nfs_subs.c revision 1.128 1 /* $NetBSD: nfs_subs.c,v 1.128 2003/09/26 11:51:53 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.128 2003/09/26 11:51:53 yamt Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <nfs/rpcv2.h>
104 #include <nfs/nfsproto.h>
105 #include <nfs/nfsnode.h>
106 #include <nfs/nfs.h>
107 #include <nfs/xdr_subs.h>
108 #include <nfs/nfsm_subs.h>
109 #include <nfs/nfsmount.h>
110 #include <nfs/nqnfs.h>
111 #include <nfs/nfsrtt.h>
112 #include <nfs/nfs_var.h>
113
114 #include <miscfs/specfs/specdev.h>
115
116 #include <netinet/in.h>
117 #ifdef ISO
118 #include <netiso/iso.h>
119 #endif
120
121 /*
122 * Data items converted to xdr at startup, since they are constant
123 * This is kinda hokey, but may save a little time doing byte swaps
124 */
125 u_int32_t nfs_xdrneg1;
126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
127 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
128 rpc_auth_kerb;
129 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
130
131 /* And other global data */
132 const nfstype nfsv2_type[9] =
133 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
134 const nfstype nfsv3_type[9] =
135 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
136 const enum vtype nv2tov_type[8] =
137 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
138 const enum vtype nv3tov_type[8] =
139 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
140 int nfs_ticks;
141 int nfs_commitsize;
142
143 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
144
145 /* NFS client/server stats. */
146 struct nfsstats nfsstats;
147
148 /*
149 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
150 */
151 const int nfsv3_procid[NFS_NPROCS] = {
152 NFSPROC_NULL,
153 NFSPROC_GETATTR,
154 NFSPROC_SETATTR,
155 NFSPROC_NOOP,
156 NFSPROC_LOOKUP,
157 NFSPROC_READLINK,
158 NFSPROC_READ,
159 NFSPROC_NOOP,
160 NFSPROC_WRITE,
161 NFSPROC_CREATE,
162 NFSPROC_REMOVE,
163 NFSPROC_RENAME,
164 NFSPROC_LINK,
165 NFSPROC_SYMLINK,
166 NFSPROC_MKDIR,
167 NFSPROC_RMDIR,
168 NFSPROC_READDIR,
169 NFSPROC_FSSTAT,
170 NFSPROC_NOOP,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP,
177 NFSPROC_NOOP
178 };
179
180 /*
181 * and the reverse mapping from generic to Version 2 procedure numbers
182 */
183 const int nfsv2_procid[NFS_NPROCS] = {
184 NFSV2PROC_NULL,
185 NFSV2PROC_GETATTR,
186 NFSV2PROC_SETATTR,
187 NFSV2PROC_LOOKUP,
188 NFSV2PROC_NOOP,
189 NFSV2PROC_READLINK,
190 NFSV2PROC_READ,
191 NFSV2PROC_WRITE,
192 NFSV2PROC_CREATE,
193 NFSV2PROC_MKDIR,
194 NFSV2PROC_SYMLINK,
195 NFSV2PROC_CREATE,
196 NFSV2PROC_REMOVE,
197 NFSV2PROC_RMDIR,
198 NFSV2PROC_RENAME,
199 NFSV2PROC_LINK,
200 NFSV2PROC_READDIR,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_STATFS,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_NOOP,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 NFSV2PROC_NOOP,
209 NFSV2PROC_NOOP,
210 };
211
212 /*
213 * Maps errno values to nfs error numbers.
214 * Use NFSERR_IO as the catch all for ones not specifically defined in
215 * RFC 1094.
216 */
217 static const u_char nfsrv_v2errmap[ELAST] = {
218 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
219 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
222 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
231 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
232 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
233 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
234 NFSERR_IO, NFSERR_IO,
235 };
236
237 /*
238 * Maps errno values to nfs error numbers.
239 * Although it is not obvious whether or not NFS clients really care if
240 * a returned error value is in the specified list for the procedure, the
241 * safest thing to do is filter them appropriately. For Version 2, the
242 * X/Open XNFS document is the only specification that defines error values
243 * for each RPC (The RFC simply lists all possible error values for all RPCs),
244 * so I have decided to not do this for Version 2.
245 * The first entry is the default error return and the rest are the valid
246 * errors for that RPC in increasing numeric order.
247 */
248 static const short nfsv3err_null[] = {
249 0,
250 0,
251 };
252
253 static const short nfsv3err_getattr[] = {
254 NFSERR_IO,
255 NFSERR_IO,
256 NFSERR_STALE,
257 NFSERR_BADHANDLE,
258 NFSERR_SERVERFAULT,
259 0,
260 };
261
262 static const short nfsv3err_setattr[] = {
263 NFSERR_IO,
264 NFSERR_PERM,
265 NFSERR_IO,
266 NFSERR_ACCES,
267 NFSERR_INVAL,
268 NFSERR_NOSPC,
269 NFSERR_ROFS,
270 NFSERR_DQUOT,
271 NFSERR_STALE,
272 NFSERR_BADHANDLE,
273 NFSERR_NOT_SYNC,
274 NFSERR_SERVERFAULT,
275 0,
276 };
277
278 static const short nfsv3err_lookup[] = {
279 NFSERR_IO,
280 NFSERR_NOENT,
281 NFSERR_IO,
282 NFSERR_ACCES,
283 NFSERR_NOTDIR,
284 NFSERR_NAMETOL,
285 NFSERR_STALE,
286 NFSERR_BADHANDLE,
287 NFSERR_SERVERFAULT,
288 0,
289 };
290
291 static const short nfsv3err_access[] = {
292 NFSERR_IO,
293 NFSERR_IO,
294 NFSERR_STALE,
295 NFSERR_BADHANDLE,
296 NFSERR_SERVERFAULT,
297 0,
298 };
299
300 static const short nfsv3err_readlink[] = {
301 NFSERR_IO,
302 NFSERR_IO,
303 NFSERR_ACCES,
304 NFSERR_INVAL,
305 NFSERR_STALE,
306 NFSERR_BADHANDLE,
307 NFSERR_NOTSUPP,
308 NFSERR_SERVERFAULT,
309 0,
310 };
311
312 static const short nfsv3err_read[] = {
313 NFSERR_IO,
314 NFSERR_IO,
315 NFSERR_NXIO,
316 NFSERR_ACCES,
317 NFSERR_INVAL,
318 NFSERR_STALE,
319 NFSERR_BADHANDLE,
320 NFSERR_SERVERFAULT,
321 NFSERR_JUKEBOX,
322 0,
323 };
324
325 static const short nfsv3err_write[] = {
326 NFSERR_IO,
327 NFSERR_IO,
328 NFSERR_ACCES,
329 NFSERR_INVAL,
330 NFSERR_FBIG,
331 NFSERR_NOSPC,
332 NFSERR_ROFS,
333 NFSERR_DQUOT,
334 NFSERR_STALE,
335 NFSERR_BADHANDLE,
336 NFSERR_SERVERFAULT,
337 NFSERR_JUKEBOX,
338 0,
339 };
340
341 static const short nfsv3err_create[] = {
342 NFSERR_IO,
343 NFSERR_IO,
344 NFSERR_ACCES,
345 NFSERR_EXIST,
346 NFSERR_NOTDIR,
347 NFSERR_NOSPC,
348 NFSERR_ROFS,
349 NFSERR_NAMETOL,
350 NFSERR_DQUOT,
351 NFSERR_STALE,
352 NFSERR_BADHANDLE,
353 NFSERR_NOTSUPP,
354 NFSERR_SERVERFAULT,
355 0,
356 };
357
358 static const short nfsv3err_mkdir[] = {
359 NFSERR_IO,
360 NFSERR_IO,
361 NFSERR_ACCES,
362 NFSERR_EXIST,
363 NFSERR_NOTDIR,
364 NFSERR_NOSPC,
365 NFSERR_ROFS,
366 NFSERR_NAMETOL,
367 NFSERR_DQUOT,
368 NFSERR_STALE,
369 NFSERR_BADHANDLE,
370 NFSERR_NOTSUPP,
371 NFSERR_SERVERFAULT,
372 0,
373 };
374
375 static const short nfsv3err_symlink[] = {
376 NFSERR_IO,
377 NFSERR_IO,
378 NFSERR_ACCES,
379 NFSERR_EXIST,
380 NFSERR_NOTDIR,
381 NFSERR_NOSPC,
382 NFSERR_ROFS,
383 NFSERR_NAMETOL,
384 NFSERR_DQUOT,
385 NFSERR_STALE,
386 NFSERR_BADHANDLE,
387 NFSERR_NOTSUPP,
388 NFSERR_SERVERFAULT,
389 0,
390 };
391
392 static const short nfsv3err_mknod[] = {
393 NFSERR_IO,
394 NFSERR_IO,
395 NFSERR_ACCES,
396 NFSERR_EXIST,
397 NFSERR_NOTDIR,
398 NFSERR_NOSPC,
399 NFSERR_ROFS,
400 NFSERR_NAMETOL,
401 NFSERR_DQUOT,
402 NFSERR_STALE,
403 NFSERR_BADHANDLE,
404 NFSERR_NOTSUPP,
405 NFSERR_SERVERFAULT,
406 NFSERR_BADTYPE,
407 0,
408 };
409
410 static const short nfsv3err_remove[] = {
411 NFSERR_IO,
412 NFSERR_NOENT,
413 NFSERR_IO,
414 NFSERR_ACCES,
415 NFSERR_NOTDIR,
416 NFSERR_ROFS,
417 NFSERR_NAMETOL,
418 NFSERR_STALE,
419 NFSERR_BADHANDLE,
420 NFSERR_SERVERFAULT,
421 0,
422 };
423
424 static const short nfsv3err_rmdir[] = {
