it leaves.
2628 */
2629 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2630 np->n_pushedhi = lo;
2631 else
2632 np->n_pushedlo = hi;
2633 }
2634 #ifdef NFS_DEBUG_COMMIT
2635 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2636 (unsigned)np->n_pushedhi);
2637 #endif
2638 }
2639
2640 void
2641 nfs_add_tobecommitted_range(vp, off, len)
2642 struct vnode *vp;
2643 off_t off, len;
2644 {
2645 struct nfsnode *np = VTONFS(vp);
2646 off_t lo, hi;
2647
2648 lo = off;
2649 hi = lo + len;
2650
2651 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2652 np->n_pushlo = lo;
2653 np->n_pushhi = hi;
2654 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2655 } else {
2656 if (lo < np->n_pushlo)
2657 np->n_pushlo = lo;
2658 if (hi > np->n_pushhi)
2659 np->n_pushhi = hi;
2660 }
2661 #ifdef NFS_DEBUG_COMMIT
2662 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2663 (unsigned)np->n_pushhi);
2664 #endif
2665 }
2666
2667 void
2668 nfs_del_tobecommitted_range(vp, off, len)
2669 struct vnode *vp;
2670 off_t off, len;
2671 {
2672 struct nfsnode *np = VTONFS(vp);
2673 off_t lo, hi;
2674
2675 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2676 return;
2677
2678 lo = off;
2679 hi = lo + len;
2680
2681 if (lo > np->n_pushhi || hi < np->n_pushlo)
2682 return;
2683
2684 if (lo <= np->n_pushlo)
2685 np->n_pushlo = hi;
2686 else if (hi >= np->n_pushhi)
2687 np->n_pushhi = lo;
2688 else {
2689 /*
2690 * XXX There's only one range. If the deleted range
2691 * is in the middle, pick the largest of the
2692 * contiguous ranges that it leaves.
2693 */
2694 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2695 np->n_pushhi = lo;
2696 else
2697 np->n_pushlo = hi;
2698 }
2699 #ifdef NFS_DEBUG_COMMIT
2700 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2701 (unsigned)np->n_pushhi);
2702 #endif
2703 }
2704
2705 /*
2706 * Map errnos to NFS error numbers. For Version 3 also filter out error
2707 * numbers not specified for the associated procedure.
2708 */
2709 int
2710 nfsrv_errmap(nd, err)
2711 struct nfsrv_descript *nd;
2712 int err;
2713 {
2714 const short *defaulterrp, *errp;
2715
2716 if (nd->nd_flag & ND_NFSV3) {
2717 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2718 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2719 while (*++errp) {
2720 if (*errp == err)
2721 return (err);
2722 else if (*errp > err)
2723 break;
2724 }
2725 return ((int)*defaulterrp);
2726 } else
2727 return (err & 0xffff);
2728 }
2729 if (err <= ELAST)
2730 return ((int)nfsrv_v2errmap[err - 1]);
2731 return (NFSERR_IO);
2732 }
2733
2734 /*
2735 * Sort the group list in increasing numerical order.
2736 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2737 * that used to be here.)
2738 */
2739 void
2740 nfsrvw_sort(list, num)
2741 gid_t *list;
2742 int num;
2743 {
2744 int i, j;
2745 gid_t v;
2746
2747 /* Insertion sort. */
2748 for (i = 1; i < num; i++) {
2749 v = list[i];
2750 /* find correct slot for value v, moving others up */
2751 for (j = i; --j >= 0 && v < list[j];)
2752 list[j + 1] = list[j];
2753 list[j + 1] = v;
2754 }
2755 }
2756
2757 /*
2758 * copy credentials making sure that the result can be compared with memcmp().
2759 */
2760 void
2761 nfsrv_setcred(incred, outcred)
2762 struct ucred *incred, *outcred;
2763 {
2764 int i;
2765
2766 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2767 outcred->cr_ref = 1;
2768 outcred->cr_uid = incred->cr_uid;
2769 outcred->cr_gid = incred->cr_gid;
2770 outcred->cr_ngroups = incred->cr_ngroups;
2771 for (i = 0; i < incred->cr_ngroups; i++)
2772 outcred->cr_groups[i] = incred->cr_groups[i];
2773 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2774 }
2775