nfs_subs.c revision 1.132.2.3.2.3 1 /* $NetBSD: nfs_subs.c,v 1.132.2.3.2.3 2005/03/16 11:54:53 tron Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.132.2.3.2.3 2005/03/16 11:54:53 tron Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <nfs/rpcv2.h>
104 #include <nfs/nfsproto.h>
105 #include <nfs/nfsnode.h>
106 #include <nfs/nfs.h>
107 #include <nfs/xdr_subs.h>
108 #include <nfs/nfsm_subs.h>
109 #include <nfs/nfsmount.h>
110 #include <nfs/nqnfs.h>
111 #include <nfs/nfsrtt.h>
112 #include <nfs/nfs_var.h>
113
114 #include <miscfs/specfs/specdev.h>
115
116 #include <netinet/in.h>
117 #ifdef ISO
118 #include <netiso/iso.h>
119 #endif
120
121 /*
122 * Data items converted to xdr at startup, since they are constant
123 * This is kinda hokey, but may save a little time doing byte swaps
124 */
125 u_int32_t nfs_xdrneg1;
126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
127 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
128 rpc_auth_kerb;
129 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
130
131 /* And other global data */
132 const nfstype nfsv2_type[9] =
133 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
134 const nfstype nfsv3_type[9] =
135 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
136 const enum vtype nv2tov_type[8] =
137 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
138 const enum vtype nv3tov_type[8] =
139 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
140 int nfs_ticks;
141 int nfs_commitsize;
142
143 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
144
145 /* NFS client/server stats. */
146 struct nfsstats nfsstats;
147
148 /*
149 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
150 */
151 const int nfsv3_procid[NFS_NPROCS] = {
152 NFSPROC_NULL,
153 NFSPROC_GETATTR,
154 NFSPROC_SETATTR,
155 NFSPROC_NOOP,
156 NFSPROC_LOOKUP,
157 NFSPROC_READLINK,
158 NFSPROC_READ,
159 NFSPROC_NOOP,
160 NFSPROC_WRITE,
161 NFSPROC_CREATE,
162 NFSPROC_REMOVE,
163 NFSPROC_RENAME,
164 NFSPROC_LINK,
165 NFSPROC_SYMLINK,
166 NFSPROC_MKDIR,
167 NFSPROC_RMDIR,
168 NFSPROC_READDIR,
169 NFSPROC_FSSTAT,
170 NFSPROC_NOOP,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP,
177 NFSPROC_NOOP
178 };
179
180 /*
181 * and the reverse mapping from generic to Version 2 procedure numbers
182 */
183 const int nfsv2_procid[NFS_NPROCS] = {
184 NFSV2PROC_NULL,
185 NFSV2PROC_GETATTR,
186 NFSV2PROC_SETATTR,
187 NFSV2PROC_LOOKUP,
188 NFSV2PROC_NOOP,
189 NFSV2PROC_READLINK,
190 NFSV2PROC_READ,
191 NFSV2PROC_WRITE,
192 NFSV2PROC_CREATE,
193 NFSV2PROC_MKDIR,
194 NFSV2PROC_SYMLINK,
195 NFSV2PROC_CREATE,
196 NFSV2PROC_REMOVE,
197 NFSV2PROC_RMDIR,
198 NFSV2PROC_RENAME,
199 NFSV2PROC_LINK,
200 NFSV2PROC_READDIR,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_STATFS,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_NOOP,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 NFSV2PROC_NOOP,
209 NFSV2PROC_NOOP,
210 };
211
212 /*
213 * Maps errno values to nfs error numbers.
214 * Use NFSERR_IO as the catch all for ones not specifically defined in
215 * RFC 1094.
216 */
217 static const u_char nfsrv_v2errmap[ELAST] = {
218 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
219 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
222 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
231 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
232 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
233 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
234 NFSERR_IO, NFSERR_IO,
235 };
236
237 /*
238 * Maps errno values to nfs error numbers.
239 * Although it is not obvious whether or not NFS clients really care if
240 * a returned error value is in the specified list for the procedure, the
241 * safest thing to do is filter them appropriately. For Version 2, the
242 * X/Open XNFS document is the only specification that defines error values
243 * for each RPC (The RFC simply lists all possible error values for all RPCs),
244 * so I have decided to not do this for Version 2.
245 * The first entry is the default error return and the rest are the valid
246 * errors for that RPC in increasing numeric order.
247 */
248 static const short nfsv3err_null[] = {
249 0,
250 0,
251 };
252
253 static const short nfsv3err_getattr[] = {
254 NFSERR_IO,
255 NFSERR_IO,
256 NFSERR_STALE,
257 NFSERR_BADHANDLE,
258 NFSERR_SERVERFAULT,
259 0,
260 };
261
262 static const short nfsv3err_setattr[] = {
263 NFSERR_IO,
264 NFSERR_PERM,
265 NFSERR_IO,
266 NFSERR_ACCES,
267 NFSERR_INVAL,
268 NFSERR_NOSPC,
269 NFSERR_ROFS,
270 NFSERR_DQUOT,
271 NFSERR_STALE,
272 NFSERR_BADHANDLE,
273 NFSERR_NOT_SYNC,
274 NFSERR_SERVERFAULT,
275 0,
276 };
277
278 static const short nfsv3err_lookup[] = {
279 NFSERR_IO,
280 NFSERR_NOENT,
281 NFSERR_IO,
282 NFSERR_ACCES,
283 NFSERR_NOTDIR,
284 NFSERR_NAMETOL,
285 NFSERR_STALE,
286 NFSERR_BADHANDLE,
287 NFSERR_SERVERFAULT,
288 0,
289 };
290
291 static const short nfsv3err_access[] = {
292 NFSERR_IO,
293 NFSERR_IO,
294 NFSERR_STALE,
295 NFSERR_BADHANDLE,
296 NFSERR_SERVERFAULT,
297 0,
298 };
299
300 static const short nfsv3err_readlink[] = {
301 NFSERR_IO,
302 NFSERR_IO,
303 NFSERR_ACCES,
304 NFSERR_INVAL,
305 NFSERR_STALE,
306 NFSERR_BADHANDLE,
307 NFSERR_NOTSUPP,
308 NFSERR_SERVERFAULT,
309 0,
310 };
311
312 static const short nfsv3err_read[] = {
313 NFSERR_IO,
314 NFSERR_IO,
315 NFSERR_NXIO,
316 NFSERR_ACCES,
317 NFSERR_INVAL,
318 NFSERR_STALE,
319 NFSERR_BADHANDLE,
320 NFSERR_SERVERFAULT,
321 NFSERR_JUKEBOX,
322 0,
323 };
324
325 static const short nfsv3err_write[] = {
326 NFSERR_IO,
327 NFSERR_IO,
328 NFSERR_ACCES,
329 NFSERR_INVAL,
330 NFSERR_FBIG,
331 NFSERR_NOSPC,
332 NFSERR_ROFS,
333 NFSERR_DQUOT,
334 NFSERR_STALE,
335 NFSERR_BADHANDLE,
336 NFSERR_SERVERFAULT,
337 NFSERR_JUKEBOX,
338 0,
339 };
340
341 static const short nfsv3err_create[] = {
342 NFSERR_IO,
343 NFSERR_IO,
344 NFSERR_ACCES,
345 NFSERR_EXIST,
346 NFSERR_NOTDIR,
347 NFSERR_NOSPC,
348 NFSERR_ROFS,
349 NFSERR_NAMETOL,
350 NFSERR_DQUOT,
351 NFSERR_STALE,
352 NFSERR_BADHANDLE,
353 NFSERR_NOTSUPP,
354 NFSERR_SERVERFAULT,
355 0,
356 };
357
358 static const short nfsv3err_mkdir[] = {
359 NFSERR_IO,
360 NFSERR_IO,
361 NFSERR_ACCES,
362 NFSERR_EXIST,
363 NFSERR_NOTDIR,
364 NFSERR_NOSPC,
365 NFSERR_ROFS,
366 NFSERR_NAMETOL,
367 NFSERR_DQUOT,
368 NFSERR_STALE,
369 NFSERR_BADHANDLE,
370 NFSERR_NOTSUPP,
371 NFSERR_SERVERFAULT,
372 0,
373 };
374
375 static const short nfsv3err_symlink[] = {
376 NFSERR_IO,
377 NFSERR_IO,
378 NFSERR_ACCES,
379 NFSERR_EXIST,
380 NFSERR_NOTDIR,
381 NFSERR_NOSPC,
382 NFSERR_ROFS,
383 NFSERR_NAMETOL,
384 NFSERR_DQUOT,
385 NFSERR_STALE,
386 NFSERR_BADHANDLE,
387 NFSERR_NOTSUPP,
388 NFSERR_SERVERFAULT,
389 0,
390 };
391
392 static const short nfsv3err_mknod[] = {
393 NFSERR_IO,
394 NFSERR_IO,
395 NFSERR_ACCES,
396 NFSERR_EXIST,
397 NFSERR_NOTDIR,
398 NFSERR_NOSPC,
399 NFSERR_ROFS,
400 NFSERR_NAMETOL,
401 NFSERR_DQUOT,
402 NFSERR_STALE,
403 NFSERR_BADHANDLE,
404 NFSERR_NOTSUPP,
405 NFSERR_SERVERFAULT,
406 NFSERR_BADTYPE,
407 0,
408 };
409
410 static const short nfsv3err_remove[] = {
411 NFSERR_IO,
412 NFSERR_NOENT,
413 NFSERR_IO,
414 NFSERR_ACCES,
415 NFSERR_NOTDIR,
416 NFSERR_ROFS,
417 NFSERR_NAMETOL,
418 NFSERR_STALE,
419 NFSERR_BADHANDLE,
420 NFSERR_SERVERFAULT,
421 0,
422 };
423
