nfs_subs.c revision 1.144 1 /* $NetBSD: nfs_subs.c,v 1.144 2005/01/26 10:30:58 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.144 2005/01/26 10:30:58 yamt Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100
101 #include <uvm/uvm_extern.h>
102
103 #include <nfs/rpcv2.h>
104 #include <nfs/nfsproto.h>
105 #include <nfs/nfsnode.h>
106 #include <nfs/nfs.h>
107 #include <nfs/xdr_subs.h>
108 #include <nfs/nfsm_subs.h>
109 #include <nfs/nfsmount.h>
110 #include <nfs/nqnfs.h>
111 #include <nfs/nfsrtt.h>
112 #include <nfs/nfs_var.h>
113
114 #include <miscfs/specfs/specdev.h>
115
116 #include <netinet/in.h>
117 #ifdef ISO
118 #include <netiso/iso.h>
119 #endif
120
121 /*
122 * Data items converted to xdr at startup, since they are constant
123 * This is kinda hokey, but may save a little time doing byte swaps
124 */
125 u_int32_t nfs_xdrneg1;
126 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
127 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
128 rpc_auth_kerb;
129 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
130
131 /* And other global data */
132 const nfstype nfsv2_type[9] =
133 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
134 const nfstype nfsv3_type[9] =
135 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
136 const enum vtype nv2tov_type[8] =
137 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
138 const enum vtype nv3tov_type[8] =
139 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
140 int nfs_ticks;
141 int nfs_commitsize;
142
143 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
144
145 /* NFS client/server stats. */
146 struct nfsstats nfsstats;
147
148 /*
149 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
150 */
151 const int nfsv3_procid[NFS_NPROCS] = {
152 NFSPROC_NULL,
153 NFSPROC_GETATTR,
154 NFSPROC_SETATTR,
155 NFSPROC_NOOP,
156 NFSPROC_LOOKUP,
157 NFSPROC_READLINK,
158 NFSPROC_READ,
159 NFSPROC_NOOP,
160 NFSPROC_WRITE,
161 NFSPROC_CREATE,
162 NFSPROC_REMOVE,
163 NFSPROC_RENAME,
164 NFSPROC_LINK,
165 NFSPROC_SYMLINK,
166 NFSPROC_MKDIR,
167 NFSPROC_RMDIR,
168 NFSPROC_READDIR,
169 NFSPROC_FSSTAT,
170 NFSPROC_NOOP,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP,
177 NFSPROC_NOOP
178 };
179
180 /*
181 * and the reverse mapping from generic to Version 2 procedure numbers
182 */
183 const int nfsv2_procid[NFS_NPROCS] = {
184 NFSV2PROC_NULL,
185 NFSV2PROC_GETATTR,
186 NFSV2PROC_SETATTR,
187 NFSV2PROC_LOOKUP,
188 NFSV2PROC_NOOP,
189 NFSV2PROC_READLINK,
190 NFSV2PROC_READ,
191 NFSV2PROC_WRITE,
192 NFSV2PROC_CREATE,
193 NFSV2PROC_MKDIR,
194 NFSV2PROC_SYMLINK,
195 NFSV2PROC_CREATE,
196 NFSV2PROC_REMOVE,
197 NFSV2PROC_RMDIR,
198 NFSV2PROC_RENAME,
199 NFSV2PROC_LINK,
200 NFSV2PROC_READDIR,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_STATFS,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_NOOP,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 NFSV2PROC_NOOP,
209 NFSV2PROC_NOOP,
210 };
211
212 /*
213 * Maps errno values to nfs error numbers.
214 * Use NFSERR_IO as the catch all for ones not specifically defined in
215 * RFC 1094.
216 */
217 static const u_char nfsrv_v2errmap[ELAST] = {
218 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
219 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
222 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
231 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
232 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
233 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
234 NFSERR_IO, NFSERR_IO,
235 };
236
237 /*
238 * Maps errno values to nfs error numbers.
239 * Although it is not obvious whether or not NFS clients really care if
240 * a returned error value is in the specified list for the procedure, the
241 * safest thing to do is filter them appropriately. For Version 2, the
242 * X/Open XNFS document is the only specification that defines error values
243 * for each RPC (The RFC simply lists all possible error values for all RPCs),
244 * so I have decided to not do this for Version 2.
245 * The first entry is the default error return and the rest are the valid
246 * errors for that RPC in increasing numeric order.
247 */
248 static const short nfsv3err_null[] = {
249 0,
250 0,
251 };
252
253 static const short nfsv3err_getattr[] = {
254 NFSERR_IO,
255 NFSERR_IO,
256 NFSERR_STALE,
257 NFSERR_BADHANDLE,
258 NFSERR_SERVERFAULT,
259 0,
260 };
261
262 static const short nfsv3err_setattr[] = {
263 NFSERR_IO,
264 NFSERR_PERM,
265 NFSERR_IO,
266 NFSERR_ACCES,
267 NFSERR_INVAL,
268 NFSERR_NOSPC,
269 NFSERR_ROFS,
270 NFSERR_DQUOT,
271 NFSERR_STALE,
272 NFSERR_BADHANDLE,
273 NFSERR_NOT_SYNC,
274 NFSERR_SERVERFAULT,
275 0,
276 };
277
278 static const short nfsv3err_lookup[] = {
279 NFSERR_IO,
280 NFSERR_NOENT,
281 NFSERR_IO,
282 NFSERR_ACCES,
283 NFSERR_NOTDIR,
284 NFSERR_NAMETOL,
285 NFSERR_STALE,
286 NFSERR_BADHANDLE,
287 NFSERR_SERVERFAULT,
288 0,
289 };
290
291 static const short nfsv3err_access[] = {
292 NFSERR_IO,
293 NFSERR_IO,
294 NFSERR_STALE,
295 NFSERR_BADHANDLE,
296 NFSERR_SERVERFAULT,
297 0,
298 };
299
300 static const short nfsv3err_readlink[] = {
301 NFSERR_IO,
302 NFSERR_IO,
303 NFSERR_ACCES,
304 NFSERR_INVAL,
305 NFSERR_STALE,
306 NFSERR_BADHANDLE,
307 NFSERR_NOTSUPP,
308 NFSERR_SERVERFAULT,
309 0,
310 };
311
312 static const short nfsv3err_read[] = {
313 NFSERR_IO,
314 NFSERR_IO,
315 NFSERR_NXIO,
316 NFSERR_ACCES,
317 NFSERR_INVAL,
318 NFSERR_STALE,
319 NFSERR_BADHANDLE,
320 NFSERR_SERVERFAULT,
321 NFSERR_JUKEBOX,
322 0,
323 };
324
325 static const short nfsv3err_write[] = {
326 NFSERR_IO,
327 NFSERR_IO,
328 NFSERR_ACCES,
329 NFSERR_INVAL,
330 NFSERR_FBIG,
331 NFSERR_NOSPC,
332 NFSERR_ROFS,
333 NFSERR_DQUOT,
334 NFSERR_STALE,
335 NFSERR_BADHANDLE,
336 NFSERR_SERVERFAULT,
337 NFSERR_JUKEBOX,
338 0,
339 };
340
341 static const short nfsv3err_create[] = {
342 NFSERR_IO,
343 NFSERR_IO,
344 NFSERR_ACCES,
345 NFSERR_EXIST,
346 NFSERR_NOTDIR,
347 NFSERR_NOSPC,
348 NFSERR_ROFS,
349 NFSERR_NAMETOL,
350 NFSERR_DQUOT,
351 NFSERR_STALE,
352 NFSERR_BADHANDLE,
353 NFSERR_NOTSUPP,
354 NFSERR_SERVERFAULT,
355 0,
356 };
357
358 static const short nfsv3err_mkdir[] = {
359 NFSERR_IO,
360 NFSERR_IO,
361 NFSERR_ACCES,
362 NFSERR_EXIST,
363 NFSERR_NOTDIR,
364 NFSERR_NOSPC,
365 NFSERR_ROFS,
366 NFSERR_NAMETOL,
367 NFSERR_DQUOT,
368 NFSERR_STALE,
369 NFSERR_BADHANDLE,
370 NFSERR_NOTSUPP,
371 NFSERR_SERVERFAULT,
372 0,
373 };
374
375 static const short nfsv3err_symlink[] = {
376 NFSERR_IO,
377 NFSERR_IO,
378 NFSERR_ACCES,
379 NFSERR_EXIST,
380 NFSERR_NOTDIR,
381 NFSERR_NOSPC,
382 NFSERR_ROFS,
383 NFSERR_NAMETOL,
384 NFSERR_DQUOT,
385 NFSERR_STALE,
386 NFSERR_BADHANDLE,
387 NFSERR_NOTSUPP,
388 NFSERR_SERVERFAULT,
389 0,
390 };
391
392 static const short nfsv3err_mknod[] = {
393 NFSERR_IO,
394 NFSERR_IO,
395 NFSERR_ACCES,
396 NFSERR_EXIST,
397 NFSERR_NOTDIR,
398 NFSERR_NOSPC,
399 NFSERR_ROFS,
400 NFSERR_NAMETOL,
401 NFSERR_DQUOT,
402 NFSERR_STALE,
403 NFSERR_BADHANDLE,
404 NFSERR_NOTSUPP,
405 NFSERR_SERVERFAULT,
406 NFSERR_BADTYPE,
407 0,
408 };
409
410 static const short nfsv3err_remove[] = {
411 NFSERR_IO,
412 NFSERR_NOENT,
413 NFSERR_IO,
414 NFSERR_ACCES,
415 NFSERR_NOTDIR,
416 NFSERR_ROFS,
417 NFSERR_NAMETOL,
418 NFSERR_STALE,
419 NFSERR_BADHANDLE,
420 NFSERR_SERVERFAULT,
421 0,
422 };
423
424 static const short nfsv3err_rmdir[] = {
425 NFSERR_IO,
426 NFSERR_NOENT,
427 NFSERR_IO,
428 NFSERR_ACCES,
429 NFSERR_EXIST,
430 NFSERR_NOTDIR,
431 NFSERR_INVAL,
432 NFSERR_ROFS,
433 NFSERR_NAMETOL,
434 NFSERR_NOTEMPTY,
435 NFSERR_STALE,
436 NFSERR_BADHANDLE,
437 NFSERR_NOTSUPP,
438 NFSERR_SERVERFAULT,
439 0,
440 };
441
442 static const short nfsv3err_rename[] = {
443 NFSERR_IO,
444 NFSERR_NOENT,
445 NFSERR_IO,
446 NFSERR_ACCES,
447 NFSERR_EXIST,
448 NFSERR_XDEV,
449 NFSERR_NOTDIR,
450 NFSERR_ISDIR,
451 NFSERR_INVAL,
452 NFSERR_NOSPC,
453 NFSERR_ROFS,
454 NFSERR_MLINK,
455 NFSERR_NAMETOL,
456 NFSERR_NOTEMPTY,
457 NFSERR_DQUOT,
458 NFSERR_STALE,
459 NFSERR_BADHANDLE,
460 NFSERR_NOTSUPP,
461 NFSERR_SERVERFAULT,
462 0,
463 };
464
465 static const short nfsv3err_link[] = {
466 NFSERR_IO,
467 NFSERR_IO,
468 NFSERR_ACCES,
469 NFSERR_EXIST,
470 NFSERR_XDEV,
471 NFSERR_NOTDIR,
472 NFSERR_INVAL,
473 NFSERR_NOSPC,
474 NFSERR_ROFS,
475 NFSERR_MLINK,
476 NFSERR_NAMETOL,
477 NFSERR_DQUOT,
478 NFSERR_STALE,
479 NFSERR_BADHANDLE,
480 NFSERR_NOTSUPP,
481 NFSERR_SERVERFAULT,
482 0,
483 };
484
485 static const short nfsv3err_readdir[] = {
486 NFSERR_IO,
487 NFSERR_IO,
488 NFSERR_ACCES,
489 NFSERR_NOTDIR,
490 NFSERR_STALE,
491 NFSERR_BADHANDLE,
492 NFSERR_BAD_COOKIE,
493 NFSERR_TOOSMALL,
494 NFSERR_SERVERFAULT,
495 0,
496 };
497
498 static const short nfsv3err_readdirplus[] = {
499 NFSERR_IO,
