nfs_subs.c revision 1.136 1 /* $NetBSD: nfs_subs.c,v 1.136 2004/09/17 14:11:26 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.136 2004/09/17 14:11:26 skrll Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <nfs/rpcv2.h>
104 #include <nfs/nfsproto.h>
105 #include <nfs/nfsnode.h>
106 #include <nfs/nfs.h>
107 #include <nfs/xdr_subs.h>
108 #include <nfs/nfsm_subs.h>
109 #include <nfs/nfsmount.h>
110 #include <nfs/nqnfs.h>
111 #include <nfs/nfsrtt.h>
112 #include <nfs/nfs_var.h>
113
114 #include <miscfs/specfs/specdev.h>
115
116 #include <netinet/in.h>
117 #ifdef ISO
118 #include <netiso/iso.h>
119 #endif
120
121 /*
122 * Data items converted to xdr at startup, since they are constant
123 * This is kinda hokey, but may save a little time doing byte swaps
124 */
125 u_int32_t nfs_xdrneg1;
126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
127 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
128 rpc_auth_kerb;
129 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
130
131 /* And other global data */
132 const nfstype nfsv2_type[9] =
133 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
134 const nfstype nfsv3_type[9] =
135 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
136 const enum vtype nv2tov_type[8] =
137 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
138 const enum vtype nv3tov_type[8] =
139 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
140 int nfs_ticks;
141 int nfs_commitsize;
142
143 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
144
145 /* NFS client/server stats. */
146 struct nfsstats nfsstats;
147
148 /*
149 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
150 */
151 const int nfsv3_procid[NFS_NPROCS] = {
152 NFSPROC_NULL,
153 NFSPROC_GETATTR,
154 NFSPROC_SETATTR,
155 NFSPROC_NOOP,
156 NFSPROC_LOOKUP,
157 NFSPROC_READLINK,
158 NFSPROC_READ,
159 NFSPROC_NOOP,
160 NFSPROC_WRITE,
161 NFSPROC_CREATE,
162 NFSPROC_REMOVE,
163 NFSPROC_RENAME,
164 NFSPROC_LINK,
165 NFSPROC_SYMLINK,
166 NFSPROC_MKDIR,
167 NFSPROC_RMDIR,
168 NFSPROC_READDIR,
169 NFSPROC_FSSTAT,
170 NFSPROC_NOOP,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP,
177 NFSPROC_NOOP
178 };
179
180 /*
181 * and the reverse mapping from generic to Version 2 procedure numbers
182 */
183 const int nfsv2_procid[NFS_NPROCS] = {
184 NFSV2PROC_NULL,
185 NFSV2PROC_GETATTR,
186 NFSV2PROC_SETATTR,
187 NFSV2PROC_LOOKUP,
188 NFSV2PROC_NOOP,
189 NFSV2PROC_READLINK,
190 NFSV2PROC_READ,
191 NFSV2PROC_WRITE,
192 NFSV2PROC_CREATE,
193 NFSV2PROC_MKDIR,
194 NFSV2PROC_SYMLINK,
195 NFSV2PROC_CREATE,
196 NFSV2PROC_REMOVE,
197 NFSV2PROC_RMDIR,
198 NFSV2PROC_RENAME,
199 NFSV2PROC_LINK,
200 NFSV2PROC_READDIR,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_STATFS,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_NOOP,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 NFSV2PROC_NOOP,
209 NFSV2PROC_NOOP,
210 };
211
212 /*
213 * Maps errno values to nfs error numbers.
214 * Use NFSERR_IO as the catch all for ones not specifically defined in
215 * RFC 1094.
216 */
217 static const u_char nfsrv_v2errmap[ELAST] = {
218 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
219 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
222 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
231 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
232 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
233 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
234 NFSERR_IO, NFSERR_IO,
235 };
236
237 /*
238 * Maps errno values to nfs error numbers.
239 * Although it is not obvious whether or not NFS clients really care if
240 * a returned error value is in the specified list for the procedure, the
241 * safest thing to do is filter them appropriately. For Version 2, the
242 * X/Open XNFS document is the only specification that defines error values
243 * for each RPC (The RFC simply lists all possible error values for all RPCs),
244 * so I have decided to not do this for Version 2.
245 * The first entry is the default error return and the rest are the valid
246 * errors for that RPC in increasing numeric order.
247 */
248 static const short nfsv3err_null[] = {
249 0,
250 0,
251 };
252
253 static const short nfsv3err_getattr[] = {
254 NFSERR_IO,
255 NFSERR_IO,
256 NFSERR_STALE,
257 NFSERR_BADHANDLE,
258 NFSERR_SERVERFAULT,
259 0,
260 };
261
262 static const short nfsv3err_setattr[] = {
263 NFSERR_IO,
264 NFSERR_PERM,
265 NFSERR_IO,
266 NFSERR_ACCES,
267 NFSERR_INVAL,
268 NFSERR_NOSPC,
269 NFSERR_ROFS,
270 NFSERR_DQUOT,
271 NFSERR_STALE,
272 NFSERR_BADHANDLE,
273 NFSERR_NOT_SYNC,
274 NFSERR_SERVERFAULT,
275 0,
276 };
277
278 static const short nfsv3err_lookup[] = {
279 NFSERR_IO,
280 NFSERR_NOENT,
281 NFSERR_IO,
282 NFSERR_ACCES,
283 NFSERR_NOTDIR,
284 NFSERR_NAMETOL,
285 NFSERR_STALE,
286 NFSERR_BADHANDLE,
287 NFSERR_SERVERFAULT,
288 0,
289 };
290
291 static const short nfsv3err_access[] = {
292 NFSERR_IO,
293 NFSERR_IO,
294 NFSERR_STALE,
295 NFSERR_BADHANDLE,
296 NFSERR_SERVERFAULT,
297 0,
298 };
299
300 static const short nfsv3err_readlink[] = {
301 NFSERR_IO,
302 NFSERR_IO,
303 NFSERR_ACCES,
304 NFSERR_INVAL,
305 NFSERR_STALE,
306 NFSERR_BADHANDLE,
307 NFSERR_NOTSUPP,
308 NFSERR_SERVERFAULT,
309 0,
310 };
311
312 static const short nfsv3err_read[] = {
313 NFSERR_IO,
314 NFSERR_IO,
315 NFSERR_NXIO,
316 NFSERR_ACCES,
317 NFSERR_INVAL,
318 NFSERR_STALE,
319 NFSERR_BADHANDLE,
320 NFSERR_SERVERFAULT,
321 NFSERR_JUKEBOX,
322 0,
323 };
324
325 static const short nfsv3err_write[] = {
326 NFSERR_IO,
327 NFSERR_IO,
328 NFSERR_ACCES,
329 NFSERR_INVAL,
330 NFSERR_FBIG,
331 NFSERR_NOSPC,
332 NFSERR_ROFS,
333 NFSERR_DQUOT,
334 NFSERR_STALE,
335 NFSERR_BADHANDLE,
336 NFSERR_SERVERFAULT,
337 NFSERR_JUKEBOX,
338 0,
339 };
340
341 static const short nfsv3err_create[] = {
342 NFSERR_IO,
343 NFSERR_IO,
344 NFSERR_ACCES,
345 NFSERR_EXIST,
346 NFSERR_NOTDIR,
347 NFSERR_NOSPC,
348 NFSERR_ROFS,
349 NFSERR_NAMETOL,
350 NFSERR_DQUOT,
351 NFSERR_STALE,
352 NFSERR_BADHANDLE,
353 NFSERR_NOTSUPP,
354 NFSERR_SERVERFAULT,
355 0,
356 };
357
358 static const short nfsv3err_mkdir[] = {
359 NFSERR_IO,
360 NFSERR_IO,
361 NFSERR_ACCES,
362 NFSERR_EXIST,
363 NFSERR_NOTDIR,
364 NFSERR_NOSPC,
365 NFSERR_ROFS,
366 NFSERR_NAMETOL,
367 NFSERR_DQUOT,
368 NFSERR_STALE,
369 NFSERR_BADHANDLE,
370 NFSERR_NOTSUPP,
371 NFSERR_SERVERFAULT,
372 0,
373 };
374
375 static const short nfsv3err_symlink[] = {
376 NFSERR_IO,
377 NFSERR_IO,
378 NFSERR_ACCES,
379 NFSERR_EXIST,
380 NFSERR_NOTDIR,
381 NFSERR_NOSPC,
382 NFSERR_ROFS,
383 NFSERR_NAMETOL,
384 NFSERR_DQUOT,
385 NFSERR_STALE,
386 NFSERR_BADHANDLE,
387 NFSERR_NOTSUPP,
388 NFSERR_SERVERFAULT,
389 0,
390 };
391
392 static const short nfsv3err_mknod[] = {
393 NFSERR_IO,
394 NFSERR_IO,
395 NFSERR_ACCES,
396 NFSERR_EXIST,
397 NFSERR_NOTDIR,
398 NFSERR_NOSPC,
399 NFSERR_ROFS,
400 NFSERR_NAMETOL,
401 NFSERR_DQUOT,
402 NFSERR_STALE,
403 NFSERR_BADHANDLE,
404 NFSERR_NOTSUPP,
405 NFSERR_SERVERFAULT,
406 NFSERR_BADTYPE,
407 0,
408 };
409
410 static const short nfsv3err_remove[] = {
411 NFSERR_IO,
412 NFSERR_NOENT,
413 NFSERR_IO,
414 NFSERR_ACCES,
415 NFSERR_NOTDIR,
416 NFSERR_ROFS,
417 NFSERR_NAMETOL,
418 NFSERR_STALE,
419 NFSERR_BADHANDLE,
420 NFSERR_SERVERFAULT,
421 0,
422 };
423
424 static const short nfsv3err_rmdir[] = {
