Home | History | Annotate | Line # | Download | only in nfs
nfs_subs.c revision 1.129
      1 /*	$NetBSD: nfs_subs.c,v 1.129 2003/10/02 06:01:51 itojun Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Rick Macklem at The University of Guelph.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)nfs_subs.c	8.8 (Berkeley) 5/22/95
     35  */
     36 
     37 /*
     38  * Copyright 2000 Wasabi Systems, Inc.
     39  * All rights reserved.
     40  *
     41  * Written by Frank van der Linden for Wasabi Systems, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *      This product includes software developed for the NetBSD Project by
     54  *      Wasabi Systems, Inc.
     55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56  *    or promote products derived from this software without specific prior
     57  *    written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69  * POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 #include <sys/cdefs.h>
     73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.129 2003/10/02 06:01:51 itojun Exp $");
     74 
     75 #include "fs_nfs.h"
     76 #include "opt_nfs.h"
     77 #include "opt_nfsserver.h"
     78 #include "opt_iso.h"
     79 #include "opt_inet.h"
     80 
     81 /*
     82  * These functions support the macros and help fiddle mbuf chains for
     83  * the nfs op functions. They do things like create the rpc header and
     84  * copy data between mbuf chains and uio lists.
     85  */
     86 #include <sys/param.h>
     87 #include <sys/proc.h>
     88 #include <sys/systm.h>
     89 #include <sys/kernel.h>
     90 #include <sys/mount.h>
     91 #include <sys/vnode.h>
     92 #include <sys/namei.h>
     93 #include <sys/mbuf.h>
     94 #include <sys/socket.h>
     95 #include <sys/stat.h>
     96 #include <sys/malloc.h>
     97 #include <sys/filedesc.h>
     98 #include <sys/time.h>
     99 #include <sys/dirent.h>
    100 
    101 #include <uvm/uvm_extern.h>
    102 
    103 #include <nfs/rpcv2.h>
    104 #include <nfs/nfsproto.h>
    105 #include <nfs/nfsnode.h>
    106 #include <nfs/nfs.h>
    107 #include <nfs/xdr_subs.h>
    108 #include <nfs/nfsm_subs.h>
    109 #include <nfs/nfsmount.h>
    110 #include <nfs/nqnfs.h>
    111 #include <nfs/nfsrtt.h>
    112 #include <nfs/nfs_var.h>
    113 
    114 #include <miscfs/specfs/specdev.h>
    115 
    116 #include <netinet/in.h>
    117 #ifdef ISO
    118 #include <netiso/iso.h>
    119 #endif
    120 
    121 /*
    122  * Data items converted to xdr at startup, since they are constant
    123  * This is kinda hokey, but may save a little time doing byte swaps
    124  */
    125 u_int32_t nfs_xdrneg1;
    126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
    127 	rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
    128 	rpc_auth_kerb;
    129 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
    130 
    131 /* And other global data */
    132 const nfstype nfsv2_type[9] =
    133 	{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
    134 const nfstype nfsv3_type[9] =
    135 	{ NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
    136 const enum vtype nv2tov_type[8] =
    137 	{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
    138 const enum vtype nv3tov_type[8] =
    139 	{ VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
    140 int nfs_ticks;
    141 int nfs_commitsize;
    142 
    143 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
    144 
    145 /* NFS client/server stats. */
    146 struct nfsstats nfsstats;
    147 
    148 /*
    149  * Mapping of old NFS Version 2 RPC numbers to generic numbers.
    150  */
    151 const int nfsv3_procid[NFS_NPROCS] = {
    152 	NFSPROC_NULL,
    153 	NFSPROC_GETATTR,
    154 	NFSPROC_SETATTR,
    155 	NFSPROC_NOOP,
    156 	NFSPROC_LOOKUP,
    157 	NFSPROC_READLINK,
    158 	NFSPROC_READ,
    159 	NFSPROC_NOOP,
    160 	NFSPROC_WRITE,
    161 	NFSPROC_CREATE,
    162 	NFSPROC_REMOVE,
    163 	NFSPROC_RENAME,
    164 	NFSPROC_LINK,
    165 	NFSPROC_SYMLINK,
    166 	NFSPROC_MKDIR,
    167 	NFSPROC_RMDIR,
    168 	NFSPROC_READDIR,
    169 	NFSPROC_FSSTAT,
    170 	NFSPROC_NOOP,
    171 	NFSPROC_NOOP,
    172 	NFSPROC_NOOP,
    173 	NFSPROC_NOOP,
    174 	NFSPROC_NOOP,
    175 	NFSPROC_NOOP,
    176 	NFSPROC_NOOP,
    177 	NFSPROC_NOOP
    178 };
    179 
    180 /*
    181  * and the reverse mapping from generic to Version 2 procedure numbers
    182  */
    183 const int nfsv2_procid[NFS_NPROCS] = {
    184 	NFSV2PROC_NULL,
    185 	NFSV2PROC_GETATTR,
    186 	NFSV2PROC_SETATTR,
    187 	NFSV2PROC_LOOKUP,
    188 	NFSV2PROC_NOOP,
    189 	NFSV2PROC_READLINK,
    190 	NFSV2PROC_READ,
    191 	NFSV2PROC_WRITE,
    192 	NFSV2PROC_CREATE,
    193 	NFSV2PROC_MKDIR,
    194 	NFSV2PROC_SYMLINK,
    195 	NFSV2PROC_CREATE,
    196 	NFSV2PROC_REMOVE,
    197 	NFSV2PROC_RMDIR,
    198 	NFSV2PROC_RENAME,
    199 	NFSV2PROC_LINK,
    200 	NFSV2PROC_READDIR,
    201 	NFSV2PROC_NOOP,
    202 	NFSV2PROC_STATFS,
    203 	NFSV2PROC_NOOP,
    204 	NFSV2PROC_NOOP,
    205 	NFSV2PROC_NOOP,
    206 	NFSV2PROC_NOOP,
    207 	NFSV2PROC_NOOP,
    208 	NFSV2PROC_NOOP,
    209 	NFSV2PROC_NOOP,
    210 };
    211 
    212 /*
    213  * Maps errno values to nfs error numbers.
    214  * Use NFSERR_IO as the catch all for ones not specifically defined in
    215  * RFC 1094.
    216  */
    217 static const u_char nfsrv_v2errmap[ELAST] = {
    218   NFSERR_PERM,	NFSERR_NOENT,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    219   NFSERR_NXIO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    220   NFSERR_IO,	NFSERR_IO,	NFSERR_ACCES,	NFSERR_IO,	NFSERR_IO,
    221   NFSERR_IO,	NFSERR_EXIST,	NFSERR_IO,	NFSERR_NODEV,	NFSERR_NOTDIR,
    222   NFSERR_ISDIR,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    223   NFSERR_IO,	NFSERR_FBIG,	NFSERR_NOSPC,	NFSERR_IO,	NFSERR_ROFS,
    224   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    225   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    226   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    227   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    228   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    229   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    230   NFSERR_IO,	NFSERR_IO,	NFSERR_NAMETOL,	NFSERR_IO,	NFSERR_IO,
    231   NFSERR_NOTEMPTY, NFSERR_IO,	NFSERR_IO,	NFSERR_DQUOT,	NFSERR_STALE,
    232   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    233   NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,	NFSERR_IO,
    234   NFSERR_IO,	NFSERR_IO,
    235 };
    236 
    237 /*
    238  * Maps errno values to nfs error numbers.
    239  * Although it is not obvious whether or not NFS clients really care if
    240  * a returned error value is in the specified list for the procedure, the
    241  * safest thing to do is filter them appropriately. For Version 2, the
    242  * X/Open XNFS document is the only specification that defines error values
    243  * for each RPC (The RFC simply lists all possible error values for all RPCs),
    244  * so I have decided to not do this for Version 2.
    245  * The first entry is the default error return and the rest are the valid
    246  * errors for that RPC in increasing numeric order.
    247  */
    248 static const short nfsv3err_null[] = {
    249 	0,
    250 	0,
    251 };
    252 
    253 static const short nfsv3err_getattr[] = {
    254 	NFSERR_IO,
    255 	NFSERR_IO,
    256 	NFSERR_STALE,
    257 	NFSERR_BADHANDLE,
    258 	NFSERR_SERVERFAULT,
    259 	0,
    260 };
    261 
    262 static const short nfsv3err_setattr[] = {
    263 	NFSERR_IO,
    264 	NFSERR_PERM,
    265 	NFSERR_IO,
    266 	NFSERR_ACCES,
    267 	NFSERR_INVAL,
    268 	NFSERR_NOSPC,
    269 	NFSERR_ROFS,
    270 	NFSERR_DQUOT,
    271 	NFSERR_STALE,
    272 	NFSERR_BADHANDLE,
    273 	NFSERR_NOT_SYNC,
    274 	NFSERR_SERVERFAULT,
    275 	0,
    276 };
    277 
    278 static const short nfsv3err_lookup[] = {
    279 	NFSERR_IO,
    280 	NFSERR_NOENT,
    281 	NFSERR_IO,
    282 	NFSERR_ACCES,
    283 	NFSERR_NOTDIR,
    284 	NFSERR_NAMETOL,
    285 	NFSERR_STALE,
    286 	NFSERR_BADHANDLE,
    287 	NFSERR_SERVERFAULT,
    288 	0,
    289 };
    290 
    291 static const short nfsv3err_access[] = {
    292 	NFSERR_IO,
    293 	NFSERR_IO,
    294 	NFSERR_STALE,
    295 	NFSERR_BADHANDLE,
    296 	NFSERR_SERVERFAULT,
    297 	0,
    298 };
    299 
    300 static const short nfsv3err_readlink[] = {
    301 	NFSERR_IO,
    302 	NFSERR_IO,
    303 	NFSERR_ACCES,
    304 	NFSERR_INVAL,
    305 	NFSERR_STALE,
    306 	NFSERR_BADHANDLE,
    307 	NFSERR_NOTSUPP,
    308 	NFSERR_SERVERFAULT,
    309 	0,
    310 };
    311 
    312 static const short nfsv3err_read[] = {
    313 	NFSERR_IO,
    314 	NFSERR_IO,
    315 	NFSERR_NXIO,
    316 	NFSERR_ACCES,
    317 	NFSERR_INVAL,
    318 	NFSERR_STALE,
    319 	NFSERR_BADHANDLE,
    320 	NFSERR_SERVERFAULT,
    321 	NFSERR_JUKEBOX,
    322 	0,
    323 };
    324 
    325 static const short nfsv3err_write[] = {
    326 	NFSERR_IO,
    327 	NFSERR_IO,
    328 	NFSERR_ACCES,
    329 	NFSERR_INVAL,
    330 	NFSERR_FBIG,
    331 	NFSERR_NOSPC,
    332 	NFSERR_ROFS,
    333 	NFSERR_DQUOT,
    334 	NFSERR_STALE,
    335 	NFSERR_BADHANDLE,
    336 	NFSERR_SERVERFAULT,
    337 	NFSERR_JUKEBOX,
    338 	0,
    339 };
    340 
    341 static const short nfsv3err_create[] = {
    342 	NFSERR_IO,
    343 	NFSERR_IO,
    344 	NFSERR_ACCES,
    345 	NFSERR_EXIST,
    346 	NFSERR_NOTDIR,
    347 	NFSERR_NOSPC,
    348 	NFSERR_ROFS,
    349 	NFSERR_NAMETOL,
    350 	NFSERR_DQUOT,
    351 	NFSERR_STALE,
    352 	NFSERR_BADHANDLE,
    353 	NFSERR_NOTSUPP,
    354 	NFSERR_SERVERFAULT,
    355 	0,
    356 };
    357 
    358 static const short nfsv3err_mkdir[] = {
    359 	NFSERR_IO,
    360 	NFSERR_IO,
    361 	NFSERR_ACCES,
    362 	NFSERR_EXIST,
    363 	NFSERR_NOTDIR,
    364 	NFSERR_NOSPC,
    365 	NFSERR_ROFS,
    366 	NFSERR_NAMETOL,
    367 	NFSERR_DQUOT,
    368 	NFSERR_STALE,
    369 	NFSERR_BADHANDLE,
    370 	NFSERR_NOTSUPP,
    371 	NFSERR_SERVERFAULT,
