nfs_subs.c revision 1.149.2.4 1 /* $NetBSD: nfs_subs.c,v 1.149.2.4 2007/02/26 09:12:06 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.149.2.4 2007/02/26 09:12:06 yamt Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 #include <sys/once.h>
101 #include <sys/kauth.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include <nfs/rpcv2.h>
106 #include <nfs/nfsproto.h>
107 #include <nfs/nfsnode.h>
108 #include <nfs/nfs.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114
115 #include <miscfs/specfs/specdev.h>
116
117 #include <netinet/in.h>
118 #ifdef ISO
119 #include <netiso/iso.h>
120 #endif
121
122 /*
123 * Data items converted to xdr at startup, since they are constant
124 * This is kinda hokey, but may save a little time doing byte swaps
125 */
126 u_int32_t nfs_xdrneg1;
127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
128 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
129 rpc_auth_kerb;
130 u_int32_t nfs_prog, nfs_true, nfs_false;
131
132 /* And other global data */
133 const nfstype nfsv2_type[9] =
134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142 int nfs_commitsize;
143
144 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
145
146 /* NFS client/server stats. */
147 struct nfsstats nfsstats;
148
149 /*
150 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
151 */
152 const int nfsv3_procid[NFS_NPROCS] = {
153 NFSPROC_NULL,
154 NFSPROC_GETATTR,
155 NFSPROC_SETATTR,
156 NFSPROC_NOOP,
157 NFSPROC_LOOKUP,
158 NFSPROC_READLINK,
159 NFSPROC_READ,
160 NFSPROC_NOOP,
161 NFSPROC_WRITE,
162 NFSPROC_CREATE,
163 NFSPROC_REMOVE,
164 NFSPROC_RENAME,
165 NFSPROC_LINK,
166 NFSPROC_SYMLINK,
167 NFSPROC_MKDIR,
168 NFSPROC_RMDIR,
169 NFSPROC_READDIR,
170 NFSPROC_FSSTAT,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP
176 };
177
178 /*
179 * and the reverse mapping from generic to Version 2 procedure numbers
180 */
181 const int nfsv2_procid[NFS_NPROCS] = {
182 NFSV2PROC_NULL,
183 NFSV2PROC_GETATTR,
184 NFSV2PROC_SETATTR,
185 NFSV2PROC_LOOKUP,
186 NFSV2PROC_NOOP,
187 NFSV2PROC_READLINK,
188 NFSV2PROC_READ,
189 NFSV2PROC_WRITE,
190 NFSV2PROC_CREATE,
191 NFSV2PROC_MKDIR,
192 NFSV2PROC_SYMLINK,
193 NFSV2PROC_CREATE,
194 NFSV2PROC_REMOVE,
195 NFSV2PROC_RMDIR,
196 NFSV2PROC_RENAME,
197 NFSV2PROC_LINK,
198 NFSV2PROC_READDIR,
199 NFSV2PROC_NOOP,
200 NFSV2PROC_STATFS,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 };
206
207 /*
208 * Maps errno values to nfs error numbers.
209 * Use NFSERR_IO as the catch all for ones not specifically defined in
210 * RFC 1094.
211 */
212 static const u_char nfsrv_v2errmap[ELAST] = {
213 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
214 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
215 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
216 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
217 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
226 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO,
230 };
231
232 /*
233 * Maps errno values to nfs error numbers.
234 * Although it is not obvious whether or not NFS clients really care if
235 * a returned error value is in the specified list for the procedure, the
236 * safest thing to do is filter them appropriately. For Version 2, the
237 * X/Open XNFS document is the only specification that defines error values
238 * for each RPC (The RFC simply lists all possible error values for all RPCs),
239 * so I have decided to not do this for Version 2.
240 * The first entry is the default error return and the rest are the valid
241 * errors for that RPC in increasing numeric order.
242 */
243 static const short nfsv3err_null[] = {
244 0,
245 0,
246 };
247
248 static const short nfsv3err_getattr[] = {
249 NFSERR_IO,
250 NFSERR_IO,
251 NFSERR_STALE,
252 NFSERR_BADHANDLE,
253 NFSERR_SERVERFAULT,
254 0,
255 };
256
257 static const short nfsv3err_setattr[] = {
258 NFSERR_IO,
259 NFSERR_PERM,
260 NFSERR_IO,
261 NFSERR_ACCES,
262 NFSERR_INVAL,
263 NFSERR_NOSPC,
264 NFSERR_ROFS,
265 NFSERR_DQUOT,
266 NFSERR_STALE,
267 NFSERR_BADHANDLE,
268 NFSERR_NOT_SYNC,
269 NFSERR_SERVERFAULT,
270 0,
271 };
272
273 static const short nfsv3err_lookup[] = {
274 NFSERR_IO,
275 NFSERR_NOENT,
276 NFSERR_IO,
277 NFSERR_ACCES,
278 NFSERR_NOTDIR,
279 NFSERR_NAMETOL,
280 NFSERR_STALE,
281 NFSERR_BADHANDLE,
282 NFSERR_SERVERFAULT,
283 0,
284 };
285
286 static const short nfsv3err_access[] = {
287 NFSERR_IO,
288 NFSERR_IO,
289 NFSERR_STALE,
290 NFSERR_BADHANDLE,
291 NFSERR_SERVERFAULT,
292 0,
293 };
294
295 static const short nfsv3err_readlink[] = {
296 NFSERR_IO,
297 NFSERR_IO,
298 NFSERR_ACCES,
299 NFSERR_INVAL,
300 NFSERR_STALE,
301 NFSERR_BADHANDLE,
302 NFSERR_NOTSUPP,
303 NFSERR_SERVERFAULT,
304 0,
305 };
306
307 static const short nfsv3err_read[] = {
308 NFSERR_IO,
309 NFSERR_IO,
310 NFSERR_NXIO,
311 NFSERR_ACCES,
312 NFSERR_INVAL,
313 NFSERR_STALE,
314 NFSERR_BADHANDLE,
315 NFSERR_SERVERFAULT,
316 NFSERR_JUKEBOX,
317 0,
318 };
319
320 static const short nfsv3err_write[] = {
321 NFSERR_IO,
322 NFSERR_IO,
323 NFSERR_ACCES,
324 NFSERR_INVAL,
325 NFSERR_FBIG,
326 NFSERR_NOSPC,
327 NFSERR_ROFS,
328 NFSERR_DQUOT,
329 NFSERR_STALE,
330 NFSERR_BADHANDLE,
331 NFSERR_SERVERFAULT,
332 NFSERR_JUKEBOX,
333 0,
334 };
335
336 static const short nfsv3err_create[] = {
337 NFSERR_IO,
338 NFSERR_IO,
339 NFSERR_ACCES,
340 NFSERR_EXIST,
341 NFSERR_NOTDIR,
342 NFSERR_NOSPC,
343 NFSERR_ROFS,
344 NFSERR_NAMETOL,
345 NFSERR_DQUOT,
346 NFSERR_STALE,
347 NFSERR_BADHANDLE,
348 NFSERR_NOTSUPP,
349 NFSERR_SERVERFAULT,
350 0,
351 };
352
353 static const short nfsv3err_mkdir[] = {
354 NFSERR_IO,
355 NFSERR_IO,
356 NFSERR_ACCES,
357 NFSERR_EXIST,
358 NFSERR_NOTDIR,
359 NFSERR_NOSPC,
360 NFSERR_ROFS,
361 NFSERR_NAMETOL,
362 NFSERR_DQUOT,
363 NFSERR_STALE,
364 NFSERR_BADHANDLE,
365 NFSERR_NOTSUPP,
366 NFSERR_SERVERFAULT,
367 0,
368 };
369
370 static const short nfsv3err_symlink[] = {
371 NFSERR_IO,
372 NFSERR_IO,
373 NFSERR_ACCES,
374 NFSERR_EXIST,
375 NFSERR_NOTDIR,
376 NFSERR_NOSPC,
377 NFSERR_ROFS,
378 NFSERR_NAMETOL,
379 NFSERR_DQUOT,
380 NFSERR_STALE,
381 NFSERR_BADHANDLE,
382 NFSERR_NOTSUPP,
383 NFSERR_SERVERFAULT,
384 0,
385 };
386
387 static const short nfsv3err_mknod[] = {
388 NFSERR_IO,
389 NFSERR_IO,
390 NFSERR_ACCES,
391 NFSERR_EXIST,
392 NFSERR_NOTDIR,
393 NFSERR_NOSPC,
394 NFSERR_ROFS,
395 NFSERR_NAMETOL,
396 NFSERR_DQUOT,
397 NFSERR_STALE,
398 NFSERR_BADHANDLE,
399 NFSERR_NOTSUPP,
400 NFSERR_SERVERFAULT,
401 NFSERR_BADTYPE,
402 0,
403 };
404
405 static const short nfsv3err_remove[] = {
406 NFSERR_IO,
407 NFSERR_NOENT,
408 NFSERR_IO,