500 NFSERR_IO,
501 NFSERR_ACCES,
502 NFSERR_NOTDIR,
503 NFSERR_STALE,
504 NFSERR_BADHANDLE,
505 NFSERR_BAD_COOKIE,
506 NFSERR_NOTSUPP,
507 NFSERR_TOOSMALL,
508 NFSERR_SERVERFAULT,
509 0,
510 };
511
512 static const short nfsv3err_fsstat[] = {
513 NFSERR_IO,
514 NFSERR_IO,
515 NFSERR_STALE,
516 NFSERR_BADHANDLE,
517 NFSERR_SERVERFAULT,
518 0,
519 };
520
521 static const short nfsv3err_fsinfo[] = {
522 NFSERR_STALE,
523 NFSERR_STALE,
524 NFSERR_BADHANDLE,
525 NFSERR_SERVERFAULT,
526 0,
527 };
528
529 static const short nfsv3err_pathconf[] = {
530 NFSERR_STALE,
531 NFSERR_STALE,
532 NFSERR_BADHANDLE,
533 NFSERR_SERVERFAULT,
534 0,
535 };
536
537 static const short nfsv3err_commit[] = {
538 NFSERR_IO,
539 NFSERR_IO,
540 NFSERR_STALE,
541 NFSERR_BADHANDLE,
542 NFSERR_SERVERFAULT,
543 0,
544 };
545
546 static const short * const nfsrv_v3errmap[] = {
547 nfsv3err_null,
548 nfsv3err_getattr,
549 nfsv3err_setattr,
550 nfsv3err_lookup,
551 nfsv3err_access,
552 nfsv3err_readlink,
553 nfsv3err_read,
554 nfsv3err_write,
555 nfsv3err_create,
556 nfsv3err_mkdir,
557 nfsv3err_symlink,
558 nfsv3err_mknod,
559 nfsv3err_remove,
560 nfsv3err_rmdir,
561 nfsv3err_rename,
562 nfsv3err_link,
563 nfsv3err_readdir,
564 nfsv3err_readdirplus,
565 nfsv3err_fsstat,
566 nfsv3err_fsinfo,
567 nfsv3err_pathconf,
568 nfsv3err_commit,
569 };
570
571 extern struct nfsrtt nfsrtt;
572 extern time_t nqnfsstarttime;
573 extern int nqsrv_clockskew;
574 extern int nqsrv_writeslack;
575 extern int nqsrv_maxlease;
576 extern const int nqnfs_piggy[NFS_NPROCS];
577 extern struct nfsnodehashhead *nfsnodehashtbl;
578 extern u_long nfsnodehash;
579
580 u_long nfsdirhashmask;
581
582 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
583
584 /*
585 * Create the header for an rpc request packet
586 * The hsiz is the size of the rest of the nfs request header.
587 * (just used to decide if a cluster is a good idea)
588 */
589 struct mbuf *
590 nfsm_reqh(np, procid, hsiz, bposp)
591 struct nfsnode *np;
592 u_long procid;
593 int hsiz;
594 caddr_t *bposp;
595 {
596 struct mbuf *mb;
597 caddr_t bpos;
598 #ifndef NFS_V2_ONLY
599 struct nfsmount *nmp;
600 u_int32_t *tl;
601 int nqflag;
602 #endif
603
604 mb = m_get(M_WAIT, MT_DATA);
605 MCLAIM(mb, &nfs_mowner);
606 if (hsiz >= MINCLSIZE)
607 m_clget(mb, M_WAIT);
608 mb->m_len = 0;
609 bpos = mtod(mb, caddr_t);
610
611 #ifndef NFS_V2_ONLY
612 /*
613 * For NQNFS, add lease request.
614 */
615 if (np) {
616 nmp = VFSTONFS(np->n_vnode->v_mount);
617 if (nmp->nm_flag & NFSMNT_NQNFS) {
618 nqflag = NQNFS_NEEDLEASE(np, procid);
619 if (nqflag) {
620 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
621 *tl++ = txdr_unsigned(nqflag);
622 *tl = txdr_unsigned(nmp->nm_leaseterm);
623 } else {
624 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
625 *tl = 0;
626 }
627 }
628 }
629 #endif
630 /* Finally, return values */
631 *bposp = bpos;
632 return (mb);
633 }
634
635 /*
636 * Build the RPC header and fill in the authorization info.
637 * The authorization string argument is only used when the credentials
638 * come from outside of the kernel.
639 * Returns the head of the mbuf list.
640 */
641 struct mbuf *
642 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
643 verf_str, mrest, mrest_len, mbp, xidp)
644 struct ucred *cr;
645 int nmflag;
646 int procid;
647 int auth_type;
648 int auth_len;
649 char *auth_str;
650 int verf_len;
651 char *verf_str;
652 struct mbuf *mrest;
653 int mrest_len;
654 struct mbuf **mbp;
655 u_int32_t *xidp;
656 {
657 struct mbuf *mb;
658 u_int32_t *tl;
659 caddr_t bpos;
660 int i;
661 struct mbuf *mreq;
662 int siz, grpsiz, authsiz;
663
664 authsiz = nfsm_rndup(auth_len);
665 mb = m_gethdr(M_WAIT, MT_DATA);
666 MCLAIM(mb, &nfs_mowner);
667 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
668 m_clget(mb, M_WAIT);
669 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
670 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
671 } else {
672 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
673 }
674 mb->m_len = 0;
675 mreq = mb;
676 bpos = mtod(mb, caddr_t);
677
678 /*
679 * First the RPC header.
680 */
681 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
682
683 *tl++ = *xidp = nfs_getxid();
684 *tl++ = rpc_call;
685 *tl++ = rpc_vers;
686 if (nmflag & NFSMNT_NQNFS) {
687 *tl++ = txdr_unsigned(NQNFS_PROG);
688 *tl++ = txdr_unsigned(NQNFS_VER3);
689 } else {
690 *tl++ = txdr_unsigned(NFS_PROG);
691 if (nmflag & NFSMNT_NFSV3)
692 *tl++ = txdr_unsigned(NFS_VER3);
693 else
694 *tl++ = txdr_unsigned(NFS_VER2);
695 }
696 if (nmflag & NFSMNT_NFSV3)
697 *tl++ = txdr_unsigned(procid);
698 else
699 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
700
701 /*
702 * And then the authorization cred.
703 */
704 *tl++ = txdr_unsigned(auth_type);
705 *tl = txdr_unsigned(authsiz);
706 switch (auth_type) {
707 case RPCAUTH_UNIX:
708 nfsm_build(tl, u_int32_t *, auth_len);
709 *tl++ = 0; /* stamp ?? */
710 *tl++ = 0; /* NULL hostname */
711 *tl++ = txdr_unsigned(cr->cr_uid);
712 *tl++ = txdr_unsigned(cr->cr_gid);
713 grpsiz = (auth_len >> 2) - 5;
714 *tl++ = txdr_unsigned(grpsiz);
715 for (i = 0; i < grpsiz; i++)
716 *tl++ = txdr_unsigned(cr->cr_groups[i]);
717 break;
718 case RPCAUTH_KERB4:
719 siz = auth_len;
720 while (siz > 0) {
721 if (M_TRAILINGSPACE(mb) == 0) {
722 struct mbuf *mb2;
723 mb2 = m_get(M_WAIT, MT_DATA);
724 MCLAIM(mb2, &nfs_mowner);
725 if (siz >= MINCLSIZE)
726 m_clget(mb2, M_WAIT);
727 mb->m_next = mb2;
728 mb = mb2;
729 mb->m_len = 0;
730 bpos = mtod(mb, caddr_t);
731 }
732 i = min(siz, M_TRAILINGSPACE(mb));
733 memcpy(bpos, auth_str, i);
734 mb->m_len += i;
735 auth_str += i;
736 bpos += i;
737 siz -= i;
738 }
739 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
740 for (i = 0; i < siz; i++)
741 *bpos++ = '\0';
742 mb->m_len += siz;
743 }
744 break;
745 };
746
747 /*
748 * And the verifier...
749 */
750 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
751 if (verf_str) {
752 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
753 *tl = txdr_unsigned(verf_len);
754 siz = verf_len;
755 while (siz > 0) {
756 if (M_TRAILINGSPACE(mb) == 0) {
757 struct mbuf *mb2;
758 mb2 = m_get(M_WAIT, MT_DATA);
759 MCLAIM(mb2, &nfs_mowner);
760 if (siz >= MINCLSIZE)
761 m_clget(mb2, M_WAIT);
762 mb->m_next = mb2;
763 mb = mb2;
764 mb->m_len = 0;
765 bpos = mtod(mb, caddr_t);
766 }
767 i = min(siz, M_TRAILINGSPACE(mb));
768 memcpy(bpos, verf_str, i);
769 mb->m_len += i;
770 verf_str += i;
771 bpos += i;
772 siz -= i;
773 }
774 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
775 for (i = 0; i < siz; i++)
776 *bpos++ = '\0';
777 mb->m_len += siz;
778 }
779 } else {
780 *tl++ = txdr_unsigned(RPCAUTH_NULL);
781 *tl = 0;
782 }
783 mb->m_next = mrest;
784 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
785 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
786 *mbp = mb;
787 return (mreq);
788 }
789
790 /*
791 * copies mbuf chain to the uio scatter/gather list
792 */
793 int
794 nfsm_mbuftouio(mrep, uiop, siz, dpos)
795 struct mbuf **mrep;
796 struct uio *uiop;
797 int siz;
798 caddr_t *dpos;
799 {
800 char *mbufcp, *uiocp;
801 int xfer, left, len;
802 struct mbuf *mp;
803 long uiosiz, rem;
804 int error = 0;
805
806 mp = *mrep;
807 mbufcp = *dpos;
808 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
809 rem = nfsm_rndup(siz)-siz;
810 while (siz > 0) {
811 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
812 return (EFBIG);
813 left = uiop->uio_iov->iov_len;
814 uiocp = uiop->uio_iov->iov_base;
815 if (left > siz)
816 left = siz;
817 uiosiz = left;
818 while (left > 0) {
819 while (len == 0) {
820 mp = mp->m_next;
821 if (mp == NULL)
822 return (EBADRPC);
823 mbufcp = mtod(mp, caddr_t);
824 len = mp->m_len;
825 }
826 xfer = (left > len) ? len : left;
827 #ifdef notdef
828 /* Not Yet.. */
829 if (uiop->uio_iov->iov_op != NULL)
830 (*(uiop->uio_iov->iov_op))
831 (mbufcp, uiocp, xfer);
832 else
833 #endif
834 if (uiop->uio_segflg == UIO_SYSSPACE)
835 memcpy(uiocp, mbufcp, xfer);
836 else
837 copyout(mbufcp, uiocp, xfer);
838 left -= xfer;
839 len -= xfer;
840 mbufcp += xfer;
841 uiocp += xfer;
842 uiop->uio_offset += xfer;
843 uiop->uio_resid -= xfer;
844 }
845 if (uiop->uio_iov->iov_len <= siz) {
846 uiop->uio_iovcnt--;
847 uiop->uio_iov++;
848 } else {
849 uiop->uio_iov->iov_base =
850 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
851 uiop->uio_iov->iov_len -= uiosiz;
852 }
853 siz -= uiosiz;
854 }
855 *dpos = mbufcp;
856 *mrep = mp;
857 if (rem > 0) {
858 if (len < rem)
859 error = nfs_adv(mrep, dpos, rem, len);
860 else
861 *dpos += rem;
862 }
863 return (error);
864 }
865
866 /*
867 * copies a uio scatter/gather list to an mbuf chain.
