nfs_subs.c revision 1.129 1 /* $NetBSD: nfs_subs.c,v 1.129 2003/10/02 06:01:51 itojun Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.129 2003/10/02 06:01:51 itojun Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <nfs/rpcv2.h>
104 #include <nfs/nfsproto.h>
105 #include <nfs/nfsnode.h>
106 #include <nfs/nfs.h>
107 #include <nfs/xdr_subs.h>
108 #include <nfs/nfsm_subs.h>
109 #include <nfs/nfsmount.h>
110 #include <nfs/nqnfs.h>
111 #include <nfs/nfsrtt.h>
112 #include <nfs/nfs_var.h>
113
114 #include <miscfs/specfs/specdev.h>
115
116 #include <netinet/in.h>
117 #ifdef ISO
118 #include <netiso/iso.h>
119 #endif
120
121 /*
122 * Data items converted to xdr at startup, since they are constant
123 * This is kinda hokey, but may save a little time doing byte swaps
124 */
125 u_int32_t nfs_xdrneg1;
126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
127 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
128 rpc_auth_kerb;
129 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
130
131 /* And other global data */
132 const nfstype nfsv2_type[9] =
133 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
134 const nfstype nfsv3_type[9] =
135 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
136 const enum vtype nv2tov_type[8] =
137 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
138 const enum vtype nv3tov_type[8] =
139 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
140 int nfs_ticks;
141 int nfs_commitsize;
142
143 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
144
145 /* NFS client/server stats. */
146 struct nfsstats nfsstats;
147
148 /*
149 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
150 */
151 const int nfsv3_procid[NFS_NPROCS] = {
152 NFSPROC_NULL,
153 NFSPROC_GETATTR,
154 NFSPROC_SETATTR,
155 NFSPROC_NOOP,
156 NFSPROC_LOOKUP,
157 NFSPROC_READLINK,
158 NFSPROC_READ,
159 NFSPROC_NOOP,
160 NFSPROC_WRITE,
161 NFSPROC_CREATE,
162 NFSPROC_REMOVE,
163 NFSPROC_RENAME,
164 NFSPROC_LINK,
165 NFSPROC_SYMLINK,
166 NFSPROC_MKDIR,
167 NFSPROC_RMDIR,
168 NFSPROC_READDIR,
169 NFSPROC_FSSTAT,
170 NFSPROC_NOOP,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP,
177 NFSPROC_NOOP
178 };
179
180 /*
181 * and the reverse mapping from generic to Version 2 procedure numbers
182 */
183 const int nfsv2_procid[NFS_NPROCS] = {
184 NFSV2PROC_NULL,
185 NFSV2PROC_GETATTR,
186 NFSV2PROC_SETATTR,
187 NFSV2PROC_LOOKUP,
188 NFSV2PROC_NOOP,
189 NFSV2PROC_READLINK,
190 NFSV2PROC_READ,
191 NFSV2PROC_WRITE,
192 NFSV2PROC_CREATE,
193 NFSV2PROC_MKDIR,
194 NFSV2PROC_SYMLINK,
195 NFSV2PROC_CREATE,
196 NFSV2PROC_REMOVE,
197 NFSV2PROC_RMDIR,
198 NFSV2PROC_RENAME,
199 NFSV2PROC_LINK,
200 NFSV2PROC_READDIR,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_STATFS,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_NOOP,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 NFSV2PROC_NOOP,
209 NFSV2PROC_NOOP,
210 };
211
212 /*
213 * Maps errno values to nfs error numbers.
214 * Use NFSERR_IO as the catch all for ones not specifically defined in
215 * RFC 1094.
216 */
217 static const u_char nfsrv_v2errmap[ELAST] = {
218 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
219 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
222 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
231 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
232 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
233 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
234 NFSERR_IO, NFSERR_IO,
235 };
236
237 /*
238 * Maps errno values to nfs error numbers.
239 * Although it is not obvious whether or not NFS clients really care if
240 * a returned error value is in the specified list for the procedure, the
241 * safest thing to do is filter them appropriately. For Version 2, the
242 * X/Open XNFS document is the only specification that defines error values
243 * for each RPC (The RFC simply lists all possible error values for all RPCs),
244 * so I have decided to not do this for Version 2.
245 * The first entry is the default error return and the rest are the valid
246 * errors for that RPC in increasing numeric order.
247 */
248 static const short nfsv3err_null[] = {
249 0,
250 0,
251 };
252
253 static const short nfsv3err_getattr[] = {
254 NFSERR_IO,
255 NFSERR_IO,
256 NFSERR_STALE,
257 NFSERR_BADHANDLE,
258 NFSERR_SERVERFAULT,
259 0,
260 };
261
262 static const short nfsv3err_setattr[] = {
263 NFSERR_IO,
264 NFSERR_PERM,
265 NFSERR_IO,
266 NFSERR_ACCES,
267 NFSERR_INVAL,
268 NFSERR_NOSPC,
269 NFSERR_ROFS,
270 NFSERR_DQUOT,
271 NFSERR_STALE,
272 NFSERR_BADHANDLE,
273 NFSERR_NOT_SYNC,
274 NFSERR_SERVERFAULT,
275 0,
276 };
277
278 static const short nfsv3err_lookup[] = {
279 NFSERR_IO,
280 NFSERR_NOENT,
281 NFSERR_IO,
282 NFSERR_ACCES,
283 NFSERR_NOTDIR,
284 NFSERR_NAMETOL,
285 NFSERR_STALE,
286 NFSERR_BADHANDLE,
287 NFSERR_SERVERFAULT,
288 0,
289 };
290
291 static const short nfsv3err_access[] = {
292 NFSERR_IO,
293 NFSERR_IO,
294 NFSERR_STALE,
295 NFSERR_BADHANDLE,
296 NFSERR_SERVERFAULT,
297 0,
298 };
299
300 static const short nfsv3err_readlink[] = {
301 NFSERR_IO,
302 NFSERR_IO,
303 NFSERR_ACCES,
304 NFSERR_INVAL,
305 NFSERR_STALE,
306 NFSERR_BADHANDLE,
307 NFSERR_NOTSUPP,
308 NFSERR_SERVERFAULT,
309 0,
310 };
311
312 static const short nfsv3err_read[] = {
313 NFSERR_IO,
314 NFSERR_IO,
315 NFSERR_NXIO,
316 NFSERR_ACCES,
317 NFSERR_INVAL,
318 NFSERR_STALE,
319 NFSERR_BADHANDLE,
320 NFSERR_SERVERFAULT,
321 NFSERR_JUKEBOX,
322 0,
323 };
324
325 static const short nfsv3err_write[] = {
326 NFSERR_IO,
327 NFSERR_IO,
328 NFSERR_ACCES,
329 NFSERR_INVAL,
330 NFSERR_FBIG,
331 NFSERR_NOSPC,
332 NFSERR_ROFS,
333 NFSERR_DQUOT,
334 NFSERR_STALE,
335 NFSERR_BADHANDLE,
336 NFSERR_SERVERFAULT,
337 NFSERR_JUKEBOX,
338 0,
339 };
340
341 static const short nfsv3err_create[] = {
342 NFSERR_IO,
343 NFSERR_IO,
344 NFSERR_ACCES,
345 NFSERR_EXIST,
346 NFSERR_NOTDIR,
347 NFSERR_NOSPC,
348 NFSERR_ROFS,
349 NFSERR_NAMETOL,
350 NFSERR_DQUOT,
351 NFSERR_STALE,
352 NFSERR_BADHANDLE,
353 NFSERR_NOTSUPP,
354 NFSERR_SERVERFAULT,
355 0,
356 };
357
358 static const short nfsv3err_mkdir[] = {
359 NFSERR_IO,
360 NFSERR_IO,
361 NFSERR_ACCES,
362 NFSERR_EXIST,
363 NFSERR_NOTDIR,
364 NFSERR_NOSPC,
365 NFSERR_ROFS,
366 NFSERR_NAMETOL,
367 NFSERR_DQUOT,
368 NFSERR_STALE,
369 NFSERR_BADHANDLE,
370 NFSERR_NOTSUPP,
371 NFSERR_SERVERFAULT,
372 0,
373 };
374
375 static const short nfsv3err_symlink[] = {
376 NFSERR_IO,
377 NFSERR_IO,
378 NFSERR_ACCES,
379 NFSERR_EXIST,
380 NFSERR_NOTDIR,
381 NFSERR_NOSPC,
382 NFSERR_ROFS,
383 NFSERR_NAMETOL,
384 NFSERR_DQUOT,
385 NFSERR_STALE,
386 NFSERR_BADHANDLE,
387 NFSERR_NOTSUPP,
388 NFSERR_SERVERFAULT,
389 0,
390 };
391
392 static const short nfsv3err_mknod[] = {
393 NFSERR_IO,
394 NFSERR_IO,
395 NFSERR_ACCES,
396 NFSERR_EXIST,
397 NFSERR_NOTDIR,
398 NFSERR_NOSPC,
399 NFSERR_ROFS,
400 NFSERR_NAMETOL,
401 NFSERR_DQUOT,
402 NFSERR_STALE,
403 NFSERR_BADHANDLE,
404 NFSERR_NOTSUPP,
405 NFSERR_SERVERFAULT,
406 NFSERR_BADTYPE,
407 0,
408 };
409
410 static const short nfsv3err_remove[] = {
411 NFSERR_IO,
412 NFSERR_NOENT,
413 NFSERR_IO,
414 NFSERR_ACCES,
415 NFSERR_NOTDIR,
416 NFSERR_ROFS,
417 NFSERR_NAMETOL,
418 NFSERR_STALE,
419 NFSERR_BADHANDLE,
420 NFSERR_SERVERFAULT,
421 0,
422 };
423