424 static const short nfsv3err_rmdir[] = {
425 NFSERR_IO,
426 NFSERR_NOENT,
427 NFSERR_IO,
428 NFSERR_ACCES,
429 NFSERR_EXIST,
430 NFSERR_NOTDIR,
431 NFSERR_INVAL,
432 NFSERR_ROFS,
433 NFSERR_NAMETOL,
434 NFSERR_NOTEMPTY,
435 NFSERR_STALE,
436 NFSERR_BADHANDLE,
437 NFSERR_NOTSUPP,
438 NFSERR_SERVERFAULT,
439 0,
440 };
441
442 static const short nfsv3err_rename[] = {
443 NFSERR_IO,
444 NFSERR_NOENT,
445 NFSERR_IO,
446 NFSERR_ACCES,
447 NFSERR_EXIST,
448 NFSERR_XDEV,
449 NFSERR_NOTDIR,
450 NFSERR_ISDIR,
451 NFSERR_INVAL,
452 NFSERR_NOSPC,
453 NFSERR_ROFS,
454 NFSERR_MLINK,
455 NFSERR_NAMETOL,
456 NFSERR_NOTEMPTY,
457 NFSERR_DQUOT,
458 NFSERR_STALE,
459 NFSERR_BADHANDLE,
460 NFSERR_NOTSUPP,
461 NFSERR_SERVERFAULT,
462 0,
463 };
464
465 static const short nfsv3err_link[] = {
466 NFSERR_IO,
467 NFSERR_IO,
468 NFSERR_ACCES,
469 NFSERR_EXIST,
470 NFSERR_XDEV,
471 NFSERR_NOTDIR,
472 NFSERR_INVAL,
473 NFSERR_NOSPC,
474 NFSERR_ROFS,
475 NFSERR_MLINK,
476 NFSERR_NAMETOL,
477 NFSERR_DQUOT,
478 NFSERR_STALE,
479 NFSERR_BADHANDLE,
480 NFSERR_NOTSUPP,
481 NFSERR_SERVERFAULT,
482 0,
483 };
484
485 static const short nfsv3err_readdir[] = {
486 NFSERR_IO,
487 NFSERR_IO,
488 NFSERR_ACCES,
489 NFSERR_NOTDIR,
490 NFSERR_STALE,
491 NFSERR_BADHANDLE,
492 NFSERR_BAD_COOKIE,
493 NFSERR_TOOSMALL,
494 NFSERR_SERVERFAULT,
495 0,
496 };
497
498 static const short nfsv3err_readdirplus[] = {
499 NFSERR_IO,
500 NFSERR_IO,
501 NFSERR_ACCES,
502 NFSERR_NOTDIR,
503 NFSERR_STALE,
504 NFSERR_BADHANDLE,
505 NFSERR_BAD_COOKIE,
506 NFSERR_NOTSUPP,
507 NFSERR_TOOSMALL,
508 NFSERR_SERVERFAULT,
509 0,
510 };
511
512 static const short nfsv3err_fsstat[] = {
513 NFSERR_IO,
514 NFSERR_IO,
515 NFSERR_STALE,
516 NFSERR_BADHANDLE,
517 NFSERR_SERVERFAULT,
518 0,
519 };
520
521 static const short nfsv3err_fsinfo[] = {
522 NFSERR_STALE,
523 NFSERR_STALE,
524 NFSERR_BADHANDLE,
525 NFSERR_SERVERFAULT,
526 0,
527 };
528
529 static const short nfsv3err_pathconf[] = {
530 NFSERR_STALE,
531 NFSERR_STALE,
532 NFSERR_BADHANDLE,
533 NFSERR_SERVERFAULT,
534 0,
535 };
536
537 static const short nfsv3err_commit[] = {
538 NFSERR_IO,
539 NFSERR_IO,
540 NFSERR_STALE,
541 NFSERR_BADHANDLE,
542 NFSERR_SERVERFAULT,
543 0,
544 };
545
546 static const short * const nfsrv_v3errmap[] = {
547 nfsv3err_null,
548 nfsv3err_getattr,
549 nfsv3err_setattr,
550 nfsv3err_lookup,
551 nfsv3err_access,
552 nfsv3err_readlink,
553 nfsv3err_read,
554 nfsv3err_write,
555 nfsv3err_create,
556 nfsv3err_mkdir,
557 nfsv3err_symlink,
558 nfsv3err_mknod,
559 nfsv3err_remove,
560 nfsv3err_rmdir,
561 nfsv3err_rename,
562 nfsv3err_link,
563 nfsv3err_readdir,
564 nfsv3err_readdirplus,
565 nfsv3err_fsstat,
566 nfsv3err_fsinfo,
567 nfsv3err_pathconf,
568 nfsv3err_commit,
569 };
570
571 extern struct nfsrtt nfsrtt;
572 extern time_t nqnfsstarttime;
573 extern int nqsrv_clockskew;
574 extern int nqsrv_writeslack;
575 extern int nqsrv_maxlease;
576 extern const int nqnfs_piggy[NFS_NPROCS];
577 extern struct nfsnodehashhead *nfsnodehashtbl;
578 extern u_long nfsnodehash;
579
580 u_long nfsdirhashmask;
581
582 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
583
584 /*
585 * Create the header for an rpc request packet
586 * The hsiz is the size of the rest of the nfs request header.
587 * (just used to decide if a cluster is a good idea)
588 */
589 struct mbuf *
590 nfsm_reqh(np, procid, hsiz, bposp)
591 struct nfsnode *np;
592 u_long procid;
593 int hsiz;
594 caddr_t *bposp;
595 {
596 struct mbuf *mb;
597 caddr_t bpos;
598 #ifndef NFS_V2_ONLY
599 struct nfsmount *nmp;
600 u_int32_t *tl;
601 int nqflag;
602 #endif
603
604 mb = m_get(M_WAIT, MT_DATA);
605 MCLAIM(mb, &nfs_mowner);
606 if (hsiz >= MINCLSIZE)
607 m_clget(mb, M_WAIT);
608 mb->m_len = 0;
609 bpos = mtod(mb, caddr_t);
610
611 #ifndef NFS_V2_ONLY
612 /*
613 * For NQNFS, add lease request.
614 */
615 if (np) {
616 nmp = VFSTONFS(np->n_vnode->v_mount);
617 if (nmp->nm_flag & NFSMNT_NQNFS) {
618 nqflag = NQNFS_NEEDLEASE(np, procid);
619 if (nqflag) {
620 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
621 *tl++ = txdr_unsigned(nqflag);
622 *tl = txdr_unsigned(nmp->nm_leaseterm);
623 } else {
624 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
625 *tl = 0;
626 }
627 }
628 }
629 #endif
630 /* Finally, return values */
631 *bposp = bpos;
632 return (mb);
633 }
634
635 /*
636 * Build the RPC header and fill in the authorization info.
637 * The authorization string argument is only used when the credentials
638 * come from outside of the kernel.
639 * Returns the head of the mbuf list.
640 */
641 struct mbuf *
642 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
643 verf_str, mrest, mrest_len, mbp, xidp)
644 struct ucred *cr;
645 int nmflag;
646 int procid;
647 int auth_type;
648 int auth_len;
649 char *auth_str;
650 int verf_len;
651 char *verf_str;
652 struct mbuf *mrest;
653 int mrest_len;
654 struct mbuf **mbp;
655 u_int32_t *xidp;
656 {
657 struct mbuf *mb;
658 u_int32_t *tl;
659 caddr_t bpos;
660 int i;
661 struct mbuf *mreq;
662 int siz, grpsiz, authsiz;
663
664 authsiz = nfsm_rndup(auth_len);
665 mb = m_gethdr(M_WAIT, MT_DATA);
666 MCLAIM(mb, &nfs_mowner);
667 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
668 m_clget(mb, M_WAIT);
669 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
670 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
671 } else {
672 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
673 }
674 mb->m_len = 0;
675 mreq = mb;
676 bpos = mtod(mb, caddr_t);
677
678 /*
679 * First the RPC header.
680 */
681 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
682
683 *tl++ = *xidp = nfs_getxid();
684 *tl++ = rpc_call;
685 *tl++ = rpc_vers;
686 if (nmflag & NFSMNT_NQNFS) {
687 *tl++ = txdr_unsigned(NQNFS_PROG);
688 *tl++ = txdr_unsigned(NQNFS_VER3);
689 } else {
690 *tl++ = txdr_unsigned(NFS_PROG);
691 if (nmflag & NFSMNT_NFSV3)
692 *tl++ = txdr_unsigned(NFS_VER3);
693 else
694 *tl++ = txdr_unsigned(NFS_VER2);
695 }
696 if (nmflag & NFSMNT_NFSV3)
697 *tl++ = txdr_unsigned(procid);
698 else
699 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
700
701 /*
702 * And then the authorization cred.
703 */
704 *tl++ = txdr_unsigned(auth_type);
705 *tl = txdr_unsigned(authsiz);
706 switch (auth_type) {
707 case RPCAUTH_UNIX:
708 nfsm_build(tl, u_int32_t *, auth_len);
709 *tl++ = 0; /* stamp ?? */
710 *tl++ = 0; /* NULL hostname */
711 *tl++ = txdr_unsigned(cr->cr_uid);
712 *tl++ = txdr_unsigned(cr->cr_gid);
713 grpsiz = (auth_len >> 2) - 5;
714 *tl++ = txdr_unsigned(grpsiz);
715 for (i = 0; i < grpsiz; i++)
716 *tl++ = txdr_unsigned(cr->cr_groups[i]);
717 break;
718 case RPCAUTH_KERB4:
719 siz = auth_len;
720 while (siz > 0) {
721 if (M_TRAILINGSPACE(mb) == 0) {
722 struct mbuf *mb2;
723 mb2 = m_get(M_WAIT, MT_DATA);
724 MCLAIM(mb2, &nfs_mowner);
725 if (siz >= MINCLSIZE)
726 m_clget(mb2, M_WAIT);
727 mb->m_next = mb2;
728 mb = mb2;
729 mb->m_len = 0;
730 bpos = mtod(mb, caddr_t);
731 }
732 i = min(siz, M_TRAILINGSPACE(mb));
733 memcpy(bpos, auth_str, i);
734 mb->m_len += i;
735 auth_str += i;
736 bpos += i;
737 siz -= i;
738 }
739 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
740 for (i = 0; i < siz; i++)
741 *bpos++ = '\0';
742 mb->m_len += siz;
743 }
744 break;
745 };
746
747 /*
748 * And the verifier...