409 NFSERR_ACCES,
410 NFSERR_NOTDIR,
411 NFSERR_ROFS,
412 NFSERR_NAMETOL,
413 NFSERR_STALE,
414 NFSERR_BADHANDLE,
415 NFSERR_SERVERFAULT,
416 0,
417 };
418
419 static const short nfsv3err_rmdir[] = {
420 NFSERR_IO,
421 NFSERR_NOENT,
422 NFSERR_IO,
423 NFSERR_ACCES,
424 NFSERR_EXIST,
425 NFSERR_NOTDIR,
426 NFSERR_INVAL,
427 NFSERR_ROFS,
428 NFSERR_NAMETOL,
429 NFSERR_NOTEMPTY,
430 NFSERR_STALE,
431 NFSERR_BADHANDLE,
432 NFSERR_NOTSUPP,
433 NFSERR_SERVERFAULT,
434 0,
435 };
436
437 static const short nfsv3err_rename[] = {
438 NFSERR_IO,
439 NFSERR_NOENT,
440 NFSERR_IO,
441 NFSERR_ACCES,
442 NFSERR_EXIST,
443 NFSERR_XDEV,
444 NFSERR_NOTDIR,
445 NFSERR_ISDIR,
446 NFSERR_INVAL,
447 NFSERR_NOSPC,
448 NFSERR_ROFS,
449 NFSERR_MLINK,
450 NFSERR_NAMETOL,
451 NFSERR_NOTEMPTY,
452 NFSERR_DQUOT,
453 NFSERR_STALE,
454 NFSERR_BADHANDLE,
455 NFSERR_NOTSUPP,
456 NFSERR_SERVERFAULT,
457 0,
458 };
459
460 static const short nfsv3err_link[] = {
461 NFSERR_IO,
462 NFSERR_IO,
463 NFSERR_ACCES,
464 NFSERR_EXIST,
465 NFSERR_XDEV,
466 NFSERR_NOTDIR,
467 NFSERR_INVAL,
468 NFSERR_NOSPC,
469 NFSERR_ROFS,
470 NFSERR_MLINK,
471 NFSERR_NAMETOL,
472 NFSERR_DQUOT,
473 NFSERR_STALE,
474 NFSERR_BADHANDLE,
475 NFSERR_NOTSUPP,
476 NFSERR_SERVERFAULT,
477 0,
478 };
479
480 static const short nfsv3err_readdir[] = {
481 NFSERR_IO,
482 NFSERR_IO,
483 NFSERR_ACCES,
484 NFSERR_NOTDIR,
485 NFSERR_STALE,
486 NFSERR_BADHANDLE,
487 NFSERR_BAD_COOKIE,
488 NFSERR_TOOSMALL,
489 NFSERR_SERVERFAULT,
490 0,
491 };
492
493 static const short nfsv3err_readdirplus[] = {
494 NFSERR_IO,
495 NFSERR_IO,
496 NFSERR_ACCES,
497 NFSERR_NOTDIR,
498 NFSERR_STALE,
499 NFSERR_BADHANDLE,
500 NFSERR_BAD_COOKIE,
501 NFSERR_NOTSUPP,
502 NFSERR_TOOSMALL,
503 NFSERR_SERVERFAULT,
504 0,
505 };
506
507 static const short nfsv3err_fsstat[] = {
508 NFSERR_IO,
509 NFSERR_IO,
510 NFSERR_STALE,
511 NFSERR_BADHANDLE,
512 NFSERR_SERVERFAULT,
513 0,
514 };
515
516 static const short nfsv3err_fsinfo[] = {
517 NFSERR_STALE,
518 NFSERR_STALE,
519 NFSERR_BADHANDLE,
520 NFSERR_SERVERFAULT,
521 0,
522 };
523
524 static const short nfsv3err_pathconf[] = {
525 NFSERR_STALE,
526 NFSERR_STALE,
527 NFSERR_BADHANDLE,
528 NFSERR_SERVERFAULT,
529 0,
530 };
531
532 static const short nfsv3err_commit[] = {
533 NFSERR_IO,
534 NFSERR_IO,
535 NFSERR_STALE,
536 NFSERR_BADHANDLE,
537 NFSERR_SERVERFAULT,
538 0,
539 };
540
541 static const short * const nfsrv_v3errmap[] = {
542 nfsv3err_null,
543 nfsv3err_getattr,
544 nfsv3err_setattr,
545 nfsv3err_lookup,
546 nfsv3err_access,
547 nfsv3err_readlink,
548 nfsv3err_read,
549 nfsv3err_write,
550 nfsv3err_create,
551 nfsv3err_mkdir,
552 nfsv3err_symlink,
553 nfsv3err_mknod,
554 nfsv3err_remove,
555 nfsv3err_rmdir,
556 nfsv3err_rename,
557 nfsv3err_link,
558 nfsv3err_readdir,
559 nfsv3err_readdirplus,
560 nfsv3err_fsstat,
561 nfsv3err_fsinfo,
562 nfsv3err_pathconf,
563 nfsv3err_commit,
564 };
565
566 extern struct nfsrtt nfsrtt;
567 extern struct nfsnodehashhead *nfsnodehashtbl;
568 extern u_long nfsnodehash;
569
570 u_long nfsdirhashmask;
571
572 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
573
574 /*
575 * Create the header for an rpc request packet
576 * The hsiz is the size of the rest of the nfs request header.
577 * (just used to decide if a cluster is a good idea)
578 */
579 struct mbuf *
580 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, caddr_t *bposp)
581 {
582 struct mbuf *mb;
583 caddr_t bpos;
584
585 mb = m_get(M_WAIT, MT_DATA);
586 MCLAIM(mb, &nfs_mowner);
587 if (hsiz >= MINCLSIZE)
588 m_clget(mb, M_WAIT);
589 mb->m_len = 0;
590 bpos = mtod(mb, caddr_t);
591
592 /* Finally, return values */
593 *bposp = bpos;
594 return (mb);
595 }
596
597 /*
598 * Build the RPC header and fill in the authorization info.
599 * The authorization string argument is only used when the credentials
600 * come from outside of the kernel.
601 * Returns the head of the mbuf list.
602 */
603 struct mbuf *
604 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
605 verf_str, mrest, mrest_len, mbp, xidp)
606 kauth_cred_t cr;
607 int nmflag;
608 int procid;
609 int auth_type;
610 int auth_len;
611 char *auth_str;
612 int verf_len;
613 char *verf_str;
614 struct mbuf *mrest;
615 int mrest_len;
616 struct mbuf **mbp;
617 u_int32_t *xidp;
618 {
619 struct mbuf *mb;
620 u_int32_t *tl;
621 caddr_t bpos;
622 int i;
623 struct mbuf *mreq;
624 int siz, grpsiz, authsiz;
625
626 authsiz = nfsm_rndup(auth_len);
627 mb = m_gethdr(M_WAIT, MT_DATA);
628 MCLAIM(mb, &nfs_mowner);
629 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
630 m_clget(mb, M_WAIT);
631 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
632 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
633 } else {
634 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
635 }
636 mb->m_len = 0;
637 mreq = mb;
638 bpos = mtod(mb, caddr_t);
639
640 /*
641 * First the RPC header.
642 */
643 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
644
645 *tl++ = *xidp = nfs_getxid();
646 *tl++ = rpc_call;
647 *tl++ = rpc_vers;
648 *tl++ = txdr_unsigned(NFS_PROG);
649 if (nmflag & NFSMNT_NFSV3)
650 *tl++ = txdr_unsigned(NFS_VER3);
651 else
652 *tl++ = txdr_unsigned(NFS_VER2);
653 if (nmflag & NFSMNT_NFSV3)
654 *tl++ = txdr_unsigned(procid);
655 else
656 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
657
658 /*
659 * And then the authorization cred.
660 */
661 *tl++ = txdr_unsigned(auth_type);
662 *tl = txdr_unsigned(authsiz);
663 switch (auth_type) {
664 case RPCAUTH_UNIX:
665 nfsm_build(tl, u_int32_t *, auth_len);
666 *tl++ = 0; /* stamp ?? */
667 *tl++ = 0; /* NULL hostname */
668 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
669 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
670 grpsiz = (auth_len >> 2) - 5;
671 *tl++ = txdr_unsigned(grpsiz);
672 for (i = 0; i < grpsiz; i++)
673 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
674 break;
675 case RPCAUTH_KERB4:
676 siz = auth_len;
677 while (siz > 0) {
678 if (M_TRAILINGSPACE(mb) == 0) {
679 struct mbuf *mb2;
680 mb2 = m_get(M_WAIT, MT_DATA);
681 MCLAIM(mb2, &nfs_mowner);
682 if (siz >= MINCLSIZE)
683 m_clget(mb2, M_WAIT);
684 mb->m_next = mb2;
685 mb = mb2;
686 mb->m_len = 0;
687 bpos = mtod(mb, caddr_t);
688 }
689 i = min(siz, M_TRAILINGSPACE(mb));
690 memcpy(bpos, auth_str, i);
691 mb->m_len += i;
692 auth_str += i;
693 bpos += i;
694 siz -= i;
695 }
696 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
697 for (i = 0; i < siz; i++)
698 *bpos++ = '\0';
699 mb->m_len += siz;
700 }
701 break;
702 };
703
704 /*
705 * And the verifier...