424 static const short nfsv3err_rmdir[] = {
425 NFSERR_IO,
426 NFSERR_NOENT,
427 NFSERR_IO,
428 NFSERR_ACCES,
429 NFSERR_EXIST,
430 NFSERR_NOTDIR,
431 NFSERR_INVAL,
432 NFSERR_ROFS,
433 NFSERR_NAMETOL,
434 NFSERR_NOTEMPTY,
435 NFSERR_STALE,
436 NFSERR_BADHANDLE,
437 NFSERR_NOTSUPP,
438 NFSERR_SERVERFAULT,
439 0,
440 };
441
442 static const short nfsv3err_rename[] = {
443 NFSERR_IO,
444 NFSERR_NOENT,
445 NFSERR_IO,
446 NFSERR_ACCES,
447 NFSERR_EXIST,
448 NFSERR_XDEV,
449 NFSERR_NOTDIR,
450 NFSERR_ISDIR,
451 NFSERR_INVAL,
452 NFSERR_NOSPC,
453 NFSERR_ROFS,
454 NFSERR_MLINK,
455 NFSERR_NAMETOL,
456 NFSERR_NOTEMPTY,
457 NFSERR_DQUOT,
458 NFSERR_STALE,
459 NFSERR_BADHANDLE,
460 NFSERR_NOTSUPP,
461 NFSERR_SERVERFAULT,
462 0,
463 };
464
465 static const short nfsv3err_link[] = {
466 NFSERR_IO,
467 NFSERR_IO,
468 NFSERR_ACCES,
469 NFSERR_EXIST,
470 NFSERR_XDEV,
471 NFSERR_NOTDIR,
472 NFSERR_INVAL,
473 NFSERR_NOSPC,
474 NFSERR_ROFS,
475 NFSERR_MLINK,
476 NFSERR_NAMETOL,
477 NFSERR_DQUOT,
478 NFSERR_STALE,
479 NFSERR_BADHANDLE,
480 NFSERR_NOTSUPP,
481 NFSERR_SERVERFAULT,
482 0,
483 };
484
485 static const short nfsv3err_readdir[] = {
486 NFSERR_IO,
487 NFSERR_IO,
488 NFSERR_ACCES,
489 NFSERR_NOTDIR,
490 NFSERR_STALE,
491 NFSERR_BADHANDLE,
492 NFSERR_BAD_COOKIE,
493 NFSERR_TOOSMALL,
494 NFSERR_SERVERFAULT,
495 0,
496 };
497
498 static const short nfsv3err_readdirplus[] = {
499 NFSERR_IO,
500 NFSERR_IO,
501 NFSERR_ACCES,
502 NFSERR_NOTDIR,
503 NFSERR_STALE,
504 NFSERR_BADHANDLE,
505 NFSERR_BAD_COOKIE,
506 NFSERR_NOTSUPP,
507 NFSERR_TOOSMALL,
508 NFSERR_SERVERFAULT,
509 0,
510 };
511
512 static const short nfsv3err_fsstat[] = {
513 NFSERR_IO,
514 NFSERR_IO,
515 NFSERR_STALE,
516 NFSERR_BADHANDLE,
517 NFSERR_SERVERFAULT,
518 0,
519 };
520
521 static const short nfsv3err_fsinfo[] = {
522 NFSERR_STALE,
523 NFSERR_STALE,
524 NFSERR_BADHANDLE,
525 NFSERR_SERVERFAULT,
526 0,
527 };
528
529 static const short nfsv3err_pathconf[] = {
530 NFSERR_STALE,
531 NFSERR_STALE,
532 NFSERR_BADHANDLE,
533 NFSERR_SERVERFAULT,
534 0,
535 };
536
537 static const short nfsv3err_commit[] = {
538 NFSERR_IO,
539 NFSERR_IO,
540 NFSERR_STALE,
541 NFSERR_BADHANDLE,
542 NFSERR_SERVERFAULT,
543 0,
544 };
545
546 static const short * const nfsrv_v3errmap[] = {
547 nfsv3err_null,
548 nfsv3err_getattr,
549 nfsv3err_setattr,
550 nfsv3err_lookup,
551 nfsv3err_access,
552 nfsv3err_readlink,
553 nfsv3err_read,
554 nfsv3err_write,
555 nfsv3err_create,
556 nfsv3err_mkdir,
557 nfsv3err_symlink,
558 nfsv3err_mknod,
559 nfsv3err_remove,
560 nfsv3err_rmdir,
561 nfsv3err_rename,
562 nfsv3err_link,
563 nfsv3err_readdir,
564 nfsv3err_readdirplus,
565 nfsv3err_fsstat,
566 nfsv3err_fsinfo,
567 nfsv3err_pathconf,
568 nfsv3err_commit,
569 };
570
571 extern struct nfsrtt nfsrtt;
572 extern time_t nqnfsstarttime;
573 extern int nqsrv_clockskew;
574 extern int nqsrv_writeslack;
575 extern int nqsrv_maxlease;
576 extern const int nqnfs_piggy[NFS_NPROCS];
577 extern struct nfsnodehashhead *nfsnodehashtbl;
578 extern u_long nfsnodehash;
579
580 u_long nfsdirhashmask;
581
582 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
583
584 /*
585 * Create the header for an rpc request packet
586 * The hsiz is the size of the rest of the nfs request header.
587 * (just used to decide if a cluster is a good idea)
588 */
589 struct mbuf *
590 nfsm_reqh(np, procid, hsiz, bposp)
591 struct nfsnode *np;
592 u_long procid;
593 int hsiz;
594 caddr_t *bposp;
595 {
596 struct mbuf *mb;
597 caddr_t bpos;
598 #ifndef NFS_V2_ONLY
599 struct nfsmount *nmp;
600 u_int32_t *tl;
601 int nqflag;
602 #endif
603
604 mb = m_get(M_WAIT, MT_DATA);
605 MCLAIM(mb, &nfs_mowner);
606 if (hsiz >= MINCLSIZE)
607 m_clget(mb, M_WAIT);
608 mb->m_len = 0;
609 bpos = mtod(mb, caddr_t);
610
611 #ifndef NFS_V2_ONLY
612 /*
613 * For NQNFS, add lease request.
614 */
615 if (np) {
616 nmp = VFSTONFS(np->n_vnode->v_mount);
617 if (nmp->nm_flag & NFSMNT_NQNFS) {
618 nqflag = NQNFS_NEEDLEASE(np, procid);
619 if (nqflag) {
620 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
621 *tl++ = txdr_unsigned(nqflag);
622 *tl = txdr_unsigned(nmp->nm_leaseterm);
623 } else {
624 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
625 *tl = 0;
626 }
627 }
628 }
629 #endif
630 /* Finally, return values */
631 *bposp = bpos;
632 return (mb);
633 }
634
635 /*
636 * Build the RPC header and fill in the authorization info.
637 * The authorization string argument is only used when the credentials
638 * come from outside of the kernel.
639 * Returns the head of the mbuf list.
640 */
641 struct mbuf *
642 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
643 verf_str, mrest, mrest_len, mbp, xidp)
644 struct ucred *cr;
645 int nmflag;
646 int procid;
647 int auth_type;
648 int auth_len;
649 char *auth_str;
650 int verf_len;
651 char *verf_str;
652 struct mbuf *mrest;
653 int mrest_len;
654 struct mbuf **mbp;
655 u_int32_t *xidp;
656 {
657 struct mbuf *mb;
658 u_int32_t *tl;
659 caddr_t bpos;
660 int i;
661 struct mbuf *mreq;
662 int siz, grpsiz, authsiz;
663
664 authsiz = nfsm_rndup(auth_len);
665 mb = m_gethdr(M_WAIT, MT_DATA);
666 MCLAIM(mb, &nfs_mowner);
667 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
668 m_clget(mb, M_WAIT);
669 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
670 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
671 } else {
672 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
673 }
674 mb->m_len = 0;
675 mreq = mb;
676 bpos = mtod(mb, caddr_t);
677
678 /*
679 * First the RPC header.
680 */
681 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
682
683 *tl++ = *xidp = nfs_getxid();
684 *tl++ = rpc_call;
685 *tl++ = rpc_vers;
686 if (nmflag & NFSMNT_NQNFS) {
687 *tl++ = txdr_unsigned(NQNFS_PROG);
688 *tl++ = txdr_unsigned(NQNFS_VER3);
689 } else {
690 *tl++ = txdr_unsigned(NFS_PROG);
691 if (nmflag & NFSMNT_NFSV3)
692 *tl++ = txdr_unsigned(NFS_VER3);
693 else
694 *tl++ = txdr_unsigned(NFS_VER2);
695 }
696 if (nmflag & NFSMNT_NFSV3)
697 *tl++ = txdr_unsigned(procid);
698 else
699 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
700
701 /*
702 * And then the authorization cred.
703 */
704 *tl++ = txdr_unsigned(auth_type);
705 *tl = txdr_unsigned(authsiz);
706 switch (auth_type) {
707 case RPCAUTH_UNIX:
708 nfsm_build(tl, u_int32_t *, auth_len);
709 *tl++ = 0; /* stamp ?? */
710 *tl++ = 0; /* NULL hostname */
711 *tl++ = txdr_unsigned(cr->cr_uid);
712 *tl++ = txdr_unsigned(cr->cr_gid);
713 grpsiz = (auth_len >> 2) - 5;
714 *tl++ = txdr_unsigned(grpsiz);
715 for (i = 0; i < grpsiz; i++)
716 *tl++ = txdr_unsigned(cr->cr_groups[i]);
717 break;
718 case RPCAUTH_KERB4:
719 siz = auth_len;
720 while (siz > 0) {
721 if (M_TRAILINGSPACE(mb) == 0) {
722 struct mbuf *mb2;
723 mb2 = m_get(M_WAIT, MT_DATA);
724 MCLAIM(mb2, &nfs_mowner);
725 if (siz >= MINCLSIZE)
726 m_clget(mb2, M_WAIT);
727 mb->m_next = mb2;
728 mb = mb2;
729 mb->m_len = 0;
730 bpos = mtod(mb, caddr_t);
731 }
732 i = min(siz, M_TRAILINGSPACE(mb));
733 memcpy(bpos, auth_str, i);
734 mb->m_len += i;
735 auth_str += i;
736 bpos += i;
737 siz -= i;
738 }
739 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
740 for (i = 0; i < siz; i++)
741 *bpos++ = '\0';
742 mb->m_len += siz;
743 }
744 break;
745 };
746
747 /*
748 * And the verifier...