749 */
750 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
751 if (verf_str) {
752 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
753 *tl = txdr_unsigned(verf_len);
754 siz = verf_len;
755 while (siz > 0) {
756 if (M_TRAILINGSPACE(mb) == 0) {
757 struct mbuf *mb2;
758 mb2 = m_get(M_WAIT, MT_DATA);
759 MCLAIM(mb2, &nfs_mowner);
760 if (siz >= MINCLSIZE)
761 m_clget(mb2, M_WAIT);
762 mb->m_next = mb2;
763 mb = mb2;
764 mb->m_len = 0;
765 bpos = mtod(mb, caddr_t);
766 }
767 i = min(siz, M_TRAILINGSPACE(mb));
768 memcpy(bpos, verf_str, i);
769 mb->m_len += i;
770 verf_str += i;
771 bpos += i;
772 siz -= i;
773 }
774 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
775 for (i = 0; i < siz; i++)
776 *bpos++ = '\0';
777 mb->m_len += siz;
778 }
779 } else {
780 *tl++ = txdr_unsigned(RPCAUTH_NULL);
781 *tl = 0;
782 }
783 mb->m_next = mrest;
784 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
785 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
786 *mbp = mb;
787 return (mreq);
788 }
789
790 /*
791 * copies mbuf chain to the uio scatter/gather list
792 */
793 int
794 nfsm_mbuftouio(mrep, uiop, siz, dpos)
795 struct mbuf **mrep;
796 struct uio *uiop;
797 int siz;
798 caddr_t *dpos;
799 {
800 char *mbufcp, *uiocp;
801 int xfer, left, len;
802 struct mbuf *mp;
803 long uiosiz, rem;
804 int error = 0;
805
806 mp = *mrep;
807 mbufcp = *dpos;
808 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
809 rem = nfsm_rndup(siz)-siz;
810 while (siz > 0) {
811 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
812 return (EFBIG);
813 left = uiop->uio_iov->iov_len;
814 uiocp = uiop->uio_iov->iov_base;
815 if (left > siz)
816 left = siz;
817 uiosiz = left;
818 while (left > 0) {
819 while (len == 0) {
820 mp = mp->m_next;
821 if (mp == NULL)
822 return (EBADRPC);
823 mbufcp = mtod(mp, caddr_t);
824 len = mp->m_len;
825 }
826 xfer = (left > len) ? len : left;
827 #ifdef notdef
828 /* Not Yet.. */
829 if (uiop->uio_iov->iov_op != NULL)
830 (*(uiop->uio_iov->iov_op))
831 (mbufcp, uiocp, xfer);
832 else
833 #endif
834 if (uiop->uio_segflg == UIO_SYSSPACE)
835 memcpy(uiocp, mbufcp, xfer);
836 else
837 copyout(mbufcp, uiocp, xfer);
838 left -= xfer;
839 len -= xfer;
840 mbufcp += xfer;
841 uiocp += xfer;
842 uiop->uio_offset += xfer;
843 uiop->uio_resid -= xfer;
844 }
845 if (uiop->uio_iov->iov_len <= siz) {
846 uiop->uio_iovcnt--;
847 uiop->uio_iov++;
848 } else {
849 uiop->uio_iov->iov_base =
850 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
851 uiop->uio_iov->iov_len -= uiosiz;
852 }
853 siz -= uiosiz;
854 }
855 *dpos = mbufcp;
856 *mrep = mp;
857 if (rem > 0) {
858 if (len < rem)
859 error = nfs_adv(mrep, dpos, rem, len);
860 else
861 *dpos += rem;
862 }
863 return (error);
864 }
865
866 /*
867 * copies a uio scatter/gather list to an mbuf chain.
868 * NOTE: can ony handle iovcnt == 1
869 */
870 int
871 nfsm_uiotombuf(uiop, mq, siz, bpos)
872 struct uio *uiop;
873 struct mbuf **mq;
874 int siz;
875 caddr_t *bpos;
876 {
877 char *uiocp;
878 struct mbuf *mp, *mp2;
879 int xfer, left, mlen;
880 int uiosiz, clflg, rem;
881 char *cp;
882
883 #ifdef DIAGNOSTIC
884 if (uiop->uio_iovcnt != 1)
885 panic("nfsm_uiotombuf: iovcnt != 1");
886 #endif
887
888 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
889 clflg = 1;
890 else
891 clflg = 0;
892 rem = nfsm_rndup(siz)-siz;
893 mp = mp2 = *mq;
894 while (siz > 0) {
895 left = uiop->uio_iov->iov_len;
896 uiocp = uiop->uio_iov->iov_base;
897 if (left > siz)
898 left = siz;
899 uiosiz = left;
900 while (left > 0) {
901 mlen = M_TRAILINGSPACE(mp);
902 if (mlen == 0) {
903 mp = m_get(M_WAIT, MT_DATA);
904 MCLAIM(mp, &nfs_mowner);
905 if (clflg)
906 m_clget(mp, M_WAIT);
907 mp->m_len = 0;
908 mp2->m_next = mp;
909 mp2 = mp;
910 mlen = M_TRAILINGSPACE(mp);
911 }
912 xfer = (left > mlen) ? mlen : left;
913 #ifdef notdef
914 /* Not Yet.. */
915 if (uiop->uio_iov->iov_op != NULL)
916 (*(uiop->uio_iov->iov_op))
917 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
918 else
919 #endif
920 if (uiop->uio_segflg == UIO_SYSSPACE)
921 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
922 else
923 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
924 mp->m_len += xfer;
925 left -= xfer;
926 uiocp += xfer;
927 uiop->uio_offset += xfer;
928 uiop->uio_resid -= xfer;
929 }
930 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
931 uiosiz;
932 uiop->uio_iov->iov_len -= uiosiz;
933 siz -= uiosiz;
934 }
935 if (rem > 0) {
936 if (rem > M_TRAILINGSPACE(mp)) {
937 mp = m_get(M_WAIT, MT_DATA);
938 MCLAIM(mp, &nfs_mowner);
939 mp->m_len = 0;
940 mp2->m_next = mp;
941 }
942 cp = mtod(mp, caddr_t)+mp->m_len;
943 for (left = 0; left < rem; left++)
944 *cp++ = '\0';
945 mp->m_len += rem;
946 *bpos = cp;
947 } else
948 *bpos = mtod(mp, caddr_t)+mp->m_len;
949 *mq = mp;
950 return (0);
951 }
952
953 /*
954 * Get at least "siz" bytes of correctly aligned data.
955 * When called the mbuf pointers are not necessarily correct,
956 * dsosp points to what ought to be in m_data and left contains
957 * what ought to be in m_len.
958 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
959 * cases. (The macros use the vars. dpos and dpos2)
960 */
961 int
962 nfsm_disct(mdp, dposp, siz, left, cp2)
963 struct mbuf **mdp;
964 caddr_t *dposp;
965 int siz;
966 int left;
967 caddr_t *cp2;
968 {
969 struct mbuf *m1, *m2;
970 struct mbuf *havebuf = NULL;
971 caddr_t src = *dposp;
972 caddr_t dst;
973 int len;
974
975 #ifdef DEBUG
976 if (left < 0)
977 panic("nfsm_disct: left < 0");
978 #endif
979 m1 = *mdp;
980 /*
981 * Skip through the mbuf chain looking for an mbuf with
982 * some data. If the first mbuf found has enough data
983 * and it is correctly aligned return it.
984 */
985 while (left == 0) {
986 havebuf = m1;
987 *mdp = m1 = m1->m_next;
988 if (m1 == NULL)
989 return (EBADRPC);
990 src = mtod(m1, caddr_t);
991 left = m1->m_len;
992 /*
993 * If we start a new mbuf and it is big enough
994 * and correctly aligned just return it, don't
995 * do any pull up.
996 */
997 if (left >= siz && nfsm_aligned(src)) {
998 *cp2 = src;
999 *dposp = src + siz;
1000 return (0);
1001 }
1002 }
1003 if (m1->m_flags & M_EXT) {
1004 if (havebuf) {
1005 /* If the first mbuf with data has external data
1006 * and there is a previous empty mbuf use it
1007 * to move the data into.
1008 */
1009 m2 = m1;
1010 *mdp = m1 = havebuf;
1011 if (m1->m_flags & M_EXT) {
1012 MEXTREMOVE(m1);
1013 }
1014 } else {
1015 /*
1016 * If the first mbuf has a external data
1017 * and there is no previous empty mbuf
1018 * allocate a new mbuf and move the external
1019 * data to the new mbuf. Also make the first
1020 * mbuf look empty.
1021 */
1022 m2 = m_get(M_WAIT, MT_DATA);
1023 m2->m_ext = m1->m_ext;
1024 m2->m_data = src;
1025 m2->m_len = left;
1026 MCLADDREFERENCE(m1, m2);
1027 MEXTREMOVE(m1);
1028 m2->m_next = m1->m_next;
1029 m1->m_next = m2;
1030 }
1031 m1->m_len = 0;
1032 if (m1->m_flags & M_PKTHDR)
1033 dst = m1->m_pktdat;
1034 else
1035 dst = m1->m_dat;
1036 m1->m_data = dst;
1037 } else {
1038 /*
1039 * If the first mbuf has no external data
1040 * move the data to the front of the mbuf.
1041 */
1042 if (m1->m_flags & M_PKTHDR)
1043 dst = m1->m_pktdat;
1044 else
1045 dst = m1->m_dat;
1046 m1->m_data = dst;
1047 if (dst != src)
1048 memmove(dst, src, left);
1049 dst += left;
1050 m1->m_len = left;
1051 m2 = m1->m_next;
1052 }
1053 *cp2 = m1->m_data;
1054 *dposp = mtod(m1, caddr_t) + siz;
1055 /*
1056 * Loop through mbufs pulling data up into first mbuf until
1057 * the first mbuf is full or there is no more data to
1058 * pullup.
1059 */
1060 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1061 if ((len = min(len, m2->m_len)) != 0)
1062 memcpy(dst, m2->m_data, len);
1063 m1->m_len += len;
1064 dst += len;
1065 m2->m_data += len;
1066 m2->m_len -= len;
1067 m2 = m2->m_next;
1068 }
1069 if (m1->m_len < siz)
1070 return (EBADRPC);
1071 return (0);
1072 }
1073
1074 /*
1075 * Advance the position in the mbuf chain.
1076 */
1077 int
1078 nfs_adv(mdp, dposp, offs, left)
1079 struct mbuf **mdp;
1080 caddr_t *dposp;
1081 int offs;
1082 int left;
1083 {
1084 struct mbuf *m;
1085 int s;
1086
1087 m = *mdp;
1088 s = left;
1089 while (s < offs) {
1090 offs -= s;
1091 m = m->m_next;
1092 if (m == NULL)
1093 return (EBADRPC);
1094 s = m->m_len;
1095 }
1096 *mdp = m;
1097 *dposp = mtod(m, caddr_t)+offs;
1098 return (0);
1099 }
1100
1101 /*
1102 * Copy a string into mbufs for the hard cases...