425 NFSERR_IO,
426 NFSERR_NOENT,
427 NFSERR_IO,
428 NFSERR_ACCES,
429 NFSERR_EXIST,
430 NFSERR_NOTDIR,
431 NFSERR_INVAL,
432 NFSERR_ROFS,
433 NFSERR_NAMETOL,
434 NFSERR_NOTEMPTY,
435 NFSERR_STALE,
436 NFSERR_BADHANDLE,
437 NFSERR_NOTSUPP,
438 NFSERR_SERVERFAULT,
439 0,
440 };
441
442 static const short nfsv3err_rename[] = {
443 NFSERR_IO,
444 NFSERR_NOENT,
445 NFSERR_IO,
446 NFSERR_ACCES,
447 NFSERR_EXIST,
448 NFSERR_XDEV,
449 NFSERR_NOTDIR,
450 NFSERR_ISDIR,
451 NFSERR_INVAL,
452 NFSERR_NOSPC,
453 NFSERR_ROFS,
454 NFSERR_MLINK,
455 NFSERR_NAMETOL,
456 NFSERR_NOTEMPTY,
457 NFSERR_DQUOT,
458 NFSERR_STALE,
459 NFSERR_BADHANDLE,
460 NFSERR_NOTSUPP,
461 NFSERR_SERVERFAULT,
462 0,
463 };
464
465 static const short nfsv3err_link[] = {
466 NFSERR_IO,
467 NFSERR_IO,
468 NFSERR_ACCES,
469 NFSERR_EXIST,
470 NFSERR_XDEV,
471 NFSERR_NOTDIR,
472 NFSERR_INVAL,
473 NFSERR_NOSPC,
474 NFSERR_ROFS,
475 NFSERR_MLINK,
476 NFSERR_NAMETOL,
477 NFSERR_DQUOT,
478 NFSERR_STALE,
479 NFSERR_BADHANDLE,
480 NFSERR_NOTSUPP,
481 NFSERR_SERVERFAULT,
482 0,
483 };
484
485 static const short nfsv3err_readdir[] = {
486 NFSERR_IO,
487 NFSERR_IO,
488 NFSERR_ACCES,
489 NFSERR_NOTDIR,
490 NFSERR_STALE,
491 NFSERR_BADHANDLE,
492 NFSERR_BAD_COOKIE,
493 NFSERR_TOOSMALL,
494 NFSERR_SERVERFAULT,
495 0,
496 };
497
498 static const short nfsv3err_readdirplus[] = {
499 NFSERR_IO,
500 NFSERR_IO,
501 NFSERR_ACCES,
502 NFSERR_NOTDIR,
503 NFSERR_STALE,
504 NFSERR_BADHANDLE,
505 NFSERR_BAD_COOKIE,
506 NFSERR_NOTSUPP,
507 NFSERR_TOOSMALL,
508 NFSERR_SERVERFAULT,
509 0,
510 };
511
512 static const short nfsv3err_fsstat[] = {
513 NFSERR_IO,
514 NFSERR_IO,
515 NFSERR_STALE,
516 NFSERR_BADHANDLE,
517 NFSERR_SERVERFAULT,
518 0,
519 };
520
521 static const short nfsv3err_fsinfo[] = {
522 NFSERR_STALE,
523 NFSERR_STALE,
524 NFSERR_BADHANDLE,
525 NFSERR_SERVERFAULT,
526 0,
527 };
528
529 static const short nfsv3err_pathconf[] = {
530 NFSERR_STALE,
531 NFSERR_STALE,
532 NFSERR_BADHANDLE,
533 NFSERR_SERVERFAULT,
534 0,
535 };
536
537 static const short nfsv3err_commit[] = {
538 NFSERR_IO,
539 NFSERR_IO,
540 NFSERR_STALE,
541 NFSERR_BADHANDLE,
542 NFSERR_SERVERFAULT,
543 0,
544 };
545
546 static const short * const nfsrv_v3errmap[] = {
547 nfsv3err_null,
548 nfsv3err_getattr,
549 nfsv3err_setattr,
550 nfsv3err_lookup,
551 nfsv3err_access,
552 nfsv3err_readlink,
553 nfsv3err_read,
554 nfsv3err_write,
555 nfsv3err_create,
556 nfsv3err_mkdir,
557 nfsv3err_symlink,
558 nfsv3err_mknod,
559 nfsv3err_remove,
560 nfsv3err_rmdir,
561 nfsv3err_rename,
562 nfsv3err_link,
563 nfsv3err_readdir,
564 nfsv3err_readdirplus,
565 nfsv3err_fsstat,
566 nfsv3err_fsinfo,
567 nfsv3err_pathconf,
568 nfsv3err_commit,
569 };
570
571 extern struct nfsrtt nfsrtt;
572 extern time_t nqnfsstarttime;
573 extern int nqsrv_clockskew;
574 extern int nqsrv_writeslack;
575 extern int nqsrv_maxlease;
576 extern const int nqnfs_piggy[NFS_NPROCS];
577 extern struct nfsnodehashhead *nfsnodehashtbl;
578 extern u_long nfsnodehash;
579
580 u_long nfsdirhashmask;
581
582 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
583
584 /*
585 * Create the header for an rpc request packet
586 * The hsiz is the size of the rest of the nfs request header.
587 * (just used to decide if a cluster is a good idea)
588 */
589 struct mbuf *
590 nfsm_reqh(np, procid, hsiz, bposp)
591 struct nfsnode *np;
592 u_long procid;
593 int hsiz;
594 caddr_t *bposp;
595 {
596 struct mbuf *mb;
597 caddr_t bpos;
598 #ifndef NFS_V2_ONLY
599 struct nfsmount *nmp;
600 u_int32_t *tl;
601 int nqflag;
602 #endif
603
604 mb = m_get(M_WAIT, MT_DATA);
605 MCLAIM(mb, &nfs_mowner);
606 if (hsiz >= MINCLSIZE)
607 m_clget(mb, M_WAIT);
608 mb->m_len = 0;
609 bpos = mtod(mb, caddr_t);
610
611 #ifndef NFS_V2_ONLY
612 /*
613 * For NQNFS, add lease request.
614 */
615 if (np) {
616 nmp = VFSTONFS(np->n_vnode->v_mount);
617 if (nmp->nm_flag & NFSMNT_NQNFS) {
618 nqflag = NQNFS_NEEDLEASE(np, procid);
619 if (nqflag) {
620 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
621 *tl++ = txdr_unsigned(nqflag);
622 *tl = txdr_unsigned(nmp->nm_leaseterm);
623 } else {
624 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
625 *tl = 0;
626 }
627 }
628 }
629 #endif
630 /* Finally, return values */
631 *bposp = bpos;
632 return (mb);
633 }
634
635 /*
636 * Build the RPC header and fill in the authorization info.
637 * The authorization string argument is only used when the credentials
638 * come from outside of the kernel.
639 * Returns the head of the mbuf list.
640 */
641 struct mbuf *
642 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
643 verf_str, mrest, mrest_len, mbp, xidp)
644 struct ucred *cr;
645 int nmflag;
646 int procid;
647 int auth_type;
648 int auth_len;
649 char *auth_str;
650 int verf_len;
651 char *verf_str;
652 struct mbuf *mrest;
653 int mrest_len;
654 struct mbuf **mbp;
655 u_int32_t *xidp;
656 {
657 struct mbuf *mb;
658 u_int32_t *tl;
659 caddr_t bpos;
660 int i;
661 struct mbuf *mreq;
662 int siz, grpsiz, authsiz;
663
664 authsiz = nfsm_rndup(auth_len);
665 mb = m_gethdr(M_WAIT, MT_DATA);
666 MCLAIM(mb, &nfs_mowner);
667 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
668 m_clget(mb, M_WAIT);
669 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
670 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
671 } else {
672 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
673 }
674 mb->m_len = 0;
675 mreq = mb;
676 bpos = mtod(mb, caddr_t);
677
678 /*
679 * First the RPC header.
680 */
681 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
682
683 *tl++ = *xidp = nfs_getxid();
684 *tl++ = rpc_call;
685 *tl++ = rpc_vers;
686 if (nmflag & NFSMNT_NQNFS) {
687 *tl++ = txdr_unsigned(NQNFS_PROG);
688 *tl++ = txdr_unsigned(NQNFS_VER3);
689 } else {
690 *tl++ = txdr_unsigned(NFS_PROG);
691 if (nmflag & NFSMNT_NFSV3)
692 *tl++ = txdr_unsigned(NFS_VER3);
693 else
694 *tl++ = txdr_unsigned(NFS_VER2);
695 }
696 if (nmflag & NFSMNT_NFSV3)
697 *tl++ = txdr_unsigned(procid);
698 else
699 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
700
701 /*
702 * And then the authorization cred.
703 */
704 *tl++ = txdr_unsigned(auth_type);
705 *tl = txdr_unsigned(authsiz);
706 switch (auth_type) {
707 case RPCAUTH_UNIX:
708 nfsm_build(tl, u_int32_t *, auth_len);
709 *tl++ = 0; /* stamp ?? */
710 *tl++ = 0; /* NULL hostname */
711 *tl++ = txdr_unsigned(cr->cr_uid);
712 *tl++ = txdr_unsigned(cr->cr_gid);
713 grpsiz = (auth_len >> 2) - 5;
714 *tl++ = txdr_unsigned(grpsiz);
715 for (i = 0; i < grpsiz; i++)
716 *tl++ = txdr_unsigned(cr->cr_groups[i]);
717 break;
718 case RPCAUTH_KERB4:
719 siz = auth_len;
720 while (siz > 0) {
721 if (M_TRAILINGSPACE(mb) == 0) {
722 struct mbuf *mb2;
723 mb2 = m_get(M_WAIT, MT_DATA);
724 MCLAIM(mb2, &nfs_mowner);
725 if (siz >= MINCLSIZE)
726 m_clget(mb2, M_WAIT);
727 mb->m_next = mb2;
728 mb = mb2;
729 mb->m_len = 0;
730 bpos = mtod(mb, caddr_t);
731 }
732 i = min(siz, M_TRAILINGSPACE(mb));
733 memcpy(bpos, auth_str, i);
734 mb->m_len += i;
735 auth_str += i;
736 bpos += i;
737 siz -= i;
738 }
739 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
740 for (i = 0; i < siz; i++)
741 *bpos++ = '\0';
742 mb->m_len += siz;
743 }
744 break;
745 };
746
747 /*
748 * And the verifier...