749 */
750 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
751 if (verf_str) {
752 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
753 *tl = txdr_unsigned(verf_len);
754 siz = verf_len;
755 while (siz > 0) {
756 if (M_TRAILINGSPACE(mb) == 0) {
757 struct mbuf *mb2;
758 mb2 = m_get(M_WAIT, MT_DATA);
759 MCLAIM(mb2, &nfs_mowner);
760 if (siz >= MINCLSIZE)
761 m_clget(mb2, M_WAIT);
762 mb->m_next = mb2;
763 mb = mb2;
764 mb->m_len = 0;
765 bpos = mtod(mb, caddr_t);
766 }
767 i = min(siz, M_TRAILINGSPACE(mb));
768 memcpy(bpos, verf_str, i);
769 mb->m_len += i;
770 verf_str += i;
771 bpos += i;
772 siz -= i;
773 }
774 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
775 for (i = 0; i < siz; i++)
776 *bpos++ = '\0';
777 mb->m_len += siz;
778 }
779 } else {
780 *tl++ = txdr_unsigned(RPCAUTH_NULL);
781 *tl = 0;
782 }
783 mb->m_next = mrest;
784 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
785 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
786 *mbp = mb;
787 return (mreq);
788 }
789
790 /*
791 * copies mbuf chain to the uio scatter/gather list
792 */
793 int
794 nfsm_mbuftouio(mrep, uiop, siz, dpos)
795 struct mbuf **mrep;
796 struct uio *uiop;
797 int siz;
798 caddr_t *dpos;
799 {
800 char *mbufcp, *uiocp;
801 int xfer, left, len;
802 struct mbuf *mp;
803 long uiosiz, rem;
804 int error = 0;
805
806 mp = *mrep;
807 mbufcp = *dpos;
808 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
809 rem = nfsm_rndup(siz)-siz;
810 while (siz > 0) {
811 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
812 return (EFBIG);
813 left = uiop->uio_iov->iov_len;
814 uiocp = uiop->uio_iov->iov_base;
815 if (left > siz)
816 left = siz;
817 uiosiz = left;
818 while (left > 0) {
819 while (len == 0) {
820 mp = mp->m_next;
821 if (mp == NULL)
822 return (EBADRPC);
823 mbufcp = mtod(mp, caddr_t);
824 len = mp->m_len;
825 }
826 xfer = (left > len) ? len : left;
827 #ifdef notdef
828 /* Not Yet.. */
829 if (uiop->uio_iov->iov_op != NULL)
830 (*(uiop->uio_iov->iov_op))
831 (mbufcp, uiocp, xfer);
832 else
833 #endif
834 if (uiop->uio_segflg == UIO_SYSSPACE)
835 memcpy(uiocp, mbufcp, xfer);
836 else
837 copyout(mbufcp, uiocp, xfer);
838 left -= xfer;
839 len -= xfer;
840 mbufcp += xfer;
841 uiocp += xfer;
842 uiop->uio_offset += xfer;
843 uiop->uio_resid -= xfer;
844 }
845 if (uiop->uio_iov->iov_len <= siz) {
846 uiop->uio_iovcnt--;
847 uiop->uio_iov++;
848 } else {
849 uiop->uio_iov->iov_base =
850 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
851 uiop->uio_iov->iov_len -= uiosiz;
852 }
853 siz -= uiosiz;
854 }
855 *dpos = mbufcp;
856 *mrep = mp;
857 if (rem > 0) {
858 if (len < rem)
859 error = nfs_adv(mrep, dpos, rem, len);
860 else
861 *dpos += rem;
862 }
863 return (error);
864 }
865
866 /*
867 * copies a uio scatter/gather list to an mbuf chain.
868 * NOTE: can ony handle iovcnt == 1
869 */
870 int
871 nfsm_uiotombuf(uiop, mq, siz, bpos)
872 struct uio *uiop;
873 struct mbuf **mq;
874 int siz;
875 caddr_t *bpos;
876 {
877 char *uiocp;
878 struct mbuf *mp, *mp2;
879 int xfer, left, mlen;
880 int uiosiz, clflg, rem;
881 char *cp;
882
883 #ifdef DIAGNOSTIC
884 if (uiop->uio_iovcnt != 1)
885 panic("nfsm_uiotombuf: iovcnt != 1");
886 #endif
887
888 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
889 clflg = 1;
890 else
891 clflg = 0;
892 rem = nfsm_rndup(siz)-siz;
893 mp = mp2 = *mq;
894 while (siz > 0) {
895 left = uiop->uio_iov->iov_len;
896 uiocp = uiop->uio_iov->iov_base;
897 if (left > siz)
898 left = siz;
899 uiosiz = left;
900 while (left > 0) {
901 mlen = M_TRAILINGSPACE(mp);
902 if (mlen == 0) {
903 mp = m_get(M_WAIT, MT_DATA);
904 MCLAIM(mp, &nfs_mowner);
905 if (clflg)
906 m_clget(mp, M_WAIT);
907 mp->m_len = 0;
908 mp2->m_next = mp;
909 mp2 = mp;
910 mlen = M_TRAILINGSPACE(mp);
911 }
912 xfer = (left > mlen) ? mlen : left;
913 #ifdef notdef
914 /* Not Yet.. */
915 if (uiop->uio_iov->iov_op != NULL)
916 (*(uiop->uio_iov->iov_op))
917 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
918 else
919 #endif
920 if (uiop->uio_segflg == UIO_SYSSPACE)
921 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
922 else
923 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
924 mp->m_len += xfer;
925 left -= xfer;
926 uiocp += xfer;
927 uiop->uio_offset += xfer;
928 uiop->uio_resid -= xfer;
929 }
930 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
931 uiosiz;
932 uiop->uio_iov->iov_len -= uiosiz;
933 siz -= uiosiz;
934 }
935 if (rem > 0) {
936 if (rem > M_TRAILINGSPACE(mp)) {
937 mp = m_get(M_WAIT, MT_DATA);
938 MCLAIM(mp, &nfs_mowner);
939 mp->m_len = 0;
940 mp2->m_next = mp;
941 }
942 cp = mtod(mp, caddr_t)+mp->m_len;
943 for (left = 0; left < rem; left++)
944 *cp++ = '\0';
945 mp->m_len += rem;
946 *bpos = cp;
947 } else
948 *bpos = mtod(mp, caddr_t)+mp->m_len;
949 *mq = mp;
950 return (0);
951 }
952
953 /*
954 * Get at least "siz" bytes of correctly aligned data.
955 * When called the mbuf pointers are not necessarily correct,
956 * dsosp points to what ought to be in m_data and left contains
957 * what ought to be in m_len.
958 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
959 * cases. (The macros use the vars. dpos and dpos2)
960 */
961 int
962 nfsm_disct(mdp, dposp, siz, left, cp2)
963 struct mbuf **mdp;
964 caddr_t *dposp;
965 int siz;
966 int left;
967 caddr_t *cp2;
968 {
969 struct mbuf *m1, *m2;
970 struct mbuf *havebuf = NULL;
971 caddr_t src = *dposp;
972 caddr_t dst;
973 int len;
974
975 #ifdef DEBUG
976 if (left < 0)
977 panic("nfsm_disct: left < 0");
978 #endif
979 m1 = *mdp;
980 /*
981 * Skip through the mbuf chain looking for an mbuf with
982 * some data. If the first mbuf found has enough data
983 * and it is correctly aligned return it.
984 */
985 while (left == 0) {
986 havebuf = m1;
987 *mdp = m1 = m1->m_next;
988 if (m1 == NULL)
989 return (EBADRPC);
990 src = mtod(m1, caddr_t);
991 left = m1->m_len;
992 /*
993 * If we start a new mbuf and it is big enough
994 * and correctly aligned just return it, don't
995 * do any pull up.
996 */
997 if (left >= siz && nfsm_aligned(src)) {
998 *cp2 = src;
999 *dposp = src + siz;
1000 return (0);
1001 }
1002 }
1003 if (m1->m_flags & M_EXT) {
1004 if (havebuf) {
1005 /* If the first mbuf with data has external data
1006 * and there is a previous empty mbuf use it
1007 * to move the data into.
1008 */
1009 m2 = m1;
1010 *mdp = m1 = havebuf;
1011 if (m1->m_flags & M_EXT) {
1012 MEXTREMOVE(m1);
1013 }
1014 } else {
1015 /*
1016 * If the first mbuf has a external data
1017 * and there is no previous empty mbuf
1018 * allocate a new mbuf and move the external
1019 * data to the new mbuf. Also make the first
1020 * mbuf look empty.
1021 */
1022 m2 = m_get(M_WAIT, MT_DATA);
1023 m2->m_ext = m1->m_ext;
1024 m2->m_data = src;
1025 m2->m_len = left;
1026 MCLADDREFERENCE(m1, m2);
1027 MEXTREMOVE(m1);
1028 m2->m_next = m1->m_next;
1029 m1->m_next = m2;
1030 }
1031 m1->m_len = 0;
1032 if (m1->m_flags & M_PKTHDR)
1033 dst = m1->m_pktdat;
1034 else
1035 dst = m1->m_dat;
1036 m1->m_data = dst;
1037 } else {
1038 /*
1039 * If the first mbuf has no external data
1040 * move the data to the front of the mbuf.
1041 */
1042 if (m1->m_flags & M_PKTHDR)
1043 dst = m1->m_pktdat;
1044 else
1045 dst = m1->m_dat;
1046 m1->m_data = dst;
1047 if (dst != src)
1048 memmove(dst, src, left);
1049 dst += left;
1050 m1->m_len = left;
1051 m2 = m1->m_next;
1052 }
1053 *cp2 = m1->m_data;
1054 *dposp = mtod(m1, caddr_t) + siz;
1055 /*
1056 * Loop through mbufs pulling data up into first mbuf until
1057 * the first mbuf is full or there is no more data to
1058 * pullup.
1059 */
1060 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1061 if ((len = min(len, m2->m_len)) != 0)
1062 memcpy(dst, m2->m_data, len);
1063 m1->m_len += len;
1064 dst += len;
1065 m2->m_data += len;
1066 m2->m_len -= len;
1067 m2 = m2->m_next;
1068 }
1069 if (m1->m_len < siz)
1070 return (EBADRPC);
1071 return (0);
1072 }
1073
1074 /*
1075 * Advance the position in the mbuf chain.