1103 */
1104 int
1105 nfsm_strtmbuf(mb, bpos, cp, siz)
1106 struct mbuf **mb;
1107 char **bpos;
1108 const char *cp;
1109 long siz;
1110 {
1111 struct mbuf *m1 = NULL, *m2;
1112 long left, xfer, len, tlen;
1113 u_int32_t *tl;
1114 int putsize;
1115
1116 putsize = 1;
1117 m2 = *mb;
1118 left = M_TRAILINGSPACE(m2);
1119 if (left > 0) {
1120 tl = ((u_int32_t *)(*bpos));
1121 *tl++ = txdr_unsigned(siz);
1122 putsize = 0;
1123 left -= NFSX_UNSIGNED;
1124 m2->m_len += NFSX_UNSIGNED;
1125 if (left > 0) {
1126 memcpy((caddr_t) tl, cp, left);
1127 siz -= left;
1128 cp += left;
1129 m2->m_len += left;
1130 left = 0;
1131 }
1132 }
1133 /* Loop around adding mbufs */
1134 while (siz > 0) {
1135 m1 = m_get(M_WAIT, MT_DATA);
1136 MCLAIM(m1, &nfs_mowner);
1137 if (siz > MLEN)
1138 m_clget(m1, M_WAIT);
1139 m1->m_len = NFSMSIZ(m1);
1140 m2->m_next = m1;
1141 m2 = m1;
1142 tl = mtod(m1, u_int32_t *);
1143 tlen = 0;
1144 if (putsize) {
1145 *tl++ = txdr_unsigned(siz);
1146 m1->m_len -= NFSX_UNSIGNED;
1147 tlen = NFSX_UNSIGNED;
1148 putsize = 0;
1149 }
1150 if (siz < m1->m_len) {
1151 len = nfsm_rndup(siz);
1152 xfer = siz;
1153 if (xfer < len)
1154 *(tl+(xfer>>2)) = 0;
1155 } else {
1156 xfer = len = m1->m_len;
1157 }
1158 memcpy((caddr_t) tl, cp, xfer);
1159 m1->m_len = len+tlen;
1160 siz -= xfer;
1161 cp += xfer;
1162 }
1163 *mb = m1;
1164 *bpos = mtod(m1, caddr_t)+m1->m_len;
1165 return (0);
1166 }
1167
1168 /*
1169 * Directory caching routines. They work as follows:
1170 * - a cache is maintained per VDIR nfsnode.
1171 * - for each offset cookie that is exported to userspace, and can
1172 * thus be thrown back at us as an offset to VOP_READDIR, store
1173 * information in the cache.
1174 * - cached are:
1175 * - cookie itself
1176 * - blocknumber (essentially just a search key in the buffer cache)
1177 * - entry number in block.
1178 * - offset cookie of block in which this entry is stored
1179 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1180 * - entries are looked up in a hash table
1181 * - also maintained is an LRU list of entries, used to determine
1182 * which ones to delete if the cache grows too large.
1183 * - if 32 <-> 64 translation mode is requested for a filesystem,
1184 * the cache also functions as a translation table
1185 * - in the translation case, invalidating the cache does not mean
1186 * flushing it, but just marking entries as invalid, except for
1187 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1188 * still be able to use the cache as a translation table.
1189 * - 32 bit cookies are uniquely created by combining the hash table
1190 * entry value, and one generation count per hash table entry,
1191 * incremented each time an entry is appended to the chain.
1192 * - the cache is invalidated each time a direcory is modified
1193 * - sanity checks are also done; if an entry in a block turns
1194 * out not to have a matching cookie, the cache is invalidated
1195 * and a new block starting from the wanted offset is fetched from
1196 * the server.
1197 * - directory entries as read from the server are extended to contain
1198 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1199 * the cache and exporting them to userspace through the cookie
1200 * argument to VOP_READDIR.
1201 */
1202
1203 u_long
1204 nfs_dirhash(off)
1205 off_t off;
1206 {
1207 int i;
1208 char *cp = (char *)&off;
1209 u_long sum = 0L;
1210
1211 for (i = 0 ; i < sizeof (off); i++)
1212 sum += *cp++;
1213
1214 return sum;
1215 }
1216
1217 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1218 #define NFSDC_LOCK(np) simple_lock(_NFSDC_MTX(np))
1219 #define NFSDC_UNLOCK(np) simple_unlock(_NFSDC_MTX(np))
1220 #define NFSDC_ASSERT_LOCKED(np) LOCK_ASSERT(simple_lock_held(_NFSDC_MTX(np)))
1221
1222 void
1223 nfs_initdircache(vp)
1224 struct vnode *vp;
1225 {
1226 struct nfsnode *np = VTONFS(vp);
1227 struct nfsdirhashhead *dircache;
1228
1229 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1230 M_WAITOK, &nfsdirhashmask);
1231
1232 NFSDC_LOCK(np);
1233 if (np->n_dircache == NULL) {
1234 np->n_dircachesize = 0;
1235 np->n_dircache = dircache;
1236 dircache = NULL;
1237 TAILQ_INIT(&np->n_dirchain);
1238 }
1239 NFSDC_UNLOCK(np);
1240 if (dircache)
1241 hashdone(dircache, M_NFSDIROFF);
1242 }
1243
1244 void
1245 nfs_initdirxlatecookie(vp)
1246 struct vnode *vp;
1247 {
1248 struct nfsnode *np = VTONFS(vp);
1249 unsigned *dirgens;
1250
1251 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1252
1253 dirgens = malloc(NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1254 M_WAITOK|M_ZERO);
1255 NFSDC_LOCK(np);
1256 if (np->n_dirgens == NULL) {
1257 np->n_dirgens = dirgens;
1258 dirgens = NULL;
1259 }
1260 NFSDC_UNLOCK(np);
1261 if (dirgens)
1262 free(dirgens, M_NFSDIROFF);
1263 }
1264
1265 static const struct nfsdircache dzero;
1266
1267 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1268 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1269 struct nfsdircache *));
1270
1271 static void
1272 nfs_unlinkdircache(np, ndp)
1273 struct nfsnode *np;
1274 struct nfsdircache *ndp;
1275 {
1276
1277 NFSDC_ASSERT_LOCKED(np);
1278 KASSERT(ndp != &dzero);
1279
1280 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1281 return;
1282
1283 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1284 LIST_REMOVE(ndp, dc_hash);
1285 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1286
1287 nfs_putdircache_unlocked(np, ndp);
1288 }
1289
1290 void
1291 nfs_putdircache(np, ndp)
1292 struct nfsnode *np;
1293 struct nfsdircache *ndp;
1294 {
1295 int ref;
1296
1297 if (ndp == &dzero)
1298 return;
1299
1300 KASSERT(ndp->dc_refcnt > 0);
1301 NFSDC_LOCK(np);
1302 ref = --ndp->dc_refcnt;
1303 NFSDC_UNLOCK(np);
1304
1305 if (ref == 0)
1306 free(ndp, M_NFSDIROFF);
1307 }
1308
1309 static void
1310 nfs_putdircache_unlocked(np, ndp)
1311 struct nfsnode *np;
1312 struct nfsdircache *ndp;
1313 {
1314 int ref;
1315
1316 NFSDC_ASSERT_LOCKED(np);
1317
1318 if (ndp == &dzero)
1319 return;
1320
1321 KASSERT(ndp->dc_refcnt > 0);
1322 ref = --ndp->dc_refcnt;
1323 if (ref == 0)
1324 free(ndp, M_NFSDIROFF);
1325 }
1326
1327 struct nfsdircache *
1328 nfs_searchdircache(vp, off, do32, hashent)
1329 struct vnode *vp;
1330 off_t off;
1331 int do32;
1332 int *hashent;
1333 {
1334 struct nfsdirhashhead *ndhp;
1335 struct nfsdircache *ndp = NULL;
1336 struct nfsnode *np = VTONFS(vp);
1337 unsigned ent;
1338
1339 /*
1340 * Zero is always a valid cookie.
1341 */
1342 if (off == 0)
1343 /* LINTED const cast away */
1344 return (struct nfsdircache *)&dzero;
1345
1346 if (!np->n_dircache)
1347 return NULL;
1348
1349 /*
1350 * We use a 32bit cookie as search key, directly reconstruct
1351 * the hashentry. Else use the hashfunction.
1352 */
1353 if (do32) {
1354 ent = (u_int32_t)off >> 24;
1355 if (ent >= NFS_DIRHASHSIZ)
1356 return NULL;
1357 ndhp = &np->n_dircache[ent];
1358 } else {
1359 ndhp = NFSDIRHASH(np, off);
1360 }
1361
1362 if (hashent)
1363 *hashent = (int)(ndhp - np->n_dircache);
1364
1365 NFSDC_LOCK(np);
1366 if (do32) {
1367 LIST_FOREACH(ndp, ndhp, dc_hash) {
1368 if (ndp->dc_cookie32 == (u_int32_t)off) {
1369 /*
1370 * An invalidated entry will become the
1371 * start of a new block fetched from
1372 * the server.
1373 */
1374 if (ndp->dc_flags & NFSDC_INVALID) {
1375 ndp->dc_blkcookie = ndp->dc_cookie;
1376 ndp->dc_entry = 0;
1377 ndp->dc_flags &= ~NFSDC_INVALID;
1378 }
1379 break;
1380 }
1381 }
1382 } else {
1383 LIST_FOREACH(ndp, ndhp, dc_hash) {
1384 if (ndp->dc_cookie == off)
1385 break;
1386 }
1387 }
1388 if (ndp != NULL)
1389 ndp->dc_refcnt++;
1390 NFSDC_UNLOCK(np);
1391 return ndp;
1392 }
1393
1394
1395 struct nfsdircache *
1396 nfs_enterdircache(vp, off, blkoff, en, blkno)
1397 struct vnode *vp;
1398 off_t off, blkoff;
1399 int en;
1400 daddr_t blkno;
1401 {
1402 struct nfsnode *np = VTONFS(vp);
1403 struct nfsdirhashhead *ndhp;
1404 struct nfsdircache *ndp = NULL;
1405 struct nfsdircache *newndp = NULL;
1406 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1407 int hashent, gen, overwrite;
1408
1409 /*
1410 * XXX refuse entries for offset 0. amd(8) erroneously sets
1411 * cookie 0 for the '.' entry, making this necessary. This
1412 * isn't so bad, as 0 is a special case anyway.
1413 */
1414 if (off == 0)
1415 /* LINTED const cast away */
1416 return (struct nfsdircache *)&dzero;
1417
1418 if (!np->n_dircache)
1419 /*
1420 * XXX would like to do this in nfs_nget but vtype
1421 * isn't known at that time.
1422 */
1423 nfs_initdircache(vp);
1424
1425 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1426 nfs_initdirxlatecookie(vp);
1427
1428 retry:
1429 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1430
1431 NFSDC_LOCK(np);
1432 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1433 /*
1434 * Overwriting an old entry. Check if it's the same.
1435 * If so, just return. If not, remove the old entry.
1436 */
1437 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1438 goto done;
1439 nfs_unlinkdircache(np, ndp);
1440 nfs_putdircache_unlocked(np, ndp);
1441 ndp = NULL;
1442 }
1443
1444 ndhp = &np->n_dircache[hashent];
1445
1446 if (!ndp) {
1447 if (newndp == NULL) {
1448 NFSDC_UNLOCK(np);
1449 newndp = malloc(sizeof(*ndp), M_NFSDIROFF, M_WAITOK);
1450 newndp->dc_refcnt = 1;
1451 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1452 goto retry;
1453 }
1454 ndp = newndp;
1455 newndp = NULL;
1456 overwrite = 0;
1457 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1458 /*
1459 * We're allocating a new entry, so bump the
1460 * generation number.