749 */
750 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
751 if (verf_str) {
752 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
753 *tl = txdr_unsigned(verf_len);
754 siz = verf_len;
755 while (siz > 0) {
756 if (M_TRAILINGSPACE(mb) == 0) {
757 struct mbuf *mb2;
758 mb2 = m_get(M_WAIT, MT_DATA);
759 MCLAIM(mb2, &nfs_mowner);
760 if (siz >= MINCLSIZE)
761 m_clget(mb2, M_WAIT);
762 mb->m_next = mb2;
763 mb = mb2;
764 mb->m_len = 0;
765 bpos = mtod(mb, caddr_t);
766 }
767 i = min(siz, M_TRAILINGSPACE(mb));
768 memcpy(bpos, verf_str, i);
769 mb->m_len += i;
770 verf_str += i;
771 bpos += i;
772 siz -= i;
773 }
774 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
775 for (i = 0; i < siz; i++)
776 *bpos++ = '\0';
777 mb->m_len += siz;
778 }
779 } else {
780 *tl++ = txdr_unsigned(RPCAUTH_NULL);
781 *tl = 0;
782 }
783 mb->m_next = mrest;
784 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
785 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
786 *mbp = mb;
787 return (mreq);
788 }
789
790 /*
791 * copies mbuf chain to the uio scatter/gather list
792 */
793 int
794 nfsm_mbuftouio(mrep, uiop, siz, dpos)
795 struct mbuf **mrep;
796 struct uio *uiop;
797 int siz;
798 caddr_t *dpos;
799 {
800 char *mbufcp, *uiocp;
801 int xfer, left, len;
802 struct mbuf *mp;
803 long uiosiz, rem;
804 int error = 0;
805
806 mp = *mrep;
807 mbufcp = *dpos;
808 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
809 rem = nfsm_rndup(siz)-siz;
810 while (siz > 0) {
811 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
812 return (EFBIG);
813 left = uiop->uio_iov->iov_len;
814 uiocp = uiop->uio_iov->iov_base;
815 if (left > siz)
816 left = siz;
817 uiosiz = left;
818 while (left > 0) {
819 while (len == 0) {
820 mp = mp->m_next;
821 if (mp == NULL)
822 return (EBADRPC);
823 mbufcp = mtod(mp, caddr_t);
824 len = mp->m_len;
825 }
826 xfer = (left > len) ? len : left;
827 #ifdef notdef
828 /* Not Yet.. */
829 if (uiop->uio_iov->iov_op != NULL)
830 (*(uiop->uio_iov->iov_op))
831 (mbufcp, uiocp, xfer);
832 else
833 #endif
834 if (uiop->uio_segflg == UIO_SYSSPACE)
835 memcpy(uiocp, mbufcp, xfer);
836 else
837 copyout(mbufcp, uiocp, xfer);
838 left -= xfer;
839 len -= xfer;
840 mbufcp += xfer;
841 uiocp += xfer;
842 uiop->uio_offset += xfer;
843 uiop->uio_resid -= xfer;
844 }
845 if (uiop->uio_iov->iov_len <= siz) {
846 uiop->uio_iovcnt--;
847 uiop->uio_iov++;
848 } else {
849 uiop->uio_iov->iov_base =
850 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
851 uiop->uio_iov->iov_len -= uiosiz;
852 }
853 siz -= uiosiz;
854 }
855 *dpos = mbufcp;
856 *mrep = mp;
857 if (rem > 0) {
858 if (len < rem)
859 error = nfs_adv(mrep, dpos, rem, len);
860 else
861 *dpos += rem;
862 }
863 return (error);
864 }
865
866 /*
867 * copies a uio scatter/gather list to an mbuf chain.
868 * NOTE: can ony handle iovcnt == 1
869 */
870 int
871 nfsm_uiotombuf(uiop, mq, siz, bpos)
872 struct uio *uiop;
873 struct mbuf **mq;
874 int siz;
875 caddr_t *bpos;
876 {
877 char *uiocp;
878 struct mbuf *mp, *mp2;
879 int xfer, left, mlen;
880 int uiosiz, clflg, rem;
881 char *cp;
882
883 #ifdef DIAGNOSTIC
884 if (uiop->uio_iovcnt != 1)
885 panic("nfsm_uiotombuf: iovcnt != 1");
886 #endif
887
888 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
889 clflg = 1;
890 else
891 clflg = 0;
892 rem = nfsm_rndup(siz)-siz;
893 mp = mp2 = *mq;
894 while (siz > 0) {
895 left = uiop->uio_iov->iov_len;
896 uiocp = uiop->uio_iov->iov_base;
897 if (left > siz)
898 left = siz;
899 uiosiz = left;
900 while (left > 0) {
901 mlen = M_TRAILINGSPACE(mp);
902 if (mlen == 0) {
903 mp = m_get(M_WAIT, MT_DATA);
904 MCLAIM(mp, &nfs_mowner);
905 if (clflg)
906 m_clget(mp, M_WAIT);
907 mp->m_len = 0;
908 mp2->m_next = mp;
909 mp2 = mp;
910 mlen = M_TRAILINGSPACE(mp);
911 }
912 xfer = (left > mlen) ? mlen : left;
913 #ifdef notdef
914 /* Not Yet.. */
915 if (uiop->uio_iov->iov_op != NULL)
916 (*(uiop->uio_iov->iov_op))
917 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
918 else
919 #endif
920 if (uiop->uio_segflg == UIO_SYSSPACE)
921 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
922 else
923 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
924 mp->m_len += xfer;
925 left -= xfer;
926 uiocp += xfer;
927 uiop->uio_offset += xfer;
928 uiop->uio_resid -= xfer;
929 }
930 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
931 uiosiz;
932 uiop->uio_iov->iov_len -= uiosiz;
933 siz -= uiosiz;
934 }
935 if (rem > 0) {
936 if (rem > M_TRAILINGSPACE(mp)) {
937 mp = m_get(M_WAIT, MT_DATA);
938 MCLAIM(mp, &nfs_mowner);
939 mp->m_len = 0;
940 mp2->m_next = mp;
941 }
942 cp = mtod(mp, caddr_t)+mp->m_len;
943 for (left = 0; left < rem; left++)
944 *cp++ = '\0';
945 mp->m_len += rem;
946 *bpos = cp;
947 } else
948 *bpos = mtod(mp, caddr_t)+mp->m_len;
949 *mq = mp;
950 return (0);
951 }
952
953 /*
954 * Get at least "siz" bytes of correctly aligned data.
955 * When called the mbuf pointers are not necessarily correct,
956 * dsosp points to what ought to be in m_data and left contains
957 * what ought to be in m_len.
958 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
959 * cases. (The macros use the vars. dpos and dpos2)
960 */
961 int
962 nfsm_disct(mdp, dposp, siz, left, cp2)
963 struct mbuf **mdp;
964 caddr_t *dposp;
965 int siz;
966 int left;
967 caddr_t *cp2;
968 {
969 struct mbuf *m1, *m2;
970 struct mbuf *havebuf = NULL;
971 caddr_t src = *dposp;
972 caddr_t dst;
973 int len;
974
975 #ifdef DEBUG
976 if (left < 0)
977 panic("nfsm_disct: left < 0");
978 #endif
979 m1 = *mdp;
980 /*
981 * Skip through the mbuf chain looking for an mbuf with
982 * some data. If the first mbuf found has enough data
983 * and it is correctly aligned return it.
984 */
985 while (left == 0) {
986 havebuf = m1;
987 *mdp = m1 = m1->m_next;
988 if (m1 == NULL)
989 return (EBADRPC);
990 src = mtod(m1, caddr_t);
991 left = m1->m_len;
992 /*
993 * If we start a new mbuf and it is big enough
994 * and correctly aligned just return it, don't
995 * do any pull up.
996 */
997 if (left >= siz && nfsm_aligned(src)) {
998 *cp2 = src;
999 *dposp = src + siz;
1000 return (0);
1001 }
1002 }
1003 if (m1->m_flags & M_EXT) {
1004 if (havebuf) {
1005 /* If the first mbuf with data has external data
1006 * and there is a previous empty mbuf use it
1007 * to move the data into.
1008 */
1009 m2 = m1;
1010 *mdp = m1 = havebuf;
1011 if (m1->m_flags & M_EXT) {
1012 MEXTREMOVE(m1);
1013 }
1014 } else {
1015 /*
1016 * If the first mbuf has a external data
1017 * and there is no previous empty mbuf
1018 * allocate a new mbuf and move the external
1019 * data to the new mbuf. Also make the first
1020 * mbuf look empty.
1021 */
1022 m2 = m_get(M_WAIT, MT_DATA);
1023 m2->m_ext = m1->m_ext;
1024 m2->m_data = src;
1025 m2->m_len = left;
1026 MCLADDREFERENCE(m1, m2);
1027 MEXTREMOVE(m1);
1028 m2->m_next = m1->m_next;
1029 m1->m_next = m2;
1030 }
1031 m1->m_len = 0;
1032 dst = m1->m_dat;
1033 } else {
1034 /*
1035 * If the first mbuf has no external data
1036 * move the data to the front of the mbuf.
1037 */
1038 if ((dst = m1->m_dat) != src)
1039 memmove(dst, src, left);
1040 dst += left;
1041 m1->m_len = left;
1042 m2 = m1->m_next;
1043 }
1044 m1->m_flags &= ~M_PKTHDR;
1045 *cp2 = m1->m_data = m1->m_dat; /* data is at beginning of buffer */
1046 *dposp = mtod(m1, caddr_t) + siz;
1047 /*
1048 * Loop through mbufs pulling data up into first mbuf until
1049 * the first mbuf is full or there is no more data to
1050 * pullup.
1051 */
1052 while ((len = (MLEN - m1->m_len)) != 0 && m2) {
1053 if ((len = min(len, m2->m_len)) != 0)
1054 memcpy(dst, m2->m_data, len);
1055 m1->m_len += len;
1056 dst += len;
1057 m2->m_data += len;
1058 m2->m_len -= len;
1059 m2 = m2->m_next;
1060 }
1061 if (m1->m_len < siz)
1062 return (EBADRPC);
1063 return (0);
1064 }
1065
1066 /*
1067 * Advance the position in the mbuf chain.