425 NFSERR_IO,
426 NFSERR_NOENT,
427 NFSERR_IO,
428 NFSERR_ACCES,
429 NFSERR_EXIST,
430 NFSERR_NOTDIR,
431 NFSERR_INVAL,
432 NFSERR_ROFS,
433 NFSERR_NAMETOL,
434 NFSERR_NOTEMPTY,
435 NFSERR_STALE,
436 NFSERR_BADHANDLE,
437 NFSERR_NOTSUPP,
438 NFSERR_SERVERFAULT,
439 0,
440 };
441
442 static const short nfsv3err_rename[] = {
443 NFSERR_IO,
444 NFSERR_NOENT,
445 NFSERR_IO,
446 NFSERR_ACCES,
447 NFSERR_EXIST,
448 NFSERR_XDEV,
449 NFSERR_NOTDIR,
450 NFSERR_ISDIR,
451 NFSERR_INVAL,
452 NFSERR_NOSPC,
453 NFSERR_ROFS,
454 NFSERR_MLINK,
455 NFSERR_NAMETOL,
456 NFSERR_NOTEMPTY,
457 NFSERR_DQUOT,
458 NFSERR_STALE,
459 NFSERR_BADHANDLE,
460 NFSERR_NOTSUPP,
461 NFSERR_SERVERFAULT,
462 0,
463 };
464
465 static const short nfsv3err_link[] = {
466 NFSERR_IO,
467 NFSERR_IO,
468 NFSERR_ACCES,
469 NFSERR_EXIST,
470 NFSERR_XDEV,
471 NFSERR_NOTDIR,
472 NFSERR_INVAL,
473 NFSERR_NOSPC,
474 NFSERR_ROFS,
475 NFSERR_MLINK,
476 NFSERR_NAMETOL,
477 NFSERR_DQUOT,
478 NFSERR_STALE,
479 NFSERR_BADHANDLE,
480 NFSERR_NOTSUPP,
481 NFSERR_SERVERFAULT,
482 0,
483 };
484
485 static const short nfsv3err_readdir[] = {
486 NFSERR_IO,
487 NFSERR_IO,
488 NFSERR_ACCES,
489 NFSERR_NOTDIR,
490 NFSERR_STALE,
491 NFSERR_BADHANDLE,
492 NFSERR_BAD_COOKIE,
493 NFSERR_TOOSMALL,
494 NFSERR_SERVERFAULT,
495 0,
496 };
497
498 static const short nfsv3err_readdirplus[] = {
499 NFSERR_IO,
500 NFSERR_IO,
501 NFSERR_ACCES,
502 NFSERR_NOTDIR,
503 NFSERR_STALE,
504 NFSERR_BADHANDLE,
505 NFSERR_BAD_COOKIE,
506 NFSERR_NOTSUPP,
507 NFSERR_TOOSMALL,
508 NFSERR_SERVERFAULT,
509 0,
510 };
511
512 static const short nfsv3err_fsstat[] = {
513 NFSERR_IO,
514 NFSERR_IO,
515 NFSERR_STALE,
516 NFSERR_BADHANDLE,
517 NFSERR_SERVERFAULT,
518 0,
519 };
520
521 static const short nfsv3err_fsinfo[] = {
522 NFSERR_STALE,
523 NFSERR_STALE,
524 NFSERR_BADHANDLE,
525 NFSERR_SERVERFAULT,
526 0,
527 };
528
529 static const short nfsv3err_pathconf[] = {
530 NFSERR_STALE,
531 NFSERR_STALE,
532 NFSERR_BADHANDLE,
533 NFSERR_SERVERFAULT,
534 0,
535 };
536
537 static const short nfsv3err_commit[] = {
538 NFSERR_IO,
539 NFSERR_IO,
540 NFSERR_STALE,
541 NFSERR_BADHANDLE,
542 NFSERR_SERVERFAULT,
543 0,
544 };
545
546 static const short * const nfsrv_v3errmap[] = {
547 nfsv3err_null,
548 nfsv3err_getattr,
549 nfsv3err_setattr,
550 nfsv3err_lookup,
551 nfsv3err_access,
552 nfsv3err_readlink,
553 nfsv3err_read,
554 nfsv3err_write,
555 nfsv3err_create,
556 nfsv3err_mkdir,
557 nfsv3err_symlink,
558 nfsv3err_mknod,
559 nfsv3err_remove,
560 nfsv3err_rmdir,
561 nfsv3err_rename,
562 nfsv3err_link,
563 nfsv3err_readdir,
564 nfsv3err_readdirplus,
565 nfsv3err_fsstat,
566 nfsv3err_fsinfo,
567 nfsv3err_pathconf,
568 nfsv3err_commit,
569 };
570
571 extern struct nfsrtt nfsrtt;
572 extern time_t nqnfsstarttime;
573 extern int nqsrv_clockskew;
574 extern int nqsrv_writeslack;
575 extern int nqsrv_maxlease;
576 extern const int nqnfs_piggy[NFS_NPROCS];
577 extern struct nfsnodehashhead *nfsnodehashtbl;
578 extern u_long nfsnodehash;
579
580 u_long nfsdirhashmask;
581
582 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
583
584 /*
585 * Create the header for an rpc request packet
586 * The hsiz is the size of the rest of the nfs request header.
587 * (just used to decide if a cluster is a good idea)
588 */
589 struct mbuf *
590 nfsm_reqh(np, procid, hsiz, bposp)
591 struct nfsnode *np;
592 u_long procid;
593 int hsiz;
594 caddr_t *bposp;
595 {
596 struct mbuf *mb;
597 caddr_t bpos;
598 #ifndef NFS_V2_ONLY
599 struct nfsmount *nmp;
600 u_int32_t *tl;
601 int nqflag;
602 #endif
603
604 mb = m_get(M_WAIT, MT_DATA);
605 MCLAIM(mb, &nfs_mowner);
606 if (hsiz >= MINCLSIZE)
607 m_clget(mb, M_WAIT);
608 mb->m_len = 0;
609 bpos = mtod(mb, caddr_t);
610
611 #ifndef NFS_V2_ONLY
612 /*
613 * For NQNFS, add lease request.
614 */
615 if (np) {
616 nmp = VFSTONFS(np->n_vnode->v_mount);
617 if (nmp->nm_flag & NFSMNT_NQNFS) {
618 nqflag = NQNFS_NEEDLEASE(np, procid);
619 if (nqflag) {
620 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
621 *tl++ = txdr_unsigned(nqflag);
622 *tl = txdr_unsigned(nmp->nm_leaseterm);
623 } else {
624 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
625 *tl = 0;
626 }
627 }
628 }
629 #endif
630 /* Finally, return values */
631 *bposp = bpos;
632 return (mb);
633 }
634
635 /*
636 * Build the RPC header and fill in the authorization info.
637 * The authorization string argument is only used when the credentials
638 * come from outside of the kernel.
639 * Returns the head of the mbuf list.
640 */
641 struct mbuf *
642 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
643 verf_str, mrest, mrest_len, mbp, xidp)
644 struct ucred *cr;
645 int nmflag;
646 int procid;
647 int auth_type;
648 int auth_len;
649 char *auth_str;
650 int verf_len;
651 char *verf_str;
652 struct mbuf *mrest;
653 int mrest_len;
654 struct mbuf **mbp;
655 u_int32_t *xidp;
656 {
657 struct mbuf *mb;
658 u_int32_t *tl;
659 caddr_t bpos;
660 int i;
661 struct mbuf *mreq;
662 int siz, grpsiz, authsiz;
663
664 authsiz = nfsm_rndup(auth_len);
665 mb = m_gethdr(M_WAIT, MT_DATA);
666 MCLAIM(mb, &nfs_mowner);
667 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
668 m_clget(mb, M_WAIT);
669 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
670 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
671 } else {
672 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
673 }
674 mb->m_len = 0;
675 mreq = mb;
676 bpos = mtod(mb, caddr_t);
677
678 /*
679 * First the RPC header.
680 */
681 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
682
683 *tl++ = *xidp = nfs_getxid();
684 *tl++ = rpc_call;
685 *tl++ = rpc_vers;
686 if (nmflag & NFSMNT_NQNFS) {
687 *tl++ = txdr_unsigned(NQNFS_PROG);
688 *tl++ = txdr_unsigned(NQNFS_VER3);
689 } else {
690 *tl++ = txdr_unsigned(NFS_PROG);
691 if (nmflag & NFSMNT_NFSV3)
692 *tl++ = txdr_unsigned(NFS_VER3);
693 else
694 *tl++ = txdr_unsigned(NFS_VER2);
695 }
696 if (nmflag & NFSMNT_NFSV3)
697 *tl++ = txdr_unsigned(procid);
698 else
699 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
700
701 /*
702 * And then the authorization cred.
703 */
704 *tl++ = txdr_unsigned(auth_type);
705 *tl = txdr_unsigned(authsiz);
706 switch (auth_type) {
707 case RPCAUTH_UNIX:
708 nfsm_build(tl, u_int32_t *, auth_len);
709 *tl++ = 0; /* stamp ?? */
710 *tl++ = 0; /* NULL hostname */
711 *tl++ = txdr_unsigned(cr->cr_uid);
712 *tl++ = txdr_unsigned(cr->cr_gid);
713 grpsiz = (auth_len >> 2) - 5;
714 *tl++ = txdr_unsigned(grpsiz);
715 for (i = 0; i < grpsiz; i++)
716 *tl++ = txdr_unsigned(cr->cr_groups[i]);
717 break;
718 case RPCAUTH_KERB4:
719 siz = auth_len;
720 while (siz > 0) {
721 if (M_TRAILINGSPACE(mb) == 0) {
722 struct mbuf *mb2;
723 mb2 = m_get(M_WAIT, MT_DATA);
724 MCLAIM(mb2, &nfs_mowner);
725 if (siz >= MINCLSIZE)
726 m_clget(mb2, M_WAIT);
727 mb->m_next = mb2;
728 mb = mb2;
729 mb->m_len = 0;
730 bpos = mtod(mb, caddr_t);
731 }
732 i = min(siz, M_TRAILINGSPACE(mb));
733 memcpy(bpos, auth_str, i);
734 mb->m_len += i;
735 auth_str += i;
736 bpos += i;
737 siz -= i;
738 }
739 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
740 for (i = 0; i < siz; i++)
741 *bpos++ = '\0';
742 mb->m_len += siz;
743 }
744 break;
745 };
746
747 /*
748 * And the verifier...