1461 */
1462 gen = ++np->n_dirgens[hashent];
1463 if (gen == 0) {
1464 np->n_dirgens[hashent]++;
1465 gen++;
1466 }
1467 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1468 }
1469 } else
1470 overwrite = 1;
1471
1472 ndp->dc_cookie = off;
1473 ndp->dc_blkcookie = blkoff;
1474 ndp->dc_entry = en;
1475 ndp->dc_flags = 0;
1476
1477 if (overwrite)
1478 goto done;
1479
1480 /*
1481 * If the maximum directory cookie cache size has been reached
1482 * for this node, take one off the front. The idea is that
1483 * directories are typically read front-to-back once, so that
1484 * the oldest entries can be thrown away without much performance
1485 * loss.
1486 */
1487 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1488 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1489 } else
1490 np->n_dircachesize++;
1491
1492 KASSERT(ndp->dc_refcnt == 1);
1493 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1494 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1495 ndp->dc_refcnt++;
1496 done:
1497 KASSERT(ndp->dc_refcnt > 0);
1498 NFSDC_UNLOCK(np);
1499 if (newndp)
1500 nfs_putdircache(np, newndp);
1501 return ndp;
1502 }
1503
1504 void
1505 nfs_invaldircache(vp, forcefree)
1506 struct vnode *vp;
1507 int forcefree;
1508 {
1509 struct nfsnode *np = VTONFS(vp);
1510 struct nfsdircache *ndp = NULL;
1511 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1512
1513 #ifdef DIAGNOSTIC
1514 if (vp->v_type != VDIR)
1515 panic("nfs: invaldircache: not dir");
1516 #endif
1517
1518 if (!np->n_dircache)
1519 return;
1520
1521 NFSDC_LOCK(np);
1522 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1523 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1524 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1525 nfs_unlinkdircache(np, ndp);
1526 }
1527 np->n_dircachesize = 0;
1528 if (forcefree && np->n_dirgens) {
1529 FREE(np->n_dirgens, M_NFSDIROFF);
1530 np->n_dirgens = NULL;
1531 }
1532 } else {
1533 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1534 ndp->dc_flags |= NFSDC_INVALID;
1535 }
1536
1537 NFSDC_UNLOCK(np);
1538 }
1539
1540 /*
1541 * Called once before VFS init to initialize shared and
1542 * server-specific data structures.
1543 */
1544 void
1545 nfs_init()
1546 {
1547 nfsrtt.pos = 0;
1548 rpc_vers = txdr_unsigned(RPC_VER2);
1549 rpc_call = txdr_unsigned(RPC_CALL);
1550 rpc_reply = txdr_unsigned(RPC_REPLY);
1551 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1552 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1553 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1554 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1555 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1556 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1557 nfs_prog = txdr_unsigned(NFS_PROG);
1558 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1559 nfs_true = txdr_unsigned(TRUE);
1560 nfs_false = txdr_unsigned(FALSE);
1561 nfs_xdrneg1 = txdr_unsigned(-1);
1562 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1563 if (nfs_ticks < 1)
1564 nfs_ticks = 1;
1565 #ifdef NFSSERVER
1566 nfsrv_init(0); /* Init server data structures */
1567 nfsrv_initcache(); /* Init the server request cache */
1568 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
1569 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr);
1570 #endif /* NFSSERVER */
1571
1572 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1573 /*
1574 * Initialize the nqnfs data structures.
1575 */
1576 if (nqnfsstarttime == 0) {
1577 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1578 + nqsrv_clockskew + nqsrv_writeslack;
1579 NQLOADNOVRAM(nqnfsstarttime);
1580 CIRCLEQ_INIT(&nqtimerhead);
1581 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1582 M_WAITOK, &nqfhhash);
1583 }
1584 #endif
1585
1586 exithook_establish(nfs_exit, NULL);
1587
1588 /*
1589 * Initialize reply list and start timer
1590 */
1591 TAILQ_INIT(&nfs_reqq);
1592 nfs_timer(NULL);
1593 MOWNER_ATTACH(&nfs_mowner);
1594
1595 #ifdef NFS
1596 /* Initialize the kqueue structures */
1597 nfs_kqinit();
1598 /* Initialize the iod structures */
1599 nfs_iodinit();
1600 #endif
1601 }
1602
1603 #ifdef NFS
1604 /*
1605 * Called once at VFS init to initialize client-specific data structures.
1606 */
1607 void
1608 nfs_vfs_init()
1609 {
1610 nfs_nhinit(); /* Init the nfsnode table */
1611 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1612 }
1613
1614 void
1615 nfs_vfs_reinit()
1616 {
1617 nfs_nhreinit();
1618 }
1619
1620 void
1621 nfs_vfs_done()
1622 {
1623 nfs_nhdone();
1624 }
1625
1626 /*
1627 * Attribute cache routines.
1628 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1629 * that are on the mbuf list
1630 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1631 * error otherwise
1632 */
1633
1634 /*
1635 * Load the attribute cache (that lives in the nfsnode entry) with
1636 * the values on the mbuf list and
1637 * Iff vap not NULL
1638 * copy the attributes to *vaper
1639 */
1640 int
1641 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1642 struct vnode **vpp;
1643 struct mbuf **mdp;
1644 caddr_t *dposp;
1645 struct vattr *vaper;
1646 int flags;
1647 {
1648 int32_t t1;
1649 caddr_t cp2;
1650 int error = 0;
1651 struct mbuf *md;
1652 int v3 = NFS_ISV3(*vpp);
1653
1654 md = *mdp;
1655 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1656 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1657 if (error)
1658 return (error);
1659 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1660 }
1661
1662 int
1663 nfs_loadattrcache(vpp, fp, vaper, flags)
1664 struct vnode **vpp;
1665 struct nfs_fattr *fp;
1666 struct vattr *vaper;
1667 int flags;
1668 {
1669 struct vnode *vp = *vpp;
1670 struct vattr *vap;
1671 int v3 = NFS_ISV3(vp);
1672 enum vtype vtyp;
1673 u_short vmode;
1674 struct timespec mtime;
1675 struct vnode *nvp;
1676 int32_t rdev;
1677 struct nfsnode *np;
1678 extern int (**spec_nfsv2nodeop_p) __P((void *));
1679 uid_t uid;
1680 gid_t gid;
1681
1682 if (v3) {
1683 vtyp = nfsv3tov_type(fp->fa_type);
1684 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1685 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1686 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1687 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1688 } else {
1689 vtyp = nfsv2tov_type(fp->fa_type);
1690 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1691 if (vtyp == VNON || vtyp == VREG)
1692 vtyp = IFTOVT(vmode);
1693 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1694 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1695
1696 /*
1697 * Really ugly NFSv2 kludge.
1698 */
1699 if (vtyp == VCHR && rdev == 0xffffffff)
1700 vtyp = VFIFO;
1701 }
1702
1703 vmode &= ALLPERMS;
1704
1705 /*
1706 * If v_type == VNON it is a new node, so fill in the v_type,
1707 * n_mtime fields. Check to see if it represents a special
1708 * device, and if so, check for a possible alias. Once the
1709 * correct vnode has been obtained, fill in the rest of the
1710 * information.
1711 */
1712 np = VTONFS(vp);
1713 if (vp->v_type == VNON) {
1714 vp->v_type = vtyp;
1715 if (vp->v_type == VFIFO) {
1716 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1717 vp->v_op = fifo_nfsv2nodeop_p;
1718 } else if (vp->v_type == VREG) {
1719 lockinit(&np->n_commitlock, PINOD, "nfsclock", 0, 0);
1720 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1721 vp->v_op = spec_nfsv2nodeop_p;
1722 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1723 if (nvp) {
1724 /*
1725 * Discard unneeded vnode, but save its nfsnode.
1726 * Since the nfsnode does not have a lock, its
1727 * vnode lock has to be carried over.
1728 */
1729 /*
1730 * XXX is the old node sure to be locked here?
1731 */
1732 KASSERT(lockstatus(&vp->v_lock) ==
1733 LK_EXCLUSIVE);
1734 nvp->v_data = vp->v_data;
1735 vp->v_data = NULL;
1736 VOP_UNLOCK(vp, 0);
1737 vp->v_op = spec_vnodeop_p;
1738 vrele(vp);
1739 vgone(vp);
1740 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1741 &nvp->v_interlock);
1742 /*
1743 * Reinitialize aliased node.
1744 */
1745 np->n_vnode = nvp;
1746 *vpp = vp = nvp;
1747 }
1748 }
1749 np->n_mtime = mtime;
1750 }
1751 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1752 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1753 vap = np->n_vattr;
1754
1755 /*
1756 * Invalidate access cache if uid, gid or mode changed.
1757 */
1758 if (np->n_accstamp != -1 &&
1759 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode))
1760 np->n_accstamp = -1;
1761
1762 vap->va_type = vtyp;
1763 vap->va_mode = vmode;
1764 vap->va_rdev = (dev_t)rdev;
1765 vap->va_mtime = mtime;
1766 vap->va_fsid = vp->v_mount->mnt_stat.f_fsid.val[0];
1767 switch (vtyp) {
1768 case VDIR:
1769 vap->va_blocksize = NFS_DIRFRAGSIZ;
1770 break;
1771 case VBLK:
1772 vap->va_blocksize = BLKDEV_IOSIZE;
1773 break;
1774 case VCHR:
1775 vap->va_blocksize = MAXBSIZE;
1776 break;
1777 default:
1778 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1779 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1780 break;
1781 }
1782 if (v3) {
1783 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1784 vap->va_uid = uid;
1785 vap->va_gid = gid;
1786 vap->va_size = fxdr_hyper(&fp->fa3_size);
1787 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1788 vap->va_fileid = fxdr_unsigned(int32_t,
1789 fp->fa3_fileid.nfsuquad[1]);
1790 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1791 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1792 vap->va_flags = 0;
1793 vap->va_filerev = 0;
1794 } else {
1795 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1796 vap->va_uid = uid;
1797 vap->va_gid = gid;
1798 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1799 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1800 * NFS_FABLKSIZE;
1801 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1802 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1803 vap->va_flags = 0;
1804 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1805 fp->fa2_ctime.nfsv2_sec);
1806 vap->va_ctime.tv_nsec = 0;
1807 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1808 vap->va_filerev = 0;
1809 }
1810 if (vap->va_size != np->n_size) {
1811 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1812 vap->va_size = np->n_size;
1813 } else {
1814 np->n_size = vap->va_size;
1815 if (vap->va_type == VREG) {
1816 /*
1817 * we can't free pages if NAC_NOTRUNC because
1818 * the pages can be owned by ourselves.