    372 	0,
    373 };
    374 
    375 static const short nfsv3err_symlink[] = {
    376 	NFSERR_IO,
    377 	NFSERR_IO,
    378 	NFSERR_ACCES,
    379 	NFSERR_EXIST,
    380 	NFSERR_NOTDIR,
    381 	NFSERR_NOSPC,
    382 	NFSERR_ROFS,
    383 	NFSERR_NAMETOL,
    384 	NFSERR_DQUOT,
    385 	NFSERR_STALE,
    386 	NFSERR_BADHANDLE,
    387 	NFSERR_NOTSUPP,
    388 	NFSERR_SERVERFAULT,
    389 	0,
    390 };
    391 
    392 static const short nfsv3err_mknod[] = {
    393 	NFSERR_IO,
    394 	NFSERR_IO,
    395 	NFSERR_ACCES,
    396 	NFSERR_EXIST,
    397 	NFSERR_NOTDIR,
    398 	NFSERR_NOSPC,
    399 	NFSERR_ROFS,
    400 	NFSERR_NAMETOL,
    401 	NFSERR_DQUOT,
    402 	NFSERR_STALE,
    403 	NFSERR_BADHANDLE,
    404 	NFSERR_NOTSUPP,
    405 	NFSERR_SERVERFAULT,
    406 	NFSERR_BADTYPE,
    407 	0,
    408 };
    409 
    410 static const short nfsv3err_remove[] = {
    411 	NFSERR_IO,
    412 	NFSERR_NOENT,
    413 	NFSERR_IO,
    414 	NFSERR_ACCES,
    415 	NFSERR_NOTDIR,
    416 	NFSERR_ROFS,
    417 	NFSERR_NAMETOL,
    418 	NFSERR_STALE,
    419 	NFSERR_BADHANDLE,
    420 	NFSERR_SERVERFAULT,
    421 	0,
    422 };
    423 
    424 static const short nfsv3err_rmdir[] = {
    425 	NFSERR_IO,
    426 	NFSERR_NOENT,
    427 	NFSERR_IO,
    428 	NFSERR_ACCES,
    429 	NFSERR_EXIST,
    430 	NFSERR_NOTDIR,
    431 	NFSERR_INVAL,
    432 	NFSERR_ROFS,
    433 	NFSERR_NAMETOL,
    434 	NFSERR_NOTEMPTY,
    435 	NFSERR_STALE,
    436 	NFSERR_BADHANDLE,
    437 	NFSERR_NOTSUPP,
    438 	NFSERR_SERVERFAULT,
    439 	0,
    440 };
    441 
    442 static const short nfsv3err_rename[] = {
    443 	NFSERR_IO,
    444 	NFSERR_NOENT,
    445 	NFSERR_IO,
    446 	NFSERR_ACCES,
    447 	NFSERR_EXIST,
    448 	NFSERR_XDEV,
    449 	NFSERR_NOTDIR,
    450 	NFSERR_ISDIR,
    451 	NFSERR_INVAL,
    452 	NFSERR_NOSPC,
    453 	NFSERR_ROFS,
    454 	NFSERR_MLINK,
    455 	NFSERR_NAMETOL,
    456 	NFSERR_NOTEMPTY,
    457 	NFSERR_DQUOT,
    458 	NFSERR_STALE,
    459 	NFSERR_BADHANDLE,
    460 	NFSERR_NOTSUPP,
    461 	NFSERR_SERVERFAULT,
    462 	0,
    463 };
    464 
    465 static const short nfsv3err_link[] = {
    466 	NFSERR_IO,
    467 	NFSERR_IO,
    468 	NFSERR_ACCES,
    469 	NFSERR_EXIST,
    470 	NFSERR_XDEV,
    471 	NFSERR_NOTDIR,
    472 	NFSERR_INVAL,
    473 	NFSERR_NOSPC,
    474 	NFSERR_ROFS,
    475 	NFSERR_MLINK,
    476 	NFSERR_NAMETOL,
    477 	NFSERR_DQUOT,
    478 	NFSERR_STALE,
    479 	NFSERR_BADHANDLE,
    480 	NFSERR_NOTSUPP,
    481 	NFSERR_SERVERFAULT,
    482 	0,
    483 };
    484 
    485 static const short nfsv3err_readdir[] = {
    486 	NFSERR_IO,
    487 	NFSERR_IO,
    488 	NFSERR_ACCES,
    489 	NFSERR_NOTDIR,
    490 	NFSERR_STALE,
    491 	NFSERR_BADHANDLE,
    492 	NFSERR_BAD_COOKIE,
    493 	NFSERR_TOOSMALL,
    494 	NFSERR_SERVERFAULT,
    495 	0,
    496 };
    497 
    498 static const short nfsv3err_readdirplus[] = {
    499 	NFSERR_IO,
    500 	NFSERR_IO,
    501 	NFSERR_ACCES,
    502 	NFSERR_NOTDIR,
    503 	NFSERR_STALE,
    504 	NFSERR_BADHANDLE,
    505 	NFSERR_BAD_COOKIE,
    506 	NFSERR_NOTSUPP,
    507 	NFSERR_TOOSMALL,
    508 	NFSERR_SERVERFAULT,
    509 	0,
    510 };
    511 
    512 static const short nfsv3err_fsstat[] = {
    513 	NFSERR_IO,
    514 	NFSERR_IO,
    515 	NFSERR_STALE,
    516 	NFSERR_BADHANDLE,
    517 	NFSERR_SERVERFAULT,
    518 	0,
    519 };
    520 
    521 static const short nfsv3err_fsinfo[] = {
    522 	NFSERR_STALE,
    523 	NFSERR_STALE,
    524 	NFSERR_BADHANDLE,
    525 	NFSERR_SERVERFAULT,
    526 	0,
    527 };
    528 
    529 static const short nfsv3err_pathconf[] = {
    530 	NFSERR_STALE,
    531 	NFSERR_STALE,
    532 	NFSERR_BADHANDLE,
    533 	NFSERR_SERVERFAULT,
    534 	0,
    535 };
    536 
    537 static const short nfsv3err_commit[] = {
    538 	NFSERR_IO,
    539 	NFSERR_IO,
    540 	NFSERR_STALE,
    541 	NFSERR_BADHANDLE,
    542 	NFSERR_SERVERFAULT,
    543 	0,
    544 };
    545 
    546 static const short * const nfsrv_v3errmap[] = {
    547 	nfsv3err_null,
    548 	nfsv3err_getattr,
    549 	nfsv3err_setattr,
    550 	nfsv3err_lookup,
    551 	nfsv3err_access,
    552 	nfsv3err_readlink,
    553 	nfsv3err_read,
    554 	nfsv3err_write,
    555 	nfsv3err_create,
    556 	nfsv3err_mkdir,
    557 	nfsv3err_symlink,
    558 	nfsv3err_mknod,
    559 	nfsv3err_remove,
    560 	nfsv3err_rmdir,
    561 	nfsv3err_rename,
    562 	nfsv3err_link,
    563 	nfsv3err_readdir,
    564 	nfsv3err_readdirplus,
    565 	nfsv3err_fsstat,
    566 	nfsv3err_fsinfo,
    567 	nfsv3err_pathconf,
    568 	nfsv3err_commit,
    569 };
    570 
    571 extern struct nfsrtt nfsrtt;
    572 extern time_t nqnfsstarttime;
    573 extern int nqsrv_clockskew;
    574 extern int nqsrv_writeslack;
    575 extern int nqsrv_maxlease;
    576 extern const int nqnfs_piggy[NFS_NPROCS];
    577 extern struct nfsnodehashhead *nfsnodehashtbl;
    578 extern u_long nfsnodehash;
    579 
    580 u_long nfsdirhashmask;
    581 
    582 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
    583 
    584 /*
    585  * Create the header for an rpc request packet
    586  * The hsiz is the size of the rest of the nfs request header.
    587  * (just used to decide if a cluster is a good idea)
    588  */
    589 struct mbuf *
    590 nfsm_reqh(np, procid, hsiz, bposp)
    591 	struct nfsnode *np;
    592 	u_long procid;
    593 	int hsiz;
    594 	caddr_t *bposp;
    595 {
    596 	struct mbuf *mb;
    597 	caddr_t bpos;
    598 #ifndef NFS_V2_ONLY
    599 	struct nfsmount *nmp;
    600 	u_int32_t *tl;
    601 	int nqflag;
    602 #endif
    603 
    604 	mb = m_get(M_WAIT, MT_DATA);
    605 	MCLAIM(mb, &nfs_mowner);
    606 	if (hsiz >= MINCLSIZE)
    607 		m_clget(mb, M_WAIT);
    608 	mb->m_len = 0;
    609 	bpos = mtod(mb, caddr_t);
    610 
    611 #ifndef NFS_V2_ONLY
    612 	/*
    613 	 * For NQNFS, add lease request.
    614 	 */
    615 	if (np) {
    616 		nmp = VFSTONFS(np->n_vnode->v_mount);
    617 		if (nmp->nm_flag & NFSMNT_NQNFS) {
    618 			nqflag = NQNFS_NEEDLEASE(np, procid);
    619 			if (nqflag) {
    620 				nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
    621 				*tl++ = txdr_unsigned(nqflag);
    622 				*tl = txdr_unsigned(nmp->nm_leaseterm);
    623 			} else {
    624 				nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
    625 				*tl = 0;
    626 			}
    627 		}
    628 	}
    629 #endif
    630 	/* Finally, return values */
    631 	*bposp = bpos;
    632 	return (mb);
    633 }
    634 
    635 /*
    636  * Build the RPC header and fill in the authorization info.
    637  * The authorization string argument is only used when the credentials
    638  * come from outside of the kernel.
    639  * Returns the head of the mbuf list.
    640  */
    641 struct mbuf *
    642 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
    643 	verf_str, mrest, mrest_len, mbp, xidp)
    644 	struct ucred *cr;
    645 	int nmflag;
    646 	int procid;
    647 	int auth_type;
    648 	int auth_len;
    649 	char *auth_str;
    650 	int verf_len;
    651 	char *verf_str;
    652 	struct mbuf *mrest;
    653 	int mrest_len;
    654 	struct mbuf **mbp;
    655 	u_int32_t *xidp;
    656 {
    657 	struct mbuf *mb;
    658 	u_int32_t *tl;
    659 	caddr_t bpos;
    660 	int i;
    661 	struct mbuf *mreq;
    662 	int siz, grpsiz, authsiz;
    663 
    664 	authsiz = nfsm_rndup(auth_len);
    665 	mb = m_gethdr(M_WAIT, MT_DATA);
    666 	MCLAIM(mb, &nfs_mowner);
    667 	if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
    668 		m_clget(mb, M_WAIT);
    669 	} else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
    670 		MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
    671 	} else {
    672 		MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
    673 	}
    674 	mb->m_len = 0;
    675 	mreq = mb;
    676 	bpos = mtod(mb, caddr_t);
    677 
    678 	/*
    679 	 * First the RPC header.
    680 	 */
    681 	nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
    682 
    683 	*tl++ = *xidp = nfs_getxid();
    684 	*tl++ = rpc_call;
    685 	*tl++ = rpc_vers;
    686 	if (nmflag & NFSMNT_NQNFS) {
    687 		*tl++ = txdr_unsigned(NQNFS_PROG);
    688 		*tl++ = txdr_unsigned(NQNFS_VER3);
    689 	} else {
    690 		*tl++ = txdr_unsigned(NFS_PROG);
    691 		if (nmflag & NFSMNT_NFSV3)
    692 			*tl++ = txdr_unsigned(NFS_VER3);
    693 		else
    694 			*tl++ = txdr_unsigned(NFS_VER2);
    695 	}
    696 	if (nmflag & NFSMNT_NFSV3)
    697 		*tl++ = txdr_unsigned(procid);
    698 	else
    699 		*tl++ = txdr_unsigned(nfsv2_procid[procid]);
    700 
    701 	/*
    702 	 * And then the authorization cred.
    703 	 */
    704 	*tl++ = txdr_unsigned(auth_type);
    705 	*tl = txdr_unsigned(authsiz);
    706 	switch (auth_type) {
    707 	case RPCAUTH_UNIX:
    708 		nfsm_build(tl, u_int32_t *, auth_len);
    709 		*tl++ = 0;		/* stamp ?? */
    710 		*tl++ = 0;		/* NULL hostname */
    711 		*tl++ = txdr_unsigned(cr->cr_uid);
    712 		*tl++ = txdr_unsigned(cr->cr_gid);
    713 		grpsiz = (auth_len >> 2) - 5;
    714 		*tl++ = txdr_unsigned(grpsiz);
    715 		for (i = 0; i < grpsiz; i++)
    716 			*tl++ = txdr_unsigned(cr->cr_groups[i]);
    717 		break;
    718 	case RPCAUTH_KERB4:
    719 		siz = auth_len;
    720 		while (siz > 0) {
    721 			if (M_TRAILINGSPACE(mb) == 0) {
    722 				struct mbuf *mb2;
    723 				mb2 = m_get(M_WAIT, MT_DATA);
    724 				MCLAIM(mb2, &nfs_mowner);
    725 				if (siz >= MINCLSIZE)
    726 					m_clget(mb2, M_WAIT);
    727 				mb->m_next = mb2;
    728 				mb = mb2;
    729 				mb->m_len = 0;
    730 				bpos = mtod(mb, caddr_t);
    731 			}
    732 			i = min(siz, M_TRAILINGSPACE(mb));
    733 			memcpy(bpos, auth_str, i);
    734 			mb->m_len += i;
    735 			auth_str += i;
    736 			bpos += i;
    737 			siz -= i;
    738 		}
    739 		if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
    740 			for (i = 0; i < siz; i++)
    741 				*bpos++ = '\0';
    742 			mb->m_len += siz;
    743 		}
    744 		break;
    745 	};
    746 
    747 	/*
    748 	 * And the verifier...