749 */
750 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
751 if (verf_str) {
752 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
753 *tl = txdr_unsigned(verf_len);
754 siz = verf_len;
755 while (siz > 0) {
756 if (M_TRAILINGSPACE(mb) == 0) {
757 struct mbuf *mb2;
758 mb2 = m_get(M_WAIT, MT_DATA);
759 MCLAIM(mb2, &nfs_mowner);
760 if (siz >= MINCLSIZE)
761 m_clget(mb2, M_WAIT);
762 mb->m_next = mb2;
763 mb = mb2;
764 mb->m_len = 0;
765 bpos = mtod(mb, caddr_t);
766 }
767 i = min(siz, M_TRAILINGSPACE(mb));
768 memcpy(bpos, verf_str, i);
769 mb->m_len += i;
770 verf_str += i;
771 bpos += i;
772 siz -= i;
773 }
774 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
775 for (i = 0; i < siz; i++)
776 *bpos++ = '\0';
777 mb->m_len += siz;
778 }
779 } else {
780 *tl++ = txdr_unsigned(RPCAUTH_NULL);
781 *tl = 0;
782 }
783 mb->m_next = mrest;
784 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
785 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
786 *mbp = mb;
787 return (mreq);
788 }
789
790 /*
791 * copies mbuf chain to the uio scatter/gather list
792 */
793 int
794 nfsm_mbuftouio(mrep, uiop, siz, dpos)
795 struct mbuf **mrep;
796 struct uio *uiop;
797 int siz;
798 caddr_t *dpos;
799 {
800 char *mbufcp, *uiocp;
801 int xfer, left, len;
802 struct mbuf *mp;
803 long uiosiz, rem;
804 int error = 0;
805
806 mp = *mrep;
807 mbufcp = *dpos;
808 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
809 rem = nfsm_rndup(siz)-siz;
810 while (siz > 0) {
811 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
812 return (EFBIG);
813 left = uiop->uio_iov->iov_len;
814 uiocp = uiop->uio_iov->iov_base;
815 if (left > siz)
816 left = siz;
817 uiosiz = left;
818 while (left > 0) {
819 while (len == 0) {
820 mp = mp->m_next;
821 if (mp == NULL)
822 return (EBADRPC);
823 mbufcp = mtod(mp, caddr_t);
824 len = mp->m_len;
825 }
826 xfer = (left > len) ? len : left;
827 #ifdef notdef
828 /* Not Yet.. */
829 if (uiop->uio_iov->iov_op != NULL)
830 (*(uiop->uio_iov->iov_op))
831 (mbufcp, uiocp, xfer);
832 else
833 #endif
834 if (uiop->uio_segflg == UIO_SYSSPACE)
835 memcpy(uiocp, mbufcp, xfer);
836 else
837 copyout(mbufcp, uiocp, xfer);
838 left -= xfer;
839 len -= xfer;
840 mbufcp += xfer;
841 uiocp += xfer;
842 uiop->uio_offset += xfer;
843 uiop->uio_resid -= xfer;
844 }
845 if (uiop->uio_iov->iov_len <= siz) {
846 uiop->uio_iovcnt--;
847 uiop->uio_iov++;
848 } else {
849 uiop->uio_iov->iov_base =
850 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
851 uiop->uio_iov->iov_len -= uiosiz;
852 }
853 siz -= uiosiz;
854 }
855 *dpos = mbufcp;
856 *mrep = mp;
857 if (rem > 0) {
858 if (len < rem)
859 error = nfs_adv(mrep, dpos, rem, len);
860 else
861 *dpos += rem;
862 }
863 return (error);
864 }
865
866 /*
867 * copies a uio scatter/gather list to an mbuf chain.
868 * NOTE: can ony handle iovcnt == 1
869 */
870 int
871 nfsm_uiotombuf(uiop, mq, siz, bpos)
872 struct uio *uiop;
873 struct mbuf **mq;
874 int siz;
875 caddr_t *bpos;
876 {
877 char *uiocp;
878 struct mbuf *mp, *mp2;
879 int xfer, left, mlen;
880 int uiosiz, clflg, rem;
881 char *cp;
882
883 #ifdef DIAGNOSTIC
884 if (uiop->uio_iovcnt != 1)
885 panic("nfsm_uiotombuf: iovcnt != 1");
886 #endif
887
888 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
889 clflg = 1;
890 else
891 clflg = 0;
892 rem = nfsm_rndup(siz)-siz;
893 mp = mp2 = *mq;
894 while (siz > 0) {
895 left = uiop->uio_iov->iov_len;
896 uiocp = uiop->uio_iov->iov_base;
897 if (left > siz)
898 left = siz;
899 uiosiz = left;
900 while (left > 0) {
901 mlen = M_TRAILINGSPACE(mp);
902 if (mlen == 0) {
903 mp = m_get(M_WAIT, MT_DATA);
904 MCLAIM(mp, &nfs_mowner);
905 if (clflg)
906 m_clget(mp, M_WAIT);
907 mp->m_len = 0;
908 mp2->m_next = mp;
909 mp2 = mp;
910 mlen = M_TRAILINGSPACE(mp);
911 }
912 xfer = (left > mlen) ? mlen : left;
913 #ifdef notdef
914 /* Not Yet.. */
915 if (uiop->uio_iov->iov_op != NULL)
916 (*(uiop->uio_iov->iov_op))
917 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
918 else
919 #endif
920 if (uiop->uio_segflg == UIO_SYSSPACE)
921 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
922 else
923 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
924 mp->m_len += xfer;
925 left -= xfer;
926 uiocp += xfer;
927 uiop->uio_offset += xfer;
928 uiop->uio_resid -= xfer;
929 }
930 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
931 uiosiz;
932 uiop->uio_iov->iov_len -= uiosiz;
933 siz -= uiosiz;
934 }
935 if (rem > 0) {
936 if (rem > M_TRAILINGSPACE(mp)) {
937 mp = m_get(M_WAIT, MT_DATA);
938 MCLAIM(mp, &nfs_mowner);
939 mp->m_len = 0;
940 mp2->m_next = mp;
941 }
942 cp = mtod(mp, caddr_t)+mp->m_len;
943 for (left = 0; left < rem; left++)
944 *cp++ = '\0';
945 mp->m_len += rem;
946 *bpos = cp;
947 } else
948 *bpos = mtod(mp, caddr_t)+mp->m_len;
949 *mq = mp;
950 return (0);
951 }
952
953 /*
954 * Get at least "siz" bytes of correctly aligned data.
955 * When called the mbuf pointers are not necessarily correct,
956 * dsosp points to what ought to be in m_data and left contains
957 * what ought to be in m_len.
958 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
959 * cases. (The macros use the vars. dpos and dpos2)
960 */
961 int
962 nfsm_disct(mdp, dposp, siz, left, cp2)
963 struct mbuf **mdp;
964 caddr_t *dposp;
965 int siz;
966 int left;
967 caddr_t *cp2;
968 {
969 struct mbuf *m1, *m2;
970 struct mbuf *havebuf = NULL;
971 caddr_t src = *dposp;
972 caddr_t dst;
973 int len;
974
975 #ifdef DEBUG
976 if (left < 0)
977 panic("nfsm_disct: left < 0");
978 #endif
979 m1 = *mdp;
980 /*
981 * Skip through the mbuf chain looking for an mbuf with
982 * some data. If the first mbuf found has enough data
983 * and it is correctly aligned return it.
984 */
985 while (left == 0) {
986 havebuf = m1;
987 *mdp = m1 = m1->m_next;
988 if (m1 == NULL)
989 return (EBADRPC);
990 src = mtod(m1, caddr_t);
991 left = m1->m_len;
992 /*
993 * If we start a new mbuf and it is big enough
994 * and correctly aligned just return it, don't
995 * do any pull up.
996 */
997 if (left >= siz && nfsm_aligned(src)) {
998 *cp2 = src;
999 *dposp = src + siz;
1000 return (0);
1001 }
1002 }
1003 if (m1->m_flags & M_EXT) {
1004 if (havebuf) {
1005 /* If the first mbuf with data has external data
1006 * and there is a previous empty mbuf use it
1007 * to move the data into.
1008 */
1009 m2 = m1;
1010 *mdp = m1 = havebuf;
1011 if (m1->m_flags & M_EXT) {
1012 MEXTREMOVE(m1);
1013 }
1014 } else {
1015 /*
1016 * If the first mbuf has a external data
1017 * and there is no previous empty mbuf
1018 * allocate a new mbuf and move the external
1019 * data to the new mbuf. Also make the first
1020 * mbuf look empty.
1021 */
1022 m2 = m_get(M_WAIT, MT_DATA);
1023 m2->m_ext = m1->m_ext;
1024 m2->m_data = src;
1025 m2->m_len = left;
1026 MCLADDREFERENCE(m1, m2);
1027 MEXTREMOVE(m1);
1028 m2->m_next = m1->m_next;
1029 m1->m_next = m2;
1030 }
1031 m1->m_len = 0;
1032 if (m1->m_flags & M_PKTHDR)
1033 dst = m1->m_pktdat;
1034 else
1035 dst = m1->m_dat;
1036 m1->m_data = dst;
1037 } else {
1038 /*
1039 * If the first mbuf has no external data
1040 * move the data to the front of the mbuf.
1041 */
1042 if (m1->m_flags & M_PKTHDR)
1043 dst = m1->m_pktdat;
1044 else
1045 dst = m1->m_dat;
1046 m1->m_data = dst;
1047 if (dst != src)
1048 memmove(dst, src, left);
1049 dst += left;
1050 m1->m_len = left;
1051 m2 = m1->m_next;
1052 }
1053 *cp2 = m1->m_data;
1054 *dposp = mtod(m1, caddr_t) + siz;
1055 /*
1056 * Loop through mbufs pulling data up into first mbuf until
1057 * the first mbuf is full or there is no more data to
1058 * pullup.
1059 */
1060 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1061 if ((len = min(len, m2->m_len)) != 0)
1062 memcpy(dst, m2->m_data, len);
1063 m1->m_len += len;
1064 dst += len;
1065 m2->m_data += len;
1066 m2->m_len -= len;
1067 m2 = m2->m_next;
1068 }
1069 if (m1->m_len < siz)
1070 return (EBADRPC);
1071 return (0);
1072 }
1073
1074 /*
1075 * Advance the position in the mbuf chain.
1076 */
1077 int
1078 nfs_adv(mdp, dposp, offs, left)
1079 struct mbuf **mdp;
1080 caddr_t *dposp;
1081 int offs;
1082 int left;
1083 {
1084 struct mbuf *m;
1085 int s;
1086
1087 m = *mdp;
1088 s = left;
1089 while (s < offs) {
1090 offs -= s;
1091 m = m->m_next;
1092 if (m == NULL)
1093 return (EBADRPC);
1094 s = m->m_len;
1095 }
1096 *mdp = m;
1097 *dposp = mtod(m, caddr_t)+offs;
1098 return (0);
1099 }
1100
1101 /*
1102 * Copy a string into mbufs for the hard cases...