1076 */
1077 int
1078 nfs_adv(mdp, dposp, offs, left)
1079 struct mbuf **mdp;
1080 caddr_t *dposp;
1081 int offs;
1082 int left;
1083 {
1084 struct mbuf *m;
1085 int s;
1086
1087 m = *mdp;
1088 s = left;
1089 while (s < offs) {
1090 offs -= s;
1091 m = m->m_next;
1092 if (m == NULL)
1093 return (EBADRPC);
1094 s = m->m_len;
1095 }
1096 *mdp = m;
1097 *dposp = mtod(m, caddr_t)+offs;
1098 return (0);
1099 }
1100
1101 /*
1102 * Copy a string into mbufs for the hard cases...
1103 */
1104 int
1105 nfsm_strtmbuf(mb, bpos, cp, siz)
1106 struct mbuf **mb;
1107 char **bpos;
1108 const char *cp;
1109 long siz;
1110 {
1111 struct mbuf *m1 = NULL, *m2;
1112 long left, xfer, len, tlen;
1113 u_int32_t *tl;
1114 int putsize;
1115
1116 putsize = 1;
1117 m2 = *mb;
1118 left = M_TRAILINGSPACE(m2);
1119 if (left > 0) {
1120 tl = ((u_int32_t *)(*bpos));
1121 *tl++ = txdr_unsigned(siz);
1122 putsize = 0;
1123 left -= NFSX_UNSIGNED;
1124 m2->m_len += NFSX_UNSIGNED;
1125 if (left > 0) {
1126 memcpy((caddr_t) tl, cp, left);
1127 siz -= left;
1128 cp += left;
1129 m2->m_len += left;
1130 left = 0;
1131 }
1132 }
1133 /* Loop around adding mbufs */
1134 while (siz > 0) {
1135 m1 = m_get(M_WAIT, MT_DATA);
1136 MCLAIM(m1, &nfs_mowner);
1137 if (siz > MLEN)
1138 m_clget(m1, M_WAIT);
1139 m1->m_len = NFSMSIZ(m1);
1140 m2->m_next = m1;
1141 m2 = m1;
1142 tl = mtod(m1, u_int32_t *);
1143 tlen = 0;
1144 if (putsize) {
1145 *tl++ = txdr_unsigned(siz);
1146 m1->m_len -= NFSX_UNSIGNED;
1147 tlen = NFSX_UNSIGNED;
1148 putsize = 0;
1149 }
1150 if (siz < m1->m_len) {
1151 len = nfsm_rndup(siz);
1152 xfer = siz;
1153 if (xfer < len)
1154 *(tl+(xfer>>2)) = 0;
1155 } else {
1156 xfer = len = m1->m_len;
1157 }
1158 memcpy((caddr_t) tl, cp, xfer);
1159 m1->m_len = len+tlen;
1160 siz -= xfer;
1161 cp += xfer;
1162 }
1163 *mb = m1;
1164 *bpos = mtod(m1, caddr_t)+m1->m_len;
1165 return (0);
1166 }
1167
1168 /*
1169 * Directory caching routines. They work as follows:
1170 * - a cache is maintained per VDIR nfsnode.
1171 * - for each offset cookie that is exported to userspace, and can
1172 * thus be thrown back at us as an offset to VOP_READDIR, store
1173 * information in the cache.
1174 * - cached are:
1175 * - cookie itself
1176 * - blocknumber (essentially just a search key in the buffer cache)
1177 * - entry number in block.
1178 * - offset cookie of block in which this entry is stored
1179 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1180 * - entries are looked up in a hash table
1181 * - also maintained is an LRU list of entries, used to determine
1182 * which ones to delete if the cache grows too large.
1183 * - if 32 <-> 64 translation mode is requested for a filesystem,
1184 * the cache also functions as a translation table
1185 * - in the translation case, invalidating the cache does not mean
1186 * flushing it, but just marking entries as invalid, except for
1187 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1188 * still be able to use the cache as a translation table.
1189 * - 32 bit cookies are uniquely created by combining the hash table
1190 * entry value, and one generation count per hash table entry,
1191 * incremented each time an entry is appended to the chain.
1192 * - the cache is invalidated each time a direcory is modified
1193 * - sanity checks are also done; if an entry in a block turns
1194 * out not to have a matching cookie, the cache is invalidated
1195 * and a new block starting from the wanted offset is fetched from
1196 * the server.
1197 * - directory entries as read from the server are extended to contain
1198 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1199 * the cache and exporting them to userspace through the cookie
1200 * argument to VOP_READDIR.
1201 */
1202
1203 u_long
1204 nfs_dirhash(off)
1205 off_t off;
1206 {
1207 int i;
1208 char *cp = (char *)&off;
1209 u_long sum = 0L;
1210
1211 for (i = 0 ; i < sizeof (off); i++)
1212 sum += *cp++;
1213
1214 return sum;
1215 }
1216
1217 void
1218 nfs_initdircache(vp)
1219 struct vnode *vp;
1220 {
1221 struct nfsnode *np = VTONFS(vp);
1222
1223 KASSERT(np->n_dircache == NULL);
1224
1225 np->n_dircachesize = 0;
1226 np->n_dblkno = 1;
1227 np->n_dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1228 M_WAITOK, &nfsdirhashmask);
1229 TAILQ_INIT(&np->n_dirchain);
1230 }
1231
1232 void
1233 nfs_initdirxlatecookie(vp)
1234 struct vnode *vp;
1235 {
1236 struct nfsnode *np = VTONFS(vp);
1237
1238 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1239 KASSERT(np->n_dirgens == NULL);
1240
1241 MALLOC(np->n_dirgens, unsigned *,
1242 NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF, M_WAITOK);
1243 memset((caddr_t)np->n_dirgens, 0, NFS_DIRHASHSIZ * sizeof (unsigned));
1244 }
1245
1246 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
1247
1248 struct nfsdircache *
1249 nfs_searchdircache(vp, off, do32, hashent)
1250 struct vnode *vp;
1251 off_t off;
1252 int do32;
1253 int *hashent;
1254 {
1255 struct nfsdirhashhead *ndhp;
1256 struct nfsdircache *ndp = NULL;
1257 struct nfsnode *np = VTONFS(vp);
1258 unsigned ent;
1259
1260 /*
1261 * Zero is always a valid cookie.
1262 */
1263 if (off == 0)
1264 return &dzero;
1265
1266 /*
1267 * We use a 32bit cookie as search key, directly reconstruct
1268 * the hashentry. Else use the hashfunction.
1269 */
1270 if (do32) {
1271 ent = (u_int32_t)off >> 24;
1272 if (ent >= NFS_DIRHASHSIZ)
1273 return NULL;
1274 ndhp = &np->n_dircache[ent];
1275 } else {
1276 ndhp = NFSDIRHASH(np, off);
1277 }
1278
1279 if (hashent)
1280 *hashent = (int)(ndhp - np->n_dircache);
1281 if (do32) {
1282 LIST_FOREACH(ndp, ndhp, dc_hash) {
1283 if (ndp->dc_cookie32 == (u_int32_t)off) {
1284 /*
1285 * An invalidated entry will become the
1286 * start of a new block fetched from
1287 * the server.
1288 */
1289 if (ndp->dc_blkno == -1) {
1290 ndp->dc_blkcookie = ndp->dc_cookie;
1291 ndp->dc_blkno = np->n_dblkno++;
1292 ndp->dc_entry = 0;
1293 }
1294 break;
1295 }
1296 }
1297 } else {
1298 LIST_FOREACH(ndp, ndhp, dc_hash) {
1299 if (ndp->dc_cookie == off)
1300 break;
1301 }
1302 }
1303 return ndp;
1304 }
1305
1306
1307 struct nfsdircache *
1308 nfs_enterdircache(vp, off, blkoff, en, blkno)
1309 struct vnode *vp;
1310 off_t off, blkoff;
1311 int en;
1312 daddr_t blkno;
1313 {
1314 struct nfsnode *np = VTONFS(vp);
1315 struct nfsdirhashhead *ndhp;
1316 struct nfsdircache *ndp = NULL, *first;
1317 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1318 int hashent, gen, overwrite;
1319
1320 if (!np->n_dircache)
1321 /*
1322 * XXX would like to do this in nfs_nget but vtype
1323 * isn't known at that time.
1324 */
1325 nfs_initdircache(vp);
1326
1327 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1328 nfs_initdirxlatecookie(vp);
1329
1330 /*
1331 * XXX refuse entries for offset 0. amd(8) erroneously sets
1332 * cookie 0 for the '.' entry, making this necessary. This
1333 * isn't so bad, as 0 is a special case anyway.
1334 */
1335 if (off == 0)
1336 return &dzero;
1337
1338 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1339
1340 if (ndp && ndp->dc_blkno != -1) {
1341 /*
1342 * Overwriting an old entry. Check if it's the same.
1343 * If so, just return. If not, remove the old entry.
1344 */
1345 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1346 return ndp;
1347 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1348 LIST_REMOVE(ndp, dc_hash);
1349 FREE(ndp, M_NFSDIROFF);
1350 ndp = 0;
1351 }
1352
1353 ndhp = &np->n_dircache[hashent];
1354
1355 if (!ndp) {
1356 MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
1357 M_WAITOK);
1358 overwrite = 0;
1359 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1360 /*
1361 * We're allocating a new entry, so bump the
1362 * generation number.
1363 */
1364 gen = ++np->n_dirgens[hashent];
1365 if (gen == 0) {
1366 np->n_dirgens[hashent]++;
1367 gen++;
1368 }
1369 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1370 }
1371 } else
1372 overwrite = 1;
1373
1374 /*
1375 * If the entry number is 0, we are at the start of a new block, so
1376 * allocate a new blocknumber.
1377 */
1378 if (en == 0)
1379 ndp->dc_blkno = np->n_dblkno++;
1380 else
1381 ndp->dc_blkno = blkno;
1382
1383 ndp->dc_cookie = off;
1384 ndp->dc_blkcookie = blkoff;
1385 ndp->dc_entry = en;
1386
1387 if (overwrite)
1388 return ndp;
1389
1390 /*
1391 * If the maximum directory cookie cache size has been reached
1392 * for this node, take one off the front. The idea is that
1393 * directories are typically read front-to-back once, so that
1394 * the oldest entries can be thrown away without much performance
1395 * loss.