868 * NOTE: can ony handle iovcnt == 1
869 */
870 int
871 nfsm_uiotombuf(uiop, mq, siz, bpos)
872 struct uio *uiop;
873 struct mbuf **mq;
874 int siz;
875 caddr_t *bpos;
876 {
877 char *uiocp;
878 struct mbuf *mp, *mp2;
879 int xfer, left, mlen;
880 int uiosiz, clflg, rem;
881 char *cp;
882
883 #ifdef DIAGNOSTIC
884 if (uiop->uio_iovcnt != 1)
885 panic("nfsm_uiotombuf: iovcnt != 1");
886 #endif
887
888 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
889 clflg = 1;
890 else
891 clflg = 0;
892 rem = nfsm_rndup(siz)-siz;
893 mp = mp2 = *mq;
894 while (siz > 0) {
895 left = uiop->uio_iov->iov_len;
896 uiocp = uiop->uio_iov->iov_base;
897 if (left > siz)
898 left = siz;
899 uiosiz = left;
900 while (left > 0) {
901 mlen = M_TRAILINGSPACE(mp);
902 if (mlen == 0) {
903 mp = m_get(M_WAIT, MT_DATA);
904 MCLAIM(mp, &nfs_mowner);
905 if (clflg)
906 m_clget(mp, M_WAIT);
907 mp->m_len = 0;
908 mp2->m_next = mp;
909 mp2 = mp;
910 mlen = M_TRAILINGSPACE(mp);
911 }
912 xfer = (left > mlen) ? mlen : left;
913 #ifdef notdef
914 /* Not Yet.. */
915 if (uiop->uio_iov->iov_op != NULL)
916 (*(uiop->uio_iov->iov_op))
917 (uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
918 else
919 #endif
920 if (uiop->uio_segflg == UIO_SYSSPACE)
921 memcpy(mtod(mp, caddr_t)+mp->m_len, uiocp, xfer);
922 else
923 copyin(uiocp, mtod(mp, caddr_t)+mp->m_len, xfer);
924 mp->m_len += xfer;
925 left -= xfer;
926 uiocp += xfer;
927 uiop->uio_offset += xfer;
928 uiop->uio_resid -= xfer;
929 }
930 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
931 uiosiz;
932 uiop->uio_iov->iov_len -= uiosiz;
933 siz -= uiosiz;
934 }
935 if (rem > 0) {
936 if (rem > M_TRAILINGSPACE(mp)) {
937 mp = m_get(M_WAIT, MT_DATA);
938 MCLAIM(mp, &nfs_mowner);
939 mp->m_len = 0;
940 mp2->m_next = mp;
941 }
942 cp = mtod(mp, caddr_t)+mp->m_len;
943 for (left = 0; left < rem; left++)
944 *cp++ = '\0';
945 mp->m_len += rem;
946 *bpos = cp;
947 } else
948 *bpos = mtod(mp, caddr_t)+mp->m_len;
949 *mq = mp;
950 return (0);
951 }
952
953 /*
954 * Get at least "siz" bytes of correctly aligned data.
955 * When called the mbuf pointers are not necessarily correct,
956 * dsosp points to what ought to be in m_data and left contains
957 * what ought to be in m_len.
958 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
959 * cases. (The macros use the vars. dpos and dpos2)
960 */
961 int
962 nfsm_disct(mdp, dposp, siz, left, cp2)
963 struct mbuf **mdp;
964 caddr_t *dposp;
965 int siz;
966 int left;
967 caddr_t *cp2;
968 {
969 struct mbuf *m1, *m2;
970 struct mbuf *havebuf = NULL;
971 caddr_t src = *dposp;
972 caddr_t dst;
973 int len;
974
975 #ifdef DEBUG
976 if (left < 0)
977 panic("nfsm_disct: left < 0");
978 #endif
979 m1 = *mdp;
980 /*
981 * Skip through the mbuf chain looking for an mbuf with
982 * some data. If the first mbuf found has enough data
983 * and it is correctly aligned return it.
984 */
985 while (left == 0) {
986 havebuf = m1;
987 *mdp = m1 = m1->m_next;
988 if (m1 == NULL)
989 return (EBADRPC);
990 src = mtod(m1, caddr_t);
991 left = m1->m_len;
992 /*
993 * If we start a new mbuf and it is big enough
994 * and correctly aligned just return it, don't
995 * do any pull up.
996 */
997 if (left >= siz && nfsm_aligned(src)) {
998 *cp2 = src;
999 *dposp = src + siz;
1000 return (0);
1001 }
1002 }
1003 if (m1->m_flags & M_EXT) {
1004 if (havebuf) {
1005 /* If the first mbuf with data has external data
1006 * and there is a previous empty mbuf use it
1007 * to move the data into.
1008 */
1009 m2 = m1;
1010 *mdp = m1 = havebuf;
1011 if (m1->m_flags & M_EXT) {
1012 MEXTREMOVE(m1);
1013 }
1014 } else {
1015 /*
1016 * If the first mbuf has a external data
1017 * and there is no previous empty mbuf
1018 * allocate a new mbuf and move the external
1019 * data to the new mbuf. Also make the first
1020 * mbuf look empty.
1021 */
1022 m2 = m_get(M_WAIT, MT_DATA);
1023 m2->m_ext = m1->m_ext;
1024 m2->m_data = src;
1025 m2->m_len = left;
1026 MCLADDREFERENCE(m1, m2);
1027 MEXTREMOVE(m1);
1028 m2->m_next = m1->m_next;
1029 m1->m_next = m2;
1030 }
1031 m1->m_len = 0;
1032 if (m1->m_flags & M_PKTHDR)
1033 dst = m1->m_pktdat;
1034 else
1035 dst = m1->m_dat;
1036 m1->m_data = dst;
1037 } else {
1038 /*
1039 * If the first mbuf has no external data
1040 * move the data to the front of the mbuf.
1041 */
1042 if (m1->m_flags & M_PKTHDR)
1043 dst = m1->m_pktdat;
1044 else
1045 dst = m1->m_dat;
1046 m1->m_data = dst;
1047 if (dst != src)
1048 memmove(dst, src, left);
1049 dst += left;
1050 m1->m_len = left;
1051 m2 = m1->m_next;
1052 }
1053 *cp2 = m1->m_data;
1054 *dposp = mtod(m1, caddr_t) + siz;
1055 /*
1056 * Loop through mbufs pulling data up into first mbuf until
1057 * the first mbuf is full or there is no more data to
1058 * pullup.
1059 */
1060 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1061 if ((len = min(len, m2->m_len)) != 0)
1062 memcpy(dst, m2->m_data, len);
1063 m1->m_len += len;
1064 dst += len;
1065 m2->m_data += len;
1066 m2->m_len -= len;
1067 m2 = m2->m_next;
1068 }
1069 if (m1->m_len < siz)
1070 return (EBADRPC);
1071 return (0);
1072 }
1073
1074 /*
1075 * Advance the position in the mbuf chain.
1076 */
1077 int
1078 nfs_adv(mdp, dposp, offs, left)
1079 struct mbuf **mdp;
1080 caddr_t *dposp;
1081 int offs;
1082 int left;
1083 {
1084 struct mbuf *m;
1085 int s;
1086
1087 m = *mdp;
1088 s = left;
1089 while (s < offs) {
1090 offs -= s;
1091 m = m->m_next;
1092 if (m == NULL)
1093 return (EBADRPC);
1094 s = m->m_len;
1095 }
1096 *mdp = m;
1097 *dposp = mtod(m, caddr_t)+offs;
1098 return (0);
1099 }
1100
1101 /*
1102 * Copy a string into mbufs for the hard cases...
1103 */
1104 int
1105 nfsm_strtmbuf(mb, bpos, cp, siz)
1106 struct mbuf **mb;
1107 char **bpos;
1108 const char *cp;
1109 long siz;
1110 {
1111 struct mbuf *m1 = NULL, *m2;
1112 long left, xfer, len, tlen;
1113 u_int32_t *tl;
1114 int putsize;
1115
1116 putsize = 1;
1117 m2 = *mb;
1118 left = M_TRAILINGSPACE(m2);
1119 if (left > 0) {
1120 tl = ((u_int32_t *)(*bpos));
1121 *tl++ = txdr_unsigned(siz);
1122 putsize = 0;
1123 left -= NFSX_UNSIGNED;
1124 m2->m_len += NFSX_UNSIGNED;
1125 if (left > 0) {
1126 memcpy((caddr_t) tl, cp, left);
1127 siz -= left;
1128 cp += left;
1129 m2->m_len += left;
1130 left = 0;
1131 }
1132 }
1133 /* Loop around adding mbufs */
1134 while (siz > 0) {
1135 m1 = m_get(M_WAIT, MT_DATA);
1136 MCLAIM(m1, &nfs_mowner);
1137 if (siz > MLEN)
1138 m_clget(m1, M_WAIT);
1139 m1->m_len = NFSMSIZ(m1);
1140 m2->m_next = m1;
1141 m2 = m1;
1142 tl = mtod(m1, u_int32_t *);
1143 tlen = 0;
1144 if (putsize) {
1145 *tl++ = txdr_unsigned(siz);
1146 m1->m_len -= NFSX_UNSIGNED;
1147 tlen = NFSX_UNSIGNED;
1148 putsize = 0;
1149 }
1150 if (siz < m1->m_len) {
1151 len = nfsm_rndup(siz);
1152 xfer = siz;
1153 if (xfer < len)
1154 *(tl+(xfer>>2)) = 0;
1155 } else {
1156 xfer = len = m1->m_len;
1157 }
1158 memcpy((caddr_t) tl, cp, xfer);
1159 m1->m_len = len+tlen;
1160 siz -= xfer;
1161 cp += xfer;
1162 }
1163 *mb = m1;
1164 *bpos = mtod(m1, caddr_t)+m1->m_len;
1165 return (0);
1166 }
1167
1168 /*
1169 * Directory caching routines. They work as follows:
1170 * - a cache is maintained per VDIR nfsnode.