706 */
707 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
708 if (verf_str) {
709 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
710 *tl = txdr_unsigned(verf_len);
711 siz = verf_len;
712 while (siz > 0) {
713 if (M_TRAILINGSPACE(mb) == 0) {
714 struct mbuf *mb2;
715 mb2 = m_get(M_WAIT, MT_DATA);
716 MCLAIM(mb2, &nfs_mowner);
717 if (siz >= MINCLSIZE)
718 m_clget(mb2, M_WAIT);
719 mb->m_next = mb2;
720 mb = mb2;
721 mb->m_len = 0;
722 bpos = mtod(mb, caddr_t);
723 }
724 i = min(siz, M_TRAILINGSPACE(mb));
725 memcpy(bpos, verf_str, i);
726 mb->m_len += i;
727 verf_str += i;
728 bpos += i;
729 siz -= i;
730 }
731 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
732 for (i = 0; i < siz; i++)
733 *bpos++ = '\0';
734 mb->m_len += siz;
735 }
736 } else {
737 *tl++ = txdr_unsigned(RPCAUTH_NULL);
738 *tl = 0;
739 }
740 mb->m_next = mrest;
741 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
742 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
743 *mbp = mb;
744 return (mreq);
745 }
746
747 /*
748 * copies mbuf chain to the uio scatter/gather list
749 */
750 int
751 nfsm_mbuftouio(mrep, uiop, siz, dpos)
752 struct mbuf **mrep;
753 struct uio *uiop;
754 int siz;
755 caddr_t *dpos;
756 {
757 char *mbufcp, *uiocp;
758 int xfer, left, len;
759 struct mbuf *mp;
760 long uiosiz, rem;
761 int error = 0;
762
763 mp = *mrep;
764 mbufcp = *dpos;
765 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
766 rem = nfsm_rndup(siz)-siz;
767 while (siz > 0) {
768 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
769 return (EFBIG);
770 left = uiop->uio_iov->iov_len;
771 uiocp = uiop->uio_iov->iov_base;
772 if (left > siz)
773 left = siz;
774 uiosiz = left;
775 while (left > 0) {
776 while (len == 0) {
777 mp = mp->m_next;
778 if (mp == NULL)
779 return (EBADRPC);
780 mbufcp = mtod(mp, caddr_t);
781 len = mp->m_len;
782 }
783 xfer = (left > len) ? len : left;
784 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
785 uiocp, xfer);
786 if (error) {
787 return error;
788 }
789 left -= xfer;
790 len -= xfer;
791 mbufcp += xfer;
792 uiocp += xfer;
793 uiop->uio_offset += xfer;
794 uiop->uio_resid -= xfer;
795 }
796 if (uiop->uio_iov->iov_len <= siz) {
797 uiop->uio_iovcnt--;
798 uiop->uio_iov++;
799 } else {
800 uiop->uio_iov->iov_base =
801 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
802 uiop->uio_iov->iov_len -= uiosiz;
803 }
804 siz -= uiosiz;
805 }
806 *dpos = mbufcp;
807 *mrep = mp;
808 if (rem > 0) {
809 if (len < rem)
810 error = nfs_adv(mrep, dpos, rem, len);
811 else
812 *dpos += rem;
813 }
814 return (error);
815 }
816
817 /*
818 * copies a uio scatter/gather list to an mbuf chain.
819 * NOTE: can ony handle iovcnt == 1
820 */
821 int
822 nfsm_uiotombuf(uiop, mq, siz, bpos)
823 struct uio *uiop;
824 struct mbuf **mq;
825 int siz;
826 caddr_t *bpos;
827 {
828 char *uiocp;
829 struct mbuf *mp, *mp2;
830 int xfer, left, mlen;
831 int uiosiz, clflg, rem;
832 char *cp;
833 int error;
834
835 #ifdef DIAGNOSTIC
836 if (uiop->uio_iovcnt != 1)
837 panic("nfsm_uiotombuf: iovcnt != 1");
838 #endif
839
840 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
841 clflg = 1;
842 else
843 clflg = 0;
844 rem = nfsm_rndup(siz)-siz;
845 mp = mp2 = *mq;
846 while (siz > 0) {
847 left = uiop->uio_iov->iov_len;
848 uiocp = uiop->uio_iov->iov_base;
849 if (left > siz)
850 left = siz;
851 uiosiz = left;
852 while (left > 0) {
853 mlen = M_TRAILINGSPACE(mp);
854 if (mlen == 0) {
855 mp = m_get(M_WAIT, MT_DATA);
856 MCLAIM(mp, &nfs_mowner);
857 if (clflg)
858 m_clget(mp, M_WAIT);
859 mp->m_len = 0;
860 mp2->m_next = mp;
861 mp2 = mp;
862 mlen = M_TRAILINGSPACE(mp);
863 }
864 xfer = (left > mlen) ? mlen : left;
865 cp = mtod(mp, caddr_t) + mp->m_len;
866 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
867 xfer);
868 if (error) {
869 /* XXX */
870 }
871 mp->m_len += xfer;
872 left -= xfer;
873 uiocp += xfer;
874 uiop->uio_offset += xfer;
875 uiop->uio_resid -= xfer;
876 }
877 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
878 uiosiz;
879 uiop->uio_iov->iov_len -= uiosiz;
880 siz -= uiosiz;
881 }
882 if (rem > 0) {
883 if (rem > M_TRAILINGSPACE(mp)) {
884 mp = m_get(M_WAIT, MT_DATA);
885 MCLAIM(mp, &nfs_mowner);
886 mp->m_len = 0;
887 mp2->m_next = mp;
888 }
889 cp = mtod(mp, caddr_t) + mp->m_len;
890 for (left = 0; left < rem; left++)
891 *cp++ = '\0';
892 mp->m_len += rem;
893 *bpos = cp;
894 } else
895 *bpos = mtod(mp, caddr_t)+mp->m_len;
896 *mq = mp;
897 return (0);
898 }
899
900 /*
901 * Get at least "siz" bytes of correctly aligned data.
902 * When called the mbuf pointers are not necessarily correct,
903 * dsosp points to what ought to be in m_data and left contains
904 * what ought to be in m_len.
905 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
906 * cases. (The macros use the vars. dpos and dpos2)
907 */
908 int
909 nfsm_disct(mdp, dposp, siz, left, cp2)
910 struct mbuf **mdp;
911 caddr_t *dposp;
912 int siz;
913 int left;
914 caddr_t *cp2;
915 {
916 struct mbuf *m1, *m2;
917 struct mbuf *havebuf = NULL;
918 caddr_t src = *dposp;
919 caddr_t dst;
920 int len;
921
922 #ifdef DEBUG
923 if (left < 0)
924 panic("nfsm_disct: left < 0");
925 #endif
926 m1 = *mdp;
927 /*
928 * Skip through the mbuf chain looking for an mbuf with
929 * some data. If the first mbuf found has enough data
930 * and it is correctly aligned return it.
931 */
932 while (left == 0) {
933 havebuf = m1;
934 *mdp = m1 = m1->m_next;
935 if (m1 == NULL)
936 return (EBADRPC);
937 src = mtod(m1, caddr_t);
938 left = m1->m_len;
939 /*
940 * If we start a new mbuf and it is big enough
941 * and correctly aligned just return it, don't
942 * do any pull up.
943 */
944 if (left >= siz && nfsm_aligned(src)) {
945 *cp2 = src;
946 *dposp = src + siz;
947 return (0);
948 }
949 }
950 if ((m1->m_flags & M_EXT) != 0) {
951 if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
952 nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
953 /*
954 * If the first mbuf with data has external data
955 * and there is a previous mbuf with some trailing
956 * space, use it to move the data into.
957 */
958 m2 = m1;
959 *mdp = m1 = havebuf;
960 *cp2 = mtod(m1, char *) + m1->m_len;
961 } else if (havebuf) {
962 /*
963 * If the first mbuf has a external data
964 * and there is no previous empty mbuf
965 * allocate a new mbuf and move the external
966 * data to the new mbuf. Also make the first
967 * mbuf look empty.
968 */
969 m2 = m1;
970 *mdp = m1 = m_get(M_WAIT, MT_DATA);
971 MCLAIM(m1, m2->m_owner);
972 if ((m2->m_flags & M_PKTHDR) != 0) {
973 /* XXX MOVE */
974 M_COPY_PKTHDR(m1, m2);
975 m_tag_delete_chain(m2, NULL);
976 m2->m_flags &= ~M_PKTHDR;
977 }
978 if (havebuf) {
979 havebuf->m_next = m1;
980 }
981 m1->m_next = m2;
982 MRESETDATA(m1);
983 m1->m_len = 0;
984 m2->m_data = src;
985 m2->m_len = left;
986 *cp2 = mtod(m1, char *);
987 } else {
988 struct mbuf **nextp = &m1->m_next;
989
990 m1->m_len -= left;
991 do {
992 m2 = m_get(M_WAIT, MT_DATA);
993 MCLAIM(m2, m1->m_owner);
994 if (left >= MINCLSIZE) {
995 MCLGET(m2, M_WAIT);
996 }
997 m2->m_next = *nextp;
998 *nextp = m2;
999 nextp = &m2->m_next;
1000 len = (m2->m_flags & M_EXT) != 0 ?