1396 */
1397 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1398 first = TAILQ_FIRST(&np->n_dirchain);
1399 TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
1400 LIST_REMOVE(first, dc_hash);
1401 FREE(first, M_NFSDIROFF);
1402 } else
1403 np->n_dircachesize++;
1404
1405 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1406 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1407 return ndp;
1408 }
1409
1410 void
1411 nfs_invaldircache(vp, forcefree)
1412 struct vnode *vp;
1413 int forcefree;
1414 {
1415 struct nfsnode *np = VTONFS(vp);
1416 struct nfsdircache *ndp = NULL;
1417 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1418
1419 #ifdef DIAGNOSTIC
1420 if (vp->v_type != VDIR)
1421 panic("nfs: invaldircache: not dir");
1422 #endif
1423
1424 if (!np->n_dircache)
1425 return;
1426
1427 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1428 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != 0) {
1429 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1430 LIST_REMOVE(ndp, dc_hash);
1431 FREE(ndp, M_NFSDIROFF);
1432 }
1433 np->n_dircachesize = 0;
1434 if (forcefree && np->n_dirgens) {
1435 FREE(np->n_dirgens, M_NFSDIROFF);
1436 np->n_dirgens = NULL;
1437 }
1438 } else {
1439 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain) {
1440 ndp->dc_blkno = -1;
1441 }
1442 }
1443
1444 np->n_dblkno = 1;
1445 }
1446
1447 /*
1448 * Called once before VFS init to initialize shared and
1449 * server-specific data structures.
1450 */
1451 void
1452 nfs_init()
1453 {
1454 nfsrtt.pos = 0;
1455 rpc_vers = txdr_unsigned(RPC_VER2);
1456 rpc_call = txdr_unsigned(RPC_CALL);
1457 rpc_reply = txdr_unsigned(RPC_REPLY);
1458 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1459 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1460 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1461 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1462 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1463 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1464 nfs_prog = txdr_unsigned(NFS_PROG);
1465 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1466 nfs_true = txdr_unsigned(TRUE);
1467 nfs_false = txdr_unsigned(FALSE);
1468 nfs_xdrneg1 = txdr_unsigned(-1);
1469 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1470 if (nfs_ticks < 1)
1471 nfs_ticks = 1;
1472 #ifdef NFSSERVER
1473 nfsrv_init(0); /* Init server data structures */
1474 nfsrv_initcache(); /* Init the server request cache */
1475 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
1476 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr);
1477 #endif /* NFSSERVER */
1478
1479 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1480 /*
1481 * Initialize the nqnfs data structures.
1482 */
1483 if (nqnfsstarttime == 0) {
1484 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1485 + nqsrv_clockskew + nqsrv_writeslack;
1486 NQLOADNOVRAM(nqnfsstarttime);
1487 CIRCLEQ_INIT(&nqtimerhead);
1488 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1489 M_WAITOK, &nqfhhash);
1490 }
1491 #endif
1492
1493 exithook_establish(nfs_exit, NULL);
1494
1495 /*
1496 * Initialize reply list and start timer
1497 */
1498 TAILQ_INIT(&nfs_reqq);
1499 nfs_timer(NULL);
1500 MOWNER_ATTACH(&nfs_mowner);
1501
1502 #ifdef NFS
1503 /* Initialize the kqueue structures */
1504 nfs_kqinit();
1505 /* Initialize the iod structures */
1506 nfs_iodinit();
1507 #endif
1508 }
1509
1510 #ifdef NFS
1511 /*
1512 * Called once at VFS init to initialize client-specific data structures.
1513 */
1514 void
1515 nfs_vfs_init()
1516 {
1517 nfs_nhinit(); /* Init the nfsnode table */
1518 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1519 }
1520
1521 void
1522 nfs_vfs_reinit()
1523 {
1524 nfs_nhreinit();
1525 }
1526
1527 void
1528 nfs_vfs_done()
1529 {
1530 nfs_nhdone();
1531 }
1532
1533 /*
1534 * Attribute cache routines.
1535 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1536 * that are on the mbuf list
1537 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1538 * error otherwise
1539 */
1540
1541 /*
1542 * Load the attribute cache (that lives in the nfsnode entry) with
1543 * the values on the mbuf list and
1544 * Iff vap not NULL
1545 * copy the attributes to *vaper
1546 */
1547 int
1548 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1549 struct vnode **vpp;
1550 struct mbuf **mdp;
1551 caddr_t *dposp;
1552 struct vattr *vaper;
1553 int flags;
1554 {
1555 int32_t t1;
1556 caddr_t cp2;
1557 int error = 0;
1558 struct mbuf *md;
1559 int v3 = NFS_ISV3(*vpp);
1560
1561 md = *mdp;
1562 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1563 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1564 if (error)
1565 return (error);
1566 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1567 }
1568
1569 int
1570 nfs_loadattrcache(vpp, fp, vaper, flags)
1571 struct vnode **vpp;
1572 struct nfs_fattr *fp;
1573 struct vattr *vaper;
1574 int flags;
1575 {
1576 struct vnode *vp = *vpp;
1577 struct vattr *vap;
1578 int v3 = NFS_ISV3(vp);
1579 enum vtype vtyp;
1580 u_short vmode;
1581 struct timespec mtime;
1582 struct vnode *nvp;
1583 int32_t rdev;
1584 struct nfsnode *np;
1585 extern int (**spec_nfsv2nodeop_p) __P((void *));
1586 uid_t uid;
1587 gid_t gid;
1588
1589 if (v3) {
1590 vtyp = nfsv3tov_type(fp->fa_type);
1591 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1592 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1593 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1594 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1595 } else {
1596 vtyp = nfsv2tov_type(fp->fa_type);
1597 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1598 if (vtyp == VNON || vtyp == VREG)
1599 vtyp = IFTOVT(vmode);
1600 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1601 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1602
1603 /*
1604 * Really ugly NFSv2 kludge.
1605 */
1606 if (vtyp == VCHR && rdev == 0xffffffff)
1607 vtyp = VFIFO;
1608 }
1609
1610 vmode &= ALLPERMS;
1611
1612 /*
1613 * If v_type == VNON it is a new node, so fill in the v_type,
1614 * n_mtime fields. Check to see if it represents a special
1615 * device, and if so, check for a possible alias. Once the
1616 * correct vnode has been obtained, fill in the rest of the
1617 * information.
1618 */
1619 np = VTONFS(vp);
1620 if (vp->v_type == VNON) {
1621 vp->v_type = vtyp;
1622 if (vp->v_type == VFIFO) {
1623 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1624 vp->v_op = fifo_nfsv2nodeop_p;
1625 }
1626 if (vp->v_type == VCHR || vp->v_type == VBLK) {
1627 vp->v_op = spec_nfsv2nodeop_p;
1628 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1629 if (nvp) {
1630 /*
1631 * Discard unneeded vnode, but save its nfsnode.
1632 * Since the nfsnode does not have a lock, its
1633 * vnode lock has to be carried over.
1634 */
1635 /*
1636 * XXX is the old node sure to be locked here?
1637 */
1638 KASSERT(lockstatus(&vp->v_lock) ==
1639 LK_EXCLUSIVE);
1640 nvp->v_data = vp->v_data;
1641 vp->v_data = NULL;
1642 VOP_UNLOCK(vp, 0);
1643 vp->v_op = spec_vnodeop_p;
1644 vrele(vp);
1645 vgone(vp);
1646 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1647 &nvp->v_interlock);
1648 /*
1649 * Reinitialize aliased node.
1650 */
1651 np->n_vnode = nvp;
1652 *vpp = vp = nvp;
1653 }
1654 }
1655 np->n_mtime = mtime;
1656 }
1657 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1658 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1659 vap = np->n_vattr;
1660
1661 /*
1662 * Invalidate access cache if uid, gid or mode changed.
1663 */
1664 if (np->n_accstamp != -1 &&
1665 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode))
1666 np->n_accstamp = -1;
1667
1668 vap->va_type = vtyp;
1669 vap->va_mode = vmode;
1670 vap->va_rdev = (dev_t)rdev;
1671 vap->va_mtime = mtime;
1672 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1673 switch (vtyp) {
1674 case VDIR:
1675 vap->va_blocksize = NFS_DIRFRAGSIZ;
1676 break;
1677 case VBLK:
1678 vap->va_blocksize = BLKDEV_IOSIZE;
1679 break;
1680 case VCHR:
1681 vap->va_blocksize = MAXBSIZE;
1682 break;
1683 default:
1684 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1685 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1686 break;
1687 }
1688 if (v3) {
1689 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1690 vap->va_uid = uid;
1691 vap->va_gid = gid;
1692 vap->va_size = fxdr_hyper(&fp->fa3_size);
1693 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1694 vap->va_fileid = fxdr_unsigned(int32_t,
1695 fp->fa3_fileid.nfsuquad[1]);
1696 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1697 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1698 vap->va_flags = 0;
1699 vap->va_filerev = 0;
1700 } else {
1701 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1702 vap->va_uid = uid;
1703 vap->va_gid = gid;
1704 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1705 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1706 * NFS_FABLKSIZE;
1707 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1708 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1709 vap->va_flags = 0;
1710 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1711 fp->fa2_ctime.nfsv2_sec);
1712 vap->va_ctime.tv_nsec = 0;
1713 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1714 vap->va_filerev = 0;
1715 }
1716 if (vap->va_size != np->n_size) {
1717 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1718 vap->va_size = np->n_size;
1719 } else {
1720 np->n_size = vap->va_size;
1721 if (vap->va_type == VREG) {
1722 if ((flags & NAC_NOTRUNC)
1723 && np->n_size < vp->v_size) {
1724 /*
1725 * we can't free pages now because
1726 * the pages can be owned by ourselves.