1171 * - for each offset cookie that is exported to userspace, and can
1172 * thus be thrown back at us as an offset to VOP_READDIR, store
1173 * information in the cache.
1174 * - cached are:
1175 * - cookie itself
1176 * - blocknumber (essentially just a search key in the buffer cache)
1177 * - entry number in block.
1178 * - offset cookie of block in which this entry is stored
1179 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1180 * - entries are looked up in a hash table
1181 * - also maintained is an LRU list of entries, used to determine
1182 * which ones to delete if the cache grows too large.
1183 * - if 32 <-> 64 translation mode is requested for a filesystem,
1184 * the cache also functions as a translation table
1185 * - in the translation case, invalidating the cache does not mean
1186 * flushing it, but just marking entries as invalid, except for
1187 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1188 * still be able to use the cache as a translation table.
1189 * - 32 bit cookies are uniquely created by combining the hash table
1190 * entry value, and one generation count per hash table entry,
1191 * incremented each time an entry is appended to the chain.
1192 * - the cache is invalidated each time a direcory is modified
1193 * - sanity checks are also done; if an entry in a block turns
1194 * out not to have a matching cookie, the cache is invalidated
1195 * and a new block starting from the wanted offset is fetched from
1196 * the server.
1197 * - directory entries as read from the server are extended to contain
1198 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1199 * the cache and exporting them to userspace through the cookie
1200 * argument to VOP_READDIR.
1201 */
1202
1203 u_long
1204 nfs_dirhash(off)
1205 off_t off;
1206 {
1207 int i;
1208 char *cp = (char *)&off;
1209 u_long sum = 0L;
1210
1211 for (i = 0 ; i < sizeof (off); i++)
1212 sum += *cp++;
1213
1214 return sum;
1215 }
1216
1217 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1218 #define NFSDC_LOCK(np) simple_lock(_NFSDC_MTX(np))
1219 #define NFSDC_UNLOCK(np) simple_unlock(_NFSDC_MTX(np))
1220 #define NFSDC_ASSERT_LOCKED(np) LOCK_ASSERT(simple_lock_held(_NFSDC_MTX(np)))
1221
1222 void
1223 nfs_initdircache(vp)
1224 struct vnode *vp;
1225 {
1226 struct nfsnode *np = VTONFS(vp);
1227 struct nfsdirhashhead *dircache;
1228
1229 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1230 M_WAITOK, &nfsdirhashmask);
1231
1232 NFSDC_LOCK(np);
1233 if (np->n_dircache == NULL) {
1234 np->n_dircachesize = 0;
1235 np->n_dircache = dircache;
1236 dircache = NULL;
1237 TAILQ_INIT(&np->n_dirchain);
1238 }
1239 NFSDC_UNLOCK(np);
1240 if (dircache)
1241 hashdone(dircache, M_NFSDIROFF);
1242 }
1243
1244 void
1245 nfs_initdirxlatecookie(vp)
1246 struct vnode *vp;
1247 {
1248 struct nfsnode *np = VTONFS(vp);
1249 unsigned *dirgens;
1250
1251 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1252
1253 dirgens = malloc(NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1254 M_WAITOK|M_ZERO);
1255 NFSDC_LOCK(np);
1256 if (np->n_dirgens == NULL) {
1257 np->n_dirgens = dirgens;
1258 dirgens = NULL;
1259 }
1260 NFSDC_UNLOCK(np);
1261 if (dirgens)
1262 free(dirgens, M_NFSDIROFF);
1263 }
1264
1265 static const struct nfsdircache dzero;
1266
1267 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1268 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1269 struct nfsdircache *));
1270
1271 static void
1272 nfs_unlinkdircache(np, ndp)
1273 struct nfsnode *np;
1274 struct nfsdircache *ndp;
1275 {
1276
1277 NFSDC_ASSERT_LOCKED(np);
1278 KASSERT(ndp != &dzero);
1279
1280 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1281 return;
1282
1283 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1284 LIST_REMOVE(ndp, dc_hash);
1285 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1286
1287 nfs_putdircache_unlocked(np, ndp);
1288 }
1289
1290 void
1291 nfs_putdircache(np, ndp)
1292 struct nfsnode *np;
1293 struct nfsdircache *ndp;
1294 {
1295 int ref;
1296
1297 if (ndp == &dzero)
1298 return;
1299
1300 KASSERT(ndp->dc_refcnt > 0);
1301 NFSDC_LOCK(np);
1302 ref = --ndp->dc_refcnt;
1303 NFSDC_UNLOCK(np);
1304
1305 if (ref == 0)
1306 free(ndp, M_NFSDIROFF);
1307 }
1308
1309 static void
1310 nfs_putdircache_unlocked(np, ndp)
1311 struct nfsnode *np;
1312 struct nfsdircache *ndp;
1313 {
1314 int ref;
1315
1316 NFSDC_ASSERT_LOCKED(np);
1317
1318 if (ndp == &dzero)
1319 return;
1320
1321 KASSERT(ndp->dc_refcnt > 0);
1322 ref = --ndp->dc_refcnt;
1323 if (ref == 0)
1324 free(ndp, M_NFSDIROFF);
1325 }
1326
1327 struct nfsdircache *
1328 nfs_searchdircache(vp, off, do32, hashent)
1329 struct vnode *vp;
1330 off_t off;
1331 int do32;
1332 int *hashent;
1333 {
1334 struct nfsdirhashhead *ndhp;
1335 struct nfsdircache *ndp = NULL;
1336 struct nfsnode *np = VTONFS(vp);
1337 unsigned ent;
1338
1339 /*
1340 * Zero is always a valid cookie.
1341 */
1342 if (off == 0)
1343 /* LINTED const cast away */
1344 return (struct nfsdircache *)&dzero;
1345
1346 if (!np->n_dircache)
1347 return NULL;
1348
1349 /*
1350 * We use a 32bit cookie as search key, directly reconstruct
1351 * the hashentry. Else use the hashfunction.
1352 */
1353 if (do32) {
1354 ent = (u_int32_t)off >> 24;
1355 if (ent >= NFS_DIRHASHSIZ)
1356 return NULL;
1357 ndhp = &np->n_dircache[ent];
1358 } else {
1359 ndhp = NFSDIRHASH(np, off);
1360 }
1361
1362 if (hashent)
1363 *hashent = (int)(ndhp - np->n_dircache);
1364
1365 NFSDC_LOCK(np);
1366 if (do32) {
1367 LIST_FOREACH(ndp, ndhp, dc_hash) {
1368 if (ndp->dc_cookie32 == (u_int32_t)off) {
1369 /*
1370 * An invalidated entry will become the
1371 * start of a new block fetched from
1372 * the server.
1373 */
1374 if (ndp->dc_flags & NFSDC_INVALID) {
1375 ndp->dc_blkcookie = ndp->dc_cookie;
1376 ndp->dc_entry = 0;
1377 ndp->dc_flags &= ~NFSDC_INVALID;
1378 }
1379 break;
1380 }
1381 }
1382 } else {
1383 LIST_FOREACH(ndp, ndhp, dc_hash) {
1384 if (ndp->dc_cookie == off)
1385 break;
1386 }
1387 }
1388 if (ndp != NULL)
1389 ndp->dc_refcnt++;
1390 NFSDC_UNLOCK(np);
1391 return ndp;
1392 }
1393
1394
1395 struct nfsdircache *
1396 nfs_enterdircache(vp, off, blkoff, en, blkno)
1397 struct vnode *vp;
1398 off_t off, blkoff;
1399 int en;
1400 daddr_t blkno;
1401 {
1402 struct nfsnode *np = VTONFS(vp);
1403 struct nfsdirhashhead *ndhp;
1404 struct nfsdircache *ndp = NULL;
1405 struct nfsdircache *newndp = NULL;
1406 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1407 int hashent, gen, overwrite;
1408
1409 /*
1410 * XXX refuse entries for offset 0. amd(8) erroneously sets
1411 * cookie 0 for the '.' entry, making this necessary. This
1412 * isn't so bad, as 0 is a special case anyway.
1413 */
1414 if (off == 0)
1415 /* LINTED const cast away */
1416 return (struct nfsdircache *)&dzero;
1417
1418 if (!np->n_dircache)
1419 /*
1420 * XXX would like to do this in nfs_nget but vtype
1421 * isn't known at that time.
1422 */
1423 nfs_initdircache(vp);
1424
1425 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1426 nfs_initdirxlatecookie(vp);
1427
1428 retry:
1429 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1430
1431 NFSDC_LOCK(np);
1432 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1433 /*
1434 * Overwriting an old entry. Check if it's the same.
1435 * If so, just return. If not, remove the old entry.
1436 */
1437 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1438 goto done;
1439 nfs_unlinkdircache(np, ndp);
1440 nfs_putdircache_unlocked(np, ndp);
1441 ndp = NULL;
1442 }
1443
1444 ndhp = &np->n_dircache[hashent];
1445
1446 if (!ndp) {
1447 if (newndp == NULL) {
1448 NFSDC_UNLOCK(np);
1449 newndp = malloc(sizeof(*ndp), M_NFSDIROFF, M_WAITOK);
1450 newndp->dc_refcnt = 1;
1451 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1452 goto retry;
1453 }
1454 ndp = newndp;
1455 newndp = NULL;
1456 overwrite = 0;
1457 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1458 /*
1459 * We're allocating a new entry, so bump the
1460 * generation number.
1461 */
1462 gen = ++np->n_dirgens[hashent];
1463 if (gen == 0) {
1464 np->n_dirgens[hashent]++;
1465 gen++;
1466 }
1467 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1468 }
1469 } else
1470 overwrite = 1;
1471
1472 ndp->dc_cookie = off;
1473 ndp->dc_blkcookie = blkoff;
1474 ndp->dc_entry = en;
1475 ndp->dc_flags = 0;
1476
1477 if (overwrite)
1478 goto done;
1479
1480 /*
1481 * If the maximum directory cookie cache size has been reached
1482 * for this node, take one off the front. The idea is that
1483 * directories are typically read front-to-back once, so that
1484 * the oldest entries can be thrown away without much performance
1485 * loss.