    749 	 */
    750 	nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
    751 	if (verf_str) {
    752 		*tl++ = txdr_unsigned(RPCAUTH_KERB4);
    753 		*tl = txdr_unsigned(verf_len);
    754 		siz = verf_len;
    755 		while (siz > 0) {
    756 			if (M_TRAILINGSPACE(mb) == 0) {
    757 				struct mbuf *mb2;
    758 				mb2 = m_get(M_WAIT, MT_DATA);
    759 				MCLAIM(mb2, &nfs_mowner);
    760 				if (siz >= MINCLSIZE)
    761 					m_clget(mb2, M_WAIT);
    762 				mb->m_next = mb2;
    763 				mb = mb2;
    764 				mb->m_len = 0;
    765 				bpos = mtod(mb, caddr_t);
    766 			}
    767 			i = min(siz, M_TRAILINGSPACE(mb));
    768 			memcpy(bpos, verf_str, i);
    769 			mb->m_len += i;
    770 			verf_str += i;
    771 			bpos += i;
    772 			siz -= i;
    773 		}
    774 		if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
    775 			for (i = 0; i < siz; i++)
    776 				*bpos++ = '\0';
    777 			mb->m_len += siz;
    778 		}
    779 	} else {
    780 		*tl++ = txdr_unsigned(RPCAUTH_NULL);
    781 		*tl = 0;
    782 	}
    783 	mb->m_next = mrest;
    784 	mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
    785 	mreq->m_pkthdr.rcvif = (struct ifnet *)0;
    786 	*mbp = mb;
    787 	return (mreq);
    788 }
    789 
    790 /*
    791  * copies mbuf chain to the uio scatter/gather list
    792  */
    793 int
    794 nfsm_mbuftouio(mrep, uiop, siz, dpos)
    795 	struct mbuf **mrep;
    796 	struct uio *uiop;
    797 	int siz;
    798 	caddr_t *dpos;
    799 {
    800 	char *mbufcp, *uiocp;
    801 	int xfer, left, len;
    802 	struct mbuf *mp;
    803 	long uiosiz, rem;
    804 	int error = 0;
    805 
    806 	mp = *mrep;
    807 	mbufcp = *dpos;
    808 	len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
    809 	rem = nfsm_rndup(siz)-siz;
    810 	while (siz > 0) {
    811 		if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
    812 			return (EFBIG);
    813 		left = uiop->uio_iov->iov_len;
    814 		uiocp = uiop->uio_iov->iov_base;
    815 		if (left > siz)
    816 			left = siz;
    817 		uiosiz = left;
    818 		while (left > 0) {
    819 			while (len == 0) {
    820 				mp = mp->m_next;
    821 				if (mp == NULL)
    822 					return (EBADRPC);
    823 				mbufcp = mtod(mp, caddr_t);
    824 				len = mp->m_len;
    825 			}
    826 			xfer = (left > len) ? len : left;
    827 #ifdef notdef
    828 			/* Not Yet.. */
    829 			if (uiop->uio_iov->iov_op != NULL)
    830 				(*(uiop->uio_iov->iov_op))
    831 				(mbufcp, uiocp, xfer);
    832 			else
    833 #endif
    834 			if (uiop->uio_segflg == UIO_SYSSPACE)
    835 				memcpy(uiocp, mbufcp, xfer);
    836 			else
    837 				copyout(mbufcp, uiocp, xfer);
    838 			left -= xfer;
    839 			len -= xfer;
    840 			mbufcp += xfer;
    841 			uiocp += xfer;
    842 			uiop->uio_offset += xfer;
    843 			uiop->uio_resid -= xfer;
    844 		}
    845 		if (uiop->uio_iov->iov_len <= siz) {
    846 			uiop->uio_iovcnt--;
    847 			uiop->uio_iov++;
    848 		} else {
    849 			uiop->uio_iov->iov_base =
    850 			    (caddr_t)uiop->uio_iov->iov_base + uiosiz;
    851 			uiop->uio_iov->iov_len -= uiosiz;
    852 		}
    853 		siz -= uiosiz;
    854 	}
    855 	*dpos = mbufcp;
    856 	*mrep = mp;
    857 	if (rem > 0) {
    858 		if (len < rem)
    859 			error = nfs_adv(mrep, dpos, rem, len);
    860 		else
    861 			*dpos += rem;
    862 	}
    863 	return (error);
    864 }
    865 
    866 /*
    867  * copies a uio scatter/gather list to an mbuf chain.
    868  * NOTE: can ony handle iovcnt == 1
    869  */
    870 int
    871 nfsm_uiotombuf(uiop, mq, siz, bpos)
    872 	struct uio *uiop;
    873 	struct mbuf **mq;
    874 	int siz;
    875 	caddr_t *bpos;
    876 {
    877 	char *uiocp;
    878 	struct mbuf *mp, *mp2;
    879 	int xfer, left, mlen;
    880 	int uiosiz, clflg, rem;
    881 	char *cp;
    882 
    883 #ifdef DIAGNOSTIC
    884 	if (uiop->uio_iovcnt != 1)
    885 		panic("nfsm_uiotombuf: iovcnt != 1");
    886 #endif
    887 
    888 	if (siz > MLEN)		/* or should it >= MCLBYTES ?? */
    889 		clflg = 1;
    890 	else
    891 		clflg = 0;
    892 	rem = nfsm_rndup(siz)-siz;
    893 	mp = mp2 = *mq;
    894 	while (siz > 0) {
    895 		left = uiop->uio_iov->iov_len;
    896 		uiocp = uiop->uio_iov->iov_base;
    897 		if (left > siz)
    898 			left = siz;
    899 		uiosiz = left;
    900 		while (left > 0) {
    901 			mlen = M_TRAILINGSPACE(mp);
    902 			if (mlen == 0) {
    903 				mp = m_get(M_WAIT, MT_DATA);
    904 				MCLAIM(mp, &nfs_mowner);
    905 				if (clflg)
    906 					m_clget(mp, M_WAIT);
    907 				mp->m_len = 0;
    908 				mp2->m_next = mp;
    909 				mp2 = mp;
    910 				mlen = M_TRAILINGSPACE(mp);
    911 			}
    912 			xfer = (left > mlen) ? mlen : left;
    913 #ifdef notdef
    914 			/* Not Yet.. */
    915 			if (uiop->uio_iov->iov_op != NULL)
    916 				(*(uiop->uio_iov->iov_op))
    917 				(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
    918 			else
    919 #endif
    920 			if (uiop->uio_segflg == UIO_SYSSPACE)
    921 				memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
    922 			else
    923 				copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
    924 			mp->m_len += xfer;
    925 			left -= xfer;
    926 			uiocp += xfer;
    927 			uiop->uio_offset += xfer;
    928 			uiop->uio_resid -= xfer;
    929 		}
    930 		uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
    931 		    uiosiz;
    932 		uiop->uio_iov->iov_len -= uiosiz;
    933 		siz -= uiosiz;
    934 	}
    935 	if (rem > 0) {
    936 		if (rem > M_TRAILINGSPACE(mp)) {
    937 			mp = m_get(M_WAIT, MT_DATA);
    938 			MCLAIM(mp, &nfs_mowner);
    939 			mp->m_len = 0;
    940 			mp2->m_next = mp;
    941 		}
    942 		cp = mtod(mp, caddr_t)+mp->m_len;
    943 		for (left = 0; left < rem; left++)
    944 			*cp++ = '\0';
    945 		mp->m_len += rem;
    946 		*bpos = cp;
    947 	} else
    948 		*bpos = mtod(mp, caddr_t)+mp->m_len;
    949 	*mq = mp;
    950 	return (0);
    951 }
    952 
    953 /*
    954  * Get at least "siz" bytes of correctly aligned data.
    955  * When called the mbuf pointers are not necessarily correct,
    956  * dsosp points to what ought to be in m_data and left contains
    957  * what ought to be in m_len.
    958  * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
    959  * cases. (The macros use the vars. dpos and dpos2)
    960  */
    961 int
    962 nfsm_disct(mdp, dposp, siz, left, cp2)
    963 	struct mbuf **mdp;
    964 	caddr_t *dposp;
    965 	int siz;
    966 	int left;
    967 	caddr_t *cp2;
    968 {
    969 	struct mbuf *m1, *m2;
    970 	struct mbuf *havebuf = NULL;
    971 	caddr_t src = *dposp;
    972 	caddr_t dst;
    973 	int len;
    974 
    975 #ifdef DEBUG
    976 	if (left < 0)
    977 		panic("nfsm_disct: left < 0");
    978 #endif
    979 	m1 = *mdp;
    980 	/*
    981 	 * Skip through the mbuf chain looking for an mbuf with
    982 	 * some data. If the first mbuf found has enough data
    983 	 * and it is correctly aligned return it.
    984 	 */
    985 	while (left == 0) {
    986 		havebuf = m1;
    987 		*mdp = m1 = m1->m_next;
    988 		if (m1 == NULL)
    989 			return (EBADRPC);
    990 		src = mtod(m1, caddr_t);
    991 		left = m1->m_len;
    992 		/*
    993 		 * If we start a new mbuf and it is big enough
    994 		 * and correctly aligned just return it, don't
    995 		 * do any pull up.
    996 		 */
    997 		if (left >= siz && nfsm_aligned(src)) {
    998 			*cp2 = src;
    999 			*dposp = src + siz;
   1000 			return (0);
   1001 		}
   1002 	}
   1003 	if (m1->m_flags & M_EXT) {
   1004 		if (havebuf) {
   1005 			/* If the first mbuf with data has external data
   1006 			 * and there is a previous empty mbuf use it
   1007 			 * to move the data into.
   1008 			 */
   1009 			m2 = m1;
   1010 			*mdp = m1 = havebuf;
   1011 			if (m1->m_flags & M_EXT) {
   1012 				MEXTREMOVE(m1);
   1013 			}
   1014 		} else {
   1015 			/*
   1016 			 * If the first mbuf has a external data
   1017 			 * and there is no previous empty mbuf
   1018 			 * allocate a new mbuf and move the external
   1019 			 * data to the new mbuf. Also make the first
   1020 			 * mbuf look empty.
   1021 			 */
   1022 			m2 = m_get(M_WAIT, MT_DATA);
   1023 			m2->m_ext = m1->m_ext;
   1024 			m2->m_data = src;
   1025 			m2->m_len = left;
   1026 			MCLADDREFERENCE(m1, m2);
   1027 			MEXTREMOVE(m1);
   1028 			m2->m_next = m1->m_next;
   1029 			m1->m_next = m2;
   1030 		}
   1031 		m1->m_len = 0;
   1032 		if (m1->m_flags & M_PKTHDR)
   1033 			dst = m1->m_pktdat;
   1034 		else
   1035 			dst = m1->m_dat;
   1036 		m1->m_data = dst;
   1037 	} else {
   1038 		/*
   1039 		 * If the first mbuf has no external data
   1040 		 * move the data to the front of the mbuf.
   1041 		 */
   1042 		if (m1->m_flags & M_PKTHDR)
   1043 			dst = m1->m_pktdat;
   1044 		else
   1045 			dst = m1->m_dat;
   1046 		m1->m_data = dst;
   1047 		if (dst != src)
   1048 			memmove(dst, src, left);
   1049 		dst += left;
   1050 		m1->m_len = left;
   1051 		m2 = m1->m_next;
   1052 	}
   1053 	*cp2 = m1->m_data;
   1054 	*dposp = mtod(m1, caddr_t) + siz;
   1055 	/*
   1056 	 * Loop through mbufs pulling data up into first mbuf until
   1057 	 * the first mbuf is full or there is no more data to
   1058 	 * pullup.