1727 */
1728 np->n_flag |= NTRUNCDELAYED;
1729 }
1730 else {
1731 uvm_vnp_setsize(vp, np->n_size);
1732 }
1733 }
1734 }
1735 }
1736 np->n_attrstamp = time.tv_sec;
1737 if (vaper != NULL) {
1738 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1739 if (np->n_flag & NCHG) {
1740 if (np->n_flag & NACC)
1741 vaper->va_atime = np->n_atim;
1742 if (np->n_flag & NUPD)
1743 vaper->va_mtime = np->n_mtim;
1744 }
1745 }
1746 return (0);
1747 }
1748
1749 /*
1750 * Check the time stamp
1751 * If the cache is valid, copy contents to *vap and return 0
1752 * otherwise return an error
1753 */
1754 int
1755 nfs_getattrcache(vp, vaper)
1756 struct vnode *vp;
1757 struct vattr *vaper;
1758 {
1759 struct nfsnode *np = VTONFS(vp);
1760 struct vattr *vap;
1761
1762 if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1763 nfsstats.attrcache_misses++;
1764 return (ENOENT);
1765 }
1766 nfsstats.attrcache_hits++;
1767 vap = np->n_vattr;
1768 if (vap->va_size != np->n_size) {
1769 if (vap->va_type == VREG) {
1770 if (np->n_flag & NMODIFIED) {
1771 if (vap->va_size < np->n_size)
1772 vap->va_size = np->n_size;
1773 else
1774 np->n_size = vap->va_size;
1775 } else
1776 np->n_size = vap->va_size;
1777 uvm_vnp_setsize(vp, np->n_size);
1778 } else
1779 np->n_size = vap->va_size;
1780 }
1781 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1782 if (np->n_flag & NCHG) {
1783 if (np->n_flag & NACC)
1784 vaper->va_atime = np->n_atim;
1785 if (np->n_flag & NUPD)
1786 vaper->va_mtime = np->n_mtim;
1787 }
1788 return (0);
1789 }
1790
1791 void
1792 nfs_delayedtruncate(vp)
1793 struct vnode *vp;
1794 {
1795 struct nfsnode *np = VTONFS(vp);
1796
1797 if (np->n_flag & NTRUNCDELAYED) {
1798 np->n_flag &= ~NTRUNCDELAYED;
1799 uvm_vnp_setsize(vp, np->n_size);
1800 }
1801 }
1802
1803 /*
1804 * Heuristic to see if the server XDR encodes directory cookies or not.
1805 * it is not supposed to, but a lot of servers may do this. Also, since
1806 * most/all servers will implement V2 as well, it is expected that they
1807 * may return just 32 bits worth of cookie information, so we need to
1808 * find out in which 32 bits this information is available. We do this
1809 * to avoid trouble with emulated binaries that can't handle 64 bit
1810 * directory offsets.
1811 */
1812
1813 void
1814 nfs_cookieheuristic(vp, flagp, p, cred)
1815 struct vnode *vp;
1816 int *flagp;
1817 struct proc *p;
1818 struct ucred *cred;
1819 {
1820 struct uio auio;
1821 struct iovec aiov;
1822 caddr_t buf, cp;
1823 struct dirent *dp;
1824 off_t *cookies = NULL, *cop;
1825 int error, eof, nc, len;
1826
1827 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1828
1829 aiov.iov_base = buf;
1830 aiov.iov_len = NFS_DIRFRAGSIZ;
1831 auio.uio_iov = &aiov;
1832 auio.uio_iovcnt = 1;
1833 auio.uio_rw = UIO_READ;
1834 auio.uio_segflg = UIO_SYSSPACE;
1835 auio.uio_procp = p;
1836 auio.uio_resid = NFS_DIRFRAGSIZ;
1837 auio.uio_offset = 0;
1838
1839 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1840
1841 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1842 if (error || len == 0) {
1843 FREE(buf, M_TEMP);
1844 if (cookies)
1845 free(cookies, M_TEMP);
1846 return;
1847 }
1848
1849 /*
1850 * Find the first valid entry and look at its offset cookie.
1851 */
1852
1853 cp = buf;
1854 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1855 dp = (struct dirent *)cp;
1856 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1857 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1858 *flagp |= NFSMNT_SWAPCOOKIE;
1859 nfs_invaldircache(vp, 0);
1860 nfs_vinvalbuf(vp, 0, cred, p, 1);
1861 }
1862 break;
1863 }
1864 cop++;
1865 cp += dp->d_reclen;
1866 }
1867
1868 FREE(buf, M_TEMP);
1869 free(cookies, M_TEMP);
1870 }
1871 #endif /* NFS */
1872
1873 /*
1874 * Set up nameidata for a lookup() call and do it.
1875 *
1876 * If pubflag is set, this call is done for a lookup operation on the
1877 * public filehandle. In that case we allow crossing mountpoints and
1878 * absolute pathnames. However, the caller is expected to check that
1879 * the lookup result is within the public fs, and deny access if
1880 * it is not.
1881 */
1882 int
1883 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1884 struct nameidata *ndp;
1885 fhandle_t *fhp;
1886 uint32_t len;
1887 struct nfssvc_sock *slp;
1888 struct mbuf *nam;
1889 struct mbuf **mdp;
1890 caddr_t *dposp;
1891 struct vnode **retdirp;
1892 struct proc *p;
1893 int kerbflag, pubflag;
1894 {
1895 int i, rem;
1896 struct mbuf *md;
1897 char *fromcp, *tocp, *cp;
1898 struct iovec aiov;
1899 struct uio auio;
1900 struct vnode *dp;
1901 int error, rdonly, linklen;
1902 struct componentname *cnp = &ndp->ni_cnd;
1903
1904 *retdirp = (struct vnode *)0;
1905
1906 if ((len + 1) > MAXPATHLEN)
1907 return (ENAMETOOLONG);
1908 cnp->cn_pnbuf = PNBUF_GET();
1909
1910 /*
1911 * Copy the name from the mbuf list to ndp->ni_pnbuf
1912 * and set the various ndp fields appropriately.
1913 */
1914 fromcp = *dposp;
1915 tocp = cnp->cn_pnbuf;
1916 md = *mdp;
1917 rem = mtod(md, caddr_t) + md->m_len - fromcp;
1918 for (i = 0; i < len; i++) {
1919 while (rem == 0) {
1920 md = md->m_next;
1921 if (md == NULL) {
1922 error = EBADRPC;
1923 goto out;
1924 }
1925 fromcp = mtod(md, caddr_t);
1926 rem = md->m_len;
1927 }
1928 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
1929 error = EACCES;
1930 goto out;
1931 }
1932 *tocp++ = *fromcp++;
1933 rem--;
1934 }
1935 *tocp = '\0';
1936 *mdp = md;
1937 *dposp = fromcp;
1938 len = nfsm_rndup(len)-len;
1939 if (len > 0) {
1940 if (rem >= len)
1941 *dposp += len;
1942 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
1943 goto out;
1944 }
1945
1946 /*
1947 * Extract and set starting directory.
1948 */
1949 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
1950 nam, &rdonly, kerbflag, pubflag);
1951 if (error)
1952 goto out;
1953 if (dp->v_type != VDIR) {
1954 vrele(dp);
1955 error = ENOTDIR;
1956 goto out;
1957 }
1958
1959 if (rdonly)
1960 cnp->cn_flags |= RDONLY;
1961
1962 *retdirp = dp;
1963
1964 if (pubflag) {
1965 /*
1966 * Oh joy. For WebNFS, handle those pesky '%' escapes,
1967 * and the 'native path' indicator.
1968 */
1969 cp = PNBUF_GET();
1970 fromcp = cnp->cn_pnbuf;
1971 tocp = cp;
1972 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
1973 switch ((unsigned char)*fromcp) {
1974 case WEBNFS_NATIVE_CHAR:
1975 /*
1976 * 'Native' path for us is the same
1977 * as a path according to the NFS spec,
1978 * just skip the escape char.
1979 */
1980 fromcp++;
1981 break;
1982 /*
1983 * More may be added in the future, range 0x80-0xff
1984 */
1985 default:
1986 error = EIO;
1987 PNBUF_PUT(cp);
1988 goto out;
1989 }
1990 }
1991 /*
1992 * Translate the '%' escapes, URL-style.
1993 */
1994 while (*fromcp != '\0') {
1995 if (*fromcp == WEBNFS_ESC_CHAR) {
1996 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
1997 fromcp++;
1998 *tocp++ = HEXSTRTOI(fromcp);
1999 fromcp += 2;
2000 continue;
2001 } else {
2002 error = ENOENT;
2003 PNBUF_PUT(cp);
2004 goto out;
2005 }
2006 } else
2007 *tocp++ = *fromcp++;
2008 }
2009 *tocp = '\0';
2010 PNBUF_PUT(cnp->cn_pnbuf);
2011 cnp->cn_pnbuf = cp;
2012 }
2013
2014 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2015 ndp->ni_segflg = UIO_SYSSPACE;
2016 ndp->ni_rootdir = rootvnode;
2017
2018 if (pubflag) {
2019 ndp->ni_loopcnt = 0;
2020 if (cnp->cn_pnbuf[0] == '/')
2021 dp = rootvnode;
2022 } else {
2023 cnp->cn_flags |= NOCROSSMOUNT;
2024 }
2025
2026 cnp->cn_proc = p;
2027 VREF(dp);
2028
2029 for (;;) {
2030 cnp->cn_nameptr = cnp->cn_pnbuf;
2031 ndp->ni_startdir = dp;
2032 /*
2033 * And call lookup() to do the real work
2034 */
2035 error = lookup(ndp);
2036 if (error) {
2037 PNBUF_PUT(cnp->cn_pnbuf);
2038 return (error);
2039 }
2040 /*
2041 * Check for encountering a symbolic link
2042 */
2043 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2044 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2045 cnp->cn_flags |= HASBUF;
2046 else
2047 PNBUF_PUT(cnp->cn_pnbuf);
2048 return (0);
2049 } else {
2050 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
2051 VOP_UNLOCK(ndp->ni_dvp, 0);
2052 if (!pubflag) {
2053 error = EINVAL;
2054 break;
2055 }
2056
2057 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2058 error = ELOOP;
2059 break;
2060 }
2061 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2062 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2063 cnp->cn_proc);
2064 if (error != 0)
2065 break;
2066 }
2067 if (ndp->ni_pathlen > 1)
2068 cp = PNBUF_GET();
2069 else
2070 cp = cnp->cn_pnbuf;
2071 aiov.iov_base = cp;
2072 aiov.iov_len = MAXPATHLEN;
2073 auio.uio_iov = &aiov;
2074 auio.uio_iovcnt = 1;
2075 auio.uio_offset = 0;
2076 auio.uio_rw = UIO_READ;
2077 auio.uio_segflg = UIO_SYSSPACE;
2078 auio.uio_procp = (struct proc *)0;
2079 auio.uio_resid = MAXPATHLEN;
2080 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2081 if (error) {
2082 badlink:
2083 if (ndp->ni_pathlen > 1)
2084 PNBUF_PUT(cp);
2085 break;
2086 }
2087 linklen = MAXPATHLEN - auio.uio_resid;
2088 if (linklen == 0) {
2089 error = ENOENT;
2090 goto badlink;
2091 }
2092 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2093 error = ENAMETOOLONG;
2094 goto badlink;
2095 }
2096 if (ndp->ni_pathlen > 1) {
2097 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2098 PNBUF_PUT(cnp->cn_pnbuf);
2099 cnp->cn_pnbuf = cp;
2100 } else
2101 cnp->cn_pnbuf[linklen] = '\0';
2102 ndp->ni_pathlen += linklen;
2103 vput(ndp->ni_vp);
2104 dp = ndp->ni_dvp;
2105 /*
2106 * Check if root directory should replace current directory.