1103 */
1104 int
1105 nfsm_strtmbuf(mb, bpos, cp, siz)
1106 struct mbuf **mb;
1107 char **bpos;
1108 const char *cp;
1109 long siz;
1110 {
1111 struct mbuf *m1 = NULL, *m2;
1112 long left, xfer, len, tlen;
1113 u_int32_t *tl;
1114 int putsize;
1115
1116 putsize = 1;
1117 m2 = *mb;
1118 left = M_TRAILINGSPACE(m2);
1119 if (left > 0) {
1120 tl = ((u_int32_t *)(*bpos));
1121 *tl++ = txdr_unsigned(siz);
1122 putsize = 0;
1123 left -= NFSX_UNSIGNED;
1124 m2->m_len += NFSX_UNSIGNED;
1125 if (left > 0) {
1126 memcpy((caddr_t) tl, cp, left);
1127 siz -= left;
1128 cp += left;
1129 m2->m_len += left;
1130 left = 0;
1131 }
1132 }
1133 /* Loop around adding mbufs */
1134 while (siz > 0) {
1135 m1 = m_get(M_WAIT, MT_DATA);
1136 MCLAIM(m1, &nfs_mowner);
1137 if (siz > MLEN)
1138 m_clget(m1, M_WAIT);
1139 m1->m_len = NFSMSIZ(m1);
1140 m2->m_next = m1;
1141 m2 = m1;
1142 tl = mtod(m1, u_int32_t *);
1143 tlen = 0;
1144 if (putsize) {
1145 *tl++ = txdr_unsigned(siz);
1146 m1->m_len -= NFSX_UNSIGNED;
1147 tlen = NFSX_UNSIGNED;
1148 putsize = 0;
1149 }
1150 if (siz < m1->m_len) {
1151 len = nfsm_rndup(siz);
1152 xfer = siz;
1153 if (xfer < len)
1154 *(tl+(xfer>>2)) = 0;
1155 } else {
1156 xfer = len = m1->m_len;
1157 }
1158 memcpy((caddr_t) tl, cp, xfer);
1159 m1->m_len = len+tlen;
1160 siz -= xfer;
1161 cp += xfer;
1162 }
1163 *mb = m1;
1164 *bpos = mtod(m1, caddr_t)+m1->m_len;
1165 return (0);
1166 }
1167
1168 /*
1169 * Directory caching routines. They work as follows:
1170 * - a cache is maintained per VDIR nfsnode.
1171 * - for each offset cookie that is exported to userspace, and can
1172 * thus be thrown back at us as an offset to VOP_READDIR, store
1173 * information in the cache.
1174 * - cached are:
1175 * - cookie itself
1176 * - blocknumber (essentially just a search key in the buffer cache)
1177 * - entry number in block.
1178 * - offset cookie of block in which this entry is stored
1179 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1180 * - entries are looked up in a hash table
1181 * - also maintained is an LRU list of entries, used to determine
1182 * which ones to delete if the cache grows too large.
1183 * - if 32 <-> 64 translation mode is requested for a filesystem,
1184 * the cache also functions as a translation table
1185 * - in the translation case, invalidating the cache does not mean
1186 * flushing it, but just marking entries as invalid, except for
1187 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1188 * still be able to use the cache as a translation table.
1189 * - 32 bit cookies are uniquely created by combining the hash table
1190 * entry value, and one generation count per hash table entry,
1191 * incremented each time an entry is appended to the chain.
1192 * - the cache is invalidated each time a direcory is modified
1193 * - sanity checks are also done; if an entry in a block turns
1194 * out not to have a matching cookie, the cache is invalidated
1195 * and a new block starting from the wanted offset is fetched from
1196 * the server.
1197 * - directory entries as read from the server are extended to contain
1198 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1199 * the cache and exporting them to userspace through the cookie
1200 * argument to VOP_READDIR.
1201 */
1202
1203 u_long
1204 nfs_dirhash(off)
1205 off_t off;
1206 {
1207 int i;
1208 char *cp = (char *)&off;
1209 u_long sum = 0L;
1210
1211 for (i = 0 ; i < sizeof (off); i++)
1212 sum += *cp++;
1213
1214 return sum;
1215 }
1216
1217 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1218 #define NFSDC_LOCK(np) simple_lock(_NFSDC_MTX(np))
1219 #define NFSDC_UNLOCK(np) simple_unlock(_NFSDC_MTX(np))
1220 #define NFSDC_ASSERT_LOCKED(np) LOCK_ASSERT(simple_lock_held(_NFSDC_MTX(np)))
1221
1222 void
1223 nfs_initdircache(vp)
1224 struct vnode *vp;
1225 {
1226 struct nfsnode *np = VTONFS(vp);
1227 struct nfsdirhashhead *dircache;
1228
1229 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1230 M_WAITOK, &nfsdirhashmask);
1231
1232 NFSDC_LOCK(np);
1233 if (np->n_dircache == NULL) {
1234 np->n_dircachesize = 0;
1235 np->n_dblkno = 1;
1236 np->n_dircache = dircache;
1237 dircache = NULL;
1238 TAILQ_INIT(&np->n_dirchain);
1239 }
1240 NFSDC_UNLOCK(np);
1241 if (dircache)
1242 hashdone(dircache, M_NFSDIROFF);
1243 }
1244
1245 void
1246 nfs_initdirxlatecookie(vp)
1247 struct vnode *vp;
1248 {
1249 struct nfsnode *np = VTONFS(vp);
1250 unsigned *dirgens;
1251
1252 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1253
1254 dirgens = malloc(NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1255 M_WAITOK|M_ZERO);
1256 NFSDC_LOCK(np);
1257 if (np->n_dirgens == NULL) {
1258 np->n_dirgens = dirgens;
1259 dirgens = NULL;
1260 }
1261 NFSDC_UNLOCK(np);
1262 if (dirgens)
1263 free(dirgens, M_NFSDIROFF);
1264 }
1265
1266 static const struct nfsdircache dzero;
1267
1268 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1269 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1270 struct nfsdircache *));
1271
1272 static void
1273 nfs_unlinkdircache(np, ndp)
1274 struct nfsnode *np;
1275 struct nfsdircache *ndp;
1276 {
1277
1278 NFSDC_ASSERT_LOCKED(np);
1279 KASSERT(ndp != &dzero);
1280
1281 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1282 return;
1283
1284 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1285 LIST_REMOVE(ndp, dc_hash);
1286 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1287
1288 nfs_putdircache_unlocked(np, ndp);
1289 }
1290
1291 void
1292 nfs_putdircache(np, ndp)
1293 struct nfsnode *np;
1294 struct nfsdircache *ndp;
1295 {
1296 int ref;
1297
1298 if (ndp == &dzero)
1299 return;
1300
1301 KASSERT(ndp->dc_refcnt > 0);
1302 NFSDC_LOCK(np);
1303 ref = --ndp->dc_refcnt;
1304 NFSDC_UNLOCK(np);
1305
1306 if (ref == 0)
1307 free(ndp, M_NFSDIROFF);
1308 }
1309
1310 static void
1311 nfs_putdircache_unlocked(np, ndp)
1312 struct nfsnode *np;
1313 struct nfsdircache *ndp;
1314 {
1315 int ref;
1316
1317 NFSDC_ASSERT_LOCKED(np);
1318
1319 if (ndp == &dzero)
1320 return;
1321
1322 KASSERT(ndp->dc_refcnt > 0);
1323 ref = --ndp->dc_refcnt;
1324 if (ref == 0)
1325 free(ndp, M_NFSDIROFF);
1326 }
1327
1328 struct nfsdircache *
1329 nfs_searchdircache(vp, off, do32, hashent)
1330 struct vnode *vp;
1331 off_t off;
1332 int do32;
1333 int *hashent;
1334 {
1335 struct nfsdirhashhead *ndhp;
1336 struct nfsdircache *ndp = NULL;
1337 struct nfsnode *np = VTONFS(vp);
1338 unsigned ent;
1339
1340 /*
1341 * Zero is always a valid cookie.
1342 */
1343 if (off == 0)
1344 /* LINTED const cast away */
1345 return (struct nfsdircache *)&dzero;
1346
1347 if (!np->n_dircache)
1348 return NULL;
1349
1350 /*
1351 * We use a 32bit cookie as search key, directly reconstruct
1352 * the hashentry. Else use the hashfunction.
1353 */
1354 if (do32) {
1355 ent = (u_int32_t)off >> 24;
1356 if (ent >= NFS_DIRHASHSIZ)
1357 return NULL;
1358 ndhp = &np->n_dircache[ent];
1359 } else {
1360 ndhp = NFSDIRHASH(np, off);
1361 }
1362
1363 if (hashent)
1364 *hashent = (int)(ndhp - np->n_dircache);
1365
1366 NFSDC_LOCK(np);
1367 if (do32) {
1368 LIST_FOREACH(ndp, ndhp, dc_hash) {
1369 if (ndp->dc_cookie32 == (u_int32_t)off) {
1370 /*
1371 * An invalidated entry will become the
1372 * start of a new block fetched from
1373 * the server.
1374 */
1375 if (ndp->dc_flags & NFSDC_INVALID) {
1376 ndp->dc_blkcookie = ndp->dc_cookie;
1377 ndp->dc_blkno = np->n_dblkno++;
1378 ndp->dc_entry = 0;
1379 ndp->dc_flags &= ~NFSDC_INVALID;
1380 }
1381 break;
1382 }
1383 }
1384 } else {
1385 LIST_FOREACH(ndp, ndhp, dc_hash) {
1386 if (ndp->dc_cookie == off)
1387 break;
1388 }
1389 }
1390 if (ndp != NULL)
1391 ndp->dc_refcnt++;
1392 NFSDC_UNLOCK(np);
1393 return ndp;
1394 }
1395
1396
1397 struct nfsdircache *
1398 nfs_enterdircache(vp, off, blkoff, en, blkno)
1399 struct vnode *vp;
1400 off_t off, blkoff;
1401 int en;
1402 daddr_t blkno;
1403 {
1404 struct nfsnode *np = VTONFS(vp);
1405 struct nfsdirhashhead *ndhp;
1406 struct nfsdircache *ndp = NULL;
1407 struct nfsdircache *newndp = NULL;
1408 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1409 int hashent, gen, overwrite;
1410
1411 /*
1412 * XXX refuse entries for offset 0. amd(8) erroneously sets
1413 * cookie 0 for the '.' entry, making this necessary. This
1414 * isn't so bad, as 0 is a special case anyway.
1415 */
1416 if (off == 0)
1417 /* LINTED const cast away */
1418 return (struct nfsdircache *)&dzero;
1419
1420 if (!np->n_dircache)
1421 /*
1422 * XXX would like to do this in nfs_nget but vtype
1423 * isn't known at that time.
1424 */
1425 nfs_initdircache(vp);
1426
1427 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1428 nfs_initdirxlatecookie(vp);
1429
1430 retry:
1431 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1432
1433 NFSDC_LOCK(np);
1434 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1435 /*
1436 * Overwriting an old entry. Check if it's the same.
1437 * If so, just return. If not, remove the old entry.
1438 */
1439 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1440 goto done;
1441 nfs_unlinkdircache(np, ndp);
1442 nfs_putdircache_unlocked(np, ndp);
1443 ndp = NULL;
1444 }
1445
1446 ndhp = &np->n_dircache[hashent];
1447
1448 if (!ndp) {
1449 if (newndp == NULL) {
1450 NFSDC_UNLOCK(np);
1451 newndp = malloc(sizeof(*ndp), M_NFSDIROFF, M_WAITOK);
1452 newndp->dc_refcnt = 1;
1453 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1454 goto retry;
1455 }
1456 ndp = newndp;
1457 newndp = NULL;
1458 overwrite = 0;
1459 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1460 /*
1461 * We're allocating a new entry, so bump the
1462 * generation number.