1068 */
1069 int
1070 nfs_adv(mdp, dposp, offs, left)
1071 struct mbuf **mdp;
1072 caddr_t *dposp;
1073 int offs;
1074 int left;
1075 {
1076 struct mbuf *m;
1077 int s;
1078
1079 m = *mdp;
1080 s = left;
1081 while (s < offs) {
1082 offs -= s;
1083 m = m->m_next;
1084 if (m == NULL)
1085 return (EBADRPC);
1086 s = m->m_len;
1087 }
1088 *mdp = m;
1089 *dposp = mtod(m, caddr_t)+offs;
1090 return (0);
1091 }
1092
1093 /*
1094 * Copy a string into mbufs for the hard cases...
1095 */
1096 int
1097 nfsm_strtmbuf(mb, bpos, cp, siz)
1098 struct mbuf **mb;
1099 char **bpos;
1100 const char *cp;
1101 long siz;
1102 {
1103 struct mbuf *m1 = NULL, *m2;
1104 long left, xfer, len, tlen;
1105 u_int32_t *tl;
1106 int putsize;
1107
1108 putsize = 1;
1109 m2 = *mb;
1110 left = M_TRAILINGSPACE(m2);
1111 if (left > 0) {
1112 tl = ((u_int32_t *)(*bpos));
1113 *tl++ = txdr_unsigned(siz);
1114 putsize = 0;
1115 left -= NFSX_UNSIGNED;
1116 m2->m_len += NFSX_UNSIGNED;
1117 if (left > 0) {
1118 memcpy((caddr_t) tl, cp, left);
1119 siz -= left;
1120 cp += left;
1121 m2->m_len += left;
1122 left = 0;
1123 }
1124 }
1125 /* Loop around adding mbufs */
1126 while (siz > 0) {
1127 m1 = m_get(M_WAIT, MT_DATA);
1128 MCLAIM(m1, &nfs_mowner);
1129 if (siz > MLEN)
1130 m_clget(m1, M_WAIT);
1131 m1->m_len = NFSMSIZ(m1);
1132 m2->m_next = m1;
1133 m2 = m1;
1134 tl = mtod(m1, u_int32_t *);
1135 tlen = 0;
1136 if (putsize) {
1137 *tl++ = txdr_unsigned(siz);
1138 m1->m_len -= NFSX_UNSIGNED;
1139 tlen = NFSX_UNSIGNED;
1140 putsize = 0;
1141 }
1142 if (siz < m1->m_len) {
1143 len = nfsm_rndup(siz);
1144 xfer = siz;
1145 if (xfer < len)
1146 *(tl+(xfer>>2)) = 0;
1147 } else {
1148 xfer = len = m1->m_len;
1149 }
1150 memcpy((caddr_t) tl, cp, xfer);
1151 m1->m_len = len+tlen;
1152 siz -= xfer;
1153 cp += xfer;
1154 }
1155 *mb = m1;
1156 *bpos = mtod(m1, caddr_t)+m1->m_len;
1157 return (0);
1158 }
1159
1160 /*
1161 * Directory caching routines. They work as follows:
1162 * - a cache is maintained per VDIR nfsnode.
1163 * - for each offset cookie that is exported to userspace, and can
1164 * thus be thrown back at us as an offset to VOP_READDIR, store
1165 * information in the cache.
1166 * - cached are:
1167 * - cookie itself
1168 * - blocknumber (essentially just a search key in the buffer cache)
1169 * - entry number in block.
1170 * - offset cookie of block in which this entry is stored
1171 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1172 * - entries are looked up in a hash table
1173 * - also maintained is an LRU list of entries, used to determine
1174 * which ones to delete if the cache grows too large.
1175 * - if 32 <-> 64 translation mode is requested for a filesystem,
1176 * the cache also functions as a translation table
1177 * - in the translation case, invalidating the cache does not mean
1178 * flushing it, but just marking entries as invalid, except for
1179 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1180 * still be able to use the cache as a translation table.
1181 * - 32 bit cookies are uniquely created by combining the hash table
1182 * entry value, and one generation count per hash table entry,
1183 * incremented each time an entry is appended to the chain.
1184 * - the cache is invalidated each time a direcory is modified
1185 * - sanity checks are also done; if an entry in a block turns
1186 * out not to have a matching cookie, the cache is invalidated
1187 * and a new block starting from the wanted offset is fetched from
1188 * the server.
1189 * - directory entries as read from the server are extended to contain
1190 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1191 * the cache and exporting them to userspace through the cookie
1192 * argument to VOP_READDIR.
1193 */
1194
1195 u_long
1196 nfs_dirhash(off)
1197 off_t off;
1198 {
1199 int i;
1200 char *cp = (char *)&off;
1201 u_long sum = 0L;
1202
1203 for (i = 0 ; i < sizeof (off); i++)
1204 sum += *cp++;
1205
1206 return sum;
1207 }
1208
1209 void
1210 nfs_initdircache(vp)
1211 struct vnode *vp;
1212 {
1213 struct nfsnode *np = VTONFS(vp);
1214
1215 KASSERT(np->n_dircache == NULL);
1216
1217 np->n_dircachesize = 0;
1218 np->n_dblkno = 1;
1219 np->n_dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1220 M_WAITOK, &nfsdirhashmask);
1221 TAILQ_INIT(&np->n_dirchain);
1222 }
1223
1224 void
1225 nfs_initdirxlatecookie(vp)
1226 struct vnode *vp;
1227 {
1228 struct nfsnode *np = VTONFS(vp);
1229
1230 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1231 KASSERT(np->n_dirgens == NULL);
1232
1233 MALLOC(np->n_dirgens, unsigned *,
1234 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF, M_WAITOK);
1235 memset((caddr_t)np->n_dirgens, 0, NFS_DIRHASHSIZ * sizeof (unsigned));
1236 }
1237
1238 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
1239
1240 struct nfsdircache *
1241 nfs_searchdircache(vp, off, do32, hashent)
1242 struct vnode *vp;
1243 off_t off;
1244 int do32;
1245 int *hashent;
1246 {
1247 struct nfsdirhashhead *ndhp;
1248 struct nfsdircache *ndp = NULL;
1249 struct nfsnode *np = VTONFS(vp);
1250 unsigned ent;
1251
1252 /*
1253 * Zero is always a valid cookie.
1254 */
1255 if (off == 0)
1256 return &dzero;
1257
1258 /*
1259 * We use a 32bit cookie as search key, directly reconstruct
1260 * the hashentry. Else use the hashfunction.
1261 */
1262 if (do32) {
1263 ent = (u_int32_t)off >> 24;
1264 if (ent >= NFS_DIRHASHSIZ)
1265 return NULL;
1266 ndhp = &np->n_dircache[ent];
1267 } else {
1268 ndhp = NFSDIRHASH(np, off);
1269 }
1270
1271 if (hashent)
1272 *hashent = (int)(ndhp - np->n_dircache);
1273 if (do32) {
1274 LIST_FOREACH(ndp, ndhp, dc_hash) {
1275 if (ndp->dc_cookie32 == (u_int32_t)off) {
1276 /*
1277 * An invalidated entry will become the
1278 * start of a new block fetched from
1279 * the server.
1280 */
1281 if (ndp->dc_blkno == -1) {
1282 ndp->dc_blkcookie = ndp->dc_cookie;
1283 ndp->dc_blkno = np->n_dblkno++;
1284 ndp->dc_entry = 0;
1285 }
1286 break;
1287 }
1288 }
1289 } else {
1290 LIST_FOREACH(ndp, ndhp, dc_hash) {
1291 if (ndp->dc_cookie == off)
1292 break;
1293 }
1294 }
1295 return ndp;
1296 }
1297
1298
1299 struct nfsdircache *
1300 nfs_enterdircache(vp, off, blkoff, en, blkno)
1301 struct vnode *vp;
1302 off_t off, blkoff;
1303 int en;
1304 daddr_t blkno;
1305 {
1306 struct nfsnode *np = VTONFS(vp);
1307 struct nfsdirhashhead *ndhp;
1308 struct nfsdircache *ndp = NULL, *first;
1309 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1310 int hashent, gen, overwrite;
1311
1312 if (!np->n_dircache)
1313 /*
1314 * XXX would like to do this in nfs_nget but vtype
1315 * isn't known at that time.
1316 */
1317 nfs_initdircache(vp);
1318
1319 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1320 nfs_initdirxlatecookie(vp);
1321
1322 /*
1323 * XXX refuse entries for offset 0. amd(8) erroneously sets
1324 * cookie 0 for the '.' entry, making this necessary. This
1325 * isn't so bad, as 0 is a special case anyway.
1326 */
1327 if (off == 0)
1328 return &dzero;
1329
1330 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1331
1332 if (ndp && ndp->dc_blkno != -1) {
1333 /*
1334 * Overwriting an old entry. Check if it's the same.
1335 * If so, just return. If not, remove the old entry.
1336 */
1337 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1338 return ndp;
1339 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1340 LIST_REMOVE(ndp, dc_hash);
1341 FREE(ndp, M_NFSDIROFF);
1342 ndp = 0;
1343 }
1344
1345 ndhp = &np->n_dircache[hashent];
1346
1347 if (!ndp) {
1348 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
1349 M_WAITOK);
1350 overwrite = 0;
1351 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1352 /*
1353 * We're allocating a new entry, so bump the
1354 * generation number.
1355 */
1356 gen = ++np->n_dirgens[hashent];
1357 if (gen == 0) {
1358 np->n_dirgens[hashent]++;
1359 gen++;
1360 }
1361 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1362 }
1363 } else
1364 overwrite = 1;
1365
1366 /*
1367 * If the entry number is 0, we are at the start of a new block, so
1368 * allocate a new blocknumber.
1369 */
1370 if (en == 0)
1371 ndp->dc_blkno = np->n_dblkno++;
1372 else
1373 ndp->dc_blkno = blkno;
1374
1375 ndp->dc_cookie = off;
1376 ndp->dc_blkcookie = blkoff;
1377 ndp->dc_entry = en;
1378
1379 if (overwrite)
1380 return ndp;
1381
1382 /*
1383 * If the maximum directory cookie cache size has been reached
1384 * for this node, take one off the front. The idea is that
1385 * directories are typically read front-to-back once, so that
1386 * the oldest entries can be thrown away without much performance
1387 * loss.