1001 MCLBYTES : MLEN;
1002 if (len > left) {
1003 len = left;
1004 }
1005 memcpy(mtod(m2, char *), src, len);
1006 m2->m_len = len;
1007 src += len;
1008 left -= len;
1009 } while (left > 0);
1010 *mdp = m1 = m1->m_next;
1011 m2 = m1->m_next;
1012 *cp2 = mtod(m1, char *);
1013 }
1014 } else {
1015 /*
1016 * If the first mbuf has no external data
1017 * move the data to the front of the mbuf.
1018 */
1019 MRESETDATA(m1);
1020 dst = mtod(m1, char *);
1021 if (dst != src) {
1022 memmove(dst, src, left);
1023 }
1024 m1->m_len = left;
1025 m2 = m1->m_next;
1026 *cp2 = m1->m_data;
1027 }
1028 *dposp = *cp2 + siz;
1029 /*
1030 * Loop through mbufs pulling data up into first mbuf until
1031 * the first mbuf is full or there is no more data to
1032 * pullup.
1033 */
1034 dst = mtod(m1, char *) + m1->m_len;
1035 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1036 if ((len = min(len, m2->m_len)) != 0) {
1037 memcpy(dst, mtod(m2, char *), len);
1038 }
1039 m1->m_len += len;
1040 dst += len;
1041 m2->m_data += len;
1042 m2->m_len -= len;
1043 m2 = m2->m_next;
1044 }
1045 if (m1->m_len < siz)
1046 return (EBADRPC);
1047 return (0);
1048 }
1049
1050 /*
1051 * Advance the position in the mbuf chain.
1052 */
1053 int
1054 nfs_adv(mdp, dposp, offs, left)
1055 struct mbuf **mdp;
1056 caddr_t *dposp;
1057 int offs;
1058 int left;
1059 {
1060 struct mbuf *m;
1061 int s;
1062
1063 m = *mdp;
1064 s = left;
1065 while (s < offs) {
1066 offs -= s;
1067 m = m->m_next;
1068 if (m == NULL)
1069 return (EBADRPC);
1070 s = m->m_len;
1071 }
1072 *mdp = m;
1073 *dposp = mtod(m, caddr_t)+offs;
1074 return (0);
1075 }
1076
1077 /*
1078 * Copy a string into mbufs for the hard cases...
1079 */
1080 int
1081 nfsm_strtmbuf(mb, bpos, cp, siz)
1082 struct mbuf **mb;
1083 char **bpos;
1084 const char *cp;
1085 long siz;
1086 {
1087 struct mbuf *m1 = NULL, *m2;
1088 long left, xfer, len, tlen;
1089 u_int32_t *tl;
1090 int putsize;
1091
1092 putsize = 1;
1093 m2 = *mb;
1094 left = M_TRAILINGSPACE(m2);
1095 if (left > 0) {
1096 tl = ((u_int32_t *)(*bpos));
1097 *tl++ = txdr_unsigned(siz);
1098 putsize = 0;
1099 left -= NFSX_UNSIGNED;
1100 m2->m_len += NFSX_UNSIGNED;
1101 if (left > 0) {
1102 memcpy((caddr_t) tl, cp, left);
1103 siz -= left;
1104 cp += left;
1105 m2->m_len += left;
1106 left = 0;
1107 }
1108 }
1109 /* Loop around adding mbufs */
1110 while (siz > 0) {
1111 m1 = m_get(M_WAIT, MT_DATA);
1112 MCLAIM(m1, &nfs_mowner);
1113 if (siz > MLEN)
1114 m_clget(m1, M_WAIT);
1115 m1->m_len = NFSMSIZ(m1);
1116 m2->m_next = m1;
1117 m2 = m1;
1118 tl = mtod(m1, u_int32_t *);
1119 tlen = 0;
1120 if (putsize) {
1121 *tl++ = txdr_unsigned(siz);
1122 m1->m_len -= NFSX_UNSIGNED;
1123 tlen = NFSX_UNSIGNED;
1124 putsize = 0;
1125 }
1126 if (siz < m1->m_len) {
1127 len = nfsm_rndup(siz);
1128 xfer = siz;
1129 if (xfer < len)
1130 *(tl+(xfer>>2)) = 0;
1131 } else {
1132 xfer = len = m1->m_len;
1133 }
1134 memcpy((caddr_t) tl, cp, xfer);
1135 m1->m_len = len+tlen;
1136 siz -= xfer;
1137 cp += xfer;
1138 }
1139 *mb = m1;
1140 *bpos = mtod(m1, caddr_t)+m1->m_len;
1141 return (0);
1142 }
1143
1144 /*
1145 * Directory caching routines. They work as follows:
1146 * - a cache is maintained per VDIR nfsnode.
1147 * - for each offset cookie that is exported to userspace, and can
1148 * thus be thrown back at us as an offset to VOP_READDIR, store
1149 * information in the cache.
1150 * - cached are:
1151 * - cookie itself
1152 * - blocknumber (essentially just a search key in the buffer cache)
1153 * - entry number in block.
1154 * - offset cookie of block in which this entry is stored
1155 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1156 * - entries are looked up in a hash table
1157 * - also maintained is an LRU list of entries, used to determine
1158 * which ones to delete if the cache grows too large.
1159 * - if 32 <-> 64 translation mode is requested for a filesystem,
1160 * the cache also functions as a translation table
1161 * - in the translation case, invalidating the cache does not mean
1162 * flushing it, but just marking entries as invalid, except for
1163 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1164 * still be able to use the cache as a translation table.
1165 * - 32 bit cookies are uniquely created by combining the hash table
1166 * entry value, and one generation count per hash table entry,
1167 * incremented each time an entry is appended to the chain.
1168 * - the cache is invalidated each time a direcory is modified
1169 * - sanity checks are also done; if an entry in a block turns
1170 * out not to have a matching cookie, the cache is invalidated
1171 * and a new block starting from the wanted offset is fetched from
1172 * the server.
1173 * - directory entries as read from the server are extended to contain
1174 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1175 * the cache and exporting them to userspace through the cookie
1176 * argument to VOP_READDIR.
1177 */
1178
1179 u_long
1180 nfs_dirhash(off)
1181 off_t off;
1182 {
1183 int i;
1184 char *cp = (char *)&off;
1185 u_long sum = 0L;
1186
1187 for (i = 0 ; i < sizeof (off); i++)
1188 sum += *cp++;
1189
1190 return sum;
1191 }
1192
1193 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1194 #define NFSDC_LOCK(np) simple_lock(_NFSDC_MTX(np))
1195 #define NFSDC_UNLOCK(np) simple_unlock(_NFSDC_MTX(np))
1196 #define NFSDC_ASSERT_LOCKED(np) LOCK_ASSERT(simple_lock_held(_NFSDC_MTX(np)))
1197
1198 void
1199 nfs_initdircache(vp)
1200 struct vnode *vp;
1201 {
1202 struct nfsnode *np = VTONFS(vp);
1203 struct nfsdirhashhead *dircache;
1204
1205 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1206 M_WAITOK, &nfsdirhashmask);
1207
1208 NFSDC_LOCK(np);
1209 if (np->n_dircache == NULL) {
1210 np->n_dircachesize = 0;
1211 np->n_dircache = dircache;
1212 dircache = NULL;
1213 TAILQ_INIT(&np->n_dirchain);
1214 }
1215 NFSDC_UNLOCK(np);
1216 if (dircache)
1217 hashdone(dircache, M_NFSDIROFF);
1218 }
1219
1220 void
1221 nfs_initdirxlatecookie(vp)
1222 struct vnode *vp;
1223 {
1224 struct nfsnode *np = VTONFS(vp);
1225 unsigned *dirgens;
1226
1227 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1228
1229 dirgens = malloc(NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1230 M_WAITOK|M_ZERO);
1231 NFSDC_LOCK(np);
1232 if (np->n_dirgens == NULL) {
1233 np->n_dirgens = dirgens;
1234 dirgens = NULL;
1235 }
1236 NFSDC_UNLOCK(np);
1237 if (dirgens)
1238 free(dirgens, M_NFSDIROFF);
1239 }
1240
1241 static const struct nfsdircache dzero;
1242
1243 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1244 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1245 struct nfsdircache *));
1246
1247 static void
1248 nfs_unlinkdircache(np, ndp)
1249 struct nfsnode *np;
1250 struct nfsdircache *ndp;
1251 {
1252
1253 NFSDC_ASSERT_LOCKED(np);
1254 KASSERT(ndp != &dzero);
1255
1256 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1257 return;
1258
1259 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1260 LIST_REMOVE(ndp, dc_hash);
1261 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1262
1263 nfs_putdircache_unlocked(np, ndp);
1264 }
1265
1266 void
1267 nfs_putdircache(np, ndp)
1268 struct nfsnode *np;
1269 struct nfsdircache *ndp;
1270 {
1271 int ref;
1272
1273 if (ndp == &dzero)
1274 return;
1275
1276 KASSERT(ndp->dc_refcnt > 0);
1277 NFSDC_LOCK(np);
1278 ref = --ndp->dc_refcnt;
1279 NFSDC_UNLOCK(np);
1280
1281 if (ref == 0)
1282 free(ndp, M_NFSDIROFF);
1283 }
1284
1285 static void
1286 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1287 {
1288 int ref;
1289
1290 NFSDC_ASSERT_LOCKED(np);
1291
1292 if (ndp == &dzero)
1293 return;
1294
1295 KASSERT(ndp->dc_refcnt > 0);
1296 ref = --ndp->dc_refcnt;
1297 if (ref == 0)
1298 free(ndp, M_NFSDIROFF);
1299 }
1300
1301 struct nfsdircache *
1302 nfs_searchdircache(vp, off, do32, hashent)
1303 struct vnode *vp;
1304 off_t off;
1305 int do32;
1306 int *hashent;
1307 {
1308 struct nfsdirhashhead *ndhp;
1309 struct nfsdircache *ndp = NULL;
1310 struct nfsnode *np = VTONFS(vp);
1311 unsigned ent;
1312
1313 /*
1314 * Zero is always a valid cookie.