1463 */
1464 gen = ++np->n_dirgens[hashent];
1465 if (gen == 0) {
1466 np->n_dirgens[hashent]++;
1467 gen++;
1468 }
1469 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1470 }
1471 } else
1472 overwrite = 1;
1473
1474 /*
1475 * If the entry number is 0, we are at the start of a new block, so
1476 * allocate a new blocknumber.
1477 */
1478 if (en == 0)
1479 ndp->dc_blkno = np->n_dblkno++;
1480 else
1481 ndp->dc_blkno = blkno;
1482
1483 ndp->dc_cookie = off;
1484 ndp->dc_blkcookie = blkoff;
1485 ndp->dc_entry = en;
1486
1487 if (overwrite)
1488 goto done;
1489
1490 /*
1491 * If the maximum directory cookie cache size has been reached
1492 * for this node, take one off the front. The idea is that
1493 * directories are typically read front-to-back once, so that
1494 * the oldest entries can be thrown away without much performance
1495 * loss.
1496 */
1497 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1498 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1499 } else
1500 np->n_dircachesize++;
1501
1502 KASSERT(ndp->dc_refcnt == 1);
1503 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1504 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1505 ndp->dc_refcnt++;
1506 done:
1507 KASSERT(ndp->dc_refcnt > 0);
1508 NFSDC_UNLOCK(np);
1509 if (newndp)
1510 nfs_putdircache(np, newndp);
1511 return ndp;
1512 }
1513
1514 void
1515 nfs_invaldircache(vp, forcefree)
1516 struct vnode *vp;
1517 int forcefree;
1518 {
1519 struct nfsnode *np = VTONFS(vp);
1520 struct nfsdircache *ndp = NULL;
1521 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1522
1523 #ifdef DIAGNOSTIC
1524 if (vp->v_type != VDIR)
1525 panic("nfs: invaldircache: not dir");
1526 #endif
1527
1528 if (!np->n_dircache)
1529 return;
1530
1531 NFSDC_LOCK(np);
1532 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1533 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1534 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1535 nfs_unlinkdircache(np, ndp);
1536 }
1537 np->n_dircachesize = 0;
1538 if (forcefree && np->n_dirgens) {
1539 FREE(np->n_dirgens, M_NFSDIROFF);
1540 np->n_dirgens = NULL;
1541 }
1542 } else {
1543 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1544 ndp->dc_flags |= NFSDC_INVALID;
1545 }
1546
1547 np->n_dblkno = 1;
1548 NFSDC_UNLOCK(np);
1549 }
1550
1551 /*
1552 * Called once before VFS init to initialize shared and
1553 * server-specific data structures.
1554 */
1555 void
1556 nfs_init()
1557 {
1558 nfsrtt.pos = 0;
1559 rpc_vers = txdr_unsigned(RPC_VER2);
1560 rpc_call = txdr_unsigned(RPC_CALL);
1561 rpc_reply = txdr_unsigned(RPC_REPLY);
1562 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1563 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1564 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1565 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1566 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1567 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1568 nfs_prog = txdr_unsigned(NFS_PROG);
1569 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1570 nfs_true = txdr_unsigned(TRUE);
1571 nfs_false = txdr_unsigned(FALSE);
1572 nfs_xdrneg1 = txdr_unsigned(-1);
1573 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1574 if (nfs_ticks < 1)
1575 nfs_ticks = 1;
1576 #ifdef NFSSERVER
1577 nfsrv_init(0); /* Init server data structures */
1578 nfsrv_initcache(); /* Init the server request cache */
1579 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
1580 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr);
1581 #endif /* NFSSERVER */
1582
1583 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1584 /*
1585 * Initialize the nqnfs data structures.
1586 */
1587 if (nqnfsstarttime == 0) {
1588 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1589 + nqsrv_clockskew + nqsrv_writeslack;
1590 NQLOADNOVRAM(nqnfsstarttime);
1591 CIRCLEQ_INIT(&nqtimerhead);
1592 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1593 M_WAITOK, &nqfhhash);
1594 }
1595 #endif
1596
1597 exithook_establish(nfs_exit, NULL);
1598
1599 /*
1600 * Initialize reply list and start timer
1601 */
1602 TAILQ_INIT(&nfs_reqq);
1603 nfs_timer(NULL);
1604 MOWNER_ATTACH(&nfs_mowner);
1605
1606 #ifdef NFS
1607 /* Initialize the kqueue structures */
1608 nfs_kqinit();
1609 /* Initialize the iod structures */
1610 nfs_iodinit();
1611 #endif
1612 }
1613
1614 #ifdef NFS
1615 /*
1616 * Called once at VFS init to initialize client-specific data structures.
1617 */
1618 void
1619 nfs_vfs_init()
1620 {
1621 nfs_nhinit(); /* Init the nfsnode table */
1622 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1623 }
1624
1625 void
1626 nfs_vfs_reinit()
1627 {
1628 nfs_nhreinit();
1629 }
1630
1631 void
1632 nfs_vfs_done()
1633 {
1634 nfs_nhdone();
1635 }
1636
1637 /*
1638 * Attribute cache routines.
1639 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1640 * that are on the mbuf list
1641 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1642 * error otherwise
1643 */
1644
1645 /*
1646 * Load the attribute cache (that lives in the nfsnode entry) with
1647 * the values on the mbuf list and
1648 * Iff vap not NULL
1649 * copy the attributes to *vaper
1650 */
1651 int
1652 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1653 struct vnode **vpp;
1654 struct mbuf **mdp;
1655 caddr_t *dposp;
1656 struct vattr *vaper;
1657 int flags;
1658 {
1659 int32_t t1;
1660 caddr_t cp2;
1661 int error = 0;
1662 struct mbuf *md;
1663 int v3 = NFS_ISV3(*vpp);
1664
1665 md = *mdp;
1666 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1667 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1668 if (error)
1669 return (error);
1670 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1671 }
1672
1673 int
1674 nfs_loadattrcache(vpp, fp, vaper, flags)
1675 struct vnode **vpp;
1676 struct nfs_fattr *fp;
1677 struct vattr *vaper;
1678 int flags;
1679 {
1680 struct vnode *vp = *vpp;
1681 struct vattr *vap;
1682 int v3 = NFS_ISV3(vp);
1683 enum vtype vtyp;
1684 u_short vmode;
1685 struct timespec mtime;
1686 struct vnode *nvp;
1687 int32_t rdev;
1688 struct nfsnode *np;
1689 extern int (**spec_nfsv2nodeop_p) __P((void *));
1690 uid_t uid;
1691 gid_t gid;
1692
1693 if (v3) {
1694 vtyp = nfsv3tov_type(fp->fa_type);
1695 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1696 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1697 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1698 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1699 } else {
1700 vtyp = nfsv2tov_type(fp->fa_type);
1701 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1702 if (vtyp == VNON || vtyp == VREG)
1703 vtyp = IFTOVT(vmode);
1704 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1705 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1706
1707 /*
1708 * Really ugly NFSv2 kludge.
1709 */
1710 if (vtyp == VCHR && rdev == 0xffffffff)
1711 vtyp = VFIFO;
1712 }
1713
1714 vmode &= ALLPERMS;
1715
1716 /*
1717 * If v_type == VNON it is a new node, so fill in the v_type,
1718 * n_mtime fields. Check to see if it represents a special
1719 * device, and if so, check for a possible alias. Once the
1720 * correct vnode has been obtained, fill in the rest of the
1721 * information.
1722 */
1723 np = VTONFS(vp);
1724 if (vp->v_type == VNON) {
1725 vp->v_type = vtyp;
1726 if (vp->v_type == VFIFO) {
1727 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1728 vp->v_op = fifo_nfsv2nodeop_p;
1729 } else if (vp->v_type == VREG) {
1730 lockinit(&np->n_commitlock, PINOD, "nfsclock", 0, 0);
1731 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1732 vp->v_op = spec_nfsv2nodeop_p;
1733 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1734 if (nvp) {
1735 /*
1736 * Discard unneeded vnode, but save its nfsnode.
1737 * Since the nfsnode does not have a lock, its
1738 * vnode lock has to be carried over.
1739 */
1740 /*
1741 * XXX is the old node sure to be locked here?
1742 */
1743 KASSERT(lockstatus(&vp->v_lock) ==
1744 LK_EXCLUSIVE);
1745 nvp->v_data = vp->v_data;
1746 vp->v_data = NULL;
1747 VOP_UNLOCK(vp, 0);
1748 vp->v_op = spec_vnodeop_p;
1749 vrele(vp);
1750 vgone(vp);
1751 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1752 &nvp->v_interlock);
1753 /*
1754 * Reinitialize aliased node.
1755 */
1756 np->n_vnode = nvp;
1757 *vpp = vp = nvp;
1758 }
1759 }
1760 np->n_mtime = mtime;
1761 }
1762 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1763 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1764 vap = np->n_vattr;
1765
1766 /*
1767 * Invalidate access cache if uid, gid or mode changed.
1768 */
1769 if (np->n_accstamp != -1 &&
1770 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode))
1771 np->n_accstamp = -1;
1772
1773 vap->va_type = vtyp;
1774 vap->va_mode = vmode;
1775 vap->va_rdev = (dev_t)rdev;
1776 vap->va_mtime = mtime;
1777 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1778 switch (vtyp) {
1779 case VDIR:
1780 vap->va_blocksize = NFS_DIRFRAGSIZ;
1781 break;
1782 case VBLK:
1783 vap->va_blocksize = BLKDEV_IOSIZE;
1784 break;
1785 case VCHR:
1786 vap->va_blocksize = MAXBSIZE;
1787 break;
1788 default:
1789 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1790 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1791 break;
1792 }
1793 if (v3) {
1794 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1795 vap->va_uid = uid;
1796 vap->va_gid = gid;
1797 vap->va_size = fxdr_hyper(&fp->fa3_size);
1798 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1799 vap->va_fileid = fxdr_unsigned(int32_t,
1800 fp->fa3_fileid.nfsuquad[1]);
1801 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1802 fxdr_nfsv3time(&fp->fa3_ctime, &vap->va_ctime);
1803 vap->va_flags = 0;
1804 vap->va_filerev = 0;
1805 } else {
1806 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1807 vap->va_uid = uid;
1808 vap->va_gid = gid;
1809 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1810 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1811 * NFS_FABLKSIZE;
1812 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1813 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1814 vap->va_flags = 0;
1815 vap->va_ctime.tv_sec = fxdr_unsigned(u_int32_t,
1816 fp->fa2_ctime.nfsv2_sec);
1817 vap->va_ctime.tv_nsec = 0;
1818 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1819 vap->va_filerev = 0;
1820 }
1821 if (vap->va_size != np->n_size) {
1822 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1823 vap->va_size = np->n_size;
1824 } else {
1825 np->n_size = vap->va_size;
1826 if (vap->va_type == VREG) {
1827 if ((flags & NAC_NOTRUNC)
1828 && np->n_size < vp->v_size) {
1829 /*
1830 * we can't free pages now because
1831 * the pages can be owned by ourselves.