   1059 	 */
   1060 	while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
   1061 		if ((len = min(len, m2->m_len)) != 0)
   1062 			memcpy(dst, m2->m_data, len);
   1063 		m1->m_len += len;
   1064 		dst += len;
   1065 		m2->m_data += len;
   1066 		m2->m_len -= len;
   1067 		m2 = m2->m_next;
   1068 	}
   1069 	if (m1->m_len < siz)
   1070 		return (EBADRPC);
   1071 	return (0);
   1072 }
   1073 
   1074 /*
   1075  * Advance the position in the mbuf chain.
   1076  */
   1077 int
   1078 nfs_adv(mdp, dposp, offs, left)
   1079 	struct mbuf **mdp;
   1080 	caddr_t *dposp;
   1081 	int offs;
   1082 	int left;
   1083 {
   1084 	struct mbuf *m;
   1085 	int s;
   1086 
   1087 	m = *mdp;
   1088 	s = left;
   1089 	while (s < offs) {
   1090 		offs -= s;
   1091 		m = m->m_next;
   1092 		if (m == NULL)
   1093 			return (EBADRPC);
   1094 		s = m->m_len;
   1095 	}
   1096 	*mdp = m;
   1097 	*dposp = mtod(m, caddr_t)+offs;
   1098 	return (0);
   1099 }
   1100 
   1101 /*
   1102  * Copy a string into mbufs for the hard cases...
   1103  */
   1104 int
   1105 nfsm_strtmbuf(mb, bpos, cp, siz)
   1106 	struct mbuf **mb;
   1107 	char **bpos;
   1108 	const char *cp;
   1109 	long siz;
   1110 {
   1111 	struct mbuf *m1 = NULL, *m2;
   1112 	long left, xfer, len, tlen;
   1113 	u_int32_t *tl;
   1114 	int putsize;
   1115 
   1116 	putsize = 1;
   1117 	m2 = *mb;
   1118 	left = M_TRAILINGSPACE(m2);
   1119 	if (left > 0) {
   1120 		tl = ((u_int32_t *)(*bpos));
   1121 		*tl++ = txdr_unsigned(siz);
   1122 		putsize = 0;
   1123 		left -= NFSX_UNSIGNED;
   1124 		m2->m_len += NFSX_UNSIGNED;
   1125 		if (left > 0) {
   1126 			memcpy((caddr_t) tl, cp, left);
   1127 			siz -= left;
   1128 			cp += left;
   1129 			m2->m_len += left;
   1130 			left = 0;
   1131 		}
   1132 	}
   1133 	/* Loop around adding mbufs */
   1134 	while (siz > 0) {
   1135 		m1 = m_get(M_WAIT, MT_DATA);
   1136 		MCLAIM(m1, &nfs_mowner);
   1137 		if (siz > MLEN)
   1138 			m_clget(m1, M_WAIT);
   1139 		m1->m_len = NFSMSIZ(m1);
   1140 		m2->m_next = m1;
   1141 		m2 = m1;
   1142 		tl = mtod(m1, u_int32_t *);
   1143 		tlen = 0;
   1144 		if (putsize) {
   1145 			*tl++ = txdr_unsigned(siz);
   1146 			m1->m_len -= NFSX_UNSIGNED;
   1147 			tlen = NFSX_UNSIGNED;
   1148 			putsize = 0;
   1149 		}
   1150 		if (siz < m1->m_len) {
   1151 			len = nfsm_rndup(siz);
   1152 			xfer = siz;
   1153 			if (xfer < len)
   1154 				*(tl+(xfer>>2)) = 0;
   1155 		} else {
   1156 			xfer = len = m1->m_len;
   1157 		}
   1158 		memcpy((caddr_t) tl, cp, xfer);
   1159 		m1->m_len = len+tlen;
   1160 		siz -= xfer;
   1161 		cp += xfer;
   1162 	}
   1163 	*mb = m1;
   1164 	*bpos = mtod(m1, caddr_t)+m1->m_len;
   1165 	return (0);
   1166 }
   1167 
   1168 /*
   1169  * Directory caching routines. They work as follows:
   1170  * - a cache is maintained per VDIR nfsnode.
   1171  * - for each offset cookie that is exported to userspace, and can
   1172  *   thus be thrown back at us as an offset to VOP_READDIR, store
   1173  *   information in the cache.
   1174  * - cached are:
   1175  *   - cookie itself
   1176  *   - blocknumber (essentially just a search key in the buffer cache)
   1177  *   - entry number in block.
   1178  *   - offset cookie of block in which this entry is stored
   1179  *   - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
   1180  * - entries are looked up in a hash table
   1181  * - also maintained is an LRU list of entries, used to determine
   1182  *   which ones to delete if the cache grows too large.
   1183  * - if 32 <-> 64 translation mode is requested for a filesystem,
   1184  *   the cache also functions as a translation table
   1185  * - in the translation case, invalidating the cache does not mean
   1186  *   flushing it, but just marking entries as invalid, except for
   1187  *   the <64bit cookie, 32bitcookie> pair which is still valid, to
   1188  *   still be able to use the cache as a translation table.
   1189  * - 32 bit cookies are uniquely created by combining the hash table
   1190  *   entry value, and one generation count per hash table entry,
   1191  *   incremented each time an entry is appended to the chain.
   1192  * - the cache is invalidated each time a direcory is modified
   1193  * - sanity checks are also done; if an entry in a block turns
   1194  *   out not to have a matching cookie, the cache is invalidated
   1195  *   and a new block starting from the wanted offset is fetched from
   1196  *   the server.
   1197  * - directory entries as read from the server are extended to contain
   1198  *   the 64bit and, optionally, the 32bit cookies, for sanity checking
   1199  *   the cache and exporting them to userspace through the cookie
   1200  *   argument to VOP_READDIR.
   1201  */
   1202 
   1203 u_long
   1204 nfs_dirhash(off)
   1205 	off_t off;
   1206 {
   1207 	int i;
   1208 	char *cp = (char *)&off;
   1209 	u_long sum = 0L;
   1210 
   1211 	for (i = 0 ; i < sizeof (off); i++)
   1212 		sum += *cp++;
   1213 
   1214 	return sum;
   1215 }
   1216 
   1217 void
   1218 nfs_initdircache(vp)
   1219 	struct vnode *vp;
   1220 {
   1221 	struct nfsnode *np = VTONFS(vp);
   1222 
   1223 	KASSERT(np->n_dircache == NULL);
   1224 
   1225 	np->n_dircachesize = 0;
   1226 	np->n_dblkno = 1;
   1227 	np->n_dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
   1228 	    M_WAITOK, &nfsdirhashmask);
   1229 	TAILQ_INIT(&np->n_dirchain);
   1230 }
   1231 
   1232 void
   1233 nfs_initdirxlatecookie(vp)
   1234 	struct vnode *vp;
   1235 {
   1236 	struct nfsnode *np = VTONFS(vp);
   1237 
   1238 	KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
   1239 	KASSERT(np->n_dirgens == NULL);
   1240 
   1241 	MALLOC(np->n_dirgens, unsigned *,
   1242 	    NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF, M_WAITOK);
   1243 	memset((caddr_t)np->n_dirgens, 0, NFS_DIRHASHSIZ * sizeof (unsigned));
   1244 }
   1245 
   1246 static struct nfsdircache dzero = {0, 0, {0, 0}, {0, 0}, 0, 0, 0};
   1247 
   1248 struct nfsdircache *
   1249 nfs_searchdircache(vp, off, do32, hashent)
   1250 	struct vnode *vp;
   1251 	off_t off;
   1252 	int do32;
   1253 	int *hashent;
   1254 {
   1255 	struct nfsdirhashhead *ndhp;
   1256 	struct nfsdircache *ndp = NULL;
   1257 	struct nfsnode *np = VTONFS(vp);
   1258 	unsigned ent;
   1259 
   1260 	/*
   1261 	 * Zero is always a valid cookie.
   1262 	 */
   1263 	if (off == 0)
   1264 		return &dzero;
   1265 
   1266 	/*
   1267 	 * We use a 32bit cookie as search key, directly reconstruct
   1268 	 * the hashentry. Else use the hashfunction.
   1269 	 */
   1270 	if (do32) {
   1271 		ent = (u_int32_t)off >> 24;
   1272 		if (ent >= NFS_DIRHASHSIZ)
   1273 			return NULL;
   1274 		ndhp = &np->n_dircache[ent];
   1275 	} else {
   1276 		ndhp = NFSDIRHASH(np, off);
   1277 	}
   1278 
   1279 	if (hashent)
   1280 		*hashent = (int)(ndhp - np->n_dircache);
   1281 	if (do32) {
   1282 		LIST_FOREACH(ndp, ndhp, dc_hash) {
   1283 			if (ndp->dc_cookie32 == (u_int32_t)off) {
   1284 				/*
   1285 				 * An invalidated entry will become the
   1286 				 * start of a new block fetched from
   1287 				 * the server.
   1288 				 */
   1289 				if (ndp->dc_blkno == -1) {
   1290 					ndp->dc_blkcookie = ndp->dc_cookie;
   1291 					ndp->dc_blkno = np->n_dblkno++;
   1292 					ndp->dc_entry = 0;
   1293 				}
   1294 				break;
   1295 			}
   1296 		}
   1297 	} else {
   1298 		LIST_FOREACH(ndp, ndhp, dc_hash) {
   1299 			if (ndp->dc_cookie == off)
   1300 				break;
   1301 		}
   1302 	}
   1303 	return ndp;
   1304 }
   1305 
   1306 
   1307 struct nfsdircache *
   1308 nfs_enterdircache(vp, off, blkoff, en, blkno)
   1309 	struct vnode *vp;
   1310 	off_t off, blkoff;
   1311 	int en;
   1312 	daddr_t blkno;
   1313 {
   1314 	struct nfsnode *np = VTONFS(vp);
   1315 	struct nfsdirhashhead *ndhp;
   1316 	struct nfsdircache *ndp = NULL, *first;
   1317 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1318 	int hashent, gen, overwrite;
   1319 
   1320 	if (!np->n_dircache)
   1321 		/*
   1322 		 * XXX would like to do this in nfs_nget but vtype
   1323 		 * isn't known at that time.
   1324 		 */
   1325 		nfs_initdircache(vp);
   1326 
   1327 	if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
   1328 		nfs_initdirxlatecookie(vp);
   1329 
   1330 	/*
   1331 	 * XXX refuse entries for offset 0. amd(8) erroneously sets
   1332 	 * cookie 0 for the '.' entry, making this necessary. This
   1333 	 * isn't so bad, as 0 is a special case anyway.
   1334 	 */
   1335 	if (off == 0)
   1336 		return &dzero;
   1337 
   1338 	ndp = nfs_searchdircache(vp, off, 0, &hashent);
   1339 
   1340 	if (ndp && ndp->dc_blkno != -1) {
   1341 		/*
   1342 		 * Overwriting an old entry. Check if it's the same.
   1343 		 * If so, just return. If not, remove the old entry.
   1344 		 */
   1345 		if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
   1346 			return ndp;
   1347 		TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
   1348 		LIST_REMOVE(ndp, dc_hash);
   1349 		FREE(ndp, M_NFSDIROFF);
   1350 		ndp = 0;
   1351 	}
   1352 
   1353 	ndhp = &np->n_dircache[hashent];
   1354 
   1355 	if (!ndp) {
   1356 		MALLOC(ndp, struct nfsdircache *, sizeof (*ndp), M_NFSDIROFF,
   1357 		    M_WAITOK);
   1358 		overwrite = 0;
   1359 		if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
   1360 			/*
   1361 			 * We're allocating a new entry, so bump the
   1362 			 * generation number.
   1363 			 */
   1364 			gen = ++np->n_dirgens[hashent];
   1365 			if (gen == 0) {
   1366 				np->n_dirgens[hashent]++;
   1367 				gen++;
   1368 			}
   1369 			ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
   1370 		}
   1371 	} else
   1372 		overwrite = 1;
   1373 
   1374 	/*
   1375 	 * If the entry number is 0, we are at the start of a new block, so
   1376 	 * allocate a new blocknumber.
   1377 	 */
   1378 	if (en == 0)
   1379 		ndp->dc_blkno = np->n_dblkno++;
   1380 	else
   1381 		ndp->dc_blkno = blkno;
   1382 
   1383 	ndp->dc_cookie = off;
   1384 	ndp->dc_blkcookie = blkoff;
   1385 	ndp->dc_entry = en;
   1386 
   1387 	if (overwrite)
   1388 		return ndp;
   1389 
   1390 	/*
   1391 	 * If the maximum directory cookie cache size has been reached
   1392 	 * for this node, take one off the front. The idea is that
   1393 	 * directories are typically read front-to-back once, so that
   1394 	 * the oldest entries can be thrown away without much performance
   1395 	 * loss.