1819 */
1820 if (flags & NAC_NOTRUNC) {
1821 np->n_flag |= NTRUNCDELAYED;
1822 } else {
1823 simple_lock(&vp->v_interlock);
1824 (void)VOP_PUTPAGES(vp, 0,
1825 0, PGO_SYNCIO | PGO_CLEANIT |
1826 PGO_FREE | PGO_ALLPAGES);
1827 uvm_vnp_setsize(vp, np->n_size);
1828 }
1829 }
1830 }
1831 }
1832 np->n_attrstamp = time.tv_sec;
1833 if (vaper != NULL) {
1834 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1835 if (np->n_flag & NCHG) {
1836 if (np->n_flag & NACC)
1837 vaper->va_atime = np->n_atim;
1838 if (np->n_flag & NUPD)
1839 vaper->va_mtime = np->n_mtim;
1840 }
1841 }
1842 return (0);
1843 }
1844
1845 /*
1846 * Check the time stamp
1847 * If the cache is valid, copy contents to *vap and return 0
1848 * otherwise return an error
1849 */
1850 int
1851 nfs_getattrcache(vp, vaper)
1852 struct vnode *vp;
1853 struct vattr *vaper;
1854 {
1855 struct nfsnode *np = VTONFS(vp);
1856 struct vattr *vap;
1857
1858 if (np->n_attrstamp == 0 ||
1859 (time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1860 nfsstats.attrcache_misses++;
1861 return (ENOENT);
1862 }
1863 nfsstats.attrcache_hits++;
1864 vap = np->n_vattr;
1865 if (vap->va_size != np->n_size) {
1866 if (vap->va_type == VREG) {
1867 if (np->n_flag & NMODIFIED) {
1868 if (vap->va_size < np->n_size)
1869 vap->va_size = np->n_size;
1870 else
1871 np->n_size = vap->va_size;
1872 } else
1873 np->n_size = vap->va_size;
1874 uvm_vnp_setsize(vp, np->n_size);
1875 } else
1876 np->n_size = vap->va_size;
1877 }
1878 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1879 if (np->n_flag & NCHG) {
1880 if (np->n_flag & NACC)
1881 vaper->va_atime = np->n_atim;
1882 if (np->n_flag & NUPD)
1883 vaper->va_mtime = np->n_mtim;
1884 }
1885 return (0);
1886 }
1887
1888 void
1889 nfs_delayedtruncate(vp)
1890 struct vnode *vp;
1891 {
1892 struct nfsnode *np = VTONFS(vp);
1893
1894 if (np->n_flag & NTRUNCDELAYED) {
1895 np->n_flag &= ~NTRUNCDELAYED;
1896 simple_lock(&vp->v_interlock);
1897 (void)VOP_PUTPAGES(vp, 0,
1898 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1899 uvm_vnp_setsize(vp, np->n_size);
1900 }
1901 }
1902
1903 /*
1904 * Heuristic to see if the server XDR encodes directory cookies or not.
1905 * it is not supposed to, but a lot of servers may do this. Also, since
1906 * most/all servers will implement V2 as well, it is expected that they
1907 * may return just 32 bits worth of cookie information, so we need to
1908 * find out in which 32 bits this information is available. We do this
1909 * to avoid trouble with emulated binaries that can't handle 64 bit
1910 * directory offsets.
1911 */
1912
1913 void
1914 nfs_cookieheuristic(vp, flagp, p, cred)
1915 struct vnode *vp;
1916 int *flagp;
1917 struct proc *p;
1918 struct ucred *cred;
1919 {
1920 struct uio auio;
1921 struct iovec aiov;
1922 caddr_t buf, cp;
1923 struct dirent *dp;
1924 off_t *cookies = NULL, *cop;
1925 int error, eof, nc, len;
1926
1927 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1928
1929 aiov.iov_base = buf;
1930 aiov.iov_len = NFS_DIRFRAGSIZ;
1931 auio.uio_iov = &aiov;
1932 auio.uio_iovcnt = 1;
1933 auio.uio_rw = UIO_READ;
1934 auio.uio_segflg = UIO_SYSSPACE;
1935 auio.uio_procp = p;
1936 auio.uio_resid = NFS_DIRFRAGSIZ;
1937 auio.uio_offset = 0;
1938
1939 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1940
1941 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1942 if (error || len == 0) {
1943 FREE(buf, M_TEMP);
1944 if (cookies)
1945 free(cookies, M_TEMP);
1946 return;
1947 }
1948
1949 /*
1950 * Find the first valid entry and look at its offset cookie.
1951 */
1952
1953 cp = buf;
1954 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1955 dp = (struct dirent *)cp;
1956 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1957 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1958 *flagp |= NFSMNT_SWAPCOOKIE;
1959 nfs_invaldircache(vp, 0);
1960 nfs_vinvalbuf(vp, 0, cred, p, 1);
1961 }
1962 break;
1963 }
1964 cop++;
1965 cp += dp->d_reclen;
1966 }
1967
1968 FREE(buf, M_TEMP);
1969 free(cookies, M_TEMP);
1970 }
1971 #endif /* NFS */
1972
1973 /*
1974 * Set up nameidata for a lookup() call and do it.
1975 *
1976 * If pubflag is set, this call is done for a lookup operation on the
1977 * public filehandle. In that case we allow crossing mountpoints and
1978 * absolute pathnames. However, the caller is expected to check that
1979 * the lookup result is within the public fs, and deny access if
1980 * it is not.
1981 */
1982 int
1983 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1984 struct nameidata *ndp;
1985 fhandle_t *fhp;
1986 uint32_t len;
1987 struct nfssvc_sock *slp;
1988 struct mbuf *nam;
1989 struct mbuf **mdp;
1990 caddr_t *dposp;
1991 struct vnode **retdirp;
1992 struct proc *p;
1993 int kerbflag, pubflag;
1994 {
1995 int i, rem;
1996 struct mbuf *md;
1997 char *fromcp, *tocp, *cp;
1998 struct iovec aiov;
1999 struct uio auio;
2000 struct vnode *dp;
2001 int error, rdonly, linklen;
2002 struct componentname *cnp = &ndp->ni_cnd;
2003
2004 *retdirp = (struct vnode *)0;
2005
2006 if ((len + 1) > MAXPATHLEN)
2007 return (ENAMETOOLONG);
2008 cnp->cn_pnbuf = PNBUF_GET();
2009
2010 /*
2011 * Copy the name from the mbuf list to ndp->ni_pnbuf
2012 * and set the various ndp fields appropriately.
2013 */
2014 fromcp = *dposp;
2015 tocp = cnp->cn_pnbuf;
2016 md = *mdp;
2017 rem = mtod(md, caddr_t) + md->m_len - fromcp;
2018 for (i = 0; i < len; i++) {
2019 while (rem == 0) {
2020 md = md->m_next;
2021 if (md == NULL) {
2022 error = EBADRPC;
2023 goto out;
2024 }
2025 fromcp = mtod(md, caddr_t);
2026 rem = md->m_len;
2027 }
2028 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2029 error = EACCES;
2030 goto out;
2031 }
2032 *tocp++ = *fromcp++;
2033 rem--;
2034 }
2035 *tocp = '\0';
2036 *mdp = md;
2037 *dposp = fromcp;
2038 len = nfsm_rndup(len)-len;
2039 if (len > 0) {
2040 if (rem >= len)
2041 *dposp += len;
2042 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2043 goto out;
2044 }
2045
2046 /*
2047 * Extract and set starting directory.
2048 */
2049 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
2050 nam, &rdonly, kerbflag, pubflag);
2051 if (error)
2052 goto out;
2053 if (dp->v_type != VDIR) {
2054 vrele(dp);
2055 error = ENOTDIR;
2056 goto out;
2057 }
2058
2059 if (rdonly)
2060 cnp->cn_flags |= RDONLY;
2061
2062 *retdirp = dp;
2063
2064 if (pubflag) {
2065 /*
2066 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2067 * and the 'native path' indicator.
2068 */
2069 cp = PNBUF_GET();
2070 fromcp = cnp->cn_pnbuf;
2071 tocp = cp;
2072 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2073 switch ((unsigned char)*fromcp) {
2074 case WEBNFS_NATIVE_CHAR:
2075 /*
2076 * 'Native' path for us is the same
2077 * as a path according to the NFS spec,
2078 * just skip the escape char.
2079 */
2080 fromcp++;
2081 break;
2082 /*
2083 * More may be added in the future, range 0x80-0xff
2084 */
2085 default:
2086 error = EIO;
2087 PNBUF_PUT(cp);
2088 goto out;
2089 }
2090 }
2091 /*
2092 * Translate the '%' escapes, URL-style.
2093 */
2094 while (*fromcp != '\0') {
2095 if (*fromcp == WEBNFS_ESC_CHAR) {
2096 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2097 fromcp++;
2098 *tocp++ = HEXSTRTOI(fromcp);
2099 fromcp += 2;
2100 continue;
2101 } else {
2102 error = ENOENT;
2103 PNBUF_PUT(cp);
2104 goto out;
2105 }
2106 } else
2107 *tocp++ = *fromcp++;
2108 }
2109 *tocp = '\0';
2110 PNBUF_PUT(cnp->cn_pnbuf);
2111 cnp->cn_pnbuf = cp;
2112 }
2113
2114 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2115 ndp->ni_segflg = UIO_SYSSPACE;
2116 ndp->ni_rootdir = rootvnode;
2117
2118 if (pubflag) {
2119 ndp->ni_loopcnt = 0;
2120 if (cnp->cn_pnbuf[0] == '/')
2121 dp = rootvnode;
2122 } else {
2123 cnp->cn_flags |= NOCROSSMOUNT;
2124 }
2125
2126 cnp->cn_proc = p;
2127 VREF(dp);
2128
2129 for (;;) {
2130 cnp->cn_nameptr = cnp->cn_pnbuf;
2131 ndp->ni_startdir = dp;
2132 /*
2133 * And call lookup() to do the real work
2134 */
2135 error = lookup(ndp);
2136 if (error) {
2137 PNBUF_PUT(cnp->cn_pnbuf);
2138 return (error);
2139 }
2140 /*
2141 * Check for encountering a symbolic link
2142 */
2143 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2144 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2145 cnp->cn_flags |= HASBUF;
2146 else
2147 PNBUF_PUT(cnp->cn_pnbuf);
2148 return (0);
2149 } else {
2150 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
2151 VOP_UNLOCK(ndp->ni_dvp, 0);
2152 if (!pubflag) {
2153 error = EINVAL;
2154 break;
2155 }
2156
2157 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2158 error = ELOOP;
2159 break;
2160 }
2161 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2162 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2163 cnp->cn_proc);
2164 if (error != 0)
2165 break;
2166 }
2167 if (ndp->ni_pathlen > 1)
2168 cp = PNBUF_GET();
2169 else
2170 cp = cnp->cn_pnbuf;
2171 aiov.iov_base = cp;
2172 aiov.iov_len = MAXPATHLEN;
2173 auio.uio_iov = &aiov;
2174 auio.uio_iovcnt = 1;
2175 auio.uio_offset = 0;
2176 auio.uio_rw = UIO_READ;
2177 auio.uio_segflg = UIO_SYSSPACE;
2178 auio.uio_procp = (struct proc *)0;
2179 auio.uio_resid = MAXPATHLEN;
2180 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2181 if (error) {
2182 badlink:
2183 if (ndp->ni_pathlen > 1)
2184 PNBUF_PUT(cp);
2185 break;
2186 }
2187 linklen = MAXPATHLEN - auio.uio_resid;
2188 if (linklen == 0) {
2189 error = ENOENT;
2190 goto badlink;
2191 }
2192 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2193 error = ENAMETOOLONG;
2194 goto badlink;
2195 }
2196 if (ndp->ni_pathlen > 1) {
2197 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2198 PNBUF_PUT(cnp->cn_pnbuf);
2199 cnp->cn_pnbuf = cp;
2200 } else
2201 cnp->cn_pnbuf[linklen] = '\0';
2202 ndp->ni_pathlen += linklen;
2203 vput(ndp->ni_vp);
2204 dp = ndp->ni_dvp;
2205 /*
2206 * Check if root directory should replace current directory.