1315 */
1316 if (off == 0)
1317 /* XXXUNCONST */
1318 return (struct nfsdircache *)__UNCONST(&dzero);
1319
1320 if (!np->n_dircache)
1321 return NULL;
1322
1323 /*
1324 * We use a 32bit cookie as search key, directly reconstruct
1325 * the hashentry. Else use the hashfunction.
1326 */
1327 if (do32) {
1328 ent = (u_int32_t)off >> 24;
1329 if (ent >= NFS_DIRHASHSIZ)
1330 return NULL;
1331 ndhp = &np->n_dircache[ent];
1332 } else {
1333 ndhp = NFSDIRHASH(np, off);
1334 }
1335
1336 if (hashent)
1337 *hashent = (int)(ndhp - np->n_dircache);
1338
1339 NFSDC_LOCK(np);
1340 if (do32) {
1341 LIST_FOREACH(ndp, ndhp, dc_hash) {
1342 if (ndp->dc_cookie32 == (u_int32_t)off) {
1343 /*
1344 * An invalidated entry will become the
1345 * start of a new block fetched from
1346 * the server.
1347 */
1348 if (ndp->dc_flags & NFSDC_INVALID) {
1349 ndp->dc_blkcookie = ndp->dc_cookie;
1350 ndp->dc_entry = 0;
1351 ndp->dc_flags &= ~NFSDC_INVALID;
1352 }
1353 break;
1354 }
1355 }
1356 } else {
1357 LIST_FOREACH(ndp, ndhp, dc_hash) {
1358 if (ndp->dc_cookie == off)
1359 break;
1360 }
1361 }
1362 if (ndp != NULL)
1363 ndp->dc_refcnt++;
1364 NFSDC_UNLOCK(np);
1365 return ndp;
1366 }
1367
1368
1369 struct nfsdircache *
1370 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1371 daddr_t blkno)
1372 {
1373 struct nfsnode *np = VTONFS(vp);
1374 struct nfsdirhashhead *ndhp;
1375 struct nfsdircache *ndp = NULL;
1376 struct nfsdircache *newndp = NULL;
1377 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1378 int hashent = 0, gen, overwrite; /* XXX: GCC */
1379
1380 /*
1381 * XXX refuse entries for offset 0. amd(8) erroneously sets
1382 * cookie 0 for the '.' entry, making this necessary. This
1383 * isn't so bad, as 0 is a special case anyway.
1384 */
1385 if (off == 0)
1386 /* XXXUNCONST */
1387 return (struct nfsdircache *)__UNCONST(&dzero);
1388
1389 if (!np->n_dircache)
1390 /*
1391 * XXX would like to do this in nfs_nget but vtype
1392 * isn't known at that time.
1393 */
1394 nfs_initdircache(vp);
1395
1396 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1397 nfs_initdirxlatecookie(vp);
1398
1399 retry:
1400 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1401
1402 NFSDC_LOCK(np);
1403 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1404 /*
1405 * Overwriting an old entry. Check if it's the same.
1406 * If so, just return. If not, remove the old entry.
1407 */
1408 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1409 goto done;
1410 nfs_unlinkdircache(np, ndp);
1411 nfs_putdircache_unlocked(np, ndp);
1412 ndp = NULL;
1413 }
1414
1415 ndhp = &np->n_dircache[hashent];
1416
1417 if (!ndp) {
1418 if (newndp == NULL) {
1419 NFSDC_UNLOCK(np);
1420 newndp = malloc(sizeof(*ndp), M_NFSDIROFF, M_WAITOK);
1421 newndp->dc_refcnt = 1;
1422 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1423 goto retry;
1424 }
1425 ndp = newndp;
1426 newndp = NULL;
1427 overwrite = 0;
1428 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1429 /*
1430 * We're allocating a new entry, so bump the
1431 * generation number.
1432 */
1433 KASSERT(np->n_dirgens);
1434 gen = ++np->n_dirgens[hashent];
1435 if (gen == 0) {
1436 np->n_dirgens[hashent]++;
1437 gen++;
1438 }
1439 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1440 }
1441 } else
1442 overwrite = 1;
1443
1444 ndp->dc_cookie = off;
1445 ndp->dc_blkcookie = blkoff;
1446 ndp->dc_entry = en;
1447 ndp->dc_flags = 0;
1448
1449 if (overwrite)
1450 goto done;
1451
1452 /*
1453 * If the maximum directory cookie cache size has been reached
1454 * for this node, take one off the front. The idea is that
1455 * directories are typically read front-to-back once, so that
1456 * the oldest entries can be thrown away without much performance
1457 * loss.
1458 */
1459 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1460 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1461 } else
1462 np->n_dircachesize++;
1463
1464 KASSERT(ndp->dc_refcnt == 1);
1465 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1466 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1467 ndp->dc_refcnt++;
1468 done:
1469 KASSERT(ndp->dc_refcnt > 0);
1470 NFSDC_UNLOCK(np);
1471 if (newndp)
1472 nfs_putdircache(np, newndp);
1473 return ndp;
1474 }
1475
1476 void
1477 nfs_invaldircache(vp, flags)
1478 struct vnode *vp;
1479 int flags;
1480 {
1481 struct nfsnode *np = VTONFS(vp);
1482 struct nfsdircache *ndp = NULL;
1483 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1484 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1485
1486 #ifdef DIAGNOSTIC
1487 if (vp->v_type != VDIR)
1488 panic("nfs: invaldircache: not dir");
1489 #endif
1490
1491 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1492 np->n_flag &= ~NEOFVALID;
1493
1494 if (!np->n_dircache)
1495 return;
1496
1497 NFSDC_LOCK(np);
1498 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1499 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1500 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1501 nfs_unlinkdircache(np, ndp);
1502 }
1503 np->n_dircachesize = 0;
1504 if (forcefree && np->n_dirgens) {
1505 FREE(np->n_dirgens, M_NFSDIROFF);
1506 np->n_dirgens = NULL;
1507 }
1508 } else {
1509 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1510 ndp->dc_flags |= NFSDC_INVALID;
1511 }
1512
1513 NFSDC_UNLOCK(np);
1514 }
1515
1516 /*
1517 * Called once before VFS init to initialize shared and
1518 * server-specific data structures.
1519 */
1520 static int
1521 nfs_init0(void)
1522 {
1523 nfsrtt.pos = 0;
1524 rpc_vers = txdr_unsigned(RPC_VER2);
1525 rpc_call = txdr_unsigned(RPC_CALL);
1526 rpc_reply = txdr_unsigned(RPC_REPLY);
1527 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1528 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1529 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1530 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1531 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1532 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1533 nfs_prog = txdr_unsigned(NFS_PROG);
1534 nfs_true = txdr_unsigned(true);
1535 nfs_false = txdr_unsigned(false);
1536 nfs_xdrneg1 = txdr_unsigned(-1);
1537 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1538 if (nfs_ticks < 1)
1539 nfs_ticks = 1;
1540 #ifdef NFSSERVER
1541 nfsrv_init(0); /* Init server data structures */
1542 nfsrv_initcache(); /* Init the server request cache */
1543 #endif /* NFSSERVER */
1544
1545 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
1546 nfsdreq_init();
1547 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
1548
1549 exithook_establish(nfs_exit, NULL);
1550
1551 /*
1552 * Initialize reply list and start timer
1553 */
1554 TAILQ_INIT(&nfs_reqq);
1555 nfs_timer(NULL);
1556 MOWNER_ATTACH(&nfs_mowner);
1557
1558 #ifdef NFS
1559 /* Initialize the kqueue structures */
1560 nfs_kqinit();
1561 /* Initialize the iod structures */
1562 nfs_iodinit();
1563 #endif
1564 return 0;
1565 }
1566
1567 void
1568 nfs_init(void)
1569 {
1570 static ONCE_DECL(nfs_init_once);
1571
1572 RUN_ONCE(&nfs_init_once, nfs_init0);
1573 }
1574
1575 #ifdef NFS
1576 /*
1577 * Called once at VFS init to initialize client-specific data structures.