1486 */
1487 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1488 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1489 } else
1490 np->n_dircachesize++;
1491
1492 KASSERT(ndp->dc_refcnt == 1);
1493 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1494 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1495 ndp->dc_refcnt++;
1496 done:
1497 KASSERT(ndp->dc_refcnt > 0);
1498 NFSDC_UNLOCK(np);
1499 if (newndp)
1500 nfs_putdircache(np, newndp);
1501 return ndp;
1502 }
1503
1504 void
1505 nfs_invaldircache(vp, forcefree)
1506 struct vnode *vp;
1507 int forcefree;
1508 {
1509 struct nfsnode *np = VTONFS(vp);
1510 struct nfsdircache *ndp = NULL;
1511 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1512
1513 #ifdef DIAGNOSTIC
1514 if (vp->v_type != VDIR)
1515 panic("nfs: invaldircache: not dir");
1516 #endif
1517
1518 np->n_flag &= ~NEOFVALID;
1519
1520 if (!np->n_dircache)
1521 return;
1522
1523 NFSDC_LOCK(np);
1524 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1525 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1526 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1527 nfs_unlinkdircache(np, ndp);
1528 }
1529 np->n_dircachesize = 0;
1530 if (forcefree && np->n_dirgens) {
1531 FREE(np->n_dirgens, M_NFSDIROFF);
1532 np->n_dirgens = NULL;
1533 }
1534 } else {
1535 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1536 ndp->dc_flags |= NFSDC_INVALID;
1537 }
1538
1539 NFSDC_UNLOCK(np);
1540 }
1541
1542 /*
1543 * Called once before VFS init to initialize shared and
1544 * server-specific data structures.
1545 */
1546 void
1547 nfs_init()
1548 {
1549 nfsrtt.pos = 0;
1550 rpc_vers = txdr_unsigned(RPC_VER2);
1551 rpc_call = txdr_unsigned(RPC_CALL);
1552 rpc_reply = txdr_unsigned(RPC_REPLY);
1553 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1554 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1555 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1556 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1557 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1558 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1559 nfs_prog = txdr_unsigned(NFS_PROG);
1560 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1561 nfs_true = txdr_unsigned(TRUE);
1562 nfs_false = txdr_unsigned(FALSE);
1563 nfs_xdrneg1 = txdr_unsigned(-1);
1564 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1565 if (nfs_ticks < 1)
1566 nfs_ticks = 1;
1567 #ifdef NFSSERVER
1568 nfsrv_init(0); /* Init server data structures */
1569 nfsrv_initcache(); /* Init the server request cache */
1570 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
1571 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr);
1572 #endif /* NFSSERVER */
1573
1574 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1575 /*
1576 * Initialize the nqnfs data structures.
1577 */
1578 if (nqnfsstarttime == 0) {
1579 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1580 + nqsrv_clockskew + nqsrv_writeslack;
1581 NQLOADNOVRAM(nqnfsstarttime);
1582 CIRCLEQ_INIT(&nqtimerhead);
1583 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1584 M_WAITOK, &nqfhhash);
1585 }
1586 #endif
1587
1588 exithook_establish(nfs_exit, NULL);
1589
1590 /*
1591 * Initialize reply list and start timer
1592 */
1593 TAILQ_INIT(&nfs_reqq);
1594 nfs_timer(NULL);
1595 MOWNER_ATTACH(&nfs_mowner);
1596
1597 #ifdef NFS
1598 /* Initialize the kqueue structures */
1599 nfs_kqinit();
1600 /* Initialize the iod structures */
1601 nfs_iodinit();
1602 #endif
1603 }
1604
1605 #ifdef NFS
1606 /*
1607 * Called once at VFS init to initialize client-specific data structures.
1608 */
1609 void
1610 nfs_vfs_init()
1611 {
1612 nfs_nhinit(); /* Init the nfsnode table */
1613 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1614 }
1615
1616 void
1617 nfs_vfs_reinit()
1618 {
1619 nfs_nhreinit();
1620 }
1621
1622 void
1623 nfs_vfs_done()
1624 {
1625 nfs_nhdone();
1626 }
1627
1628 /*
1629 * Attribute cache routines.
1630 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1631 * that are on the mbuf list
1632 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1633 * error otherwise
1634 */
1635
1636 /*
1637 * Load the attribute cache (that lives in the nfsnode entry) with
1638 * the values on the mbuf list and
1639 * Iff vap not NULL
1640 * copy the attributes to *vaper
1641 */
1642 int
1643 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1644 struct vnode **vpp;
1645 struct mbuf **mdp;
1646 caddr_t *dposp;
1647 struct vattr *vaper;
1648 int flags;
1649 {
1650 int32_t t1;
1651 caddr_t cp2;
1652 int error = 0;
1653 struct mbuf *md;
1654 int v3 = NFS_ISV3(*vpp);
1655
1656 md = *mdp;
1657 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1658 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1659 if (error)
1660 return (error);
1661 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1662 }
1663
1664 int
1665 nfs_loadattrcache(vpp, fp, vaper, flags)
1666 struct vnode **vpp;
1667 struct nfs_fattr *fp;
1668 struct vattr *vaper;
1669 int flags;
1670 {
1671 struct vnode *vp = *vpp;
1672 struct vattr *vap;
1673 int v3 = NFS_ISV3(vp);
1674 enum vtype vtyp;
1675 u_short vmode;
1676 struct timespec mtime;
1677 struct timespec ctime;
1678 struct vnode *nvp;
1679 int32_t rdev;
1680 struct nfsnode *np;
1681 extern int (**spec_nfsv2nodeop_p) __P((void *));
1682 uid_t uid;
1683 gid_t gid;
1684
1685 if (v3) {
1686 vtyp = nfsv3tov_type(fp->fa_type);
1687 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1688 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1689 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1690 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1691 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1692 } else {
1693 vtyp = nfsv2tov_type(fp->fa_type);
1694 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1695 if (vtyp == VNON || vtyp == VREG)
1696 vtyp = IFTOVT(vmode);
1697 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1698 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1699 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1700 fp->fa2_ctime.nfsv2_sec);
1701 ctime.tv_nsec = 0;
1702
1703 /*
1704 * Really ugly NFSv2 kludge.
1705 */
1706 if (vtyp == VCHR && rdev == 0xffffffff)
1707 vtyp = VFIFO;
1708 }
1709
1710 vmode &= ALLPERMS;
1711
1712 /*
1713 * If v_type == VNON it is a new node, so fill in the v_type,
1714 * n_mtime fields. Check to see if it represents a special
1715 * device, and if so, check for a possible alias. Once the
1716 * correct vnode has been obtained, fill in the rest of the
1717 * information.
1718 */
1719 np = VTONFS(vp);
1720 if (vp->v_type == VNON) {
1721 vp->v_type = vtyp;
1722 if (vp->v_type == VFIFO) {
1723 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1724 vp->v_op = fifo_nfsv2nodeop_p;
1725 } else if (vp->v_type == VREG) {
1726 lockinit(&np->n_commitlock, PINOD, "nfsclock", 0, 0);
1727 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1728 vp->v_op = spec_nfsv2nodeop_p;
1729 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1730 if (nvp) {
1731 /*
1732 * Discard unneeded vnode, but save its nfsnode.
1733 * Since the nfsnode does not have a lock, its
1734 * vnode lock has to be carried over.
1735 */
1736 /*
1737 * XXX is the old node sure to be locked here?
1738 */
1739 KASSERT(lockstatus(&vp->v_lock) ==
1740 LK_EXCLUSIVE);
1741 nvp->v_data = vp->v_data;
1742 vp->v_data = NULL;
1743 VOP_UNLOCK(vp, 0);
1744 vp->v_op = spec_vnodeop_p;
1745 vrele(vp);
1746 vgone(vp);
1747 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1748 &nvp->v_interlock);
1749 /*
1750 * Reinitialize aliased node.
1751 */
1752 np->n_vnode = nvp;
1753 *vpp = vp = nvp;
1754 }
1755 }
1756 np->n_mtime = mtime;
1757 }
1758 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1759 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1760 vap = np->n_vattr;
1761
1762 /*
1763 * Invalidate access cache if uid, gid, mode or ctime changed.
1764 */
1765 if (np->n_accstamp != -1 &&
1766 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1767 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1768 np->n_accstamp = -1;
1769
1770 vap->va_type = vtyp;
1771 vap->va_mode = vmode;
1772 vap->va_rdev = (dev_t)rdev;
1773 vap->va_mtime = mtime;
1774 vap->va_ctime = ctime;
1775 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1776 switch (vtyp) {
1777 case VDIR:
1778 vap->va_blocksize = NFS_DIRFRAGSIZ;
1779 break;
1780 case VBLK:
1781 vap->va_blocksize = BLKDEV_IOSIZE;
1782 break;
1783 case VCHR:
1784 vap->va_blocksize = MAXBSIZE;
1785 break;
1786 default:
1787 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1788 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1789 break;
1790 }
1791 if (v3) {
1792 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1793 vap->va_uid = uid;
1794 vap->va_gid = gid;
1795 vap->va_size = fxdr_hyper(&fp->fa3_size);
1796 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1797 vap->va_fileid = fxdr_unsigned(int32_t,
1798 fp->fa3_fileid.nfsuquad[1]);
1799 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1800 vap->va_flags = 0;
1801 vap->va_filerev = 0;
1802 } else {
1803 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1804 vap->va_uid = uid;
1805 vap->va_gid = gid;
1806 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1807 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1808 * NFS_FABLKSIZE;
1809 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1810 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1811 vap->va_flags = 0;
1812 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1813 vap->va_filerev = 0;
1814 }
1815 if (vap->va_size != np->n_size) {
1816 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1817 vap->va_size = np->n_size;
1818 } else {
1819 np->n_size = vap->va_size;
1820 if (vap->va_type == VREG) {
1821 /*
1822 * we can't free pages if NAC_NOTRUNC because
1823 * the pages can be owned by ourselves.
1824 */
1825 if (flags & NAC_NOTRUNC) {
1826 np->n_flag |= NTRUNCDELAYED;
1827 } else {
1828 simple_lock(&vp->v_interlock);
1829 (void)VOP_PUTPAGES(vp, 0,
1830 0, PGO_SYNCIO | PGO_CLEANIT |
1831 PGO_FREE | PGO_ALLPAGES);
1832 uvm_vnp_setsize(vp, np->n_size);
1833 }
1834 }
1835 }
1836 }
1837 np->n_attrstamp = mono_time.tv_sec;
1838 if (vaper != NULL) {
1839 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1840 if (np->n_flag & NCHG) {
1841 if (np->n_flag & NACC)
1842 vaper->va_atime = np->n_atim;
1843 if (np->n_flag & NUPD)
1844 vaper->va_mtime = np->n_mtim;
1845 }
1846 }
1847 return (0);
1848 }
1849
1850 /*
1851 * Check the time stamp
1852 * If the cache is valid, copy contents to *vap and return 0
1853 * otherwise return an error
1854 */
1855 int
1856 nfs_getattrcache(vp, vaper)
1857 struct vnode *vp;
1858 struct vattr *vaper;
1859 {
1860 struct nfsnode *np = VTONFS(vp);
1861 struct vattr *vap;
1862
1863 if (np->n_attrstamp == 0 ||
1864 (mono_time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(np)) {
1865 nfsstats.attrcache_misses++;
1866 return (ENOENT);
1867 }
1868 nfsstats.attrcache_hits++;
1869 vap = np->n_vattr;
1870 if (vap->va_size != np->n_size) {
1871 if (vap->va_type == VREG) {
1872 if (np->n_flag & NMODIFIED) {
1873 if (vap->va_size < np->n_size)
1874 vap->va_size = np->n_size;
1875 else
1876 np->n_size = vap->va_size;
1877 } else
1878 np->n_size = vap->va_size;
1879 uvm_vnp_setsize(vp, np->n_size);
1880 } else
1881 np->n_size = vap->va_size;
1882 }
1883 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1884 if (np->n_flag & NCHG) {
1885 if (np->n_flag & NACC)
1886 vaper->va_atime = np->n_atim;
1887 if (np->n_flag & NUPD)
1888 vaper->va_mtime = np->n_mtim;
1889 }
1890 return (0);
1891 }
1892
1893 void
1894 nfs_delayedtruncate(vp)
1895 struct vnode *vp;
1896 {
1897 struct nfsnode *np = VTONFS(vp);
1898
1899 if (np->n_flag & NTRUNCDELAYED) {
1900 np->n_flag &= ~NTRUNCDELAYED;
1901 simple_lock(&vp->v_interlock);
1902 (void)VOP_PUTPAGES(vp, 0,
1903 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1904 uvm_vnp_setsize(vp, np->n_size);
1905 }
1906 }
1907
1908 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1909 #define NFS_WCCKLUDGE(nmp, now) \
1910 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1911 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1912
1913 /*
1914 * nfs_check_wccdata: check inaccurate wcc_data
1915 *
1916 * => return non-zero if we shouldn't trust the wcc_data.