1832 */
1833 np->n_flag |= NTRUNCDELAYED;
1834 }
1835 else {
1836 uvm_vnp_setsize(vp, np->n_size);
1837 }
1838 }
1839 }
1840 }
1841 np->n_attrstamp = time.tv_sec;
1842 if (vaper != NULL) {
1843 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1844 if (np->n_flag & NCHG) {
1845 if (np->n_flag & NACC)
1846 vaper->va_atime = np->n_atim;
1847 if (np->n_flag & NUPD)
1848 vaper->va_mtime = np->n_mtim;
1849 }
1850 }
1851 return (0);
1852 }
1853
1854 /*
1855 * Check the time stamp
1856 * If the cache is valid, copy contents to *vap and return 0
1857 * otherwise return an error
1858 */
1859 int
1860 nfs_getattrcache(vp, vaper)
1861 struct vnode *vp;
1862 struct vattr *vaper;
1863 {
1864 struct nfsnode *np = VTONFS(vp);
1865 struct vattr *vap;
1866
1867 if (np->n_attrstamp == 0 ||
1868 (time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1869 nfsstats.attrcache_misses++;
1870 return (ENOENT);
1871 }
1872 nfsstats.attrcache_hits++;
1873 vap = np->n_vattr;
1874 if (vap->va_size != np->n_size) {
1875 if (vap->va_type == VREG) {
1876 if (np->n_flag & NMODIFIED) {
1877 if (vap->va_size < np->n_size)
1878 vap->va_size = np->n_size;
1879 else
1880 np->n_size = vap->va_size;
1881 } else
1882 np->n_size = vap->va_size;
1883 uvm_vnp_setsize(vp, np->n_size);
1884 } else
1885 np->n_size = vap->va_size;
1886 }
1887 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1888 if (np->n_flag & NCHG) {
1889 if (np->n_flag & NACC)
1890 vaper->va_atime = np->n_atim;
1891 if (np->n_flag & NUPD)
1892 vaper->va_mtime = np->n_mtim;
1893 }
1894 return (0);
1895 }
1896
1897 void
1898 nfs_delayedtruncate(vp)
1899 struct vnode *vp;
1900 {
1901 struct nfsnode *np = VTONFS(vp);
1902
1903 if (np->n_flag & NTRUNCDELAYED) {
1904 np->n_flag &= ~NTRUNCDELAYED;
1905 uvm_vnp_setsize(vp, np->n_size);
1906 }
1907 }
1908
1909 /*
1910 * Heuristic to see if the server XDR encodes directory cookies or not.
1911 * it is not supposed to, but a lot of servers may do this. Also, since
1912 * most/all servers will implement V2 as well, it is expected that they
1913 * may return just 32 bits worth of cookie information, so we need to
1914 * find out in which 32 bits this information is available. We do this
1915 * to avoid trouble with emulated binaries that can't handle 64 bit
1916 * directory offsets.
1917 */
1918
1919 void
1920 nfs_cookieheuristic(vp, flagp, p, cred)
1921 struct vnode *vp;
1922 int *flagp;
1923 struct proc *p;
1924 struct ucred *cred;
1925 {
1926 struct uio auio;
1927 struct iovec aiov;
1928 caddr_t buf, cp;
1929 struct dirent *dp;
1930 off_t *cookies = NULL, *cop;
1931 int error, eof, nc, len;
1932
1933 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1934
1935 aiov.iov_base = buf;
1936 aiov.iov_len = NFS_DIRFRAGSIZ;
1937 auio.uio_iov = &aiov;
1938 auio.uio_iovcnt = 1;
1939 auio.uio_rw = UIO_READ;
1940 auio.uio_segflg = UIO_SYSSPACE;
1941 auio.uio_procp = NULL;
1942 auio.uio_resid = NFS_DIRFRAGSIZ;
1943 auio.uio_offset = 0;
1944
1945 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1946
1947 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1948 if (error || len == 0) {
1949 FREE(buf, M_TEMP);
1950 if (cookies)
1951 free(cookies, M_TEMP);
1952 return;
1953 }
1954
1955 /*
1956 * Find the first valid entry and look at its offset cookie.
1957 */
1958
1959 cp = buf;
1960 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1961 dp = (struct dirent *)cp;
1962 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1963 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1964 *flagp |= NFSMNT_SWAPCOOKIE;
1965 nfs_invaldircache(vp, 0);
1966 nfs_vinvalbuf(vp, 0, cred, p, 1);
1967 }
1968 break;
1969 }
1970 cop++;
1971 cp += dp->d_reclen;
1972 }
1973
1974 FREE(buf, M_TEMP);
1975 free(cookies, M_TEMP);
1976 }
1977 #endif /* NFS */
1978
1979 /*
1980 * Set up nameidata for a lookup() call and do it.
1981 *
1982 * If pubflag is set, this call is done for a lookup operation on the
1983 * public filehandle. In that case we allow crossing mountpoints and
1984 * absolute pathnames. However, the caller is expected to check that
1985 * the lookup result is within the public fs, and deny access if
1986 * it is not.
1987 */
1988 int
1989 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
1990 struct nameidata *ndp;
1991 fhandle_t *fhp;
1992 uint32_t len;
1993 struct nfssvc_sock *slp;
1994 struct mbuf *nam;
1995 struct mbuf **mdp;
1996 caddr_t *dposp;
1997 struct vnode **retdirp;
1998 struct proc *p;
1999 int kerbflag, pubflag;
2000 {
2001 int i, rem;
2002 struct mbuf *md;
2003 char *fromcp, *tocp, *cp;
2004 struct iovec aiov;
2005 struct uio auio;
2006 struct vnode *dp;
2007 int error, rdonly, linklen;
2008 struct componentname *cnp = &ndp->ni_cnd;
2009
2010 *retdirp = (struct vnode *)0;
2011
2012 if ((len + 1) > MAXPATHLEN)
2013 return (ENAMETOOLONG);
2014 cnp->cn_pnbuf = PNBUF_GET();
2015
2016 /*
2017 * Copy the name from the mbuf list to ndp->ni_pnbuf
2018 * and set the various ndp fields appropriately.
2019 */
2020 fromcp = *dposp;
2021 tocp = cnp->cn_pnbuf;
2022 md = *mdp;
2023 rem = mtod(md, caddr_t) + md->m_len - fromcp;
2024 for (i = 0; i < len; i++) {
2025 while (rem == 0) {
2026 md = md->m_next;
2027 if (md == NULL) {
2028 error = EBADRPC;
2029 goto out;
2030 }
2031 fromcp = mtod(md, caddr_t);
2032 rem = md->m_len;
2033 }
2034 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2035 error = EACCES;
2036 goto out;
2037 }
2038 *tocp++ = *fromcp++;
2039 rem--;
2040 }
2041 *tocp = '\0';
2042 *mdp = md;
2043 *dposp = fromcp;
2044 len = nfsm_rndup(len)-len;
2045 if (len > 0) {
2046 if (rem >= len)
2047 *dposp += len;
2048 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2049 goto out;
2050 }
2051
2052 /*
2053 * Extract and set starting directory.
2054 */
2055 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
2056 nam, &rdonly, kerbflag, pubflag);
2057 if (error)
2058 goto out;
2059 if (dp->v_type != VDIR) {
2060 vrele(dp);
2061 error = ENOTDIR;
2062 goto out;
2063 }
2064
2065 if (rdonly)
2066 cnp->cn_flags |= RDONLY;
2067
2068 *retdirp = dp;
2069
2070 if (pubflag) {
2071 /*
2072 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2073 * and the 'native path' indicator.
2074 */
2075 cp = PNBUF_GET();
2076 fromcp = cnp->cn_pnbuf;
2077 tocp = cp;
2078 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2079 switch ((unsigned char)*fromcp) {
2080 case WEBNFS_NATIVE_CHAR:
2081 /*
2082 * 'Native' path for us is the same
2083 * as a path according to the NFS spec,
2084 * just skip the escape char.
2085 */
2086 fromcp++;
2087 break;
2088 /*
2089 * More may be added in the future, range 0x80-0xff
2090 */
2091 default:
2092 error = EIO;
2093 PNBUF_PUT(cp);
2094 goto out;
2095 }
2096 }
2097 /*
2098 * Translate the '%' escapes, URL-style.
2099 */
2100 while (*fromcp != '\0') {
2101 if (*fromcp == WEBNFS_ESC_CHAR) {
2102 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2103 fromcp++;
2104 *tocp++ = HEXSTRTOI(fromcp);
2105 fromcp += 2;
2106 continue;
2107 } else {
2108 error = ENOENT;
2109 PNBUF_PUT(cp);
2110 goto out;
2111 }
2112 } else
2113 *tocp++ = *fromcp++;
2114 }
2115 *tocp = '\0';
2116 PNBUF_PUT(cnp->cn_pnbuf);
2117 cnp->cn_pnbuf = cp;
2118 }
2119
2120 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2121 ndp->ni_segflg = UIO_SYSSPACE;
2122 ndp->ni_rootdir = rootvnode;
2123
2124 if (pubflag) {
2125 ndp->ni_loopcnt = 0;
2126 if (cnp->cn_pnbuf[0] == '/')
2127 dp = rootvnode;
2128 } else {
2129 cnp->cn_flags |= NOCROSSMOUNT;
2130 }
2131
2132 cnp->cn_proc = p;
2133 VREF(dp);
2134
2135 for (;;) {
2136 cnp->cn_nameptr = cnp->cn_pnbuf;
2137 ndp->ni_startdir = dp;
2138 /*
2139 * And call lookup() to do the real work
2140 */
2141 error = lookup(ndp);
2142 if (error) {
2143 PNBUF_PUT(cnp->cn_pnbuf);
2144 return (error);
2145 }
2146 /*
2147 * Check for encountering a symbolic link
2148 */
2149 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2150 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2151 cnp->cn_flags |= HASBUF;
2152 else
2153 PNBUF_PUT(cnp->cn_pnbuf);
2154 return (0);
2155 } else {
2156 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
2157 VOP_UNLOCK(ndp->ni_dvp, 0);
2158 if (!pubflag) {
2159 error = EINVAL;
2160 break;
2161 }
2162
2163 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2164 error = ELOOP;
2165 break;
2166 }
2167 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2168 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2169 cnp->cn_proc);
2170 if (error != 0)
2171 break;
2172 }
2173 if (ndp->ni_pathlen > 1)
2174 cp = PNBUF_GET();
2175 else
2176 cp = cnp->cn_pnbuf;
2177 aiov.iov_base = cp;
2178 aiov.iov_len = MAXPATHLEN;
2179 auio.uio_iov = &aiov;
2180 auio.uio_iovcnt = 1;
2181 auio.uio_offset = 0;
2182 auio.uio_rw = UIO_READ;
2183 auio.uio_segflg = UIO_SYSSPACE;
2184 auio.uio_procp = NULL;
2185 auio.uio_resid = MAXPATHLEN;
2186 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2187 if (error) {
2188 badlink:
2189 if (ndp->ni_pathlen > 1)
2190 PNBUF_PUT(cp);
2191 break;
2192 }
2193 linklen = MAXPATHLEN - auio.uio_resid;
2194 if (linklen == 0) {
2195 error = ENOENT;
2196 goto badlink;
2197 }
2198 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2199 error = ENAMETOOLONG;
2200 goto badlink;
2201 }
2202 if (ndp->ni_pathlen > 1) {
2203 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2204 PNBUF_PUT(cnp->cn_pnbuf);
2205 cnp->cn_pnbuf = cp;
2206 } else
2207 cnp->cn_pnbuf[linklen] = '\0';
2208 ndp->ni_pathlen += linklen;
2209 vput(ndp->ni_vp);
2210 dp = ndp->ni_dvp;
2211 /*
2212 * Check if root directory should replace current directory.