1578 */
1579 void
1580 nfs_vfs_init()
1581 {
1582 /* Initialize NFS server / client shared data. */
1583 nfs_init();
1584
1585 nfs_nhinit(); /* Init the nfsnode table */
1586 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1587 }
1588
1589 void
1590 nfs_vfs_reinit()
1591 {
1592 nfs_nhreinit();
1593 }
1594
1595 void
1596 nfs_vfs_done()
1597 {
1598 nfs_nhdone();
1599 }
1600
1601 /*
1602 * Attribute cache routines.
1603 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1604 * that are on the mbuf list
1605 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1606 * error otherwise
1607 */
1608
1609 /*
1610 * Load the attribute cache (that lives in the nfsnode entry) with
1611 * the values on the mbuf list and
1612 * Iff vap not NULL
1613 * copy the attributes to *vaper
1614 */
1615 int
1616 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1617 struct vnode **vpp;
1618 struct mbuf **mdp;
1619 caddr_t *dposp;
1620 struct vattr *vaper;
1621 int flags;
1622 {
1623 int32_t t1;
1624 caddr_t cp2;
1625 int error = 0;
1626 struct mbuf *md;
1627 int v3 = NFS_ISV3(*vpp);
1628
1629 md = *mdp;
1630 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1631 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1632 if (error)
1633 return (error);
1634 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1635 }
1636
1637 int
1638 nfs_loadattrcache(vpp, fp, vaper, flags)
1639 struct vnode **vpp;
1640 struct nfs_fattr *fp;
1641 struct vattr *vaper;
1642 int flags;
1643 {
1644 struct vnode *vp = *vpp;
1645 struct vattr *vap;
1646 int v3 = NFS_ISV3(vp);
1647 enum vtype vtyp;
1648 u_short vmode;
1649 struct timespec mtime;
1650 struct timespec ctime;
1651 struct vnode *nvp;
1652 int32_t rdev;
1653 struct nfsnode *np;
1654 extern int (**spec_nfsv2nodeop_p) __P((void *));
1655 uid_t uid;
1656 gid_t gid;
1657
1658 if (v3) {
1659 vtyp = nfsv3tov_type(fp->fa_type);
1660 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1661 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1662 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1663 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1664 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1665 } else {
1666 vtyp = nfsv2tov_type(fp->fa_type);
1667 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1668 if (vtyp == VNON || vtyp == VREG)
1669 vtyp = IFTOVT(vmode);
1670 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1671 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1672 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1673 fp->fa2_ctime.nfsv2_sec);
1674 ctime.tv_nsec = 0;
1675
1676 /*
1677 * Really ugly NFSv2 kludge.
1678 */
1679 if (vtyp == VCHR && rdev == 0xffffffff)
1680 vtyp = VFIFO;
1681 }
1682
1683 vmode &= ALLPERMS;
1684
1685 /*
1686 * If v_type == VNON it is a new node, so fill in the v_type,
1687 * n_mtime fields. Check to see if it represents a special
1688 * device, and if so, check for a possible alias. Once the
1689 * correct vnode has been obtained, fill in the rest of the
1690 * information.
1691 */
1692 np = VTONFS(vp);
1693 if (vp->v_type == VNON) {
1694 vp->v_type = vtyp;
1695 if (vp->v_type == VFIFO) {
1696 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1697 vp->v_op = fifo_nfsv2nodeop_p;
1698 } else if (vp->v_type == VREG) {
1699 mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
1700 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1701 vp->v_op = spec_nfsv2nodeop_p;
1702 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1703 if (nvp) {
1704 /*
1705 * Discard unneeded vnode, but save its nfsnode.
1706 * Since the nfsnode does not have a lock, its
1707 * vnode lock has to be carried over.
1708 */
1709 /*
1710 * XXX is the old node sure to be locked here?
1711 */
1712 KASSERT(lockstatus(&vp->v_lock) ==
1713 LK_EXCLUSIVE);
1714 nvp->v_data = vp->v_data;
1715 vp->v_data = NULL;
1716 VOP_UNLOCK(vp, 0);
1717 vp->v_op = spec_vnodeop_p;
1718 vrele(vp);
1719 vgone(vp);
1720 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1721 &nvp->v_interlock);
1722 /*
1723 * Reinitialize aliased node.
1724 */
1725 np->n_vnode = nvp;
1726 *vpp = vp = nvp;
1727 }
1728 }
1729 np->n_mtime = mtime;
1730 }
1731 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1732 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1733 vap = np->n_vattr;
1734
1735 /*
1736 * Invalidate access cache if uid, gid, mode or ctime changed.
1737 */
1738 if (np->n_accstamp != -1 &&
1739 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1740 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1741 np->n_accstamp = -1;
1742
1743 vap->va_type = vtyp;
1744 vap->va_mode = vmode;
1745 vap->va_rdev = (dev_t)rdev;
1746 vap->va_mtime = mtime;
1747 vap->va_ctime = ctime;
1748 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1749 switch (vtyp) {
1750 case VDIR:
1751 vap->va_blocksize = NFS_DIRFRAGSIZ;
1752 break;
1753 case VBLK:
1754 vap->va_blocksize = BLKDEV_IOSIZE;
1755 break;
1756 case VCHR:
1757 vap->va_blocksize = MAXBSIZE;
1758 break;
1759 default:
1760 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1761 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1762 break;
1763 }
1764 if (v3) {
1765 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1766 vap->va_uid = uid;
1767 vap->va_gid = gid;
1768 vap->va_size = fxdr_hyper(&fp->fa3_size);
1769 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1770 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1771 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1772 vap->va_flags = 0;
1773 vap->va_filerev = 0;
1774 } else {
1775 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1776 vap->va_uid = uid;
1777 vap->va_gid = gid;
1778 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1779 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1780 * NFS_FABLKSIZE;
1781 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1782 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1783 vap->va_flags = 0;
1784 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1785 vap->va_filerev = 0;
1786 }
1787 if (vap->va_size != np->n_size) {
1788 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1789 vap->va_size = np->n_size;
1790 } else {
1791 np->n_size = vap->va_size;
1792 if (vap->va_type == VREG) {
1793 /*
1794 * we can't free pages if NAC_NOTRUNC because
1795 * the pages can be owned by ourselves.
1796 */
1797 if (flags & NAC_NOTRUNC) {
1798 np->n_flag |= NTRUNCDELAYED;
1799 } else {
1800 genfs_node_wrlock(vp);
1801 simple_lock(&vp->v_interlock);
1802 (void)VOP_PUTPAGES(vp, 0,
1803 0, PGO_SYNCIO | PGO_CLEANIT |
1804 PGO_FREE | PGO_ALLPAGES);
1805 uvm_vnp_setsize(vp, np->n_size);
1806 genfs_node_unlock(vp);
1807 }
1808 }
1809 }
1810 }
1811 np->n_attrstamp = time_second;
1812 if (vaper != NULL) {
1813 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1814 if (np->n_flag & NCHG) {
1815 if (np->n_flag & NACC)
1816 vaper->va_atime = np->n_atim;
1817 if (np->n_flag & NUPD)
1818 vaper->va_mtime = np->n_mtim;
1819 }
1820 }
1821 return (0);
1822 }
1823
1824 /*
1825 * Check the time stamp
1826 * If the cache is valid, copy contents to *vap and return 0
1827 * otherwise return an error
1828 */
1829 int
1830 nfs_getattrcache(vp, vaper)
1831 struct vnode *vp;
1832 struct vattr *vaper;
1833 {
1834 struct nfsnode *np = VTONFS(vp);
1835 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1836 struct vattr *vap;
1837
1838 if (np->n_attrstamp == 0 ||
1839 (time_second - np->n_attrstamp) >= NFS_ATTRTIMEO(nmp, np)) {
1840 nfsstats.attrcache_misses++;
1841 return (ENOENT);
1842 }
1843 nfsstats.attrcache_hits++;
1844 vap = np->n_vattr;
1845 if (vap->va_size != np->n_size) {
1846 if (vap->va_type == VREG) {
1847 if (np->n_flag & NMODIFIED) {
1848 if (vap->va_size < np->n_size)
1849 vap->va_size = np->n_size;
1850 else
1851 np->n_size = vap->va_size;
1852 } else
1853 np->n_size = vap->va_size;
1854 genfs_node_wrlock(vp);
1855 uvm_vnp_setsize(vp, np->n_size);
1856 genfs_node_unlock(vp);
1857 } else
1858 np->n_size = vap->va_size;
1859 }
1860 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1861 if (np->n_flag & NCHG) {
1862 if (np->n_flag & NACC)
1863 vaper->va_atime = np->n_atim;
1864 if (np->n_flag & NUPD)
1865 vaper->va_mtime = np->n_mtim;
1866 }
1867 return (0);
1868 }
1869
1870 void
1871 nfs_delayedtruncate(vp)
1872 struct vnode *vp;
1873 {
1874 struct nfsnode *np = VTONFS(vp);
1875
1876 if (np->n_flag & NTRUNCDELAYED) {
1877 np->n_flag &= ~NTRUNCDELAYED;
1878 genfs_node_wrlock(vp);
1879 simple_lock(&vp->v_interlock);
1880 (void)VOP_PUTPAGES(vp, 0,
1881 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1882 uvm_vnp_setsize(vp, np->n_size);
1883 genfs_node_unlock(vp);
1884 }
1885 }
1886
1887 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1888 #define NFS_WCCKLUDGE(nmp, now) \
1889 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1890 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1891
1892 /*
1893 * nfs_check_wccdata: check inaccurate wcc_data
1894 *
1895 * => return non-zero if we shouldn't trust the wcc_data.