   1396 	 */
   1397 	if (np->n_dircachesize == NFS_MAXDIRCACHE) {
   1398 		first = TAILQ_FIRST(&np->n_dirchain);
   1399 		TAILQ_REMOVE(&np->n_dirchain, first, dc_chain);
   1400 		LIST_REMOVE(first, dc_hash);
   1401 		FREE(first, M_NFSDIROFF);
   1402 	} else
   1403 		np->n_dircachesize++;
   1404 
   1405 	LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
   1406 	TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
   1407 	return ndp;
   1408 }
   1409 
   1410 void
   1411 nfs_invaldircache(vp, forcefree)
   1412 	struct vnode *vp;
   1413 	int forcefree;
   1414 {
   1415 	struct nfsnode *np = VTONFS(vp);
   1416 	struct nfsdircache *ndp = NULL;
   1417 	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
   1418 
   1419 #ifdef DIAGNOSTIC
   1420 	if (vp->v_type != VDIR)
   1421 		panic("nfs: invaldircache: not dir");
   1422 #endif
   1423 
   1424 	if (!np->n_dircache)
   1425 		return;
   1426 
   1427 	if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
   1428 		while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != 0) {
   1429 			TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
   1430 			LIST_REMOVE(ndp, dc_hash);
   1431 			FREE(ndp, M_NFSDIROFF);
   1432 		}
   1433 		np->n_dircachesize = 0;
   1434 		if (forcefree && np->n_dirgens) {
   1435 			FREE(np->n_dirgens, M_NFSDIROFF);
   1436 			np->n_dirgens = NULL;
   1437 		}
   1438 	} else {
   1439 		TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain) {
   1440 			ndp->dc_blkno = -1;
   1441 		}
   1442 	}
   1443 
   1444 	np->n_dblkno = 1;
   1445 }
   1446 
   1447 /*
   1448  * Called once before VFS init to initialize shared and
   1449  * server-specific data structures.
   1450  */
   1451 void
   1452 nfs_init()
   1453 {
   1454 	nfsrtt.pos = 0;
   1455 	rpc_vers = txdr_unsigned(RPC_VER2);
   1456 	rpc_call = txdr_unsigned(RPC_CALL);
   1457 	rpc_reply = txdr_unsigned(RPC_REPLY);
   1458 	rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
   1459 	rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
   1460 	rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
   1461 	rpc_autherr = txdr_unsigned(RPC_AUTHERR);
   1462 	rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
   1463 	rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
   1464 	nfs_prog = txdr_unsigned(NFS_PROG);
   1465 	nqnfs_prog = txdr_unsigned(NQNFS_PROG);
   1466 	nfs_true = txdr_unsigned(TRUE);
   1467 	nfs_false = txdr_unsigned(FALSE);
   1468 	nfs_xdrneg1 = txdr_unsigned(-1);
   1469 	nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
   1470 	if (nfs_ticks < 1)
   1471 		nfs_ticks = 1;
   1472 #ifdef NFSSERVER
   1473 	nfsrv_init(0);			/* Init server data structures */
   1474 	nfsrv_initcache();		/* Init the server request cache */
   1475 	pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
   1476 	    0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr);
   1477 #endif /* NFSSERVER */
   1478 
   1479 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
   1480 	/*
   1481 	 * Initialize the nqnfs data structures.
   1482 	 */
   1483 	if (nqnfsstarttime == 0) {
   1484 		nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
   1485 			+ nqsrv_clockskew + nqsrv_writeslack;
   1486 		NQLOADNOVRAM(nqnfsstarttime);
   1487 		CIRCLEQ_INIT(&nqtimerhead);
   1488 		nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
   1489 		    M_WAITOK, &nqfhhash);
   1490 	}
   1491 #endif
   1492 
   1493 	exithook_establish(nfs_exit, NULL);
   1494 
   1495 	/*
   1496 	 * Initialize reply list and start timer
   1497 	 */
   1498 	TAILQ_INIT(&nfs_reqq);
   1499 	nfs_timer(NULL);
   1500 	MOWNER_ATTACH(&nfs_mowner);
   1501 
   1502 #ifdef NFS
   1503 	/* Initialize the kqueue structures */
   1504 	nfs_kqinit();
   1505 	/* Initialize the iod structures */
   1506 	nfs_iodinit();
   1507 #endif
   1508 }
   1509 
   1510 #ifdef NFS
   1511 /*
   1512  * Called once at VFS init to initialize client-specific data structures.
   1513  */
   1514 void
   1515 nfs_vfs_init()
   1516 {
   1517 	nfs_nhinit();			/* Init the nfsnode table */
   1518 	nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
   1519 }
   1520 
   1521 void
   1522 nfs_vfs_reinit()
   1523 {
   1524 	nfs_nhreinit();
   1525 }
   1526 
   1527 void
   1528 nfs_vfs_done()
   1529 {
   1530 	nfs_nhdone();
   1531 }
   1532 
   1533 /*
   1534  * Attribute cache routines.
   1535  * nfs_loadattrcache() - loads or updates the cache contents from attributes
   1536  *	that are on the mbuf list
   1537  * nfs_getattrcache() - returns valid attributes if found in cache, returns
   1538  *	error otherwise
   1539  */
   1540 
   1541 /*
   1542  * Load the attribute cache (that lives in the nfsnode entry) with
   1543  * the values on the mbuf list and
   1544  * Iff vap not NULL
   1545  *    copy the attributes to *vaper
   1546  */
   1547 int
   1548 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
   1549 	struct vnode **vpp;
   1550 	struct mbuf **mdp;
   1551 	caddr_t *dposp;
   1552 	struct vattr *vaper;
   1553 	int flags;
   1554 {
   1555 	int32_t t1;
   1556 	caddr_t cp2;
   1557 	int error = 0;
   1558 	struct mbuf *md;
   1559 	int v3 = NFS_ISV3(*vpp);
   1560 
   1561 	md = *mdp;
   1562 	t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
   1563 	error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
   1564 	if (error)
   1565 		return (error);
   1566 	return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
   1567 }
   1568 
   1569 int
   1570 nfs_loadattrcache(vpp, fp, vaper, flags)
   1571 	struct vnode **vpp;
   1572 	struct nfs_fattr *fp;
   1573 	struct vattr *vaper;
   1574 	int flags;
   1575 {
   1576 	struct vnode *vp = *vpp;
   1577 	struct vattr *vap;
   1578 	int v3 = NFS_ISV3(vp);
   1579 	enum vtype vtyp;
   1580 	u_short vmode;
   1581 	struct timespec mtime;
   1582 	struct vnode *nvp;
   1583 	int32_t rdev;
   1584 	struct nfsnode *np;
   1585 	extern int (**spec_nfsv2nodeop_p) __P((void *));
   1586 	uid_t uid;
   1587 	gid_t gid;
   1588 
   1589 	if (v3) {
   1590 		vtyp = nfsv3tov_type(fp->fa_type);
   1591 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
   1592 		rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
   1593 			fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
   1594 		fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
   1595 	} else {
   1596 		vtyp = nfsv2tov_type(fp->fa_type);
   1597 		vmode = fxdr_unsigned(u_short, fp->fa_mode);
   1598 		if (vtyp == VNON || vtyp == VREG)
   1599 			vtyp = IFTOVT(vmode);
   1600 		rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
   1601 		fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
   1602 
   1603 		/*
   1604 		 * Really ugly NFSv2 kludge.
   1605 		 */
   1606 		if (vtyp == VCHR && rdev == 0xffffffff)
   1607 			vtyp = VFIFO;
   1608 	}
   1609 
   1610 	vmode &= ALLPERMS;
   1611 
   1612 	/*
   1613 	 * If v_type == VNON it is a new node, so fill in the v_type,
   1614 	 * n_mtime fields. Check to see if it represents a special
   1615 	 * device, and if so, check for a possible alias. Once the
   1616 	 * correct vnode has been obtained, fill in the rest of the
   1617 	 * information.
   1618 	 */
   1619 	np = VTONFS(vp);
   1620 	if (vp->v_type == VNON) {
   1621 		vp->v_type = vtyp;
   1622 		if (vp->v_type == VFIFO) {
   1623 			extern int (**fifo_nfsv2nodeop_p) __P((void *));
   1624 			vp->v_op = fifo_nfsv2nodeop_p;
   1625 		}
   1626 		if (vp->v_type == VCHR || vp->v_type == VBLK) {
   1627 			vp->v_op = spec_nfsv2nodeop_p;
   1628 			nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
   1629 			if (nvp) {
   1630 				/*
   1631 				 * Discard unneeded vnode, but save its nfsnode.
   1632 				 * Since the nfsnode does not have a lock, its
   1633 				 * vnode lock has to be carried over.
   1634 				 */
   1635 				/*
   1636 				 * XXX is the old node sure to be locked here?
   1637 				 */
   1638 				KASSERT(lockstatus(&vp->v_lock) ==
   1639 				    LK_EXCLUSIVE);
   1640 				nvp->v_data = vp->v_data;
   1641 				vp->v_data = NULL;
   1642 				VOP_UNLOCK(vp, 0);
   1643 				vp->v_op = spec_vnodeop_p;
   1644 				vrele(vp);
   1645 				vgone(vp);
   1646 				lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
   1647 				    &nvp->v_interlock);
   1648 				/*
   1649 				 * Reinitialize aliased node.
   1650 				 */
   1651 				np->n_vnode = nvp;
   1652 				*vpp = vp = nvp;
   1653 			}
   1654 		}
   1655 		np->n_mtime = mtime;
   1656 	}
   1657 	uid = fxdr_unsigned(uid_t, fp->fa_uid);
   1658 	gid = fxdr_unsigned(gid_t, fp->fa_gid);
   1659 	vap = np->n_vattr;
   1660 
   1661 	/*
   1662 	 * Invalidate access cache if uid, gid or mode changed.
   1663 	 */
   1664 	if (np->n_accstamp != -1 &&
   1665 	    (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode))
   1666 		np->n_accstamp = -1;
   1667 
   1668 	vap->va_type = vtyp;
   1669 	vap->va_mode = vmode;
   1670 	vap->va_rdev = (dev_t)rdev;
   1671 	vap->va_mtime = mtime;
   1672 	vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
   1673 	switch (vtyp) {
   1674 	case VDIR:
   1675 		vap->va_blocksize = NFS_DIRFRAGSIZ;
   1676 		break;
   1677 	case VBLK:
   1678 		vap->va_blocksize = BLKDEV_IOSIZE;
   1679 		break;
   1680 	case VCHR:
   1681 		vap->va_blocksize = MAXBSIZE;
   1682 		break;
   1683 	default:
   1684 		vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
   1685 		    fxdr_unsigned(int32_t, fp->fa2_blocksize);
   1686 		break;
   1687 	}
   1688 	if (v3) {
   1689 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
   1690 		vap->va_uid = uid;
   1691 		vap->va_gid = gid;
   1692 		vap->va_size = fxdr_hyper(&fp->fa3_size);
   1693 		vap->va_bytes = fxdr_hyper(&fp->fa3_used);
   1694 		vap->va_fileid = fxdr_unsigned(int32_t,
   1695 		    fp->fa3_fileid.nfsuquad[1]);
   1696 		fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
   1697 		fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
   1698 		vap->va_flags = 0;
   1699 		vap->va_filerev = 0;
   1700 	} else {
   1701 		vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
   1702 		vap->va_uid = uid;
   1703 		vap->va_gid = gid;
   1704 		vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
   1705 		vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
   1706 		    * NFS_FABLKSIZE;
   1707 		vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
   1708 		fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
   1709 		vap->va_flags = 0;
   1710 		vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
   1711 		    fp->fa2_ctime.nfsv2_sec);
   1712 		vap->va_ctime.tv_nsec = 0;
   1713 		vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
   1714 		vap->va_filerev = 0;
   1715 	}
   1716 	if (vap->va_size != np->n_size) {
   1717 		if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
   1718 			vap->va_size = np->n_size;
   1719 		} else {
   1720 			np->n_size = vap->va_size;
   1721 			if (vap->va_type == VREG) {
   1722 				if ((flags & NAC_NOTRUNC)
   1723 				    && np->n_size < vp->v_size) {
   1724 					/*
   1725 					 * we can't free pages now because
   1726 					 * the pages can be owned by ourselves.