1388 */
1389 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1390 first = TAILQ_FIRST(&np->n_dirchain);
1391 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
1392 LIST_REMOVE(first, dc_hash);
1393 FREE(first, M_NFSDIROFF);
1394 } else
1395 np->n_dircachesize++;
1396
1397 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1398 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1399 return ndp;
1400 }
1401
1402 void
1403 nfs_invaldircache(vp, forcefree)
1404 struct vnode *vp;
1405 int forcefree;
1406 {
1407 struct nfsnode *np = VTONFS(vp);
1408 struct nfsdircache *ndp = NULL;
1409 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1410
1411 #ifdef DIAGNOSTIC
1412 if (vp->v_type != VDIR)
1413 panic("nfs: invaldircache: not dir");
1414 #endif
1415
1416 if (!np->n_dircache)
1417 return;
1418
1419 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1420 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != 0) {
1421 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1422 LIST_REMOVE(ndp, dc_hash);
1423 FREE(ndp, M_NFSDIROFF);
1424 }
1425 np->n_dircachesize = 0;
1426 if (forcefree && np->n_dirgens) {
1427 FREE(np->n_dirgens, M_NFSDIROFF);
1428 np->n_dirgens = NULL;
1429 }
1430 } else {
1431 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain) {
1432 ndp->dc_blkno = -1;
1433 }
1434 }
1435
1436 np->n_dblkno = 1;
1437 }
1438
1439 /*
1440 * Called once before VFS init to initialize shared and
1441 * server-specific data structures.
1442 */
1443 void
1444 nfs_init()
1445 {
1446 nfsrtt.pos = 0;
1447 rpc_vers = txdr_unsigned(RPC_VER2);
1448 rpc_call = txdr_unsigned(RPC_CALL);
1449 rpc_reply = txdr_unsigned(RPC_REPLY);
1450 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1451 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1452 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1453 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1454 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1455 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1456 nfs_prog = txdr_unsigned(NFS_PROG);
1457 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1458 nfs_true = txdr_unsigned(TRUE);
1459 nfs_false = txdr_unsigned(FALSE);
1460 nfs_xdrneg1 = txdr_unsigned(-1);
1461 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1462 if (nfs_ticks < 1)
1463 nfs_ticks = 1;
1464 #ifdef NFSSERVER
1465 nfsrv_init(0); /* Init server data structures */
1466 nfsrv_initcache(); /* Init the server request cache */
1467 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
1468 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr);
1469 #endif /* NFSSERVER */
1470
1471 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1472 /*
1473 * Initialize the nqnfs data structures.
1474 */
1475 if (nqnfsstarttime == 0) {
1476 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1477 + nqsrv_clockskew + nqsrv_writeslack;
1478 NQLOADNOVRAM(nqnfsstarttime);
1479 CIRCLEQ_INIT(&nqtimerhead);
1480 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1481 M_WAITOK, &nqfhhash);
1482 }
1483 #endif
1484
1485 exithook_establish(nfs_exit, NULL);
1486
1487 /*
1488 * Initialize reply list and start timer
1489 */
1490 TAILQ_INIT(&nfs_reqq);
1491 nfs_timer(NULL);
1492 MOWNER_ATTACH(&nfs_mowner);
1493
1494 #ifdef NFS
1495 /* Initialize the kqueue structures */
1496 nfs_kqinit();
1497 /* Initialize the iod structures */
1498 nfs_iodinit();
1499 #endif
1500 }
1501
1502 #ifdef NFS
1503 /*
1504 * Called once at VFS init to initialize client-specific data structures.
1505 */
1506 void
1507 nfs_vfs_init()
1508 {
1509 nfs_nhinit(); /* Init the nfsnode table */
1510 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1511 }
1512
1513 void
1514 nfs_vfs_reinit()
1515 {
1516 nfs_nhreinit();
1517 }
1518
1519 void
1520 nfs_vfs_done()
1521 {
1522 nfs_nhdone();
1523 }
1524
1525 /*
1526 * Attribute cache routines.
1527 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1528 * that are on the mbuf list
1529 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1530 * error otherwise
1531 */
1532
1533 /*
1534 * Load the attribute cache (that lives in the nfsnode entry) with
1535 * the values on the mbuf list and
1536 * Iff vap not NULL
1537 * copy the attributes to *vaper
1538 */
1539 int
1540 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1541 struct vnode **vpp;
1542 struct mbuf **mdp;
1543 caddr_t *dposp;
1544 struct vattr *vaper;
1545 int flags;
1546 {
1547 int32_t t1;
1548 caddr_t cp2;
1549 int error = 0;
1550 struct mbuf *md;
1551 int v3 = NFS_ISV3(*vpp);
1552
1553 md = *mdp;
1554 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1555 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1556 if (error)
1557 return (error);
1558 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1559 }
1560
1561 int
1562 nfs_loadattrcache(vpp, fp, vaper, flags)
1563 struct vnode **vpp;
1564 struct nfs_fattr *fp;
1565 struct vattr *vaper;
1566 int flags;
1567 {
1568 struct vnode *vp = *vpp;
1569 struct vattr *vap;
1570 int v3 = NFS_ISV3(vp);
1571 enum vtype vtyp;
1572 u_short vmode;
1573 struct timespec mtime;
1574 struct vnode *nvp;
1575 int32_t rdev;
1576 struct nfsnode *np;
1577 extern int (**spec_nfsv2nodeop_p) __P((void *));
1578 uid_t uid;
1579 gid_t gid;
1580
1581 if (v3) {
1582 vtyp = nfsv3tov_type(fp->fa_type);
1583 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1584 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1585 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1586 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1587 } else {
1588 vtyp = nfsv2tov_type(fp->fa_type);
1589 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1590 if (vtyp == VNON || vtyp == VREG)
1591 vtyp = IFTOVT(vmode);
1592 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1593 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1594
1595 /*
1596 * Really ugly NFSv2 kludge.
1597 */
1598 if (vtyp == VCHR && rdev == 0xffffffff)
1599 vtyp = VFIFO;
1600 }
1601
1602 vmode &= ALLPERMS;
1603
1604 /*
1605 * If v_type == VNON it is a new node, so fill in the v_type,
1606 * n_mtime fields. Check to see if it represents a special
1607 * device, and if so, check for a possible alias. Once the
1608 * correct vnode has been obtained, fill in the rest of the
1609 * information.
1610 */
1611 np = VTONFS(vp);
1612 if (vp->v_type == VNON) {
1613 vp->v_type = vtyp;
1614 if (vp->v_type == VFIFO) {
1615 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1616 vp->v_op = fifo_nfsv2nodeop_p;
1617 }
1618 if (vp->v_type == VCHR || vp->v_type == VBLK) {
1619 vp->v_op = spec_nfsv2nodeop_p;
1620 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1621 if (nvp) {
1622 /*
1623 * Discard unneeded vnode, but save its nfsnode.
1624 * Since the nfsnode does not have a lock, its
1625 * vnode lock has to be carried over.
1626 */
1627 /*
1628 * XXX is the old node sure to be locked here?
1629 */
1630 KASSERT(lockstatus(&vp->v_lock) ==
1631 LK_EXCLUSIVE);
1632 nvp->v_data = vp->v_data;
1633 vp->v_data = NULL;
1634 VOP_UNLOCK(vp, 0);
1635 vp->v_op = spec_vnodeop_p;
1636 vrele(vp);
1637 vgone(vp);
1638 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1639 &nvp->v_interlock);
1640 /*
1641 * Reinitialize aliased node.
1642 */
1643 np->n_vnode = nvp;
1644 *vpp = vp = nvp;
1645 }
1646 }
1647 np->n_mtime = mtime;
1648 }
1649 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1650 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1651 vap = np->n_vattr;
1652
1653 /*
1654 * Invalidate access cache if uid, gid or mode changed.
1655 */
1656 if (np->n_accstamp != -1 &&
1657 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode))
1658 np->n_accstamp = -1;
1659
1660 vap->va_type = vtyp;
1661 vap->va_mode = vmode;
1662 vap->va_rdev = (dev_t)rdev;
1663 vap->va_mtime = mtime;
1664 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1665 switch (vtyp) {
1666 case VDIR:
1667 vap->va_blocksize = NFS_DIRFRAGSIZ;
1668 break;
1669 case VBLK:
1670 vap->va_blocksize = BLKDEV_IOSIZE;
1671 break;
1672 case VCHR:
1673 vap->va_blocksize = MAXBSIZE;
1674 break;
1675 default:
1676 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1677 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1678 break;
1679 }
1680 if (v3) {
1681 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1682 vap->va_uid = uid;
1683 vap->va_gid = gid;
1684 vap->va_size = fxdr_hyper(&fp->fa3_size);
1685 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1686 vap->va_fileid = fxdr_unsigned(int32_t,
1687 fp->fa3_fileid.nfsuquad[1]);
1688 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1689 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1690 vap->va_flags = 0;
1691 vap->va_filerev = 0;
1692 } else {
1693 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1694 vap->va_uid = uid;
1695 vap->va_gid = gid;
1696 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1697 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1698 * NFS_FABLKSIZE;
1699 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1700 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1701 vap->va_flags = 0;
1702 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1703 fp->fa2_ctime.nfsv2_sec);
1704 vap->va_ctime.tv_nsec = 0;
1705 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1706 vap->va_filerev = 0;
1707 }
1708 if (vap->va_size != np->n_size) {
1709 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1710 vap->va_size = np->n_size;
1711 } else {
1712 np->n_size = vap->va_size;
1713 if (vap->va_type == VREG) {
1714 if ((flags & NAC_NOTRUNC)
1715 && np->n_size < vp->v_size) {
1716 /*
1717 * we can't free pages now because
1718 * the pages can be owned by ourselves.