1917 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1918 */
1919
1920 int
1921 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1922 struct timespec *mtime, boolean_t docheck)
1923 {
1924 int error = 0;
1925
1926 #if !defined(NFS_V2_ONLY)
1927
1928 if (docheck) {
1929 struct vnode *vp = NFSTOV(np);
1930 struct nfsmount *nmp;
1931 long now = mono_time.tv_sec;
1932 #if defined(DEBUG)
1933 const char *reason = NULL; /* XXX: gcc */
1934 #endif
1935
1936 if (timespeccmp(&np->n_vattr->va_mtime, mtime, <=)) {
1937 #if defined(DEBUG)
1938 reason = "mtime";
1939 #endif
1940 error = EINVAL;
1941 }
1942
1943 if (vp->v_type == VDIR &&
1944 timespeccmp(&np->n_vattr->va_ctime, ctime, <=)) {
1945 #if defined(DEBUG)
1946 reason = "ctime";
1947 #endif
1948 error = EINVAL;
1949 }
1950
1951 nmp = VFSTONFS(vp->v_mount);
1952 if (error) {
1953
1954 /*
1955 * despite of the fact that we've updated the file,
1956 * timestamps of the file were not updated as we
1957 * expected.
1958 * it means that the server has incompatible
1959 * semantics of timestamps or (more likely)
1960 * the server time is not precise enough to
1961 * track each modifications.
1962 * in that case, we disable wcc processing.
1963 *
1964 * yes, strictly speaking, we should disable all
1965 * caching. it's a compromise.
1966 */
1967
1968 simple_lock(&nmp->nm_slock);
1969 #if defined(DEBUG)
1970 if (!NFS_WCCKLUDGE(nmp, now)) {
1971 printf("%s: inaccurate wcc data (%s) detected,"
1972 " disabling wcc\n",
1973 vp->v_mount->mnt_stat.f_mntfromname,
1974 reason);
1975 }
1976 #endif
1977 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1978 nmp->nm_wcckludgetime = now;
1979 simple_unlock(&nmp->nm_slock);
1980 } else if (NFS_WCCKLUDGE(nmp, now)) {
1981 error = EPERM; /* XXX */
1982 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1983 simple_lock(&nmp->nm_slock);
1984 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1985 #if defined(DEBUG)
1986 printf("%s: re-enabling wcc\n",
1987 vp->v_mount->mnt_stat.f_mntfromname);
1988 #endif
1989 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1990 }
1991 simple_unlock(&nmp->nm_slock);
1992 }
1993 }
1994
1995 #endif /* !defined(NFS_V2_ONLY) */
1996
1997 return error;
1998 }
1999
2000 /*
2001 * Heuristic to see if the server XDR encodes directory cookies or not.
2002 * it is not supposed to, but a lot of servers may do this. Also, since
2003 * most/all servers will implement V2 as well, it is expected that they
2004 * may return just 32 bits worth of cookie information, so we need to
2005 * find out in which 32 bits this information is available. We do this
2006 * to avoid trouble with emulated binaries that can't handle 64 bit
2007 * directory offsets.
2008 */
2009
2010 void
2011 nfs_cookieheuristic(vp, flagp, p, cred)
2012 struct vnode *vp;
2013 int *flagp;
2014 struct proc *p;
2015 struct ucred *cred;
2016 {
2017 struct uio auio;
2018 struct iovec aiov;
2019 caddr_t buf, cp;
2020 struct dirent *dp;
2021 off_t *cookies = NULL, *cop;
2022 int error, eof, nc, len;
2023
2024 MALLOC(buf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
2025
2026 aiov.iov_base = buf;
2027 aiov.iov_len = NFS_DIRFRAGSIZ;
2028 auio.uio_iov = &aiov;
2029 auio.uio_iovcnt = 1;
2030 auio.uio_rw = UIO_READ;
2031 auio.uio_segflg = UIO_SYSSPACE;
2032 auio.uio_procp = NULL;
2033 auio.uio_resid = NFS_DIRFRAGSIZ;
2034 auio.uio_offset = 0;
2035
2036 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
2037
2038 len = NFS_DIRFRAGSIZ - auio.uio_resid;
2039 if (error || len == 0) {
2040 FREE(buf, M_TEMP);
2041 if (cookies)
2042 free(cookies, M_TEMP);
2043 return;
2044 }
2045
2046 /*
2047 * Find the first valid entry and look at its offset cookie.
2048 */
2049
2050 cp = buf;
2051 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2052 dp = (struct dirent *)cp;
2053 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2054 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2055 *flagp |= NFSMNT_SWAPCOOKIE;
2056 nfs_invaldircache(vp, 0);
2057 nfs_vinvalbuf(vp, 0, cred, p, 1);
2058 }
2059 break;
2060 }
2061 cop++;
2062 cp += dp->d_reclen;
2063 }
2064
2065 FREE(buf, M_TEMP);
2066 free(cookies, M_TEMP);
2067 }
2068 #endif /* NFS */
2069
2070 /*
2071 * Set up nameidata for a lookup() call and do it.
2072 *
2073 * If pubflag is set, this call is done for a lookup operation on the
2074 * public filehandle. In that case we allow crossing mountpoints and
2075 * absolute pathnames. However, the caller is expected to check that
2076 * the lookup result is within the public fs, and deny access if
2077 * it is not.
2078 */
2079 int
2080 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, p, kerbflag, pubflag)
2081 struct nameidata *ndp;
2082 fhandle_t *fhp;
2083 uint32_t len;
2084 struct nfssvc_sock *slp;
2085 struct mbuf *nam;
2086 struct mbuf **mdp;
2087 caddr_t *dposp;
2088 struct vnode **retdirp;
2089 struct proc *p;
2090 int kerbflag, pubflag;
2091 {
2092 int i, rem;
2093 struct mbuf *md;
2094 char *fromcp, *tocp, *cp;
2095 struct iovec aiov;
2096 struct uio auio;
2097 struct vnode *dp;
2098 int error, rdonly, linklen;
2099 struct componentname *cnp = &ndp->ni_cnd;
2100
2101 *retdirp = (struct vnode *)0;
2102
2103 if ((len + 1) > MAXPATHLEN)
2104 return (ENAMETOOLONG);
2105 cnp->cn_pnbuf = PNBUF_GET();
2106
2107 /*
2108 * Copy the name from the mbuf list to ndp->ni_pnbuf
2109 * and set the various ndp fields appropriately.
2110 */
2111 fromcp = *dposp;
2112 tocp = cnp->cn_pnbuf;
2113 md = *mdp;
2114 rem = mtod(md, caddr_t) + md->m_len - fromcp;
2115 for (i = 0; i < len; i++) {
2116 while (rem == 0) {
2117 md = md->m_next;
2118 if (md == NULL) {
2119 error = EBADRPC;
2120 goto out;
2121 }
2122 fromcp = mtod(md, caddr_t);
2123 rem = md->m_len;
2124 }
2125 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2126 error = EACCES;
2127 goto out;
2128 }
2129 *tocp++ = *fromcp++;
2130 rem--;
2131 }
2132 *tocp = '\0';
2133 *mdp = md;
2134 *dposp = fromcp;
2135 len = nfsm_rndup(len)-len;
2136 if (len > 0) {
2137 if (rem >= len)
2138 *dposp += len;
2139 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2140 goto out;
2141 }
2142
2143 /*
2144 * Extract and set starting directory.
2145 */
2146 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
2147 nam, &rdonly, kerbflag, pubflag);
2148 if (error)
2149 goto out;
2150 if (dp->v_type != VDIR) {
2151 vrele(dp);
2152 error = ENOTDIR;
2153 goto out;
2154 }
2155
2156 if (rdonly)
2157 cnp->cn_flags |= RDONLY;
2158
2159 *retdirp = dp;
2160
2161 if (pubflag) {
2162 /*
2163 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2164 * and the 'native path' indicator.
2165 */
2166 cp = PNBUF_GET();
2167 fromcp = cnp->cn_pnbuf;
2168 tocp = cp;
2169 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2170 switch ((unsigned char)*fromcp) {
2171 case WEBNFS_NATIVE_CHAR:
2172 /*
2173 * 'Native' path for us is the same
2174 * as a path according to the NFS spec,
2175 * just skip the escape char.
2176 */
2177 fromcp++;
2178 break;
2179 /*
2180 * More may be added in the future, range 0x80-0xff
2181 */
2182 default:
2183 error = EIO;
2184 PNBUF_PUT(cp);
2185 goto out;
2186 }
2187 }
2188 /*
2189 * Translate the '%' escapes, URL-style.