   1727 					 */
   1728 					np->n_flag |= NTRUNCDELAYED;
   1729 				}
   1730 				else {
   1731 					uvm_vnp_setsize(vp, np->n_size);
   1732 				}
   1733 			}
   1734 		}
   1735 	}
   1736 	np->n_attrstamp = time.tv_sec;
   1737 	if (vaper != NULL) {
   1738 		memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
   1739 		if (np->n_flag & NCHG) {
   1740 			if (np->n_flag & NACC)
   1741 				vaper->va_atime = np->n_atim;
   1742 			if (np->n_flag & NUPD)
   1743 				vaper->va_mtime = np->n_mtim;
   1744 		}
   1745 	}
   1746 	return (0);
   1747 }
   1748 
   1749 /*
   1750  * Check the time stamp
   1751  * If the cache is valid, copy contents to *vap and return 0
   1752  * otherwise return an error
   1753  */
   1754 int
   1755 nfs_getattrcache(vp, vaper)
   1756 	struct vnode *vp;
   1757 	struct vattr *vaper;
   1758 {
   1759 	struct nfsnode *np = VTONFS(vp);
   1760 	struct vattr *vap;
   1761 
   1762 	if ((time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
   1763 		nfsstats.attrcache_misses++;
   1764 		return (ENOENT);
   1765 	}
   1766 	nfsstats.attrcache_hits++;
   1767 	vap = np->n_vattr;
   1768 	if (vap->va_size != np->n_size) {
   1769 		if (vap->va_type == VREG) {
   1770 			if (np->n_flag & NMODIFIED) {
   1771 				if (vap->va_size < np->n_size)
   1772 					vap->va_size = np->n_size;
   1773 				else
   1774 					np->n_size = vap->va_size;
   1775 			} else
   1776 				np->n_size = vap->va_size;
   1777 			uvm_vnp_setsize(vp, np->n_size);
   1778 		} else
   1779 			np->n_size = vap->va_size;
   1780 	}
   1781 	memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
   1782 	if (np->n_flag & NCHG) {
   1783 		if (np->n_flag & NACC)
   1784 			vaper->va_atime = np->n_atim;
   1785 		if (np->n_flag & NUPD)
   1786 			vaper->va_mtime = np->n_mtim;
   1787 	}
   1788 	return (0);
   1789 }
   1790 
   1791 void
   1792 nfs_delayedtruncate(vp)
   1793 	struct vnode *vp;
   1794 {
   1795 	struct nfsnode *np = VTONFS(vp);
   1796 
   1797 	if (np->n_flag & NTRUNCDELAYED) {
   1798 		np->n_flag &= ~NTRUNCDELAYED;
   1799 		uvm_vnp_setsize(vp, np->n_size);
   1800 	}
   1801 }
   1802 
   1803 /*
   1804  * Heuristic to see if the server XDR encodes directory cookies or not.
   1805  * it is not supposed to, but a lot of servers may do this. Also, since
   1806  * most/all servers will implement V2 as well, it is expected that they
   1807  * may return just 32 bits worth of cookie information, so we need to
   1808  * find out in which 32 bits this information is available. We do this
   1809  * to avoid trouble with emulated binaries that can't handle 64 bit
   1810  * directory offsets.
   1811  */
   1812 
   1813 void
   1814 nfs_cookieheuristic(vp, flagp, p, cred)
   1815 	struct vnode *vp;
   1816 	int *flagp;
   1817 	struct proc *p;
   1818 	struct ucred *cred;
   1819 {
   1820 	struct uio auio;
   1821 	struct iovec aiov;
   1822 	caddr_t buf, cp;
   1823 	struct dirent *dp;
   1824 	off_t *cookies = NULL, *cop;
   1825 	int error, eof, nc, len;
   1826 
   1827 	MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
   1828 
   1829 	aiov.iov_base = buf;
   1830 	aiov.iov_len = NFS_DIRFRAGSIZ;
   1831 	auio.uio_iov = &aiov;
   1832 	auio.uio_iovcnt = 1;
   1833 	auio.uio_rw = UIO_READ;
   1834 	auio.uio_segflg = UIO_SYSSPACE;
   1835 	auio.uio_procp = p;
   1836 	auio.uio_resid = NFS_DIRFRAGSIZ;
   1837 	auio.uio_offset = 0;
   1838 
   1839 	error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
   1840 
   1841 	len = NFS_DIRFRAGSIZ - auio.uio_resid;
   1842 	if (error || len == 0) {
   1843 		FREE(buf, M_TEMP);
   1844 		if (cookies)
   1845 			free(cookies, M_TEMP);
   1846 		return;
   1847 	}
   1848 
   1849 	/*
   1850 	 * Find the first valid entry and look at its offset cookie.
   1851 	 */
   1852 
   1853 	cp = buf;
   1854 	for (cop = cookies; len > 0; len -= dp->d_reclen) {
   1855 		dp = (struct dirent *)cp;
   1856 		if (dp->d_fileno != 0 && len >= dp->d_reclen) {
   1857 			if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
   1858 				*flagp |= NFSMNT_SWAPCOOKIE;
   1859 				nfs_invaldircache(vp, 0);
   1860 				nfs_vinvalbuf(vp, 0, cred, p, 1);
   1861 			}
   1862 			break;
   1863 		}
   1864 		cop++;
   1865 		cp += dp->d_reclen;
   1866 	}
   1867 
   1868 	FREE(buf, M_TEMP);
   1869 	free(cookies, M_TEMP);
   1870 }
   1871 #endif /* NFS */
   1872 
   1873 /*
   1874  * Set up nameidata for a lookup() call and do it.
   1875  *
   1876  * If pubflag is set, this call is done for a lookup operation on the
   1877  * public filehandle. In that case we allow crossing mountpoints and
   1878  * absolute pathnames. However, the caller is expected to check that
   1879  * the lookup result is within the public fs, and deny access if
   1880  * it is not.
   1881  */
   1882 int
   1883 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
   1884 	struct nameidata *ndp;
   1885 	fhandle_t *fhp;
   1886 	uint32_t len;
   1887 	struct nfssvc_sock *slp;
   1888 	struct mbuf *nam;
   1889 	struct mbuf **mdp;
   1890 	caddr_t *dposp;
   1891 	struct vnode **retdirp;
   1892 	struct proc *p;
   1893 	int kerbflag, pubflag;
   1894 {
   1895 	int i, rem;
   1896 	struct mbuf *md;
   1897 	char *fromcp, *tocp, *cp;
   1898 	struct iovec aiov;
   1899 	struct uio auio;
   1900 	struct vnode *dp;
   1901 	int error, rdonly, linklen;
   1902 	struct componentname *cnp = &ndp->ni_cnd;
   1903 
   1904 	*retdirp = (struct vnode *)0;
   1905 
   1906 	if ((len + 1) > MAXPATHLEN)
   1907 		return (ENAMETOOLONG);
   1908 	cnp->cn_pnbuf = PNBUF_GET();
   1909 
   1910 	/*
   1911 	 * Copy the name from the mbuf list to ndp->ni_pnbuf
   1912 	 * and set the various ndp fields appropriately.
   1913 	 */
   1914 	fromcp = *dposp;
   1915 	tocp = cnp->cn_pnbuf;
   1916 	md = *mdp;
   1917 	rem = mtod(md, caddr_t) + md->m_len - fromcp;
   1918 	for (i = 0; i < len; i++) {
   1919 		while (rem == 0) {
   1920 			md = md->m_next;
   1921 			if (md == NULL) {
   1922 				error = EBADRPC;
   1923 				goto out;
   1924 			}
   1925 			fromcp = mtod(md, caddr_t);
   1926 			rem = md->m_len;
   1927 		}
   1928 		if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
   1929 			error = EACCES;
   1930 			goto out;
   1931 		}
   1932 		*tocp++ = *fromcp++;
   1933 		rem--;
   1934 	}
   1935 	*tocp = '\0';
   1936 	*mdp = md;
   1937 	*dposp = fromcp;
   1938 	len = nfsm_rndup(len)-len;
   1939 	if (len > 0) {
   1940 		if (rem >= len)
   1941 			*dposp += len;
   1942 		else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
   1943 			goto out;
   1944 	}
   1945 
   1946 	/*
   1947 	 * Extract and set starting directory.
   1948 	 */
   1949 	error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
   1950 	    nam, &rdonly, kerbflag, pubflag);
   1951 	if (error)
   1952 		goto out;
   1953 	if (dp->v_type != VDIR) {
   1954 		vrele(dp);
   1955 		error = ENOTDIR;
   1956 		goto out;
   1957 	}
   1958 
   1959 	if (rdonly)
   1960 		cnp->cn_flags |= RDONLY;
   1961 
   1962 	*retdirp = dp;
   1963 
   1964 	if (pubflag) {
   1965 		/*
   1966 		 * Oh joy. For WebNFS, handle those pesky '%' escapes,
   1967 		 * and the 'native path' indicator.
   1968 		 */
   1969 		cp = PNBUF_GET();
   1970 		fromcp = cnp->cn_pnbuf;
   1971 		tocp = cp;
   1972 		if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
   1973 			switch ((unsigned char)*fromcp) {
   1974 			case WEBNFS_NATIVE_CHAR:
   1975 				/*
   1976 				 * 'Native' path for us is the same
   1977 				 * as a path according to the NFS spec,
   1978 				 * just skip the escape char.
   1979 				 */
   1980 				fromcp++;
   1981 				break;
   1982 			/*
   1983 			 * More may be added in the future, range 0x80-0xff
   1984 			 */
   1985 			default:
   1986 				error = EIO;
   1987 				PNBUF_PUT(cp);
   1988 				goto out;
   1989 			}
   1990 		}
   1991 		/*
   1992 		 * Translate the '%' escapes, URL-style.
   1993 		 */
   1994 		while (*fromcp != '\0') {
   1995 			if (*fromcp == WEBNFS_ESC_CHAR) {
   1996 				if (fromcp[1] != '\0' && fromcp[2] != '\0') {
   1997 					fromcp++;
   1998 					*tocp++ = HEXSTRTOI(fromcp);
   1999 					fromcp += 2;
   2000 					continue;
   2001 				} else {
   2002 					error = ENOENT;
   2003 					PNBUF_PUT(cp);
   2004 					goto out;
   2005 				}
   2006 			} else
   2007 				*tocp++ = *fromcp++;
   2008 		}
   2009 		*tocp = '\0';
   2010 		PNBUF_PUT(cnp->cn_pnbuf);
   2011 		cnp->cn_pnbuf = cp;
   2012 	}
   2013 
   2014 	ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
   2015 	ndp->ni_segflg = UIO_SYSSPACE;
   2016 	ndp->ni_rootdir = rootvnode;
   2017 
   2018 	if (pubflag) {
   2019 		ndp->ni_loopcnt = 0;
   2020 		if (cnp->cn_pnbuf[0] == '/')
   2021 			dp = rootvnode;
   2022 	} else {
   2023 		cnp->cn_flags |= NOCROSSMOUNT;
   2024 	}
   2025 
   2026 	cnp->cn_proc = p;
   2027 	VREF(dp);
   2028 
   2029     for (;;) {
   2030 	cnp->cn_nameptr = cnp->cn_pnbuf;
   2031 	ndp->ni_startdir = dp;
   2032 	/*
   2033 	 * And call lookup() to do the real work
   2034 	 */
   2035 	error = lookup(ndp);
   2036 	if (error) {
   2037 		PNBUF_PUT(cnp->cn_pnbuf);
   2038 		return (error);
   2039 	}
   2040 	/*
   2041 	 * Check for encountering a symbolic link
   2042 	 */
   2043 	if ((cnp->cn_flags & ISSYMLINK) == 0) {
   2044 		if (cnp->cn_flags & (SAVENAME | SAVESTART))
   2045 			cnp->cn_flags |= HASBUF;
   2046 		else
   2047 			PNBUF_PUT(cnp->cn_pnbuf);
   2048 		return (0);
   2049 	} else {
   2050 		if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
   2051 			VOP_UNLOCK(ndp->ni_dvp, 0);
   2052 		if (!pubflag) {
   2053 			error = EINVAL;
   2054 			break;
   2055 		}
   2056 
   2057 		if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
   2058 			error = ELOOP;
   2059 			break;
   2060 		}
   2061 		if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
   2062 			error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
   2063 			    cnp->cn_proc);
   2064 			if (error != 0)
   2065 				break;
   2066 		}
   2067 		if (ndp->ni_pathlen > 1)
   2068 			cp = PNBUF_GET();
   2069 		else
   2070 			cp = cnp->cn_pnbuf;
   2071 		aiov.iov_base = cp;
   2072 		aiov.iov_len = MAXPATHLEN;
   2073 		auio.uio_iov = &aiov;
   2074 		auio.uio_iovcnt = 1;
   2075 		auio.uio_offset = 0;
   2076 		auio.uio_rw = UIO_READ;
   2077 		auio.uio_segflg = UIO_SYSSPACE;
   2078 		auio.uio_procp = (struct proc *)0;
   2079 		auio.uio_resid = MAXPATHLEN;
   2080 		error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
   2081 		if (error) {
   2082 		badlink:
   2083 			if (ndp->ni_pathlen > 1)
   2084 				PNBUF_PUT(cp);
   2085 			break;
   2086 		}
   2087 		linklen = MAXPATHLEN - auio.uio_resid;
   2088 		if (linklen == 0) {
   2089 			error = ENOENT;
   2090 			goto badlink;
   2091 		}
   2092 		if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
   2093 			error = ENAMETOOLONG;
   2094 			goto badlink;
   2095 		}
   2096 		if (ndp->ni_pathlen > 1) {
   2097 			memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
   2098 			PNBUF_PUT(cnp->cn_pnbuf);
   2099 			cnp->cn_pnbuf = cp;
   2100 		} else
   2101 			cnp->cn_pnbuf[linklen] = '\0';
   2102 		ndp->ni_pathlen += linklen;
   2103 		vput(ndp->ni_vp);
   2104 		dp = ndp->ni_dvp;
   2105 		/*
   2106 		 * Check if root directory should replace current directory.