1719 */
1720 np->n_flag |= NTRUNCDELAYED;
1721 }
1722 else {
1723 uvm_vnp_setsize(vp, np->n_size);
1724 }
1725 }
1726 }
1727 }
1728 np->n_attrstamp = time.tv_sec;
1729 if (vaper != NULL) {
1730 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1731 if (np->n_flag & NCHG) {
1732 if (np->n_flag & NACC)
1733 vaper->va_atime = np->n_atim;
1734 if (np->n_flag & NUPD)
1735 vaper->va_mtime = np->n_mtim;
1736 }
1737 }
1738 return (0);
1739 }
1740
1741 /*
1742 * Check the time stamp
1743 * If the cache is valid, copy contents to *vap and return 0
1744 * otherwise return an error
1745 */
1746 int
1747 nfs_getattrcache(vp, vaper)
1748 struct vnode *vp;
1749 struct vattr *vaper;
1750 {
1751 struct nfsnode *np = VTONFS(vp);
1752 struct vattr *vap;
1753
1754 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1755 nfsstats.attrcache_misses++;
1756 return (ENOENT);
1757 }
1758 nfsstats.attrcache_hits++;
1759 vap = np->n_vattr;
1760 if (vap->va_size != np->n_size) {
1761 if (vap->va_type == VREG) {
1762 if (np->n_flag & NMODIFIED) {
1763 if (vap->va_size < np->n_size)
1764 vap->va_size = np->n_size;
1765 else
1766 np->n_size = vap->va_size;
1767 } else
1768 np->n_size = vap->va_size;
1769 uvm_vnp_setsize(vp, np->n_size);
1770 } else
1771 np->n_size = vap->va_size;
1772 }
1773 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1774 if (np->n_flag & NCHG) {
1775 if (np->n_flag & NACC)
1776 vaper->va_atime = np->n_atim;
1777 if (np->n_flag & NUPD)
1778 vaper->va_mtime = np->n_mtim;
1779 }
1780 return (0);
1781 }
1782
1783 void
1784 nfs_delayedtruncate(vp)
1785 struct vnode *vp;
1786 {
1787 struct nfsnode *np = VTONFS(vp);
1788
1789 if (np->n_flag & NTRUNCDELAYED) {
1790 np->n_flag &= ~NTRUNCDELAYED;
1791 uvm_vnp_setsize(vp, np->n_size);
1792 }
1793 }
1794
1795 /*
1796 * Heuristic to see if the server XDR encodes directory cookies or not.
1797 * it is not supposed to, but a lot of servers may do this. Also, since
1798 * most/all servers will implement V2 as well, it is expected that they
1799 * may return just 32 bits worth of cookie information, so we need to
1800 * find out in which 32 bits this information is available. We do this
1801 * to avoid trouble with emulated binaries that can't handle 64 bit
1802 * directory offsets.
1803 */
1804
1805 void
1806 nfs_cookieheuristic(vp, flagp, p, cred)
1807 struct vnode *vp;
1808 int *flagp;
1809 struct proc *p;
1810 struct ucred *cred;
1811 {
1812 struct uio auio;
1813 struct iovec aiov;
1814 caddr_t buf, cp;
1815 struct dirent *dp;
1816 off_t *cookies = NULL, *cop;
1817 int error, eof, nc, len;
1818
1819 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1820
1821 aiov.iov_base = buf;
1822 aiov.iov_len = NFS_DIRFRAGSIZ;
1823 auio.uio_iov = &aiov;
1824 auio.uio_iovcnt = 1;
1825 auio.uio_rw = UIO_READ;
1826 auio.uio_segflg = UIO_SYSSPACE;
1827 auio.uio_procp = p;
1828 auio.uio_resid = NFS_DIRFRAGSIZ;
1829 auio.uio_offset = 0;
1830
1831 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1832
1833 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1834 if (error || len == 0) {
1835 FREE(buf, M_TEMP);
1836 if (cookies)
1837 free(cookies, M_TEMP);
1838 return;
1839 }
1840
1841 /*
1842 * Find the first valid entry and look at its offset cookie.
1843 */
1844
1845 cp = buf;
1846 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1847 dp = (struct dirent *)cp;
1848 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1849 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1850 *flagp |= NFSMNT_SWAPCOOKIE;
1851 nfs_invaldircache(vp, 0);
1852 nfs_vinvalbuf(vp, 0, cred, p, 1);
1853 }
1854 break;
1855 }
1856 cop++;
1857 cp += dp->d_reclen;
1858 }
1859
1860 FREE(buf, M_TEMP);
1861 free(cookies, M_TEMP);
1862 }
1863 #endif /* NFS */
1864
1865 /*
1866 * Set up nameidata for a lookup() call and do it.
1867 *
1868 * If pubflag is set, this call is done for a lookup operation on the
1869 * public filehandle. In that case we allow crossing mountpoints and
1870 * absolute pathnames. However, the caller is expected to check that
1871 * the lookup result is within the public fs, and deny access if
1872 * it is not.
1873 */
1874 int
1875 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1876 struct nameidata *ndp;
1877 fhandle_t *fhp;
1878 uint32_t len;
1879 struct nfssvc_sock *slp;
1880 struct mbuf *nam;
1881 struct mbuf **mdp;
1882 caddr_t *dposp;
1883 struct vnode **retdirp;
1884 struct proc *p;
1885 int kerbflag, pubflag;
1886 {
1887 int i, rem;
1888 struct mbuf *md;
1889 char *fromcp, *tocp, *cp;
1890 struct iovec aiov;
1891 struct uio auio;
1892 struct vnode *dp;
1893 int error, rdonly, linklen;
1894 struct componentname *cnp = &ndp->ni_cnd;
1895
1896 *retdirp = (struct vnode *)0;
1897
1898 if ((len + 1) > MAXPATHLEN)
1899 return (ENAMETOOLONG);
1900 cnp->cn_pnbuf = PNBUF_GET();
1901
1902 /*
1903 * Copy the name from the mbuf list to ndp->ni_pnbuf
1904 * and set the various ndp fields appropriately.
1905 */
1906 fromcp = *dposp;
1907 tocp = cnp->cn_pnbuf;
1908 md = *mdp;
1909 rem = mtod(md, caddr_t) + md->m_len - fromcp;
1910 for (i = 0; i < len; i++) {
1911 while (rem == 0) {
1912 md = md->m_next;
1913 if (md == NULL) {
1914 error = EBADRPC;
1915 goto out;
1916 }
1917 fromcp = mtod(md, caddr_t);
1918 rem = md->m_len;
1919 }
1920 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1921 error = EACCES;
1922 goto out;
1923 }
1924 *tocp++ = *fromcp++;
1925 rem--;
1926 }
1927 *tocp = '\0';
1928 *mdp = md;
1929 *dposp = fromcp;
1930 len = nfsm_rndup(len)-len;
1931 if (len > 0) {
1932 if (rem >= len)
1933 *dposp += len;
1934 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1935 goto out;
1936 }
1937
1938 /*
1939 * Extract and set starting directory.
1940 */
1941 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1942 nam, &rdonly, kerbflag, pubflag);
1943 if (error)
1944 goto out;
1945 if (dp->v_type != VDIR) {
1946 vrele(dp);
1947 error = ENOTDIR;
1948 goto out;
1949 }
1950
1951 if (rdonly)
1952 cnp->cn_flags |= RDONLY;
1953
1954 *retdirp = dp;
1955
1956 if (pubflag) {
1957 /*
1958 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1959 * and the 'native path' indicator.
1960 */
1961 cp = PNBUF_GET();
1962 fromcp = cnp->cn_pnbuf;
1963 tocp = cp;
1964 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1965 switch ((unsigned char)*fromcp) {
1966 case WEBNFS_NATIVE_CHAR:
1967 /*
1968 * 'Native' path for us is the same
1969 * as a path according to the NFS spec,
1970 * just skip the escape char.
1971 */
1972 fromcp++;
1973 break;
1974 /*
1975 * More may be added in the future, range 0x80-0xff
1976 */
1977 default:
1978 error = EIO;
1979 PNBUF_PUT(cp);
1980 goto out;
1981 }
1982 }
1983 /*
1984 * Translate the '%' escapes, URL-style.
1985 */
1986 while (*fromcp != '\0') {
1987 if (*fromcp == WEBNFS_ESC_CHAR) {
1988 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1989 fromcp++;
1990 *tocp++ = HEXSTRTOI(fromcp);
1991 fromcp += 2;
1992 continue;
1993 } else {
1994 error = ENOENT;
1995 PNBUF_PUT(cp);
1996 goto out;
1997 }
1998 } else
1999 *tocp++ = *fromcp++;
2000 }
2001 *tocp = '\0';
2002 PNBUF_PUT(cnp->cn_pnbuf);
2003 cnp->cn_pnbuf = cp;
2004 }
2005
2006 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2007 ndp->ni_segflg = UIO_SYSSPACE;
2008 ndp->ni_rootdir = rootvnode;
2009
2010 if (pubflag) {
2011 ndp->ni_loopcnt = 0;
2012 if (cnp->cn_pnbuf[0] == '/')
2013 dp = rootvnode;
2014 } else {
2015 cnp->cn_flags |= NOCROSSMOUNT;
2016 }
2017
2018 cnp->cn_proc = p;
2019 VREF(dp);
2020
2021 for (;;) {
2022 cnp->cn_nameptr = cnp->cn_pnbuf;
2023 ndp->ni_startdir = dp;
2024 /*
2025 * And call lookup() to do the real work
2026 */
2027 error = lookup(ndp);
2028 if (error) {
2029 PNBUF_PUT(cnp->cn_pnbuf);
2030 return (error);
2031 }
2032 /*
2033 * Check for encountering a symbolic link
2034 */
2035 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2036 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2037 cnp->cn_flags |= HASBUF;
2038 else
2039 PNBUF_PUT(cnp->cn_pnbuf);
2040 return (0);
2041 } else {
2042 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
2043 VOP_UNLOCK(ndp->ni_dvp, 0);
2044 if (!pubflag) {
2045 error = EINVAL;
2046 break;
2047 }
2048
2049 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2050 error = ELOOP;
2051 break;
2052 }
2053 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2054 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2055 cnp->cn_proc);
2056 if (error != 0)
2057 break;
2058 }
2059 if (ndp->ni_pathlen > 1)
2060 cp = PNBUF_GET();
2061 else
2062 cp = cnp->cn_pnbuf;
2063 aiov.iov_base = cp;
2064 aiov.iov_len = MAXPATHLEN;
2065 auio.uio_iov = &aiov;
2066 auio.uio_iovcnt = 1;
2067 auio.uio_offset = 0;
2068 auio.uio_rw = UIO_READ;
2069 auio.uio_segflg = UIO_SYSSPACE;
2070 auio.uio_procp = (struct proc *)0;
2071 auio.uio_resid = MAXPATHLEN;
2072 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2073 if (error) {
2074 badlink:
2075 if (ndp->ni_pathlen > 1)
2076 PNBUF_PUT(cp);
2077 break;
2078 }
2079 linklen = MAXPATHLEN - auio.uio_resid;
2080 if (linklen == 0) {
2081 error = ENOENT;
2082 goto badlink;
2083 }
2084 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2085 error = ENAMETOOLONG;
2086 goto badlink;
2087 }
2088 if (ndp->ni_pathlen > 1) {
2089 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2090 PNBUF_PUT(cnp->cn_pnbuf);
2091 cnp->cn_pnbuf = cp;
2092 } else
2093 cnp->cn_pnbuf[linklen] = '\0';
2094 ndp->ni_pathlen += linklen;
2095 vput(ndp->ni_vp);
2096 dp = ndp->ni_dvp;
2097 /*
2098 * Check if root directory should replace current directory.