2213 */
2214 if (cnp->cn_pnbuf[0] == '/') {
2215 vrele(dp);
2216 dp = ndp->ni_rootdir;
2217 VREF(dp);
2218 }
2219 }
2220 }
2221 vrele(ndp->ni_dvp);
2222 vput(ndp->ni_vp);
2223 ndp->ni_vp = NULL;
2224 out:
2225 PNBUF_PUT(cnp->cn_pnbuf);
2226 return (error);
2227 }
2228
2229 /*
2230 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2231 * boundary and only trims off the back end
2232 *
2233 * 1. trim off 'len' bytes as m_adj(mp, -len).
2234 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2235 */
2236 void
2237 nfs_zeropad(mp, len, nul)
2238 struct mbuf *mp;
2239 int len;
2240 int nul;
2241 {
2242 struct mbuf *m;
2243 int count;
2244
2245 /*
2246 * Trim from tail. Scan the mbuf chain,
2247 * calculating its length and finding the last mbuf.
2248 * If the adjustment only affects this mbuf, then just
2249 * adjust and return. Otherwise, rescan and truncate
2250 * after the remaining size.
2251 */
2252 count = 0;
2253 m = mp;
2254 for (;;) {
2255 count += m->m_len;
2256 if (m->m_next == NULL)
2257 break;
2258 m = m->m_next;
2259 }
2260
2261 KDASSERT(count >= len);
2262
2263 if (m->m_len >= len) {
2264 m->m_len -= len;
2265 } else {
2266 count -= len;
2267 /*
2268 * Correct length for chain is "count".
2269 * Find the mbuf with last data, adjust its length,
2270 * and toss data from remaining mbufs on chain.
2271 */
2272 for (m = mp; m; m = m->m_next) {
2273 if (m->m_len >= count) {
2274 m->m_len = count;
2275 break;
2276 }
2277 count -= m->m_len;
2278 }
2279 m_freem(m->m_next);
2280 m->m_next = NULL;
2281 }
2282
2283 KDASSERT(m->m_next == NULL);
2284
2285 /*
2286 * zero-padding.
2287 */
2288 if (nul > 0) {
2289 char *cp;
2290 int i;
2291
2292 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2293 struct mbuf *n;
2294
2295 KDASSERT(MLEN >= nul);
2296 n = m_get(M_WAIT, MT_DATA);
2297 MCLAIM(n, &nfs_mowner);
2298 n->m_len = nul;
2299 n->m_next = NULL;
2300 m->m_next = n;
2301 cp = mtod(n, caddr_t);
2302 } else {
2303 cp = mtod(m, caddr_t) + m->m_len;
2304 m->m_len += nul;
2305 }
2306 for (i = 0; i < nul; i++)
2307 *cp++ = '\0';
2308 }
2309 return;
2310 }
2311
2312 /*
2313 * Make these functions instead of macros, so that the kernel text size
2314 * doesn't get too big...
2315 */
2316 void
2317 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2318 struct nfsrv_descript *nfsd;
2319 int before_ret;
2320 struct vattr *before_vap;
2321 int after_ret;
2322 struct vattr *after_vap;
2323 struct mbuf **mbp;
2324 char **bposp;
2325 {
2326 struct mbuf *mb = *mbp;
2327 char *bpos = *bposp;
2328 u_int32_t *tl;
2329
2330 if (before_ret) {
2331 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2332 *tl = nfs_false;
2333 } else {
2334 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2335 *tl++ = nfs_true;
2336 txdr_hyper(before_vap->va_size, tl);
2337 tl += 2;
2338 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2339 tl += 2;
2340 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2341 }
2342 *bposp = bpos;
2343 *mbp = mb;
2344 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2345 }
2346
2347 void
2348 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2349 struct nfsrv_descript *nfsd;
2350 int after_ret;
2351 struct vattr *after_vap;
2352 struct mbuf **mbp;
2353 char **bposp;
2354 {
2355 struct mbuf *mb = *mbp;
2356 char *bpos = *bposp;
2357 u_int32_t *tl;
2358 struct nfs_fattr *fp;
2359
2360 if (after_ret) {
2361 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2362 *tl = nfs_false;
2363 } else {
2364 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2365 *tl++ = nfs_true;
2366 fp = (struct nfs_fattr *)tl;
2367 nfsm_srvfattr(nfsd, after_vap, fp);
2368 }
2369 *mbp = mb;
2370 *bposp = bpos;
2371 }
2372
2373 void
2374 nfsm_srvfattr(nfsd, vap, fp)
2375 struct nfsrv_descript *nfsd;
2376 struct vattr *vap;
2377 struct nfs_fattr *fp;
2378 {
2379
2380 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2381 fp->fa_uid = txdr_unsigned(vap->va_uid);
2382 fp->fa_gid = txdr_unsigned(vap->va_gid);
2383 if (nfsd->nd_flag & ND_NFSV3) {
2384 fp->fa_type = vtonfsv3_type(vap->va_type);
2385 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2386 txdr_hyper(vap->va_size, &fp->fa3_size);
2387 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2388 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2389 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2390 fp->fa3_fsid.nfsuquad[0] = 0;
2391 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2392 fp->fa3_fileid.nfsuquad[0] = 0;
2393 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2394 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2395 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2396 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2397 } else {
2398 fp->fa_type = vtonfsv2_type(vap->va_type);
2399 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2400 fp->fa2_size = txdr_unsigned(vap->va_size);
2401 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2402 if (vap->va_type == VFIFO)
2403 fp->fa2_rdev = 0xffffffff;
2404 else
2405 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2406 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2407 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2408 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2409 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2410 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2411 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2412 }
2413 }
2414
2415 /*
2416 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2417 * - look up fsid in mount list (if not found ret error)
2418 * - get vp and export rights by calling VFS_FHTOVP()
2419 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2420 * - if not lockflag unlock it with VOP_UNLOCK()
2421 */
2422 int
2423 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2424 fhandle_t *fhp;
2425 int lockflag;
2426 struct vnode **vpp;
2427 struct ucred *cred;
2428 struct nfssvc_sock *slp;
2429 struct mbuf *nam;
2430 int *rdonlyp;
2431 int kerbflag;
2432 {
2433 struct mount *mp;
2434 int i;
2435 struct ucred *credanon;
2436 int error, exflags;
2437 struct sockaddr_in *saddr;
2438
2439 *vpp = (struct vnode *)0;
2440
2441 if (nfs_ispublicfh(fhp)) {
2442 if (!pubflag || !nfs_pub.np_valid)
2443 return (ESTALE);
2444 fhp = &nfs_pub.np_handle;
2445 }
2446
2447 mp = vfs_getvfs(&fhp->fh_fsid);
2448 if (!mp)
2449 return (ESTALE);
2450 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2451 if (error)
2452 return (error);
2453 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2454 if (error)
2455 return (error);
2456
2457 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2458 saddr = mtod(nam, struct sockaddr_in *);
2459 if ((saddr->sin_family == AF_INET) &&
2460 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2461 vput(*vpp);
2462 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2463 }
2464 #ifdef INET6
2465 if ((saddr->sin_family == AF_INET6) &&
2466 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2467 vput(*vpp);
2468 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2469 }
2470 #endif
2471 }
2472 /*
2473 * Check/setup credentials.
2474 */
2475 if (exflags & MNT_EXKERB) {
2476 if (!kerbflag) {
2477 vput(*vpp);
2478 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2479 }
2480 } else if (kerbflag) {
2481 vput(*vpp);
2482 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2483 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2484 cred->cr_uid = credanon->cr_uid;
2485 cred->cr_gid = credanon->cr_gid;
2486 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2487 cred->cr_groups[i] = credanon->cr_groups[i];
2488 cred->cr_ngroups = i;
2489 }
2490 if (exflags & MNT_EXRDONLY)
2491 *rdonlyp = 1;
2492 else
2493 *rdonlyp = 0;
2494 if (!lockflag)
2495 VOP_UNLOCK(*vpp, 0);
2496 return (0);
2497 }
2498
2499 /*
2500 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2501 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2502 * transformed this to all zeroes in both cases, so check for it.
2503 */
2504 int
2505 nfs_ispublicfh(fhp)
2506 fhandle_t *fhp;
2507 {
2508 char *cp = (char *)fhp;
2509 int i;
2510
2511 for (i = 0; i < NFSX_V3FH; i++)
2512 if (*cp++ != 0)
2513 return (FALSE);
2514 return (TRUE);
2515 }
2516
2517 /*
2518 * This function compares two net addresses by family and returns TRUE
2519 * if they are the same host.
2520 * If there is any doubt, return FALSE.