   2107 		 */
   2108 		if (cnp->cn_pnbuf[0] == '/') {
   2109 			vrele(dp);
   2110 			dp = ndp->ni_rootdir;
   2111 			VREF(dp);
   2112 		}
   2113 	}
   2114    }
   2115 	vrele(ndp->ni_dvp);
   2116 	vput(ndp->ni_vp);
   2117 	ndp->ni_vp = NULL;
   2118 out:
   2119 	PNBUF_PUT(cnp->cn_pnbuf);
   2120 	return (error);
   2121 }
   2122 
   2123 /*
   2124  * A fiddled version of m_adj() that ensures null fill to a 32-bit
   2125  * boundary and only trims off the back end
   2126  *
   2127  * 1. trim off 'len' bytes as m_adj(mp, -len).
   2128  * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
   2129  */
   2130 void
   2131 nfs_zeropad(mp, len, nul)
   2132 	struct mbuf *mp;
   2133 	int len;
   2134 	int nul;
   2135 {
   2136 	struct mbuf *m;
   2137 	int count, i;
   2138 	char *cp;
   2139 
   2140 	/*
   2141 	 * Trim from tail.  Scan the mbuf chain,
   2142 	 * calculating its length and finding the last mbuf.
   2143 	 * If the adjustment only affects this mbuf, then just
   2144 	 * adjust and return.  Otherwise, rescan and truncate
   2145 	 * after the remaining size.
   2146 	 */
   2147 	count = 0;
   2148 	m = mp;
   2149 	for (;;) {
   2150 		count += m->m_len;
   2151 		if (m->m_next == NULL)
   2152 			break;
   2153 		m = m->m_next;
   2154 	}
   2155 
   2156 	KDASSERT(count >= len);
   2157 
   2158 	if (m->m_len >= len) {
   2159 		m->m_len -= len;
   2160 	} else {
   2161 		count -= len;
   2162 		/*
   2163 		 * Correct length for chain is "count".
   2164 		 * Find the mbuf with last data, adjust its length,
   2165 		 * and toss data from remaining mbufs on chain.
   2166 		 */
   2167 		for (m = mp; m; m = m->m_next) {
   2168 			if (m->m_len >= count) {
   2169 				m->m_len = count;
   2170 				break;
   2171 			}
   2172 			count -= m->m_len;
   2173 		}
   2174 		m_freem(m->m_next);
   2175 		m->m_next = NULL;
   2176 	}
   2177 
   2178 	/*
   2179 	 * zero-padding.
   2180 	 */
   2181 	if (nul > 0) {
   2182 		if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
   2183 			struct mbuf *n;
   2184 
   2185 			KDASSERT(MLEN >= nul);
   2186 			n = m_get(M_WAIT, MT_DATA);
   2187 			MCLAIM(n, &nfs_mowner);
   2188 			n->m_len = nul;
   2189 			n->m_next = m->m_next;
   2190 			m->m_next = n;
   2191 			m = n;
   2192 			cp = mtod(n, caddr_t);
   2193 		} else {
   2194 			cp = mtod(m, caddr_t) + m->m_len;
   2195 			m->m_len += nul;
   2196 		}
   2197 		for (i = 0; i < nul; i++)
   2198 			*cp++ = '\0';
   2199 	}
   2200 	return;
   2201 }
   2202 
   2203 /*
   2204  * Make these functions instead of macros, so that the kernel text size
   2205  * doesn't get too big...
   2206  */
   2207 void
   2208 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
   2209 	struct nfsrv_descript *nfsd;
   2210 	int before_ret;
   2211 	struct vattr *before_vap;
   2212 	int after_ret;
   2213 	struct vattr *after_vap;
   2214 	struct mbuf **mbp;
   2215 	char **bposp;
   2216 {
   2217 	struct mbuf *mb = *mbp;
   2218 	char *bpos = *bposp;
   2219 	u_int32_t *tl;
   2220 
   2221 	if (before_ret) {
   2222 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
   2223 		*tl = nfs_false;
   2224 	} else {
   2225 		nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
   2226 		*tl++ = nfs_true;
   2227 		txdr_hyper(before_vap->va_size, tl);
   2228 		tl += 2;
   2229 		txdr_nfsv3time(&(before_vap->va_mtime), tl);
   2230 		tl += 2;
   2231 		txdr_nfsv3time(&(before_vap->va_ctime), tl);
   2232 	}
   2233 	*bposp = bpos;
   2234 	*mbp = mb;
   2235 	nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
   2236 }
   2237 
   2238 void
   2239 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
   2240 	struct nfsrv_descript *nfsd;
   2241 	int after_ret;
   2242 	struct vattr *after_vap;
   2243 	struct mbuf **mbp;
   2244 	char **bposp;
   2245 {
   2246 	struct mbuf *mb = *mbp;
   2247 	char *bpos = *bposp;
   2248 	u_int32_t *tl;
   2249 	struct nfs_fattr *fp;
   2250 
   2251 	if (after_ret) {
   2252 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
   2253 		*tl = nfs_false;
   2254 	} else {
   2255 		nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
   2256 		*tl++ = nfs_true;
   2257 		fp = (struct nfs_fattr *)tl;
   2258 		nfsm_srvfattr(nfsd, after_vap, fp);
   2259 	}
   2260 	*mbp = mb;
   2261 	*bposp = bpos;
   2262 }
   2263 
   2264 void
   2265 nfsm_srvfattr(nfsd, vap, fp)
   2266 	struct nfsrv_descript *nfsd;
   2267 	struct vattr *vap;
   2268 	struct nfs_fattr *fp;
   2269 {
   2270 
   2271 	fp->fa_nlink = txdr_unsigned(vap->va_nlink);
   2272 	fp->fa_uid = txdr_unsigned(vap->va_uid);
   2273 	fp->fa_gid = txdr_unsigned(vap->va_gid);
   2274 	if (nfsd->nd_flag & ND_NFSV3) {
   2275 		fp->fa_type = vtonfsv3_type(vap->va_type);
   2276 		fp->fa_mode = vtonfsv3_mode(vap->va_mode);
   2277 		txdr_hyper(vap->va_size, &fp->fa3_size);
   2278 		txdr_hyper(vap->va_bytes, &fp->fa3_used);
   2279 		fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
   2280 		fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
   2281 		fp->fa3_fsid.nfsuquad[0] = 0;
   2282 		fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
   2283 		fp->fa3_fileid.nfsuquad[0] = 0;
   2284 		fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
   2285 		txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
   2286 		txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
   2287 		txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
   2288 	} else {
   2289 		fp->fa_type = vtonfsv2_type(vap->va_type);
   2290 		fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
   2291 		fp->fa2_size = txdr_unsigned(vap->va_size);
   2292 		fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
   2293 		if (vap->va_type == VFIFO)
   2294 			fp->fa2_rdev = 0xffffffff;
   2295 		else
   2296 			fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
   2297 		fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
   2298 		fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
   2299 		fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
   2300 		txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
   2301 		txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
   2302 		txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
   2303 	}
   2304 }
   2305 
   2306 /*
   2307  * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
   2308  * 	- look up fsid in mount list (if not found ret error)
   2309  *	- get vp and export rights by calling VFS_FHTOVP()
   2310  *	- if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
   2311  *	- if not lockflag unlock it with VOP_UNLOCK()
   2312  */
   2313 int
   2314 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
   2315 	fhandle_t *fhp;
   2316 	int lockflag;
   2317 	struct vnode **vpp;
   2318 	struct ucred *cred;
   2319 	struct nfssvc_sock *slp;
   2320 	struct mbuf *nam;
   2321 	int *rdonlyp;
   2322 	int kerbflag;
   2323 {
   2324 	struct mount *mp;
   2325 	int i;
   2326 	struct ucred *credanon;
   2327 	int error, exflags;
   2328 	struct sockaddr_in *saddr;
   2329 
   2330 	*vpp = (struct vnode *)0;
   2331 
   2332 	if (nfs_ispublicfh(fhp)) {
   2333 		if (!pubflag || !nfs_pub.np_valid)
   2334 			return (ESTALE);
   2335 		fhp = &nfs_pub.np_handle;
   2336 	}
   2337 
   2338 	mp = vfs_getvfs(&fhp->fh_fsid);
   2339 	if (!mp)
   2340 		return (ESTALE);
   2341 	error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
   2342 	if (error)
   2343 		return (error);
   2344 	error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
   2345 	if (error)
   2346 		return (error);
   2347 
   2348 	if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
   2349 		saddr = mtod(nam, struct sockaddr_in *);
   2350 		if ((saddr->sin_family == AF_INET) &&
   2351 		    ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
   2352 			vput(*vpp);
   2353 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
   2354 		}
   2355 #ifdef INET6
   2356 		if ((saddr->sin_family == AF_INET6) &&
   2357 		    ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
   2358 			vput(*vpp);
   2359 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
   2360 		}
   2361 #endif
   2362 	}
   2363 	/*
   2364 	 * Check/setup credentials.
   2365 	 */
   2366 	if (exflags & MNT_EXKERB) {
   2367 		if (!kerbflag) {
   2368 			vput(*vpp);
   2369 			return (NFSERR_AUTHERR | AUTH_TOOWEAK);
   2370 		}
   2371 	} else if (kerbflag) {
   2372 		vput(*vpp);
   2373 		return (NFSERR_AUTHERR | AUTH_TOOWEAK);
   2374 	} else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
   2375 		cred->cr_uid = credanon->cr_uid;
   2376 		cred->cr_gid = credanon->cr_gid;
   2377 		for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
   2378 			cred->cr_groups[i] = credanon->cr_groups[i];
   2379 		cred->cr_ngroups = i;
   2380 	}
   2381 	if (exflags & MNT_EXRDONLY)
   2382 		*rdonlyp = 1;
   2383 	else
   2384 		*rdonlyp = 0;
   2385 	if (!lockflag)
   2386 		VOP_UNLOCK(*vpp, 0);
   2387 	return (0);
   2388 }
   2389 
   2390 /*
   2391  * WebNFS: check if a filehandle is a public filehandle. For v3, this
   2392  * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
   2393  * transformed this to all zeroes in both cases, so check for it.
   2394  */
   2395 int
   2396 nfs_ispublicfh(fhp)
   2397 	fhandle_t *fhp;
   2398 {
   2399 	char *cp = (char *)fhp;
   2400 	int i;
   2401 
   2402 	for (i = 0; i < NFSX_V3FH; i++)
   2403 		if (*cp++ != 0)
   2404 			return (FALSE);
   2405 	return (TRUE);
   2406 }
   2407 
   2408 /*
   2409  * This function compares two net addresses by family and returns TRUE
   2410  * if they are the same host.
   2411  * If there is any doubt, return FALSE.
   2412  * The AF_INET family is handled as a special case so that address mbufs
   2413  * don't need to be saved to store "struct in_addr", which is only 4 bytes.