2190 */
2191 while (*fromcp != '\0') {
2192 if (*fromcp == WEBNFS_ESC_CHAR) {
2193 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2194 fromcp++;
2195 *tocp++ = HEXSTRTOI(fromcp);
2196 fromcp += 2;
2197 continue;
2198 } else {
2199 error = ENOENT;
2200 PNBUF_PUT(cp);
2201 goto out;
2202 }
2203 } else
2204 *tocp++ = *fromcp++;
2205 }
2206 *tocp = '\0';
2207 PNBUF_PUT(cnp->cn_pnbuf);
2208 cnp->cn_pnbuf = cp;
2209 }
2210
2211 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2212 ndp->ni_segflg = UIO_SYSSPACE;
2213 ndp->ni_rootdir = rootvnode;
2214
2215 if (pubflag) {
2216 ndp->ni_loopcnt = 0;
2217 if (cnp->cn_pnbuf[0] == '/')
2218 dp = rootvnode;
2219 } else {
2220 cnp->cn_flags |= NOCROSSMOUNT;
2221 }
2222
2223 cnp->cn_proc = p;
2224 VREF(dp);
2225
2226 for (;;) {
2227 cnp->cn_nameptr = cnp->cn_pnbuf;
2228 ndp->ni_startdir = dp;
2229 /*
2230 * And call lookup() to do the real work
2231 */
2232 error = lookup(ndp);
2233 if (error) {
2234 PNBUF_PUT(cnp->cn_pnbuf);
2235 return (error);
2236 }
2237 /*
2238 * Check for encountering a symbolic link
2239 */
2240 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2241 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2242 cnp->cn_flags |= HASBUF;
2243 else
2244 PNBUF_PUT(cnp->cn_pnbuf);
2245 return (0);
2246 } else {
2247 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
2248 VOP_UNLOCK(ndp->ni_dvp, 0);
2249 if (!pubflag) {
2250 error = EINVAL;
2251 break;
2252 }
2253
2254 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2255 error = ELOOP;
2256 break;
2257 }
2258 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2259 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2260 cnp->cn_proc);
2261 if (error != 0)
2262 break;
2263 }
2264 if (ndp->ni_pathlen > 1)
2265 cp = PNBUF_GET();
2266 else
2267 cp = cnp->cn_pnbuf;
2268 aiov.iov_base = cp;
2269 aiov.iov_len = MAXPATHLEN;
2270 auio.uio_iov = &aiov;
2271 auio.uio_iovcnt = 1;
2272 auio.uio_offset = 0;
2273 auio.uio_rw = UIO_READ;
2274 auio.uio_segflg = UIO_SYSSPACE;
2275 auio.uio_procp = NULL;
2276 auio.uio_resid = MAXPATHLEN;
2277 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2278 if (error) {
2279 badlink:
2280 if (ndp->ni_pathlen > 1)
2281 PNBUF_PUT(cp);
2282 break;
2283 }
2284 linklen = MAXPATHLEN - auio.uio_resid;
2285 if (linklen == 0) {
2286 error = ENOENT;
2287 goto badlink;
2288 }
2289 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2290 error = ENAMETOOLONG;
2291 goto badlink;
2292 }
2293 if (ndp->ni_pathlen > 1) {
2294 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2295 PNBUF_PUT(cnp->cn_pnbuf);
2296 cnp->cn_pnbuf = cp;
2297 } else
2298 cnp->cn_pnbuf[linklen] = '\0';
2299 ndp->ni_pathlen += linklen;
2300 vput(ndp->ni_vp);
2301 dp = ndp->ni_dvp;
2302 /*
2303 * Check if root directory should replace current directory.
2304 */
2305 if (cnp->cn_pnbuf[0] == '/') {
2306 vrele(dp);
2307 dp = ndp->ni_rootdir;
2308 VREF(dp);
2309 }
2310 }
2311 }
2312 vrele(ndp->ni_dvp);
2313 vput(ndp->ni_vp);
2314 ndp->ni_vp = NULL;
2315 out:
2316 PNBUF_PUT(cnp->cn_pnbuf);
2317 return (error);
2318 }
2319
2320 /*
2321 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2322 * boundary and only trims off the back end
2323 *
2324 * 1. trim off 'len' bytes as m_adj(mp, -len).
2325 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2326 */
2327 void
2328 nfs_zeropad(mp, len, nul)
2329 struct mbuf *mp;
2330 int len;
2331 int nul;
2332 {
2333 struct mbuf *m;
2334 int count;
2335
2336 /*
2337 * Trim from tail. Scan the mbuf chain,
2338 * calculating its length and finding the last mbuf.
2339 * If the adjustment only affects this mbuf, then just
2340 * adjust and return. Otherwise, rescan and truncate
2341 * after the remaining size.
2342 */
2343 count = 0;
2344 m = mp;
2345 for (;;) {
2346 count += m->m_len;
2347 if (m->m_next == NULL)
2348 break;
2349 m = m->m_next;
2350 }
2351
2352 KDASSERT(count >= len);
2353
2354 if (m->m_len >= len) {
2355 m->m_len -= len;
2356 } else {
2357 count -= len;
2358 /*
2359 * Correct length for chain is "count".
2360 * Find the mbuf with last data, adjust its length,
2361 * and toss data from remaining mbufs on chain.
2362 */
2363 for (m = mp; m; m = m->m_next) {
2364 if (m->m_len >= count) {
2365 m->m_len = count;
2366 break;
2367 }
2368 count -= m->m_len;
2369 }
2370 m_freem(m->m_next);
2371 m->m_next = NULL;
2372 }
2373
2374 KDASSERT(m->m_next == NULL);
2375
2376 /*
2377 * zero-padding.
2378 */
2379 if (nul > 0) {
2380 char *cp;
2381 int i;
2382
2383 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2384 struct mbuf *n;
2385
2386 KDASSERT(MLEN >= nul);
2387 n = m_get(M_WAIT, MT_DATA);
2388 MCLAIM(n, &nfs_mowner);
2389 n->m_len = nul;
2390 n->m_next = NULL;
2391 m->m_next = n;
2392 cp = mtod(n, caddr_t);
2393 } else {
2394 cp = mtod(m, caddr_t) + m->m_len;
2395 m->m_len += nul;
2396 }
2397 for (i = 0; i < nul; i++)
2398 *cp++ = '\0';
2399 }
2400 return;
2401 }
2402
2403 /*
2404 * Make these functions instead of macros, so that the kernel text size
2405 * doesn't get too big...
2406 */
2407 void
2408 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2409 struct nfsrv_descript *nfsd;
2410 int before_ret;
2411 struct vattr *before_vap;
2412 int after_ret;
2413 struct vattr *after_vap;
2414 struct mbuf **mbp;
2415 char **bposp;
2416 {
2417 struct mbuf *mb = *mbp;
2418 char *bpos = *bposp;
2419 u_int32_t *tl;
2420
2421 if (before_ret) {
2422 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2423 *tl = nfs_false;
2424 } else {
2425 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2426 *tl++ = nfs_true;
2427 txdr_hyper(before_vap->va_size, tl);
2428 tl += 2;
2429 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2430 tl += 2;
2431 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2432 }
2433 *bposp = bpos;
2434 *mbp = mb;
2435 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2436 }
2437
2438 void
2439 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2440 struct nfsrv_descript *nfsd;
2441 int after_ret;
2442 struct vattr *after_vap;
2443 struct mbuf **mbp;
2444 char **bposp;
2445 {
2446 struct mbuf *mb = *mbp;
2447 char *bpos = *bposp;
2448 u_int32_t *tl;
2449 struct nfs_fattr *fp;
2450
2451 if (after_ret) {
2452 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2453 *tl = nfs_false;
2454 } else {
2455 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2456 *tl++ = nfs_true;
2457 fp = (struct nfs_fattr *)tl;
2458 nfsm_srvfattr(nfsd, after_vap, fp);
2459 }
2460 *mbp = mb;
2461 *bposp = bpos;
2462 }
2463
2464 void
2465 nfsm_srvfattr(nfsd, vap, fp)
2466 struct nfsrv_descript *nfsd;
2467 struct vattr *vap;
2468 struct nfs_fattr *fp;
2469 {
2470
2471 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2472 fp->fa_uid = txdr_unsigned(vap->va_uid);
2473 fp->fa_gid = txdr_unsigned(vap->va_gid);
2474 if (nfsd->nd_flag & ND_NFSV3) {
2475 fp->fa_type = vtonfsv3_type(vap->va_type);
2476 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2477 txdr_hyper(vap->va_size, &fp->fa3_size);
2478 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2479 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2480 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2481 fp->fa3_fsid.nfsuquad[0] = 0;
2482 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2483 fp->fa3_fileid.nfsuquad[0] = 0;
2484 fp->fa3_fileid.nfsuquad[1] = txdr_unsigned(vap->va_fileid);
2485 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2486 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2487 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2488 } else {
2489 fp->fa_type = vtonfsv2_type(vap->va_type);
2490 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2491 fp->fa2_size = txdr_unsigned(vap->va_size);
2492 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2493 if (vap->va_type == VFIFO)
2494 fp->fa2_rdev = 0xffffffff;
2495 else
2496 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2497 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2498 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2499 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2500 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2501 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2502 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2503 }
2504 }
2505
2506 /*
2507 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2508 * - look up fsid in mount list (if not found ret error)
2509 * - get vp and export rights by calling VFS_FHTOVP()
2510 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2511 * - if not lockflag unlock it with VOP_UNLOCK()
2512 */
2513 int
2514 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2515 fhandle_t *fhp;
2516 int lockflag;
2517 struct vnode **vpp;
2518 struct ucred *cred;
2519 struct nfssvc_sock *slp;
2520 struct mbuf *nam;
2521 int *rdonlyp;
2522 int kerbflag;
2523 {
2524 struct mount *mp;
2525 int i;
2526 struct ucred *credanon;
2527 int error, exflags;
2528 struct sockaddr_in *saddr;
2529
2530 *vpp = (struct vnode *)0;
2531
2532 if (nfs_ispublicfh(fhp)) {
2533 if (!pubflag || !nfs_pub.np_valid)
2534 return (ESTALE);
2535 fhp = &nfs_pub.np_handle;
2536 }
2537
2538 mp = vfs_getvfs(&fhp->fh_fsid);
2539 if (!mp)
2540 return (ESTALE);
2541 error = VFS_CHECKEXP(mp, nam, &exflags, &credanon);
2542 if (error)
2543 return (error);
2544 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2545 if (error)
2546 return (error);
2547
2548 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2549 saddr = mtod(nam, struct sockaddr_in *);
2550 if ((saddr->sin_family == AF_INET) &&
2551 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2552 vput(*vpp);
2553 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2554 }
2555 #ifdef INET6
2556 if ((saddr->sin_family == AF_INET6) &&
2557 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2558 vput(*vpp);
2559 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2560 }
2561 #endif
2562 }
2563 /*
2564 * Check/setup credentials.
2565 */
2566 if (exflags & MNT_EXKERB) {
2567 if (!kerbflag) {
2568 vput(*vpp);
2569 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2570 }
2571 } else if (kerbflag) {
2572 vput(*vpp);
2573 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2574 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2575 cred->cr_uid = credanon->cr_uid;
2576 cred->cr_gid = credanon->cr_gid;
2577 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2578 cred->cr_groups[i] = credanon->cr_groups[i];
2579 cred->cr_ngroups = i;
2580 }
2581 if (exflags & MNT_EXRDONLY)
2582 *rdonlyp = 1;
2583 else
2584 *rdonlyp = 0;
2585 if (!lockflag)
2586 VOP_UNLOCK(*vpp, 0);
2587 return (0);
2588 }
2589
2590 /*
2591 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2592 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2593 * transformed this to all zeroes in both cases, so check for it.
2594 */
2595 int
2596 nfs_ispublicfh(fhp)
2597 fhandle_t *fhp;
2598 {
2599 char *cp = (char *)fhp;
2600 int i;
2601
2602 for (i = 0; i < NFSX_V3FH; i++)
2603 if (*cp++ != 0)
2604 return (FALSE);
2605 return (TRUE);
2606 }
2607
2608 /*
2609 * This function compares two net addresses by family and returns TRUE
2610 * if they are the same host.
2611 * If there is any doubt, return FALSE.