2207 */
2208 if (cnp->cn_pnbuf[0] == '/') {
2209 vrele(dp);
2210 dp = ndp->ni_rootdir;
2211 VREF(dp);
2212 }
2213 }
2214 }
2215 vrele(ndp->ni_dvp);
2216 vput(ndp->ni_vp);
2217 ndp->ni_vp = NULL;
2218 out:
2219 PNBUF_PUT(cnp->cn_pnbuf);
2220 return (error);
2221 }
2222
2223 /*
2224 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2225 * boundary and only trims off the back end
2226 *
2227 * 1. trim off 'len' bytes as m_adj(mp, -len).
2228 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2229 */
2230 void
2231 nfs_zeropad(mp, len, nul)
2232 struct mbuf *mp;
2233 int len;
2234 int nul;
2235 {
2236 struct mbuf *m;
2237 int count;
2238
2239 /*
2240 * Trim from tail. Scan the mbuf chain,
2241 * calculating its length and finding the last mbuf.
2242 * If the adjustment only affects this mbuf, then just
2243 * adjust and return. Otherwise, rescan and truncate
2244 * after the remaining size.
2245 */
2246 count = 0;
2247 m = mp;
2248 for (;;) {
2249 count += m->m_len;
2250 if (m->m_next == NULL)
2251 break;
2252 m = m->m_next;
2253 }
2254
2255 KDASSERT(count >= len);
2256
2257 if (m->m_len >= len) {
2258 m->m_len -= len;
2259 } else {
2260 count -= len;
2261 /*
2262 * Correct length for chain is "count".
2263 * Find the mbuf with last data, adjust its length,
2264 * and toss data from remaining mbufs on chain.
2265 */
2266 for (m = mp; m; m = m->m_next) {
2267 if (m->m_len >= count) {
2268 m->m_len = count;
2269 break;
2270 }
2271 count -= m->m_len;
2272 }
2273 m_freem(m->m_next);
2274 m->m_next = NULL;
2275 }
2276
2277 KDASSERT(m->m_next == NULL);
2278
2279 /*
2280 * zero-padding.
2281 */
2282 if (nul > 0) {
2283 char *cp;
2284 int i;
2285
2286 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2287 struct mbuf *n;
2288
2289 KDASSERT(MLEN >= nul);
2290 n = m_get(M_WAIT, MT_DATA);
2291 MCLAIM(n, &nfs_mowner);
2292 n->m_len = nul;
2293 n->m_next = NULL;
2294 m->m_next = n;
2295 cp = mtod(n, caddr_t);
2296 } else {
2297 cp = mtod(m, caddr_t) + m->m_len;
2298 m->m_len += nul;
2299 }
2300 for (i = 0; i < nul; i++)
2301 *cp++ = '\0';
2302 }
2303 return;
2304 }
2305
2306 /*
2307 * Make these functions instead of macros, so that the kernel text size
2308 * doesn't get too big...
2309 */
2310 void
2311 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2312 struct nfsrv_descript *nfsd;
2313 int before_ret;
2314 struct vattr *before_vap;
2315 int after_ret;
2316 struct vattr *after_vap;
2317 struct mbuf **mbp;
2318 char **bposp;
2319 {
2320 struct mbuf *mb = *mbp;
2321 char *bpos = *bposp;
2322 u_int32_t *tl;
2323
2324 if (before_ret) {
2325 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2326 *tl = nfs_false;
2327 } else {
2328 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2329 *tl++ = nfs_true;
2330 txdr_hyper(before_vap->va_size, tl);
2331 tl += 2;
2332 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2333 tl += 2;
2334 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2335 }
2336 *bposp = bpos;
2337 *mbp = mb;
2338 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2339 }
2340
2341 void
2342 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2343 struct nfsrv_descript *nfsd;
2344 int after_ret;
2345 struct vattr *after_vap;
2346 struct mbuf **mbp;
2347 char **bposp;
2348 {
2349 struct mbuf *mb = *mbp;
2350 char *bpos = *bposp;
2351 u_int32_t *tl;
2352 struct nfs_fattr *fp;
2353
2354 if (after_ret) {
2355 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2356 *tl = nfs_false;
2357 } else {
2358 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2359 *tl++ = nfs_true;
2360 fp = (struct nfs_fattr *)tl;
2361 nfsm_srvfattr(nfsd, after_vap, fp);
2362 }
2363 *mbp = mb;
2364 *bposp = bpos;
2365 }
2366
2367 void
2368 nfsm_srvfattr(nfsd, vap, fp)
2369 struct nfsrv_descript *nfsd;
2370 struct vattr *vap;
2371 struct nfs_fattr *fp;
2372 {
2373
2374 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2375 fp->fa_uid = txdr_unsigned(vap->va_uid);
2376 fp->fa_gid = txdr_unsigned(vap->va_gid);
2377 if (nfsd->nd_flag & ND_NFSV3) {
2378 fp->fa_type = vtonfsv3_type(vap->va_type);
2379 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2380 txdr_hyper(vap->va_size, &fp->fa3_size);
2381 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2382 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2383 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2384 fp->fa3_fsid.nfsuquad[0] = 0;
2385 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2386 fp->fa3_fileid.nfsuquad[0] = 0;
2387 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2388 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2389 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2390 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2391 } else {
2392 fp->fa_type = vtonfsv2_type(vap->va_type);
2393 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2394 fp->fa2_size = txdr_unsigned(vap->va_size);
2395 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2396 if (vap->va_type == VFIFO)
2397 fp->fa2_rdev = 0xffffffff;
2398 else
2399 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2400 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2401 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2402 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2403 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2404 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2405 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2406 }
2407 }
2408
2409 /*
2410 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2411 * - look up fsid in mount list (if not found ret error)
2412 * - get vp and export rights by calling VFS_FHTOVP()
2413 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2414 * - if not lockflag unlock it with VOP_UNLOCK()
2415 */
2416 int
2417 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2418 fhandle_t *fhp;
2419 int lockflag;
2420 struct vnode **vpp;
2421 struct ucred *cred;
2422 struct nfssvc_sock *slp;
2423 struct mbuf *nam;
2424 int *rdonlyp;
2425 int kerbflag;
2426 {
2427 struct mount *mp;
2428 int i;
2429 struct ucred *credanon;
2430 int error, exflags;
2431 struct sockaddr_in *saddr;
2432
2433 *vpp = (struct vnode *)0;
2434
2435 if (nfs_ispublicfh(fhp)) {
2436 if (!pubflag || !nfs_pub.np_valid)
2437 return (ESTALE);
2438 fhp = &nfs_pub.np_handle;
2439 }
2440
2441 mp = vfs_getvfs(&fhp->fh_fsid);
2442 if (!mp)
2443 return (ESTALE);
2444 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2445 if (error)
2446 return (error);
2447 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2448 if (error)
2449 return (error);
2450
2451 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2452 saddr = mtod(nam, struct sockaddr_in *);
2453 if ((saddr->sin_family == AF_INET) &&
2454 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2455 vput(*vpp);
2456 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2457 }
2458 #ifdef INET6
2459 if ((saddr->sin_family == AF_INET6) &&
2460 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2461 vput(*vpp);
2462 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2463 }
2464 #endif
2465 }
2466 /*
2467 * Check/setup credentials.
2468 */
2469 if (exflags & MNT_EXKERB) {
2470 if (!kerbflag) {
2471 vput(*vpp);
2472 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2473 }
2474 } else if (kerbflag) {
2475 vput(*vpp);
2476 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2477 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2478 cred->cr_uid = credanon->cr_uid;
2479 cred->cr_gid = credanon->cr_gid;
2480 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2481 cred->cr_groups[i] = credanon->cr_groups[i];
2482 cred->cr_ngroups = i;
2483 }
2484 if (exflags & MNT_EXRDONLY)
2485 *rdonlyp = 1;
2486 else
2487 *rdonlyp = 0;
2488 if (!lockflag)
2489 VOP_UNLOCK(*vpp, 0);
2490 return (0);
2491 }
2492
2493 /*
2494 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2495 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2496 * transformed this to all zeroes in both cases, so check for it.
2497 */
2498 int
2499 nfs_ispublicfh(fhp)
2500 fhandle_t *fhp;
2501 {
2502 char *cp = (char *)fhp;
2503 int i;
2504
2505 for (i = 0; i < NFSX_V3FH; i++)
2506 if (*cp++ != 0)
2507 return (FALSE);
2508 return (TRUE);
2509 }
2510
2511 /*
2512 * This function compares two net addresses by family and returns TRUE
2513 * if they are the same host.
2514 * If there is any doubt, return FALSE.