   2414  */
   2415 int
   2416 netaddr_match(family, haddr, nam)
   2417 	int family;
   2418 	union nethostaddr *haddr;
   2419 	struct mbuf *nam;
   2420 {
   2421 	struct sockaddr_in *inetaddr;
   2422 
   2423 	switch (family) {
   2424 	case AF_INET:
   2425 		inetaddr = mtod(nam, struct sockaddr_in *);
   2426 		if (inetaddr->sin_family == AF_INET &&
   2427 		    inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
   2428 			return (1);
   2429 		break;
   2430 #ifdef INET6
   2431 	case AF_INET6:
   2432 	    {
   2433 		struct sockaddr_in6 *sin6_1, *sin6_2;
   2434 
   2435 		sin6_1 = mtod(nam, struct sockaddr_in6 *);
   2436 		sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
   2437 		if (sin6_1->sin6_family == AF_INET6 &&
   2438 		    IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
   2439 			return 1;
   2440 	    }
   2441 #endif
   2442 #ifdef ISO
   2443 	case AF_ISO:
   2444 	    {
   2445 		struct sockaddr_iso *isoaddr1, *isoaddr2;
   2446 
   2447 		isoaddr1 = mtod(nam, struct sockaddr_iso *);
   2448 		isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
   2449 		if (isoaddr1->siso_family == AF_ISO &&
   2450 		    isoaddr1->siso_nlen > 0 &&
   2451 		    isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
   2452 		    SAME_ISOADDR(isoaddr1, isoaddr2))
   2453 			return (1);
   2454 		break;
   2455 	    }
   2456 #endif	/* ISO */
   2457 	default:
   2458 		break;
   2459 	};
   2460 	return (0);
   2461 }
   2462 
   2463 /*
   2464  * The write verifier has changed (probably due to a server reboot), so all
   2465  * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
   2466  * as dirty or are being written out just now, all this takes is clearing
   2467  * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
   2468  * the mount point.
   2469  */
   2470 void
   2471 nfs_clearcommit(mp)
   2472 	struct mount *mp;
   2473 {
   2474 	struct vnode *vp;
   2475 	struct nfsnode *np;
   2476 	struct vm_page *pg;
   2477 	struct nfsmount *nmp = VFSTONFS(mp);
   2478 
   2479 	lockmgr(&nmp->nm_writeverflock, LK_EXCLUSIVE, NULL);
   2480 
   2481 	LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
   2482 		KASSERT(vp->v_mount == mp);
   2483 		if (vp->v_type == VNON)
   2484 			continue;
   2485 		np = VTONFS(vp);
   2486 		np->n_pushlo = np->n_pushhi = np->n_pushedlo =
   2487 		    np->n_pushedhi = 0;
   2488 		np->n_commitflags &=
   2489 		    ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
   2490 		simple_lock(&vp->v_uobj.vmobjlock);
   2491 		TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
   2492 			pg->flags &= ~PG_NEEDCOMMIT;
   2493 		}
   2494 		simple_unlock(&vp->v_uobj.vmobjlock);
   2495 	}
   2496 	simple_lock(&nmp->nm_slock);
   2497 	nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
   2498 	simple_unlock(&nmp->nm_slock);
   2499 	lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
   2500 }
   2501 
   2502 void
   2503 nfs_merge_commit_ranges(vp)
   2504 	struct vnode *vp;
   2505 {
   2506 	struct nfsnode *np = VTONFS(vp);
   2507 
   2508 	KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
   2509 
   2510 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
   2511 		np->n_pushedlo = np->n_pushlo;
   2512 		np->n_pushedhi = np->n_pushhi;
   2513 		np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
   2514 	} else {
   2515 		if (np->n_pushlo < np->n_pushedlo)
   2516 			np->n_pushedlo = np->n_pushlo;
   2517 		if (np->n_pushhi > np->n_pushedhi)
   2518 			np->n_pushedhi = np->n_pushhi;
   2519 	}
   2520 
   2521 	np->n_pushlo = np->n_pushhi = 0;
   2522 	np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
   2523 
   2524 #ifdef NFS_DEBUG_COMMIT
   2525 	printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
   2526 	    (unsigned)np->n_pushedhi);
   2527 #endif
   2528 }
   2529 
   2530 int
   2531 nfs_in_committed_range(vp, off, len)
   2532 	struct vnode *vp;
   2533 	off_t off, len;
   2534 {
   2535 	struct nfsnode *np = VTONFS(vp);
   2536 	off_t lo, hi;
   2537 
   2538 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
   2539 		return 0;
   2540 	lo = off;
   2541 	hi = lo + len;
   2542 
   2543 	return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
   2544 }
   2545 
   2546 int
   2547 nfs_in_tobecommitted_range(vp, off, len)
   2548 	struct vnode *vp;
   2549 	off_t off, len;
   2550 {
   2551 	struct nfsnode *np = VTONFS(vp);
   2552 	off_t lo, hi;
   2553 
   2554 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
   2555 		return 0;
   2556 	lo = off;
   2557 	hi = lo + len;
   2558 
   2559 	return (lo >= np->n_pushlo && hi <= np->n_pushhi);
   2560 }
   2561 
   2562 void
   2563 nfs_add_committed_range(vp, off, len)
   2564 	struct vnode *vp;
   2565 	off_t off, len;
   2566 {
   2567 	struct nfsnode *np = VTONFS(vp);
   2568 	off_t lo, hi;
   2569 
   2570 	lo = off;
   2571 	hi = lo + len;
   2572 
   2573 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
   2574 		np->n_pushedlo = lo;
   2575 		np->n_pushedhi = hi;
   2576 		np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
   2577 	} else {
   2578 		if (hi > np->n_pushedhi)
   2579 			np->n_pushedhi = hi;
   2580 		if (lo < np->n_pushedlo)
   2581 			np->n_pushedlo = lo;
   2582 	}
   2583 #ifdef NFS_DEBUG_COMMIT
   2584 	printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
   2585 	    (unsigned)np->n_pushedhi);
   2586 #endif
   2587 }
   2588 
   2589 void
   2590 nfs_del_committed_range(vp, off, len)
   2591 	struct vnode *vp;
   2592 	off_t off, len;
   2593 {
   2594 	struct nfsnode *np = VTONFS(vp);
   2595 	off_t lo, hi;
   2596 
   2597 	if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
   2598 		return;
   2599 
   2600 	lo = off;
   2601 	hi = lo + len;
   2602 
   2603 	if (lo > np->n_pushedhi || hi < np->n_pushedlo)
   2604 		return;
   2605 	if (lo <= np->n_pushedlo)
   2606 		np->n_pushedlo = hi;
   2607 	else if (hi >= np->n_pushedhi)
   2608 		np->n_pushedhi = lo;
   2609 	else {
   2610 		/*
   2611 		 * XXX There's only one range. If the deleted range
   2612 		 * is in the middle, pick the largest of the
   2613 		 * contiguous ranges that it leaves.
   2614 		 */
   2615 		if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
   2616 			np->n_pushedhi = lo;
   2617 		else
   2618 			np->n_pushedlo = hi;
   2619 	}
   2620 #ifdef NFS_DEBUG_COMMIT
   2621 	printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
   2622 	    (unsigned)np->n_pushedhi);
   2623 #endif
   2624 }
   2625 
   2626 void
   2627 nfs_add_tobecommitted_range(vp, off, len)
   2628 	struct vnode *vp;
   2629 	off_t off, len;
   2630 {
   2631 	struct nfsnode *np = VTONFS(vp);
   2632 	off_t lo, hi;
   2633 
   2634 	lo = off;
   2635 	hi = lo + len;
   2636 
   2637 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
   2638 		np->n_pushlo = lo;
   2639 		np->n_pushhi = hi;
   2640 		np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
   2641 	} else {
   2642 		if (lo < np->n_pushlo)
   2643 			np->n_pushlo = lo;
   2644 		if (hi > np->n_pushhi)
   2645 			np->n_pushhi = hi;
   2646 	}
   2647 #ifdef NFS_DEBUG_COMMIT
   2648 	printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
   2649 	    (unsigned)np->n_pushhi);
   2650 #endif
   2651 }
   2652 
   2653 void
   2654 nfs_del_tobecommitted_range(vp, off, len)
   2655 	struct vnode *vp;
   2656 	off_t off, len;
   2657 {
   2658 	struct nfsnode *np = VTONFS(vp);
   2659 	off_t lo, hi;
   2660 
   2661 	if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
   2662 		return;
   2663 
   2664 	lo = off;
   2665 	hi = lo + len;
   2666 
   2667 	if (lo > np->n_pushhi || hi < np->n_pushlo)
   2668 		return;
   2669 
   2670 	if (lo <= np->n_pushlo)
   2671 		np->n_pushlo = hi;
   2672 	else if (hi >= np->n_pushhi)
   2673 		np->n_pushhi = lo;
   2674 	else {
   2675 		/*
   2676 		 * XXX There's only one range. If the deleted range
   2677 		 * is in the middle, pick the largest of the
   2678 		 * contiguous ranges that it leaves.
   2679 		 */
   2680 		if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
   2681 			np->n_pushhi = lo;
   2682 		else
   2683 			np->n_pushlo = hi;
   2684 	}
   2685 #ifdef NFS_DEBUG_COMMIT
   2686 	printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
   2687 	    (unsigned)np->n_pushhi);
   2688 #endif
   2689 }
   2690 
   2691 /*
   2692  * Map errnos to NFS error numbers. For Version 3 also filter out error
   2693  * numbers not specified for the associated procedure.
   2694  */
   2695 int
   2696 nfsrv_errmap(nd, err)
   2697 	struct nfsrv_descript *nd;
   2698 	int err;
   2699 {
   2700 	const short *defaulterrp, *errp;
   2701 
   2702 	if (nd->nd_flag & ND_NFSV3) {
   2703 	    if (nd->nd_procnum <= NFSPROC_COMMIT) {
   2704 		errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
   2705 		while (*++errp) {
   2706 			if (*errp == err)
   2707 				return (err);
   2708 			else if (*errp > err)
   2709 				break;
   2710 		}
   2711 		return ((int)*defaulterrp);
   2712 	    } else
   2713 		return (err & 0xffff);
   2714 	}
   2715 	if (err <= ELAST)
   2716 		return ((int)nfsrv_v2errmap[err - 1]);
   2717 	return (NFSERR_IO);
   2718 }
   2719 
   2720 /*
   2721  * Sort the group list in increasing numerical order.
   2722  * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
   2723  *  that used to be here.)
   2724  */
   2725 void
   2726 nfsrvw_sort(list, num)
   2727         gid_t *list;
   2728         int num;
   2729 {
   2730 	int i, j;
   2731 	gid_t v;
   2732 
   2733 	/* Insertion sort. */
   2734 	for (i = 1; i < num; i++) {
   2735 		v = list[i];
   2736 		/* find correct slot for value v, moving others up */
   2737 		for (j = i; --j >= 0 && v < list[j];)
   2738 			list[j + 1] = list[j];
   2739 		list[j + 1] = v;
   2740 	}
   2741 }
   2742 
   2743 /*
   2744  * copy credentials making sure that the result can be compared with memcmp().
   2745  */
   2746 void
   2747 nfsrv_setcred(incred, outcred)
   2748 	struct ucred *incred, *outcred;
   2749 {
   2750 	int i;
   2751 
   2752 	memset((caddr_t)outcred, 0, sizeof (struct ucred));
   2753 	outcred->cr_ref = 1;
   2754 	outcred->cr_uid = incred->cr_uid;
   2755 	outcred->cr_gid = incred->cr_gid;
   2756 	outcred->cr_ngroups = incred->cr_ngroups;
   2757 	for (i = 0; i < incred->cr_ngroups; i++)
   2758 		outcred->cr_groups[i] = incred->cr_groups[i];
   2759 	nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
   2760 }
   2761 
   2762 u_int32_t
   2763 nfs_getxid()
   2764 {
   2765 	static u_int32_t base;
   2766 	static u_int32_t nfs_xid = 0;
   2767 	static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
   2768 	u_int32_t newxid;
   2769 
   2770 	simple_lock(&nfs_xidlock);
   2771 	/*
   2772 	 * derive initial xid from system time
   2773 	 * XXX time is invalid if root not yet mounted
   2774 	 */
   2775 	if (__predict_false(!base && (rootvp))) {
   2776 		struct timeval tv;
   2777 
   2778 		microtime(&tv);
   2779 		base = tv.tv_sec << 12;
   2780 		nfs_xid = base;
   2781 	}
   2782 
   2783 	/*
   2784 	 * Skip zero xid if it should ever happen.
   2785 	 */
   2786 	if (__predict_false(++nfs_xid == 0))
   2787 		nfs_xid++;
   2788 	newxid = nfs_xid;
   2789 	simple_unlock(&nfs_xidlock);
   2790 
   2791 	return txdr_unsigned(newxid);
   2792 }
   2793 
   2794 /*
   2795  * assign a new xid for existing request.
   2796  * used for NFSERR_JUKEBOX handling.
   2797  */
   2798 void
   2799 nfs_renewxid(struct nfsreq *req)
   2800 {
   2801 	u_int32_t xid;
   2802 	int off;
   2803 
   2804 	xid = nfs_getxid();
   2805 	if (req->r_nmp->nm_sotype == SOCK_STREAM)
   2806 		off = sizeof(u_int32_t); /* RPC record mark */
   2807 	else
   2808 		off = 0;
   2809 
   2810 	m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
   2811 	req->r_xid = xid;
   2812 }
   2813