2099 */
2100 if (cnp->cn_pnbuf[0] == '/') {
2101 vrele(dp);
2102 dp = ndp->ni_rootdir;
2103 VREF(dp);
2104 }
2105 }
2106 }
2107 vrele(ndp->ni_dvp);
2108 vput(ndp->ni_vp);
2109 ndp->ni_vp = NULL;
2110 out:
2111 PNBUF_PUT(cnp->cn_pnbuf);
2112 return (error);
2113 }
2114
2115 /*
2116 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2117 * boundary and only trims off the back end
2118 *
2119 * 1. trim off 'len' bytes as m_adj(mp, -len).
2120 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2121 */
2122 void
2123 nfs_zeropad(mp, len, nul)
2124 struct mbuf *mp;
2125 int len;
2126 int nul;
2127 {
2128 struct mbuf *m;
2129 int count, i;
2130 char *cp;
2131
2132 /*
2133 * Trim from tail. Scan the mbuf chain,
2134 * calculating its length and finding the last mbuf.
2135 * If the adjustment only affects this mbuf, then just
2136 * adjust and return. Otherwise, rescan and truncate
2137 * after the remaining size.
2138 */
2139 count = 0;
2140 m = mp;
2141 for (;;) {
2142 count += m->m_len;
2143 if (m->m_next == NULL)
2144 break;
2145 m = m->m_next;
2146 }
2147
2148 KDASSERT(count >= len);
2149
2150 if (m->m_len >= len) {
2151 m->m_len -= len;
2152 } else {
2153 count -= len;
2154 /*
2155 * Correct length for chain is "count".
2156 * Find the mbuf with last data, adjust its length,
2157 * and toss data from remaining mbufs on chain.
2158 */
2159 for (m = mp; m; m = m->m_next) {
2160 if (m->m_len >= count) {
2161 m->m_len = count;
2162 break;
2163 }
2164 count -= m->m_len;
2165 }
2166 m_freem(m->m_next);
2167 m->m_next = NULL;
2168 }
2169
2170 /*
2171 * zero-padding.
2172 */
2173 if (nul > 0) {
2174 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2175 struct mbuf *n;
2176
2177 KDASSERT(MLEN >= nul);
2178 n = m_get(M_WAIT, MT_DATA);
2179 MCLAIM(n, &nfs_mowner);
2180 n->m_len = nul;
2181 n->m_next = m->m_next;
2182 m->m_next = n;
2183 m = n;
2184 cp = mtod(n, caddr_t);
2185 } else {
2186 cp = mtod(m, caddr_t) + m->m_len;
2187 m->m_len += nul;
2188 }
2189 for (i = 0; i < nul; i++)
2190 *cp++ = '\0';
2191 }
2192 return;
2193 }
2194
2195 /*
2196 * Make these functions instead of macros, so that the kernel text size
2197 * doesn't get too big...
2198 */
2199 void
2200 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2201 struct nfsrv_descript *nfsd;
2202 int before_ret;
2203 struct vattr *before_vap;
2204 int after_ret;
2205 struct vattr *after_vap;
2206 struct mbuf **mbp;
2207 char **bposp;
2208 {
2209 struct mbuf *mb = *mbp;
2210 char *bpos = *bposp;
2211 u_int32_t *tl;
2212
2213 if (before_ret) {
2214 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2215 *tl = nfs_false;
2216 } else {
2217 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2218 *tl++ = nfs_true;
2219 txdr_hyper(before_vap->va_size, tl);
2220 tl += 2;
2221 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2222 tl += 2;
2223 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2224 }
2225 *bposp = bpos;
2226 *mbp = mb;
2227 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2228 }
2229
2230 void
2231 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2232 struct nfsrv_descript *nfsd;
2233 int after_ret;
2234 struct vattr *after_vap;
2235 struct mbuf **mbp;
2236 char **bposp;
2237 {
2238 struct mbuf *mb = *mbp;
2239 char *bpos = *bposp;
2240 u_int32_t *tl;
2241 struct nfs_fattr *fp;
2242
2243 if (after_ret) {
2244 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2245 *tl = nfs_false;
2246 } else {
2247 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2248 *tl++ = nfs_true;
2249 fp = (struct nfs_fattr *)tl;
2250 nfsm_srvfattr(nfsd, after_vap, fp);
2251 }
2252 *mbp = mb;
2253 *bposp = bpos;
2254 }
2255
2256 void
2257 nfsm_srvfattr(nfsd, vap, fp)
2258 struct nfsrv_descript *nfsd;
2259 struct vattr *vap;
2260 struct nfs_fattr *fp;
2261 {
2262
2263 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2264 fp->fa_uid = txdr_unsigned(vap->va_uid);
2265 fp->fa_gid = txdr_unsigned(vap->va_gid);
2266 if (nfsd->nd_flag & ND_NFSV3) {
2267 fp->fa_type = vtonfsv3_type(vap->va_type);
2268 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2269 txdr_hyper(vap->va_size, &fp->fa3_size);
2270 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2271 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2272 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2273 fp->fa3_fsid.nfsuquad[0] = 0;
2274 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2275 fp->fa3_fileid.nfsuquad[0] = 0;
2276 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2277 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2278 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2279 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2280 } else {
2281 fp->fa_type = vtonfsv2_type(vap->va_type);
2282 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2283 fp->fa2_size = txdr_unsigned(vap->va_size);
2284 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2285 if (vap->va_type == VFIFO)
2286 fp->fa2_rdev = 0xffffffff;
2287 else
2288 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2289 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2290 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2291 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2292 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2293 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2294 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2295 }
2296 }
2297
2298 /*
2299 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2300 * - look up fsid in mount list (if not found ret error)
2301 * - get vp and export rights by calling VFS_FHTOVP()
2302 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2303 * - if not lockflag unlock it with VOP_UNLOCK()
2304 */
2305 int
2306 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2307 fhandle_t *fhp;
2308 int lockflag;
2309 struct vnode **vpp;
2310 struct ucred *cred;
2311 struct nfssvc_sock *slp;
2312 struct mbuf *nam;
2313 int *rdonlyp;
2314 int kerbflag;
2315 {
2316 struct mount *mp;
2317 int i;
2318 struct ucred *credanon;
2319 int error, exflags;
2320 struct sockaddr_in *saddr;
2321
2322 *vpp = (struct vnode *)0;
2323
2324 if (nfs_ispublicfh(fhp)) {
2325 if (!pubflag || !nfs_pub.np_valid)
2326 return (ESTALE);
2327 fhp = &nfs_pub.np_handle;
2328 }
2329
2330 mp = vfs_getvfs(&fhp->fh_fsid);
2331 if (!mp)
2332 return (ESTALE);
2333 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2334 if (error)
2335 return (error);
2336 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2337 if (error)
2338 return (error);
2339
2340 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2341 saddr = mtod(nam, struct sockaddr_in *);
2342 if ((saddr->sin_family == AF_INET) &&
2343 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2344 vput(*vpp);
2345 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2346 }
2347 #ifdef INET6
2348 if ((saddr->sin_family == AF_INET6) &&
2349 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2350 vput(*vpp);
2351 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2352 }
2353 #endif
2354 }
2355 /*
2356 * Check/setup credentials.
2357 */
2358 if (exflags & MNT_EXKERB) {
2359 if (!kerbflag) {
2360 vput(*vpp);
2361 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2362 }
2363 } else if (kerbflag) {
2364 vput(*vpp);
2365 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2366 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2367 cred->cr_uid = credanon->cr_uid;
2368 cred->cr_gid = credanon->cr_gid;
2369 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2370 cred->cr_groups[i] = credanon->cr_groups[i];
2371 cred->cr_ngroups = i;
2372 }
2373 if (exflags & MNT_EXRDONLY)
2374 *rdonlyp = 1;
2375 else
2376 *rdonlyp = 0;
2377 if (!lockflag)
2378 VOP_UNLOCK(*vpp, 0);
2379 return (0);
2380 }
2381
2382 /*
2383 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2384 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2385 * transformed this to all zeroes in both cases, so check for it.
2386 */
2387 int
2388 nfs_ispublicfh(fhp)
2389 fhandle_t *fhp;
2390 {
2391 char *cp = (char *)fhp;
2392 int i;
2393
2394 for (i = 0; i < NFSX_V3FH; i++)
2395 if (*cp++ != 0)
2396 return (FALSE);
2397 return (TRUE);
2398 }
2399
2400 /*
2401 * This function compares two net addresses by family and returns TRUE
2402 * if they are the same host.
2403 * If there is any doubt, return FALSE.
2404 * The AF_INET family is handled as a special case so that address mbufs
2405 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2406 */
2407 int
2408 netaddr_match(family, haddr, nam)
2409 int family;
2410 union nethostaddr *haddr;
2411 struct mbuf *nam;
2412 {
2413 struct sockaddr_in *inetaddr;
2414
2415 switch (family) {
2416 case AF_INET:
2417 inetaddr = mtod(nam, struct sockaddr_in *);
2418 if (inetaddr->sin_family == AF_INET &&
2419 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2420 return (1);
2421 break;
2422 #ifdef INET6
2423 case AF_INET6:
2424 {
2425 struct sockaddr_in6 *sin6_1, *sin6_2;
2426
2427 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2428 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2429 if (sin6_1->sin6_family == AF_INET6 &&
2430 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2431 return 1;
2432 }
2433 #endif
2434 #ifdef ISO
2435 case AF_ISO:
2436 {
2437 struct sockaddr_iso *isoaddr1, *isoaddr2;
2438
2439 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2440 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2441 if (isoaddr1->siso_family == AF_ISO &&
2442 isoaddr1->siso_nlen > 0 &&
2443 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2444 SAME_ISOADDR(isoaddr1, isoaddr2))
2445 return (1);
2446 break;
2447 }
2448 #endif /* ISO */
2449 default:
2450 break;
2451 };
2452 return (0);
2453 }
2454
2455 /*
2456 * The write verifier has changed (probably due to a server reboot), so all
2457 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2458 * as dirty or are being written out just now, all this takes is clearing
2459 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2460 * the mount point.