1896 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1897 */
1898
1899 int
1900 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1901 struct timespec *mtime, bool docheck)
1902 {
1903 int error = 0;
1904
1905 #if !defined(NFS_V2_ONLY)
1906
1907 if (docheck) {
1908 struct vnode *vp = NFSTOV(np);
1909 struct nfsmount *nmp;
1910 long now = time_second;
1911 #if defined(DEBUG)
1912 const char *reason = NULL; /* XXX: gcc */
1913 #endif
1914
1915 if (timespeccmp(&np->n_vattr->va_mtime, mtime, <=)) {
1916 #if defined(DEBUG)
1917 reason = "mtime";
1918 #endif
1919 error = EINVAL;
1920 }
1921
1922 if (vp->v_type == VDIR &&
1923 timespeccmp(&np->n_vattr->va_ctime, ctime, <=)) {
1924 #if defined(DEBUG)
1925 reason = "ctime";
1926 #endif
1927 error = EINVAL;
1928 }
1929
1930 nmp = VFSTONFS(vp->v_mount);
1931 if (error) {
1932
1933 /*
1934 * despite of the fact that we've updated the file,
1935 * timestamps of the file were not updated as we
1936 * expected.
1937 * it means that the server has incompatible
1938 * semantics of timestamps or (more likely)
1939 * the server time is not precise enough to
1940 * track each modifications.
1941 * in that case, we disable wcc processing.
1942 *
1943 * yes, strictly speaking, we should disable all
1944 * caching. it's a compromise.
1945 */
1946
1947 simple_lock(&nmp->nm_slock);
1948 #if defined(DEBUG)
1949 if (!NFS_WCCKLUDGE(nmp, now)) {
1950 printf("%s: inaccurate wcc data (%s) detected,"
1951 " disabling wcc\n",
1952 vp->v_mount->mnt_stat.f_mntfromname,
1953 reason);
1954 }
1955 #endif
1956 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1957 nmp->nm_wcckludgetime = now;
1958 simple_unlock(&nmp->nm_slock);
1959 } else if (NFS_WCCKLUDGE(nmp, now)) {
1960 error = EPERM; /* XXX */
1961 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1962 simple_lock(&nmp->nm_slock);
1963 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1964 #if defined(DEBUG)
1965 printf("%s: re-enabling wcc\n",
1966 vp->v_mount->mnt_stat.f_mntfromname);
1967 #endif
1968 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1969 }
1970 simple_unlock(&nmp->nm_slock);
1971 }
1972 }
1973
1974 #endif /* !defined(NFS_V2_ONLY) */
1975
1976 return error;
1977 }
1978
1979 /*
1980 * Heuristic to see if the server XDR encodes directory cookies or not.
1981 * it is not supposed to, but a lot of servers may do this. Also, since
1982 * most/all servers will implement V2 as well, it is expected that they
1983 * may return just 32 bits worth of cookie information, so we need to
1984 * find out in which 32 bits this information is available. We do this
1985 * to avoid trouble with emulated binaries that can't handle 64 bit
1986 * directory offsets.
1987 */
1988
1989 void
1990 nfs_cookieheuristic(vp, flagp, l, cred)
1991 struct vnode *vp;
1992 int *flagp;
1993 struct lwp *l;
1994 kauth_cred_t cred;
1995 {
1996 struct uio auio;
1997 struct iovec aiov;
1998 caddr_t tbuf, cp;
1999 struct dirent *dp;
2000 off_t *cookies = NULL, *cop;
2001 int error, eof, nc, len;
2002
2003 MALLOC(tbuf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
2004
2005 aiov.iov_base = tbuf;
2006 aiov.iov_len = NFS_DIRFRAGSIZ;
2007 auio.uio_iov = &aiov;
2008 auio.uio_iovcnt = 1;
2009 auio.uio_rw = UIO_READ;
2010 auio.uio_resid = NFS_DIRFRAGSIZ;
2011 auio.uio_offset = 0;
2012 UIO_SETUP_SYSSPACE(&auio);
2013
2014 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
2015
2016 len = NFS_DIRFRAGSIZ - auio.uio_resid;
2017 if (error || len == 0) {
2018 FREE(tbuf, M_TEMP);
2019 if (cookies)
2020 free(cookies, M_TEMP);
2021 return;
2022 }
2023
2024 /*
2025 * Find the first valid entry and look at its offset cookie.
2026 */
2027
2028 cp = tbuf;
2029 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2030 dp = (struct dirent *)cp;
2031 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2032 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2033 *flagp |= NFSMNT_SWAPCOOKIE;
2034 nfs_invaldircache(vp, 0);
2035 nfs_vinvalbuf(vp, 0, cred, l, 1);
2036 }
2037 break;
2038 }
2039 cop++;
2040 cp += dp->d_reclen;
2041 }
2042
2043 FREE(tbuf, M_TEMP);
2044 free(cookies, M_TEMP);
2045 }
2046 #endif /* NFS */
2047
2048 #ifdef NFSSERVER
2049 /*
2050 * Set up nameidata for a lookup() call and do it.
2051 *
2052 * If pubflag is set, this call is done for a lookup operation on the
2053 * public filehandle. In that case we allow crossing mountpoints and
2054 * absolute pathnames. However, the caller is expected to check that
2055 * the lookup result is within the public fs, and deny access if
2056 * it is not.
2057 */
2058 int
2059 nfs_namei(ndp, nsfh, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2060 struct nameidata *ndp;
2061 nfsrvfh_t *nsfh;
2062 uint32_t len;
2063 struct nfssvc_sock *slp;
2064 struct mbuf *nam;
2065 struct mbuf **mdp;
2066 caddr_t *dposp;
2067 struct vnode **retdirp;
2068 struct lwp *l;
2069 int kerbflag, pubflag;
2070 {
2071 int i, rem;
2072 struct mbuf *md;
2073 char *fromcp, *tocp, *cp;
2074 struct iovec aiov;
2075 struct uio auio;
2076 struct vnode *dp;
2077 int error, rdonly, linklen;
2078 struct componentname *cnp = &ndp->ni_cnd;
2079
2080 *retdirp = NULL;
2081
2082 if ((len + 1) > MAXPATHLEN)
2083 return (ENAMETOOLONG);
2084 if (len == 0)
2085 return (EACCES);
2086 cnp->cn_pnbuf = PNBUF_GET();
2087
2088 /*
2089 * Copy the name from the mbuf list to ndp->ni_pnbuf
2090 * and set the various ndp fields appropriately.
2091 */
2092 fromcp = *dposp;
2093 tocp = cnp->cn_pnbuf;
2094 md = *mdp;
2095 rem = mtod(md, caddr_t) + md->m_len - fromcp;
2096 for (i = 0; i < len; i++) {
2097 while (rem == 0) {
2098 md = md->m_next;
2099 if (md == NULL) {
2100 error = EBADRPC;
2101 goto out;
2102 }
2103 fromcp = mtod(md, caddr_t);
2104 rem = md->m_len;
2105 }
2106 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2107 error = EACCES;
2108 goto out;
2109 }
2110 *tocp++ = *fromcp++;
2111 rem--;
2112 }
2113 *tocp = '\0';
2114 *mdp = md;
2115 *dposp = fromcp;
2116 len = nfsm_rndup(len)-len;
2117 if (len > 0) {
2118 if (rem >= len)
2119 *dposp += len;
2120 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2121 goto out;
2122 }
2123
2124 /*
2125 * Extract and set starting directory.
2126 */
2127 error = nfsrv_fhtovp(nsfh, false, &dp, ndp->ni_cnd.cn_cred, slp,
2128 nam, &rdonly, kerbflag, pubflag);
2129 if (error)
2130 goto out;
2131 if (dp->v_type != VDIR) {
2132 vrele(dp);
2133 error = ENOTDIR;
2134 goto out;
2135 }
2136
2137 if (rdonly)
2138 cnp->cn_flags |= RDONLY;
2139
2140 *retdirp = dp;
2141
2142 if (pubflag) {
2143 /*
2144 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2145 * and the 'native path' indicator.