2521 * The AF_INET family is handled as a special case so that address mbufs
2522 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2523 */
2524 int
2525 netaddr_match(family, haddr, nam)
2526 int family;
2527 union nethostaddr *haddr;
2528 struct mbuf *nam;
2529 {
2530 struct sockaddr_in *inetaddr;
2531
2532 switch (family) {
2533 case AF_INET:
2534 inetaddr = mtod(nam, struct sockaddr_in *);
2535 if (inetaddr->sin_family == AF_INET &&
2536 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2537 return (1);
2538 break;
2539 #ifdef INET6
2540 case AF_INET6:
2541 {
2542 struct sockaddr_in6 *sin6_1, *sin6_2;
2543
2544 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2545 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2546 if (sin6_1->sin6_family == AF_INET6 &&
2547 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2548 return 1;
2549 }
2550 #endif
2551 #ifdef ISO
2552 case AF_ISO:
2553 {
2554 struct sockaddr_iso *isoaddr1, *isoaddr2;
2555
2556 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2557 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2558 if (isoaddr1->siso_family == AF_ISO &&
2559 isoaddr1->siso_nlen > 0 &&
2560 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2561 SAME_ISOADDR(isoaddr1, isoaddr2))
2562 return (1);
2563 break;
2564 }
2565 #endif /* ISO */
2566 default:
2567 break;
2568 };
2569 return (0);
2570 }
2571
2572 /*
2573 * The write verifier has changed (probably due to a server reboot), so all
2574 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2575 * as dirty or are being written out just now, all this takes is clearing
2576 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2577 * the mount point.
2578 */
2579 void
2580 nfs_clearcommit(mp)
2581 struct mount *mp;
2582 {
2583 struct vnode *vp;
2584 struct nfsnode *np;
2585 struct vm_page *pg;
2586 struct nfsmount *nmp = VFSTONFS(mp);
2587
2588 lockmgr(&nmp->nm_writeverflock, LK_EXCLUSIVE, NULL);
2589
2590 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2591 KASSERT(vp->v_mount == mp);
2592 if (vp->v_type == VNON)
2593 continue;
2594 np = VTONFS(vp);
2595 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2596 np->n_pushedhi = 0;
2597 np->n_commitflags &=
2598 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2599 simple_lock(&vp->v_uobj.vmobjlock);
2600 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2601 pg->flags &= ~PG_NEEDCOMMIT;
2602 }
2603 simple_unlock(&vp->v_uobj.vmobjlock);
2604 }
2605 simple_lock(&nmp->nm_slock);
2606 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2607 simple_unlock(&nmp->nm_slock);
2608 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
2609 }
2610
2611 void
2612 nfs_merge_commit_ranges(vp)
2613 struct vnode *vp;
2614 {
2615 struct nfsnode *np = VTONFS(vp);
2616
2617 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2618
2619 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2620 np->n_pushedlo = np->n_pushlo;
2621 np->n_pushedhi = np->n_pushhi;
2622 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2623 } else {
2624 if (np->n_pushlo < np->n_pushedlo)
2625 np->n_pushedlo = np->n_pushlo;
2626 if (np->n_pushhi > np->n_pushedhi)
2627 np->n_pushedhi = np->n_pushhi;
2628 }
2629
2630 np->n_pushlo = np->n_pushhi = 0;
2631 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2632
2633 #ifdef NFS_DEBUG_COMMIT
2634 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2635 (unsigned)np->n_pushedhi);
2636 #endif
2637 }
2638
2639 int
2640 nfs_in_committed_range(vp, off, len)
2641 struct vnode *vp;
2642 off_t off, len;
2643 {
2644 struct nfsnode *np = VTONFS(vp);
2645 off_t lo, hi;
2646
2647 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2648 return 0;
2649 lo = off;
2650 hi = lo + len;
2651
2652 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2653 }
2654
2655 int
2656 nfs_in_tobecommitted_range(vp, off, len)
2657 struct vnode *vp;
2658 off_t off, len;
2659 {
2660 struct nfsnode *np = VTONFS(vp);
2661 off_t lo, hi;
2662
2663 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2664 return 0;
2665 lo = off;
2666 hi = lo + len;
2667
2668 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2669 }
2670
2671 void
2672 nfs_add_committed_range(vp, off, len)
2673 struct vnode *vp;
2674 off_t off, len;
2675 {
2676 struct nfsnode *np = VTONFS(vp);
2677 off_t lo, hi;
2678
2679 lo = off;
2680 hi = lo + len;
2681
2682 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2683 np->n_pushedlo = lo;
2684 np->n_pushedhi = hi;
2685 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2686 } else {
2687 if (hi > np->n_pushedhi)
2688 np->n_pushedhi = hi;
2689 if (lo < np->n_pushedlo)
2690 np->n_pushedlo = lo;
2691 }
2692 #ifdef NFS_DEBUG_COMMIT
2693 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2694 (unsigned)np->n_pushedhi);
2695 #endif
2696 }
2697
2698 void
2699 nfs_del_committed_range(vp, off, len)
2700 struct vnode *vp;
2701 off_t off, len;
2702 {
2703 struct nfsnode *np = VTONFS(vp);
2704 off_t lo, hi;
2705
2706 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2707 return;
2708
2709 lo = off;
2710 hi = lo + len;
2711
2712 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2713 return;
2714 if (lo <= np->n_pushedlo)
2715 np->n_pushedlo = hi;
2716 else if (hi >= np->n_pushedhi)
2717 np->n_pushedhi = lo;
2718 else {
2719 /*
2720 * XXX There's only one range. If the deleted range
2721 * is in the middle, pick the largest of the
2722 * contiguous ranges that it leaves.
2723 */
2724 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2725 np->n_pushedhi = lo;
2726 else
2727 np->n_pushedlo = hi;
2728 }
2729 #ifdef NFS_DEBUG_COMMIT
2730 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2731 (unsigned)np->n_pushedhi);
2732 #endif
2733 }
2734
2735 void
2736 nfs_add_tobecommitted_range(vp, off, len)
2737 struct vnode *vp;
2738 off_t off, len;
2739 {
2740 struct nfsnode *np = VTONFS(vp);
2741 off_t lo, hi;
2742
2743 lo = off;
2744 hi = lo + len;
2745
2746 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2747 np->n_pushlo = lo;
2748 np->n_pushhi = hi;
2749 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2750 } else {
2751 if (lo < np->n_pushlo)
2752 np->n_pushlo = lo;
2753 if (hi > np->n_pushhi)
2754 np->n_pushhi = hi;
2755 }
2756 #ifdef NFS_DEBUG_COMMIT
2757 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2758 (unsigned)np->n_pushhi);
2759 #endif
2760 }
2761
2762 void
2763 nfs_del_tobecommitted_range(vp, off, len)
2764 struct vnode *vp;
2765 off_t off, len;
2766 {
2767 struct nfsnode *np = VTONFS(vp);
2768 off_t lo, hi;
2769
2770 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2771 return;
2772
2773 lo = off;
2774 hi = lo + len;
2775
2776 if (lo > np->n_pushhi || hi < np->n_pushlo)
2777 return;
2778
2779 if (lo <= np->n_pushlo)
2780 np->n_pushlo = hi;
2781 else if (hi >= np->n_pushhi)
2782 np->n_pushhi = lo;
2783 else {
2784 /*
2785 * XXX There's only one range. If the deleted range
2786 * is in the middle, pick the largest of the
2787 * contiguous ranges that it leaves.
2788 */
2789 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2790 np->n_pushhi = lo;
2791 else
2792 np->n_pushlo = hi;
2793 }
2794 #ifdef NFS_DEBUG_COMMIT
2795 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2796 (unsigned)np->n_pushhi);
2797 #endif
2798 }
2799
2800 /*
2801 * Map errnos to NFS error numbers. For Version 3 also filter out error
2802 * numbers not specified for the associated procedure.
2803 */
2804 int
2805 nfsrv_errmap(nd, err)
2806 struct nfsrv_descript *nd;
2807 int err;
2808 {
2809 const short *defaulterrp, *errp;
2810
2811 if (nd->nd_flag & ND_NFSV3) {
2812 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2813 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2814 while (*++errp) {
2815 if (*errp == err)
2816 return (err);
2817 else if (*errp > err)
2818 break;
2819 }
2820 return ((int)*defaulterrp);
2821 } else
2822 return (err & 0xffff);
2823 }
2824 if (err <= ELAST)
2825 return ((int)nfsrv_v2errmap[err - 1]);
2826 return (NFSERR_IO);
2827 }
2828
2829 /*
2830 * Sort the group list in increasing numerical order.
2831 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2832 * that used to be here.)
2833 */
2834 void
2835 nfsrvw_sort(list, num)
2836 gid_t *list;
2837 int num;
2838 {
2839 int i, j;
2840 gid_t v;
2841
2842 /* Insertion sort. */
2843 for (i = 1; i < num; i++) {
2844 v = list[i];
2845 /* find correct slot for value v, moving others up */
2846 for (j = i; --j >= 0 && v < list[j];)
2847 list[j + 1] = list[j];
2848 list[j + 1] = v;
2849 }
2850 }
2851
2852 /*
2853 * copy credentials making sure that the result can be compared with memcmp().
2854 */
2855 void
2856 nfsrv_setcred(incred, outcred)
2857 struct ucred *incred, *outcred;
2858 {
2859 int i;
2860
2861 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2862 outcred->cr_ref = 1;
2863 outcred->cr_uid = incred->cr_uid;
2864 outcred->cr_gid = incred->cr_gid;
2865 outcred->cr_ngroups = incred->cr_ngroups;
2866 for (i = 0; i < incred->cr_ngroups; i++)
2867 outcred->cr_groups[i] = incred->cr_groups[i];
2868 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2869 }
2870
2871 u_int32_t
2872 nfs_getxid()
2873 {
2874 static u_int32_t base;
2875 static u_int32_t nfs_xid = 0;
2876 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2877 u_int32_t newxid;
2878
2879 simple_lock(&nfs_xidlock);
2880 /*
2881 * derive initial xid from system time
2882 * XXX time is invalid if root not yet mounted
2883 */
2884 if (__predict_false(!base && (rootvp))) {
2885 struct timeval tv;
2886
2887 microtime(&tv);
2888 base = tv.tv_sec << 12;
2889 nfs_xid = base;
2890 }
2891
2892 /*
2893 * Skip zero xid if it should ever happen.
2894 */
2895 if (__predict_false(++nfs_xid == 0))
2896 nfs_xid++;
2897 newxid = nfs_xid;
2898 simple_unlock(&nfs_xidlock);
2899
2900 return txdr_unsigned(newxid);
2901 }
2902
2903 /*
2904 * assign a new xid for existing request.
2905 * used for NFSERR_JUKEBOX handling.
2906 */
2907 void
2908 nfs_renewxid(struct nfsreq *req)
2909 {
2910 u_int32_t xid;
2911 int off;
2912
2913 xid = nfs_getxid();
2914 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2915 off = sizeof(u_int32_t); /* RPC record mark */
2916 else
2917 off = 0;
2918
2919 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2920 req->r_xid = xid;
2921 }
2922