2515 * The AF_INET family is handled as a special case so that address mbufs
2516 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2517 */
2518 int
2519 netaddr_match(family, haddr, nam)
2520 int family;
2521 union nethostaddr *haddr;
2522 struct mbuf *nam;
2523 {
2524 struct sockaddr_in *inetaddr;
2525
2526 switch (family) {
2527 case AF_INET:
2528 inetaddr = mtod(nam, struct sockaddr_in *);
2529 if (inetaddr->sin_family == AF_INET &&
2530 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2531 return (1);
2532 break;
2533 #ifdef INET6
2534 case AF_INET6:
2535 {
2536 struct sockaddr_in6 *sin6_1, *sin6_2;
2537
2538 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2539 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2540 if (sin6_1->sin6_family == AF_INET6 &&
2541 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2542 return 1;
2543 }
2544 #endif
2545 #ifdef ISO
2546 case AF_ISO:
2547 {
2548 struct sockaddr_iso *isoaddr1, *isoaddr2;
2549
2550 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2551 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2552 if (isoaddr1->siso_family == AF_ISO &&
2553 isoaddr1->siso_nlen > 0 &&
2554 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2555 SAME_ISOADDR(isoaddr1, isoaddr2))
2556 return (1);
2557 break;
2558 }
2559 #endif /* ISO */
2560 default:
2561 break;
2562 };
2563 return (0);
2564 }
2565
2566 /*
2567 * The write verifier has changed (probably due to a server reboot), so all
2568 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2569 * as dirty or are being written out just now, all this takes is clearing
2570 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2571 * the mount point.
2572 */
2573 void
2574 nfs_clearcommit(mp)
2575 struct mount *mp;
2576 {
2577 struct vnode *vp;
2578 struct nfsnode *np;
2579 struct vm_page *pg;
2580 struct nfsmount *nmp = VFSTONFS(mp);
2581
2582 lockmgr(&nmp->nm_writeverflock, LK_EXCLUSIVE, NULL);
2583
2584 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2585 KASSERT(vp->v_mount == mp);
2586 if (vp->v_type != VREG)
2587 continue;
2588 np = VTONFS(vp);
2589 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2590 np->n_pushedhi = 0;
2591 np->n_commitflags &=
2592 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2593 simple_lock(&vp->v_uobj.vmobjlock);
2594 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2595 pg->flags &= ~PG_NEEDCOMMIT;
2596 }
2597 simple_unlock(&vp->v_uobj.vmobjlock);
2598 }
2599 simple_lock(&nmp->nm_slock);
2600 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2601 simple_unlock(&nmp->nm_slock);
2602 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
2603 }
2604
2605 void
2606 nfs_merge_commit_ranges(vp)
2607 struct vnode *vp;
2608 {
2609 struct nfsnode *np = VTONFS(vp);
2610
2611 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2612
2613 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2614 np->n_pushedlo = np->n_pushlo;
2615 np->n_pushedhi = np->n_pushhi;
2616 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2617 } else {
2618 if (np->n_pushlo < np->n_pushedlo)
2619 np->n_pushedlo = np->n_pushlo;
2620 if (np->n_pushhi > np->n_pushedhi)
2621 np->n_pushedhi = np->n_pushhi;
2622 }
2623
2624 np->n_pushlo = np->n_pushhi = 0;
2625 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2626
2627 #ifdef NFS_DEBUG_COMMIT
2628 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2629 (unsigned)np->n_pushedhi);
2630 #endif
2631 }
2632
2633 int
2634 nfs_in_committed_range(vp, off, len)
2635 struct vnode *vp;
2636 off_t off, len;
2637 {
2638 struct nfsnode *np = VTONFS(vp);
2639 off_t lo, hi;
2640
2641 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2642 return 0;
2643 lo = off;
2644 hi = lo + len;
2645
2646 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2647 }
2648
2649 int
2650 nfs_in_tobecommitted_range(vp, off, len)
2651 struct vnode *vp;
2652 off_t off, len;
2653 {
2654 struct nfsnode *np = VTONFS(vp);
2655 off_t lo, hi;
2656
2657 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2658 return 0;
2659 lo = off;
2660 hi = lo + len;
2661
2662 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2663 }
2664
2665 void
2666 nfs_add_committed_range(vp, off, len)
2667 struct vnode *vp;
2668 off_t off, len;
2669 {
2670 struct nfsnode *np = VTONFS(vp);
2671 off_t lo, hi;
2672
2673 lo = off;
2674 hi = lo + len;
2675
2676 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2677 np->n_pushedlo = lo;
2678 np->n_pushedhi = hi;
2679 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2680 } else {
2681 if (hi > np->n_pushedhi)
2682 np->n_pushedhi = hi;
2683 if (lo < np->n_pushedlo)
2684 np->n_pushedlo = lo;
2685 }
2686 #ifdef NFS_DEBUG_COMMIT
2687 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2688 (unsigned)np->n_pushedhi);
2689 #endif
2690 }
2691
2692 void
2693 nfs_del_committed_range(vp, off, len)
2694 struct vnode *vp;
2695 off_t off, len;
2696 {
2697 struct nfsnode *np = VTONFS(vp);
2698 off_t lo, hi;
2699
2700 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2701 return;
2702
2703 lo = off;
2704 hi = lo + len;
2705
2706 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2707 return;
2708 if (lo <= np->n_pushedlo)
2709 np->n_pushedlo = hi;
2710 else if (hi >= np->n_pushedhi)
2711 np->n_pushedhi = lo;
2712 else {
2713 /*
2714 * XXX There's only one range. If the deleted range
2715 * is in the middle, pick the largest of the
2716 * contiguous ranges that it leaves.
2717 */
2718 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2719 np->n_pushedhi = lo;
2720 else
2721 np->n_pushedlo = hi;
2722 }
2723 #ifdef NFS_DEBUG_COMMIT
2724 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2725 (unsigned)np->n_pushedhi);
2726 #endif
2727 }
2728
2729 void
2730 nfs_add_tobecommitted_range(vp, off, len)
2731 struct vnode *vp;
2732 off_t off, len;
2733 {
2734 struct nfsnode *np = VTONFS(vp);
2735 off_t lo, hi;
2736
2737 lo = off;
2738 hi = lo + len;
2739
2740 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2741 np->n_pushlo = lo;
2742 np->n_pushhi = hi;
2743 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2744 } else {
2745 if (lo < np->n_pushlo)
2746 np->n_pushlo = lo;
2747 if (hi > np->n_pushhi)
2748 np->n_pushhi = hi;
2749 }
2750 #ifdef NFS_DEBUG_COMMIT
2751 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2752 (unsigned)np->n_pushhi);
2753 #endif
2754 }
2755
2756 void
2757 nfs_del_tobecommitted_range(vp, off, len)
2758 struct vnode *vp;
2759 off_t off, len;
2760 {
2761 struct nfsnode *np = VTONFS(vp);
2762 off_t lo, hi;
2763
2764 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2765 return;
2766
2767 lo = off;
2768 hi = lo + len;
2769
2770 if (lo > np->n_pushhi || hi < np->n_pushlo)
2771 return;
2772
2773 if (lo <= np->n_pushlo)
2774 np->n_pushlo = hi;
2775 else if (hi >= np->n_pushhi)
2776 np->n_pushhi = lo;
2777 else {
2778 /*
2779 * XXX There's only one range. If the deleted range
2780 * is in the middle, pick the largest of the
2781 * contiguous ranges that it leaves.
2782 */
2783 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2784 np->n_pushhi = lo;
2785 else
2786 np->n_pushlo = hi;
2787 }
2788 #ifdef NFS_DEBUG_COMMIT
2789 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2790 (unsigned)np->n_pushhi);
2791 #endif
2792 }
2793
2794 /*
2795 * Map errnos to NFS error numbers. For Version 3 also filter out error
2796 * numbers not specified for the associated procedure.
2797 */
2798 int
2799 nfsrv_errmap(nd, err)
2800 struct nfsrv_descript *nd;
2801 int err;
2802 {
2803 const short *defaulterrp, *errp;
2804
2805 if (nd->nd_flag & ND_NFSV3) {
2806 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2807 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2808 while (*++errp) {
2809 if (*errp == err)
2810 return (err);
2811 else if (*errp > err)
2812 break;
2813 }
2814 return ((int)*defaulterrp);
2815 } else
2816 return (err & 0xffff);
2817 }
2818 if (err <= ELAST)
2819 return ((int)nfsrv_v2errmap[err - 1]);
2820 return (NFSERR_IO);
2821 }
2822
2823 /*
2824 * Sort the group list in increasing numerical order.
2825 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2826 * that used to be here.)
2827 */
2828 void
2829 nfsrvw_sort(list, num)
2830 gid_t *list;
2831 int num;
2832 {
2833 int i, j;
2834 gid_t v;
2835
2836 /* Insertion sort. */
2837 for (i = 1; i < num; i++) {
2838 v = list[i];
2839 /* find correct slot for value v, moving others up */
2840 for (j = i; --j >= 0 && v < list[j];)
2841 list[j + 1] = list[j];
2842 list[j + 1] = v;
2843 }
2844 }
2845
2846 /*
2847 * copy credentials making sure that the result can be compared with memcmp().
2848 */
2849 void
2850 nfsrv_setcred(incred, outcred)
2851 struct ucred *incred, *outcred;
2852 {
2853 int i;
2854
2855 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2856 outcred->cr_ref = 1;
2857 outcred->cr_uid = incred->cr_uid;
2858 outcred->cr_gid = incred->cr_gid;
2859 outcred->cr_ngroups = incred->cr_ngroups;
2860 for (i = 0; i < incred->cr_ngroups; i++)
2861 outcred->cr_groups[i] = incred->cr_groups[i];
2862 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2863 }
2864
2865 u_int32_t
2866 nfs_getxid()
2867 {
2868 static u_int32_t base;
2869 static u_int32_t nfs_xid = 0;
2870 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2871 u_int32_t newxid;
2872
2873 simple_lock(&nfs_xidlock);
2874 /*
2875 * derive initial xid from system time
2876 * XXX time is invalid if root not yet mounted
2877 */
2878 if (__predict_false(!base && (rootvp))) {
2879 struct timeval tv;
2880
2881 microtime(&tv);
2882 base = tv.tv_sec << 12;
2883 nfs_xid = base;
2884 }
2885
2886 /*
2887 * Skip zero xid if it should ever happen.
2888 */
2889 if (__predict_false(++nfs_xid == 0))
2890 nfs_xid++;
2891 newxid = nfs_xid;
2892 simple_unlock(&nfs_xidlock);
2893
2894 return txdr_unsigned(newxid);
2895 }
2896
2897 /*
2898 * assign a new xid for existing request.
2899 * used for NFSERR_JUKEBOX handling.
2900 */
2901 void
2902 nfs_renewxid(struct nfsreq *req)
2903 {
2904 u_int32_t xid;
2905 int off;
2906
2907 xid = nfs_getxid();
2908 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2909 off = sizeof(u_int32_t); /* RPC record mark */
2910 else
2911 off = 0;
2912
2913 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2914 req->r_xid = xid;
2915 }
2916