2107 */
2108 if (cnp->cn_pnbuf[0] == '/') {
2109 vrele(dp);
2110 dp = ndp->ni_rootdir;
2111 VREF(dp);
2112 }
2113 }
2114 }
2115 vrele(ndp->ni_dvp);
2116 vput(ndp->ni_vp);
2117 ndp->ni_vp = NULL;
2118 out:
2119 PNBUF_PUT(cnp->cn_pnbuf);
2120 return (error);
2121 }
2122
2123 /*
2124 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2125 * boundary and only trims off the back end
2126 *
2127 * 1. trim off 'len' bytes as m_adj(mp, -len).
2128 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2129 */
2130 void
2131 nfs_zeropad(mp, len, nul)
2132 struct mbuf *mp;
2133 int len;
2134 int nul;
2135 {
2136 struct mbuf *m;
2137 int count, i;
2138 char *cp;
2139
2140 /*
2141 * Trim from tail. Scan the mbuf chain,
2142 * calculating its length and finding the last mbuf.
2143 * If the adjustment only affects this mbuf, then just
2144 * adjust and return. Otherwise, rescan and truncate
2145 * after the remaining size.
2146 */
2147 count = 0;
2148 m = mp;
2149 for (;;) {
2150 count += m->m_len;
2151 if (m->m_next == NULL)
2152 break;
2153 m = m->m_next;
2154 }
2155
2156 KDASSERT(count >= len);
2157
2158 if (m->m_len >= len) {
2159 m->m_len -= len;
2160 } else {
2161 count -= len;
2162 /*
2163 * Correct length for chain is "count".
2164 * Find the mbuf with last data, adjust its length,
2165 * and toss data from remaining mbufs on chain.
2166 */
2167 for (m = mp; m; m = m->m_next) {
2168 if (m->m_len >= count) {
2169 m->m_len = count;
2170 break;
2171 }
2172 count -= m->m_len;
2173 }
2174 m_freem(m->m_next);
2175 m->m_next = NULL;
2176 }
2177
2178 /*
2179 * zero-padding.
2180 */
2181 if (nul > 0) {
2182 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2183 struct mbuf *n;
2184
2185 KDASSERT(MLEN >= nul);
2186 n = m_get(M_WAIT, MT_DATA);
2187 MCLAIM(n, &nfs_mowner);
2188 n->m_len = nul;
2189 n->m_next = m->m_next;
2190 m->m_next = n;
2191 m = n;
2192 cp = mtod(n, caddr_t);
2193 } else {
2194 cp = mtod(m, caddr_t) + m->m_len;
2195 m->m_len += nul;
2196 }
2197 for (i = 0; i < nul; i++)
2198 *cp++ = '\0';
2199 }
2200 return;
2201 }
2202
2203 /*
2204 * Make these functions instead of macros, so that the kernel text size
2205 * doesn't get too big...
2206 */
2207 void
2208 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2209 struct nfsrv_descript *nfsd;
2210 int before_ret;
2211 struct vattr *before_vap;
2212 int after_ret;
2213 struct vattr *after_vap;
2214 struct mbuf **mbp;
2215 char **bposp;
2216 {
2217 struct mbuf *mb = *mbp;
2218 char *bpos = *bposp;
2219 u_int32_t *tl;
2220
2221 if (before_ret) {
2222 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2223 *tl = nfs_false;
2224 } else {
2225 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2226 *tl++ = nfs_true;
2227 txdr_hyper(before_vap->va_size, tl);
2228 tl += 2;
2229 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2230 tl += 2;
2231 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2232 }
2233 *bposp = bpos;
2234 *mbp = mb;
2235 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2236 }
2237
2238 void
2239 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2240 struct nfsrv_descript *nfsd;
2241 int after_ret;
2242 struct vattr *after_vap;
2243 struct mbuf **mbp;
2244 char **bposp;
2245 {
2246 struct mbuf *mb = *mbp;
2247 char *bpos = *bposp;
2248 u_int32_t *tl;
2249 struct nfs_fattr *fp;
2250
2251 if (after_ret) {
2252 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2253 *tl = nfs_false;
2254 } else {
2255 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2256 *tl++ = nfs_true;
2257 fp = (struct nfs_fattr *)tl;
2258 nfsm_srvfattr(nfsd, after_vap, fp);
2259 }
2260 *mbp = mb;
2261 *bposp = bpos;
2262 }
2263
2264 void
2265 nfsm_srvfattr(nfsd, vap, fp)
2266 struct nfsrv_descript *nfsd;
2267 struct vattr *vap;
2268 struct nfs_fattr *fp;
2269 {
2270
2271 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2272 fp->fa_uid = txdr_unsigned(vap->va_uid);
2273 fp->fa_gid = txdr_unsigned(vap->va_gid);
2274 if (nfsd->nd_flag & ND_NFSV3) {
2275 fp->fa_type = vtonfsv3_type(vap->va_type);
2276 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2277 txdr_hyper(vap->va_size, &fp->fa3_size);
2278 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2279 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2280 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2281 fp->fa3_fsid.nfsuquad[0] = 0;
2282 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2283 fp->fa3_fileid.nfsuquad[0] = 0;
2284 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2285 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2286 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2287 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2288 } else {
2289 fp->fa_type = vtonfsv2_type(vap->va_type);
2290 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2291 fp->fa2_size = txdr_unsigned(vap->va_size);
2292 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2293 if (vap->va_type == VFIFO)
2294 fp->fa2_rdev = 0xffffffff;
2295 else
2296 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2297 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2298 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2299 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2300 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2301 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2302 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2303 }
2304 }
2305
2306 /*
2307 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2308 * - look up fsid in mount list (if not found ret error)
2309 * - get vp and export rights by calling VFS_FHTOVP()
2310 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2311 * - if not lockflag unlock it with VOP_UNLOCK()
2312 */
2313 int
2314 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2315 fhandle_t *fhp;
2316 int lockflag;
2317 struct vnode **vpp;
2318 struct ucred *cred;
2319 struct nfssvc_sock *slp;
2320 struct mbuf *nam;
2321 int *rdonlyp;
2322 int kerbflag;
2323 {
2324 struct mount *mp;
2325 int i;
2326 struct ucred *credanon;
2327 int error, exflags;
2328 struct sockaddr_in *saddr;
2329
2330 *vpp = (struct vnode *)0;
2331
2332 if (nfs_ispublicfh(fhp)) {
2333 if (!pubflag || !nfs_pub.np_valid)
2334 return (ESTALE);
2335 fhp = &nfs_pub.np_handle;
2336 }
2337
2338 mp = vfs_getvfs(&fhp->fh_fsid);
2339 if (!mp)
2340 return (ESTALE);
2341 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2342 if (error)
2343 return (error);
2344 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2345 if (error)
2346 return (error);
2347
2348 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2349 saddr = mtod(nam, struct sockaddr_in *);
2350 if ((saddr->sin_family == AF_INET) &&
2351 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2352 vput(*vpp);
2353 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2354 }
2355 #ifdef INET6
2356 if ((saddr->sin_family == AF_INET6) &&
2357 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2358 vput(*vpp);
2359 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2360 }
2361 #endif
2362 }
2363 /*
2364 * Check/setup credentials.
2365 */
2366 if (exflags & MNT_EXKERB) {
2367 if (!kerbflag) {
2368 vput(*vpp);
2369 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2370 }
2371 } else if (kerbflag) {
2372 vput(*vpp);
2373 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2374 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2375 cred->cr_uid = credanon->cr_uid;
2376 cred->cr_gid = credanon->cr_gid;
2377 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2378 cred->cr_groups[i] = credanon->cr_groups[i];
2379 cred->cr_ngroups = i;
2380 }
2381 if (exflags & MNT_EXRDONLY)
2382 *rdonlyp = 1;
2383 else
2384 *rdonlyp = 0;
2385 if (!lockflag)
2386 VOP_UNLOCK(*vpp, 0);
2387 return (0);
2388 }
2389
2390 /*
2391 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2392 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2393 * transformed this to all zeroes in both cases, so check for it.
2394 */
2395 int
2396 nfs_ispublicfh(fhp)
2397 fhandle_t *fhp;
2398 {
2399 char *cp = (char *)fhp;
2400 int i;
2401
2402 for (i = 0; i < NFSX_V3FH; i++)
2403 if (*cp++ != 0)
2404 return (FALSE);
2405 return (TRUE);
2406 }
2407
2408 /*
2409 * This function compares two net addresses by family and returns TRUE
2410 * if they are the same host.
2411 * If there is any doubt, return FALSE.
2412 * The AF_INET family is handled as a special case so that address mbufs
2413 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2414 */
2415 int
2416 netaddr_match(family, haddr, nam)
2417 int family;
2418 union nethostaddr *haddr;
2419 struct mbuf *nam;
2420 {
2421 struct sockaddr_in *inetaddr;
2422
2423 switch (family) {
2424 case AF_INET:
2425 inetaddr = mtod(nam, struct sockaddr_in *);
2426 if (inetaddr->sin_family == AF_INET &&
2427 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2428 return (1);
2429 break;
2430 #ifdef INET6
2431 case AF_INET6:
2432 {
2433 struct sockaddr_in6 *sin6_1, *sin6_2;
2434
2435 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2436 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2437 if (sin6_1->sin6_family == AF_INET6 &&
2438 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2439 return 1;
2440 }
2441 #endif
2442 #ifdef ISO
2443 case AF_ISO:
2444 {
2445 struct sockaddr_iso *isoaddr1, *isoaddr2;
2446
2447 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2448 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2449 if (isoaddr1->siso_family == AF_ISO &&
2450 isoaddr1->siso_nlen > 0 &&
2451 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2452 SAME_ISOADDR(isoaddr1, isoaddr2))
2453 return (1);
2454 break;
2455 }
2456 #endif /* ISO */
2457 default:
2458 break;
2459 };
2460 return (0);
2461 }
2462
2463 /*
2464 * The write verifier has changed (probably due to a server reboot), so all
2465 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2466 * as dirty or are being written out just now, all this takes is clearing
2467 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2468 * the mount point.