2461 */
2462 void
2463 nfs_clearcommit(mp)
2464 struct mount *mp;
2465 {
2466 struct vnode *vp;
2467 struct nfsnode *np;
2468 struct vm_page *pg;
2469 struct nfsmount *nmp = VFSTONFS(mp);
2470
2471 lockmgr(&nmp->nm_writeverflock, LK_EXCLUSIVE, NULL);
2472
2473 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2474 KASSERT(vp->v_mount == mp);
2475 if (vp->v_type == VNON)
2476 continue;
2477 np = VTONFS(vp);
2478 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2479 np->n_pushedhi = 0;
2480 np->n_commitflags &=
2481 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2482 simple_lock(&vp->v_uobj.vmobjlock);
2483 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2484 pg->flags &= ~PG_NEEDCOMMIT;
2485 }
2486 simple_unlock(&vp->v_uobj.vmobjlock);
2487 }
2488 simple_lock(&nmp->nm_slock);
2489 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2490 simple_unlock(&nmp->nm_slock);
2491 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
2492 }
2493
2494 void
2495 nfs_merge_commit_ranges(vp)
2496 struct vnode *vp;
2497 {
2498 struct nfsnode *np = VTONFS(vp);
2499
2500 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2501
2502 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2503 np->n_pushedlo = np->n_pushlo;
2504 np->n_pushedhi = np->n_pushhi;
2505 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2506 } else {
2507 if (np->n_pushlo < np->n_pushedlo)
2508 np->n_pushedlo = np->n_pushlo;
2509 if (np->n_pushhi > np->n_pushedhi)
2510 np->n_pushedhi = np->n_pushhi;
2511 }
2512
2513 np->n_pushlo = np->n_pushhi = 0;
2514 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2515
2516 #ifdef NFS_DEBUG_COMMIT
2517 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2518 (unsigned)np->n_pushedhi);
2519 #endif
2520 }
2521
2522 int
2523 nfs_in_committed_range(vp, off, len)
2524 struct vnode *vp;
2525 off_t off, len;
2526 {
2527 struct nfsnode *np = VTONFS(vp);
2528 off_t lo, hi;
2529
2530 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2531 return 0;
2532 lo = off;
2533 hi = lo + len;
2534
2535 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2536 }
2537
2538 int
2539 nfs_in_tobecommitted_range(vp, off, len)
2540 struct vnode *vp;
2541 off_t off, len;
2542 {
2543 struct nfsnode *np = VTONFS(vp);
2544 off_t lo, hi;
2545
2546 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2547 return 0;
2548 lo = off;
2549 hi = lo + len;
2550
2551 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2552 }
2553
2554 void
2555 nfs_add_committed_range(vp, off, len)
2556 struct vnode *vp;
2557 off_t off, len;
2558 {
2559 struct nfsnode *np = VTONFS(vp);
2560 off_t lo, hi;
2561
2562 lo = off;
2563 hi = lo + len;
2564
2565 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2566 np->n_pushedlo = lo;
2567 np->n_pushedhi = hi;
2568 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2569 } else {
2570 if (hi > np->n_pushedhi)
2571 np->n_pushedhi = hi;
2572 if (lo < np->n_pushedlo)
2573 np->n_pushedlo = lo;
2574 }
2575 #ifdef NFS_DEBUG_COMMIT
2576 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2577 (unsigned)np->n_pushedhi);
2578 #endif
2579 }
2580
2581 void
2582 nfs_del_committed_range(vp, off, len)
2583 struct vnode *vp;
2584 off_t off, len;
2585 {
2586 struct nfsnode *np = VTONFS(vp);
2587 off_t lo, hi;
2588
2589 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2590 return;
2591
2592 lo = off;
2593 hi = lo + len;
2594
2595 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2596 return;
2597 if (lo <= np->n_pushedlo)
2598 np->n_pushedlo = hi;
2599 else if (hi >= np->n_pushedhi)
2600 np->n_pushedhi = lo;
2601 else {
2602 /*
2603 * XXX There's only one range. If the deleted range
2604 * is in the middle, pick the largest of the
2605 * contiguous ranges that it leaves.
2606 */
2607 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2608 np->n_pushedhi = lo;
2609 else
2610 np->n_pushedlo = hi;
2611 }
2612 #ifdef NFS_DEBUG_COMMIT
2613 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2614 (unsigned)np->n_pushedhi);
2615 #endif
2616 }
2617
2618 void
2619 nfs_add_tobecommitted_range(vp, off, len)
2620 struct vnode *vp;
2621 off_t off, len;
2622 {
2623 struct nfsnode *np = VTONFS(vp);
2624 off_t lo, hi;
2625
2626 lo = off;
2627 hi = lo + len;
2628
2629 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2630 np->n_pushlo = lo;
2631 np->n_pushhi = hi;
2632 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2633 } else {
2634 if (lo < np->n_pushlo)
2635 np->n_pushlo = lo;
2636 if (hi > np->n_pushhi)
2637 np->n_pushhi = hi;
2638 }
2639 #ifdef NFS_DEBUG_COMMIT
2640 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2641 (unsigned)np->n_pushhi);
2642 #endif
2643 }
2644
2645 void
2646 nfs_del_tobecommitted_range(vp, off, len)
2647 struct vnode *vp;
2648 off_t off, len;
2649 {
2650 struct nfsnode *np = VTONFS(vp);
2651 off_t lo, hi;
2652
2653 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2654 return;
2655
2656 lo = off;
2657 hi = lo + len;
2658
2659 if (lo > np->n_pushhi || hi < np->n_pushlo)
2660 return;
2661
2662 if (lo <= np->n_pushlo)
2663 np->n_pushlo = hi;
2664 else if (hi >= np->n_pushhi)
2665 np->n_pushhi = lo;
2666 else {
2667 /*
2668 * XXX There's only one range. If the deleted range
2669 * is in the middle, pick the largest of the
2670 * contiguous ranges that it leaves.
2671 */
2672 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2673 np->n_pushhi = lo;
2674 else
2675 np->n_pushlo = hi;
2676 }
2677 #ifdef NFS_DEBUG_COMMIT
2678 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2679 (unsigned)np->n_pushhi);
2680 #endif
2681 }
2682
2683 /*
2684 * Map errnos to NFS error numbers. For Version 3 also filter out error
2685 * numbers not specified for the associated procedure.
2686 */
2687 int
2688 nfsrv_errmap(nd, err)
2689 struct nfsrv_descript *nd;
2690 int err;
2691 {
2692 const short *defaulterrp, *errp;
2693
2694 if (nd->nd_flag & ND_NFSV3) {
2695 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2696 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2697 while (*++errp) {
2698 if (*errp == err)
2699 return (err);
2700 else if (*errp > err)
2701 break;
2702 }
2703 return ((int)*defaulterrp);
2704 } else
2705 return (err & 0xffff);
2706 }
2707 if (err <= ELAST)
2708 return ((int)nfsrv_v2errmap[err - 1]);
2709 return (NFSERR_IO);
2710 }
2711
2712 /*
2713 * Sort the group list in increasing numerical order.
2714 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2715 * that used to be here.)
2716 */
2717 void
2718 nfsrvw_sort(list, num)
2719 gid_t *list;
2720 int num;
2721 {
2722 int i, j;
2723 gid_t v;
2724
2725 /* Insertion sort. */
2726 for (i = 1; i < num; i++) {
2727 v = list[i];
2728 /* find correct slot for value v, moving others up */
2729 for (j = i; --j >= 0 && v < list[j];)
2730 list[j + 1] = list[j];
2731 list[j + 1] = v;
2732 }
2733 }
2734
2735 /*
2736 * copy credentials making sure that the result can be compared with memcmp().
2737 */
2738 void
2739 nfsrv_setcred(incred, outcred)
2740 struct ucred *incred, *outcred;
2741 {
2742 int i;
2743
2744 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2745 outcred->cr_ref = 1;
2746 outcred->cr_uid = incred->cr_uid;
2747 outcred->cr_gid = incred->cr_gid;
2748 outcred->cr_ngroups = incred->cr_ngroups;
2749 for (i = 0; i < incred->cr_ngroups; i++)
2750 outcred->cr_groups[i] = incred->cr_groups[i];
2751 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2752 }
2753
2754 u_int32_t
2755 nfs_getxid()
2756 {
2757 static u_int32_t base;
2758 static u_int32_t nfs_xid = 0;
2759 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2760 u_int32_t newxid;
2761
2762 simple_lock(&nfs_xidlock);
2763 /*
2764 * derive initial xid from system time
2765 * XXX time is invalid if root not yet mounted
2766 */
2767 if (__predict_false(!base && (rootvp))) {
2768 struct timeval tv;
2769
2770 microtime(&tv);
2771 base = tv.tv_sec << 12;
2772 nfs_xid = base;
2773 }
2774
2775 /*
2776 * Skip zero xid if it should ever happen.
2777 */
2778 if (__predict_false(++nfs_xid == 0))
2779 nfs_xid++;
2780 newxid = nfs_xid;
2781 simple_unlock(&nfs_xidlock);
2782
2783 return txdr_unsigned(newxid);
2784 }
2785
2786 /*
2787 * assign a new xid for existing request.
2788 * used for NFSERR_JUKEBOX handling.
2789 */
2790 void
2791 nfs_renewxid(struct nfsreq *req)
2792 {
2793 u_int32_t xid;
2794 int off;
2795
2796 xid = nfs_getxid();
2797 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2798 off = sizeof(u_int32_t); /* RPC record mark */
2799 else
2800 off = 0;
2801
2802 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2803 req->r_xid = xid;
2804 }
2805