2612 * The AF_INET family is handled as a special case so that address mbufs
2613 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2614 */
2615 int
2616 netaddr_match(family, haddr, nam)
2617 int family;
2618 union nethostaddr *haddr;
2619 struct mbuf *nam;
2620 {
2621 struct sockaddr_in *inetaddr;
2622
2623 switch (family) {
2624 case AF_INET:
2625 inetaddr = mtod(nam, struct sockaddr_in *);
2626 if (inetaddr->sin_family == AF_INET &&
2627 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2628 return (1);
2629 break;
2630 #ifdef INET6
2631 case AF_INET6:
2632 {
2633 struct sockaddr_in6 *sin6_1, *sin6_2;
2634
2635 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2636 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2637 if (sin6_1->sin6_family == AF_INET6 &&
2638 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2639 return 1;
2640 }
2641 #endif
2642 #ifdef ISO
2643 case AF_ISO:
2644 {
2645 struct sockaddr_iso *isoaddr1, *isoaddr2;
2646
2647 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2648 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2649 if (isoaddr1->siso_family == AF_ISO &&
2650 isoaddr1->siso_nlen > 0 &&
2651 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2652 SAME_ISOADDR(isoaddr1, isoaddr2))
2653 return (1);
2654 break;
2655 }
2656 #endif /* ISO */
2657 default:
2658 break;
2659 };
2660 return (0);
2661 }
2662
2663 /*
2664 * The write verifier has changed (probably due to a server reboot), so all
2665 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2666 * as dirty or are being written out just now, all this takes is clearing
2667 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2668 * the mount point.
2669 */
2670 void
2671 nfs_clearcommit(mp)
2672 struct mount *mp;
2673 {
2674 struct vnode *vp;
2675 struct nfsnode *np;
2676 struct vm_page *pg;
2677 struct nfsmount *nmp = VFSTONFS(mp);
2678
2679 lockmgr(&nmp->nm_writeverflock, LK_EXCLUSIVE, NULL);
2680
2681 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2682 KASSERT(vp->v_mount == mp);
2683 if (vp->v_type == VNON)
2684 continue;
2685 np = VTONFS(vp);
2686 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2687 np->n_pushedhi = 0;
2688 np->n_commitflags &=
2689 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2690 simple_lock(&vp->v_uobj.vmobjlock);
2691 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2692 pg->flags &= ~PG_NEEDCOMMIT;
2693 }
2694 simple_unlock(&vp->v_uobj.vmobjlock);
2695 }
2696 simple_lock(&nmp->nm_slock);
2697 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2698 simple_unlock(&nmp->nm_slock);
2699 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
2700 }
2701
2702 void
2703 nfs_merge_commit_ranges(vp)
2704 struct vnode *vp;
2705 {
2706 struct nfsnode *np = VTONFS(vp);
2707
2708 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2709
2710 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2711 np->n_pushedlo = np->n_pushlo;
2712 np->n_pushedhi = np->n_pushhi;
2713 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2714 } else {
2715 if (np->n_pushlo < np->n_pushedlo)
2716 np->n_pushedlo = np->n_pushlo;
2717 if (np->n_pushhi > np->n_pushedhi)
2718 np->n_pushedhi = np->n_pushhi;
2719 }
2720
2721 np->n_pushlo = np->n_pushhi = 0;
2722 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2723
2724 #ifdef NFS_DEBUG_COMMIT
2725 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2726 (unsigned)np->n_pushedhi);
2727 #endif
2728 }
2729
2730 int
2731 nfs_in_committed_range(vp, off, len)
2732 struct vnode *vp;
2733 off_t off, len;
2734 {
2735 struct nfsnode *np = VTONFS(vp);
2736 off_t lo, hi;
2737
2738 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2739 return 0;
2740 lo = off;
2741 hi = lo + len;
2742
2743 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2744 }
2745
2746 int
2747 nfs_in_tobecommitted_range(vp, off, len)
2748 struct vnode *vp;
2749 off_t off, len;
2750 {
2751 struct nfsnode *np = VTONFS(vp);
2752 off_t lo, hi;
2753
2754 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2755 return 0;
2756 lo = off;
2757 hi = lo + len;
2758
2759 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2760 }
2761
2762 void
2763 nfs_add_committed_range(vp, off, len)
2764 struct vnode *vp;
2765 off_t off, len;
2766 {
2767 struct nfsnode *np = VTONFS(vp);
2768 off_t lo, hi;
2769
2770 lo = off;
2771 hi = lo + len;
2772
2773 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2774 np->n_pushedlo = lo;
2775 np->n_pushedhi = hi;
2776 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2777 } else {
2778 if (hi > np->n_pushedhi)
2779 np->n_pushedhi = hi;
2780 if (lo < np->n_pushedlo)
2781 np->n_pushedlo = lo;
2782 }
2783 #ifdef NFS_DEBUG_COMMIT
2784 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2785 (unsigned)np->n_pushedhi);
2786 #endif
2787 }
2788
2789 void
2790 nfs_del_committed_range(vp, off, len)
2791 struct vnode *vp;
2792 off_t off, len;
2793 {
2794 struct nfsnode *np = VTONFS(vp);
2795 off_t lo, hi;
2796
2797 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2798 return;
2799
2800 lo = off;
2801 hi = lo + len;
2802
2803 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2804 return;
2805 if (lo <= np->n_pushedlo)
2806 np->n_pushedlo = hi;
2807 else if (hi >= np->n_pushedhi)
2808 np->n_pushedhi = lo;
2809 else {
2810 /*
2811 * XXX There's only one range. If the deleted range
2812 * is in the middle, pick the largest of the
2813 * contiguous ranges that it leaves.
2814 */
2815 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2816 np->n_pushedhi = lo;
2817 else
2818 np->n_pushedlo = hi;
2819 }
2820 #ifdef NFS_DEBUG_COMMIT
2821 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2822 (unsigned)np->n_pushedhi);
2823 #endif
2824 }
2825
2826 void
2827 nfs_add_tobecommitted_range(vp, off, len)
2828 struct vnode *vp;
2829 off_t off, len;
2830 {
2831 struct nfsnode *np = VTONFS(vp);
2832 off_t lo, hi;
2833
2834 lo = off;
2835 hi = lo + len;
2836
2837 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2838 np->n_pushlo = lo;
2839 np->n_pushhi = hi;
2840 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2841 } else {
2842 if (lo < np->n_pushlo)
2843 np->n_pushlo = lo;
2844 if (hi > np->n_pushhi)
2845 np->n_pushhi = hi;
2846 }
2847 #ifdef NFS_DEBUG_COMMIT
2848 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2849 (unsigned)np->n_pushhi);
2850 #endif
2851 }
2852
2853 void
2854 nfs_del_tobecommitted_range(vp, off, len)
2855 struct vnode *vp;
2856 off_t off, len;
2857 {
2858 struct nfsnode *np = VTONFS(vp);
2859 off_t lo, hi;
2860
2861 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2862 return;
2863
2864 lo = off;
2865 hi = lo + len;
2866
2867 if (lo > np->n_pushhi || hi < np->n_pushlo)
2868 return;
2869
2870 if (lo <= np->n_pushlo)
2871 np->n_pushlo = hi;
2872 else if (hi >= np->n_pushhi)
2873 np->n_pushhi = lo;
2874 else {
2875 /*
2876 * XXX There's only one range. If the deleted range
2877 * is in the middle, pick the largest of the
2878 * contiguous ranges that it leaves.
2879 */
2880 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2881 np->n_pushhi = lo;
2882 else
2883 np->n_pushlo = hi;
2884 }
2885 #ifdef NFS_DEBUG_COMMIT
2886 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2887 (unsigned)np->n_pushhi);
2888 #endif
2889 }
2890
2891 /*
2892 * Map errnos to NFS error numbers. For Version 3 also filter out error
2893 * numbers not specified for the associated procedure.
2894 */
2895 int
2896 nfsrv_errmap(nd, err)
2897 struct nfsrv_descript *nd;
2898 int err;
2899 {
2900 const short *defaulterrp, *errp;
2901
2902 if (nd->nd_flag & ND_NFSV3) {
2903 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2904 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2905 while (*++errp) {
2906 if (*errp == err)
2907 return (err);
2908 else if (*errp > err)
2909 break;
2910 }
2911 return ((int)*defaulterrp);
2912 } else
2913 return (err & 0xffff);
2914 }
2915 if (err <= ELAST)
2916 return ((int)nfsrv_v2errmap[err - 1]);
2917 return (NFSERR_IO);
2918 }
2919
2920 /*
2921 * Sort the group list in increasing numerical order.
2922 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2923 * that used to be here.)
2924 */
2925 void
2926 nfsrvw_sort(list, num)
2927 gid_t *list;
2928 int num;
2929 {
2930 int i, j;
2931 gid_t v;
2932
2933 /* Insertion sort. */
2934 for (i = 1; i < num; i++) {
2935 v = list[i];
2936 /* find correct slot for value v, moving others up */
2937 for (j = i; --j >= 0 && v < list[j];)
2938 list[j + 1] = list[j];
2939 list[j + 1] = v;
2940 }
2941 }
2942
2943 /*
2944 * copy credentials making sure that the result can be compared with memcmp().
2945 */
2946 void
2947 nfsrv_setcred(incred, outcred)
2948 struct ucred *incred, *outcred;
2949 {
2950 int i;
2951
2952 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2953 outcred->cr_ref = 1;
2954 outcred->cr_uid = incred->cr_uid;
2955 outcred->cr_gid = incred->cr_gid;
2956 outcred->cr_ngroups = incred->cr_ngroups;
2957 for (i = 0; i < incred->cr_ngroups; i++)
2958 outcred->cr_groups[i] = incred->cr_groups[i];
2959 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2960 }
2961
2962 u_int32_t
2963 nfs_getxid()
2964 {
2965 static u_int32_t base;
2966 static u_int32_t nfs_xid = 0;
2967 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2968 u_int32_t newxid;
2969
2970 simple_lock(&nfs_xidlock);
2971 /*
2972 * derive initial xid from system time
2973 * XXX time is invalid if root not yet mounted
2974 */
2975 if (__predict_false(!base && (rootvp))) {
2976 struct timeval tv;
2977
2978 microtime(&tv);
2979 base = tv.tv_sec << 12;
2980 nfs_xid = base;
2981 }
2982
2983 /*
2984 * Skip zero xid if it should ever happen.
2985 */
2986 if (__predict_false(++nfs_xid == 0))
2987 nfs_xid++;
2988 newxid = nfs_xid;
2989 simple_unlock(&nfs_xidlock);
2990
2991 return txdr_unsigned(newxid);
2992 }
2993
2994 /*
2995 * assign a new xid for existing request.
2996 * used for NFSERR_JUKEBOX handling.
2997 */
2998 void
2999 nfs_renewxid(struct nfsreq *req)
3000 {
3001 u_int32_t xid;
3002 int off;
3003
3004 xid = nfs_getxid();
3005 if (req->r_nmp->nm_sotype == SOCK_STREAM)
3006 off = sizeof(u_int32_t); /* RPC record mark */
3007 else
3008 off = 0;
3009
3010 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
3011 req->r_xid = xid;
3012 }
3013