2469 */
2470 void
2471 nfs_clearcommit(mp)
2472 struct mount *mp;
2473 {
2474 struct vnode *vp;
2475 struct nfsnode *np;
2476 struct vm_page *pg;
2477 struct nfsmount *nmp = VFSTONFS(mp);
2478
2479 lockmgr(&nmp->nm_writeverflock, LK_EXCLUSIVE, NULL);
2480
2481 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2482 KASSERT(vp->v_mount == mp);
2483 if (vp->v_type == VNON)
2484 continue;
2485 np = VTONFS(vp);
2486 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2487 np->n_pushedhi = 0;
2488 np->n_commitflags &=
2489 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2490 simple_lock(&vp->v_uobj.vmobjlock);
2491 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2492 pg->flags &= ~PG_NEEDCOMMIT;
2493 }
2494 simple_unlock(&vp->v_uobj.vmobjlock);
2495 }
2496 simple_lock(&nmp->nm_slock);
2497 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2498 simple_unlock(&nmp->nm_slock);
2499 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
2500 }
2501
2502 void
2503 nfs_merge_commit_ranges(vp)
2504 struct vnode *vp;
2505 {
2506 struct nfsnode *np = VTONFS(vp);
2507
2508 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2509
2510 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2511 np->n_pushedlo = np->n_pushlo;
2512 np->n_pushedhi = np->n_pushhi;
2513 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2514 } else {
2515 if (np->n_pushlo < np->n_pushedlo)
2516 np->n_pushedlo = np->n_pushlo;
2517 if (np->n_pushhi > np->n_pushedhi)
2518 np->n_pushedhi = np->n_pushhi;
2519 }
2520
2521 np->n_pushlo = np->n_pushhi = 0;
2522 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2523
2524 #ifdef NFS_DEBUG_COMMIT
2525 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2526 (unsigned)np->n_pushedhi);
2527 #endif
2528 }
2529
2530 int
2531 nfs_in_committed_range(vp, off, len)
2532 struct vnode *vp;
2533 off_t off, len;
2534 {
2535 struct nfsnode *np = VTONFS(vp);
2536 off_t lo, hi;
2537
2538 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2539 return 0;
2540 lo = off;
2541 hi = lo + len;
2542
2543 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2544 }
2545
2546 int
2547 nfs_in_tobecommitted_range(vp, off, len)
2548 struct vnode *vp;
2549 off_t off, len;
2550 {
2551 struct nfsnode *np = VTONFS(vp);
2552 off_t lo, hi;
2553
2554 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2555 return 0;
2556 lo = off;
2557 hi = lo + len;
2558
2559 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2560 }
2561
2562 void
2563 nfs_add_committed_range(vp, off, len)
2564 struct vnode *vp;
2565 off_t off, len;
2566 {
2567 struct nfsnode *np = VTONFS(vp);
2568 off_t lo, hi;
2569
2570 lo = off;
2571 hi = lo + len;
2572
2573 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2574 np->n_pushedlo = lo;
2575 np->n_pushedhi = hi;
2576 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2577 } else {
2578 if (hi > np->n_pushedhi)
2579 np->n_pushedhi = hi;
2580 if (lo < np->n_pushedlo)
2581 np->n_pushedlo = lo;
2582 }
2583 #ifdef NFS_DEBUG_COMMIT
2584 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2585 (unsigned)np->n_pushedhi);
2586 #endif
2587 }
2588
2589 void
2590 nfs_del_committed_range(vp, off, len)
2591 struct vnode *vp;
2592 off_t off, len;
2593 {
2594 struct nfsnode *np = VTONFS(vp);
2595 off_t lo, hi;
2596
2597 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2598 return;
2599
2600 lo = off;
2601 hi = lo + len;
2602
2603 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2604 return;
2605 if (lo <= np->n_pushedlo)
2606 np->n_pushedlo = hi;
2607 else if (hi >= np->n_pushedhi)
2608 np->n_pushedhi = lo;
2609 else {
2610 /*
2611 * XXX There's only one range. If the deleted range
2612 * is in the middle, pick the largest of the
2613 * contiguous ranges that it leaves.
2614 */
2615 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2616 np->n_pushedhi = lo;
2617 else
2618 np->n_pushedlo = hi;
2619 }
2620 #ifdef NFS_DEBUG_COMMIT
2621 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2622 (unsigned)np->n_pushedhi);
2623 #endif
2624 }
2625
2626 void
2627 nfs_add_tobecommitted_range(vp, off, len)
2628 struct vnode *vp;
2629 off_t off, len;
2630 {
2631 struct nfsnode *np = VTONFS(vp);
2632 off_t lo, hi;
2633
2634 lo = off;
2635 hi = lo + len;
2636
2637 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2638 np->n_pushlo = lo;
2639 np->n_pushhi = hi;
2640 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2641 } else {
2642 if (lo < np->n_pushlo)
2643 np->n_pushlo = lo;
2644 if (hi > np->n_pushhi)
2645 np->n_pushhi = hi;
2646 }
2647 #ifdef NFS_DEBUG_COMMIT
2648 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2649 (unsigned)np->n_pushhi);
2650 #endif
2651 }
2652
2653 void
2654 nfs_del_tobecommitted_range(vp, off, len)
2655 struct vnode *vp;
2656 off_t off, len;
2657 {
2658 struct nfsnode *np = VTONFS(vp);
2659 off_t lo, hi;
2660
2661 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2662 return;
2663
2664 lo = off;
2665 hi = lo + len;
2666
2667 if (lo > np->n_pushhi || hi < np->n_pushlo)
2668 return;
2669
2670 if (lo <= np->n_pushlo)
2671 np->n_pushlo = hi;
2672 else if (hi >= np->n_pushhi)
2673 np->n_pushhi = lo;
2674 else {
2675 /*
2676 * XXX There's only one range. If the deleted range
2677 * is in the middle, pick the largest of the
2678 * contiguous ranges that it leaves.
2679 */
2680 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2681 np->n_pushhi = lo;
2682 else
2683 np->n_pushlo = hi;
2684 }
2685 #ifdef NFS_DEBUG_COMMIT
2686 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2687 (unsigned)np->n_pushhi);
2688 #endif
2689 }
2690
2691 /*
2692 * Map errnos to NFS error numbers. For Version 3 also filter out error
2693 * numbers not specified for the associated procedure.
2694 */
2695 int
2696 nfsrv_errmap(nd, err)
2697 struct nfsrv_descript *nd;
2698 int err;
2699 {
2700 const short *defaulterrp, *errp;
2701
2702 if (nd->nd_flag & ND_NFSV3) {
2703 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2704 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2705 while (*++errp) {
2706 if (*errp == err)
2707 return (err);
2708 else if (*errp > err)
2709 break;
2710 }
2711 return ((int)*defaulterrp);
2712 } else
2713 return (err & 0xffff);
2714 }
2715 if (err <= ELAST)
2716 return ((int)nfsrv_v2errmap[err - 1]);
2717 return (NFSERR_IO);
2718 }
2719
2720 /*
2721 * Sort the group list in increasing numerical order.
2722 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2723 * that used to be here.)
2724 */
2725 void
2726 nfsrvw_sort(list, num)
2727 gid_t *list;
2728 int num;
2729 {
2730 int i, j;
2731 gid_t v;
2732
2733 /* Insertion sort. */
2734 for (i = 1; i < num; i++) {
2735 v = list[i];
2736 /* find correct slot for value v, moving others up */
2737 for (j = i; --j >= 0 && v < list[j];)
2738 list[j + 1] = list[j];
2739 list[j + 1] = v;
2740 }
2741 }
2742
2743 /*
2744 * copy credentials making sure that the result can be compared with memcmp().
2745 */
2746 void
2747 nfsrv_setcred(incred, outcred)
2748 struct ucred *incred, *outcred;
2749 {
2750 int i;
2751
2752 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2753 outcred->cr_ref = 1;
2754 outcred->cr_uid = incred->cr_uid;
2755 outcred->cr_gid = incred->cr_gid;
2756 outcred->cr_ngroups = incred->cr_ngroups;
2757 for (i = 0; i < incred->cr_ngroups; i++)
2758 outcred->cr_groups[i] = incred->cr_groups[i];
2759 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2760 }
2761
2762 u_int32_t
2763 nfs_getxid()
2764 {
2765 static u_int32_t base;
2766 static u_int32_t nfs_xid = 0;
2767 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2768 u_int32_t newxid;
2769
2770 simple_lock(&nfs_xidlock);
2771 /*
2772 * derive initial xid from system time
2773 * XXX time is invalid if root not yet mounted
2774 */
2775 if (__predict_false(!base && (rootvp))) {
2776 struct timeval tv;
2777
2778 microtime(&tv);
2779 base = tv.tv_sec << 12;
2780 nfs_xid = base;
2781 }
2782
2783 /*
2784 * Skip zero xid if it should ever happen.
2785 */
2786 if (__predict_false(++nfs_xid == 0))
2787 nfs_xid++;
2788 newxid = nfs_xid;
2789 simple_unlock(&nfs_xidlock);
2790
2791 return txdr_unsigned(newxid);
2792 }
2793
2794 /*
2795 * assign a new xid for existing request.
2796 * used for NFSERR_JUKEBOX handling.
2797 */
2798 void
2799 nfs_renewxid(struct nfsreq *req)
2800 {
2801 u_int32_t xid;
2802 int off;
2803
2804 xid = nfs_getxid();
2805 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2806 off = sizeof(u_int32_t); /* RPC record mark */
2807 else
2808 off = 0;
2809
2810 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2811 req->r_xid = xid;
2812 }
2813