2146 */
2147 cp = PNBUF_GET();
2148 fromcp = cnp->cn_pnbuf;
2149 tocp = cp;
2150 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2151 switch ((unsigned char)*fromcp) {
2152 case WEBNFS_NATIVE_CHAR:
2153 /*
2154 * 'Native' path for us is the same
2155 * as a path according to the NFS spec,
2156 * just skip the escape char.
2157 */
2158 fromcp++;
2159 break;
2160 /*
2161 * More may be added in the future, range 0x80-0xff
2162 */
2163 default:
2164 error = EIO;
2165 vrele(dp);
2166 PNBUF_PUT(cp);
2167 goto out;
2168 }
2169 }
2170 /*
2171 * Translate the '%' escapes, URL-style.
2172 */
2173 while (*fromcp != '\0') {
2174 if (*fromcp == WEBNFS_ESC_CHAR) {
2175 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2176 fromcp++;
2177 *tocp++ = HEXSTRTOI(fromcp);
2178 fromcp += 2;
2179 continue;
2180 } else {
2181 error = ENOENT;
2182 vrele(dp);
2183 PNBUF_PUT(cp);
2184 goto out;
2185 }
2186 } else
2187 *tocp++ = *fromcp++;
2188 }
2189 *tocp = '\0';
2190 PNBUF_PUT(cnp->cn_pnbuf);
2191 cnp->cn_pnbuf = cp;
2192 }
2193
2194 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2195 ndp->ni_segflg = UIO_SYSSPACE;
2196 ndp->ni_rootdir = rootvnode;
2197
2198 if (pubflag) {
2199 ndp->ni_loopcnt = 0;
2200 if (cnp->cn_pnbuf[0] == '/')
2201 dp = rootvnode;
2202 } else {
2203 cnp->cn_flags |= NOCROSSMOUNT;
2204 }
2205
2206 cnp->cn_lwp = l;
2207 VREF(dp);
2208 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2209
2210 for (;;) {
2211 cnp->cn_nameptr = cnp->cn_pnbuf;
2212 ndp->ni_startdir = dp;
2213
2214 /*
2215 * And call lookup() to do the real work
2216 */
2217 error = lookup(ndp);
2218 if (error) {
2219 if (ndp->ni_dvp) {
2220 vput(ndp->ni_dvp);
2221 }
2222 PNBUF_PUT(cnp->cn_pnbuf);
2223 return (error);
2224 }
2225
2226 /*
2227 * Check for encountering a symbolic link
2228 */
2229 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2230 if ((cnp->cn_flags & LOCKPARENT) == 0 && ndp->ni_dvp) {
2231 if (ndp->ni_dvp == ndp->ni_vp) {
2232 vrele(ndp->ni_dvp);
2233 } else {
2234 vput(ndp->ni_dvp);
2235 }
2236 }
2237 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2238 cnp->cn_flags |= HASBUF;
2239 else
2240 PNBUF_PUT(cnp->cn_pnbuf);
2241 return (0);
2242 } else {
2243 if (!pubflag) {
2244 error = EINVAL;
2245 break;
2246 }
2247 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2248 error = ELOOP;
2249 break;
2250 }
2251 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2252 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2253 cnp->cn_lwp);
2254 if (error != 0)
2255 break;
2256 }
2257 if (ndp->ni_pathlen > 1)
2258 cp = PNBUF_GET();
2259 else
2260 cp = cnp->cn_pnbuf;
2261 aiov.iov_base = cp;
2262 aiov.iov_len = MAXPATHLEN;
2263 auio.uio_iov = &aiov;
2264 auio.uio_iovcnt = 1;
2265 auio.uio_offset = 0;
2266 auio.uio_rw = UIO_READ;
2267 auio.uio_resid = MAXPATHLEN;
2268 UIO_SETUP_SYSSPACE(&auio);
2269 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2270 if (error) {
2271 badlink:
2272 if (ndp->ni_pathlen > 1)
2273 PNBUF_PUT(cp);
2274 break;
2275 }
2276 linklen = MAXPATHLEN - auio.uio_resid;
2277 if (linklen == 0) {
2278 error = ENOENT;
2279 goto badlink;
2280 }
2281 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2282 error = ENAMETOOLONG;
2283 goto badlink;
2284 }
2285 if (ndp->ni_pathlen > 1) {
2286 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2287 PNBUF_PUT(cnp->cn_pnbuf);
2288 cnp->cn_pnbuf = cp;
2289 } else
2290 cnp->cn_pnbuf[linklen] = '\0';
2291 ndp->ni_pathlen += linklen;
2292 vput(ndp->ni_vp);
2293 dp = ndp->ni_dvp;
2294
2295 /*
2296 * Check if root directory should replace current directory.
2297 */
2298 if (cnp->cn_pnbuf[0] == '/') {
2299 vput(dp);
2300 dp = ndp->ni_rootdir;
2301 VREF(dp);
2302 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2303 }
2304 }
2305 }
2306 vput(ndp->ni_dvp);
2307 vput(ndp->ni_vp);
2308 ndp->ni_vp = NULL;
2309 out:
2310 PNBUF_PUT(cnp->cn_pnbuf);
2311 return (error);
2312 }
2313 #endif /* NFSSERVER */
2314
2315 /*
2316 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2317 * boundary and only trims off the back end
2318 *
2319 * 1. trim off 'len' bytes as m_adj(mp, -len).
2320 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2321 */
2322 void
2323 nfs_zeropad(mp, len, nul)
2324 struct mbuf *mp;
2325 int len;
2326 int nul;
2327 {
2328 struct mbuf *m;
2329 int count;
2330
2331 /*
2332 * Trim from tail. Scan the mbuf chain,
2333 * calculating its length and finding the last mbuf.
2334 * If the adjustment only affects this mbuf, then just
2335 * adjust and return. Otherwise, rescan and truncate
2336 * after the remaining size.
2337 */
2338 count = 0;
2339 m = mp;
2340 for (;;) {
2341 count += m->m_len;
2342 if (m->m_next == NULL)
2343 break;
2344 m = m->m_next;
2345 }
2346
2347 KDASSERT(count >= len);
2348
2349 if (m->m_len >= len) {
2350 m->m_len -= len;
2351 } else {
2352 count -= len;
2353 /*
2354 * Correct length for chain is "count".
2355 * Find the mbuf with last data, adjust its length,
2356 * and toss data from remaining mbufs on chain.
2357 */
2358 for (m = mp; m; m = m->m_next) {
2359 if (m->m_len >= count) {
2360 m->m_len = count;
2361 break;
2362 }
2363 count -= m->m_len;
2364 }
2365 KASSERT(m && m->m_next);
2366 m_freem(m->m_next);
2367 m->m_next = NULL;
2368 }
2369
2370 KDASSERT(m->m_next == NULL);
2371
2372 /*
2373 * zero-padding.
2374 */
2375 if (nul > 0) {
2376 char *cp;
2377 int i;
2378
2379 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2380 struct mbuf *n;
2381
2382 KDASSERT(MLEN >= nul);
2383 n = m_get(M_WAIT, MT_DATA);
2384 MCLAIM(n, &nfs_mowner);
2385 n->m_len = nul;
2386 n->m_next = NULL;
2387 m->m_next = n;
2388 cp = mtod(n, caddr_t);
2389 } else {
2390 cp = mtod(m, caddr_t) + m->m_len;
2391 m->m_len += nul;
2392 }
2393 for (i = 0; i < nul; i++)
2394 *cp++ = '\0';
2395 }
2396 return;
2397 }
2398
2399 /*
2400 * Make these functions instead of macros, so that the kernel text size
2401 * doesn't get too big...
2402 */
2403 void
2404 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2405 struct nfsrv_descript *nfsd;
2406 int before_ret;
2407 struct vattr *before_vap;
2408 int after_ret;
2409 struct vattr *after_vap;
2410 struct mbuf **mbp;
2411 char **bposp;
2412 {
2413 struct mbuf *mb = *mbp;
2414 char *bpos = *bposp;
2415 u_int32_t *tl;
2416
2417 if (before_ret) {
2418 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2419 *tl = nfs_false;
2420 } else {
2421 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2422 *tl++ = nfs_true;
2423 txdr_hyper(before_vap->va_size, tl);
2424 tl += 2;
2425 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2426 tl += 2;
2427 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2428 }
2429 *bposp = bpos;
2430 *mbp = mb;
2431 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2432 }
2433
2434 void
2435 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2436 struct nfsrv_descript *nfsd;
2437 int after_ret;
2438 struct vattr *after_vap;
2439 struct mbuf **mbp;
2440 char **bposp;
2441 {
2442 struct mbuf *mb = *mbp;
2443 char *bpos = *bposp;
2444 u_int32_t *tl;
2445 struct nfs_fattr *fp;
2446
2447 if (after_ret) {
2448 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2449 *tl = nfs_false;
2450 } else {
2451 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2452 *tl++ = nfs_true;
2453 fp = (struct nfs_fattr *)tl;
2454 nfsm_srvfattr(nfsd, after_vap, fp);
2455 }
2456 *mbp = mb;
2457 *bposp = bpos;
2458 }
2459
2460 void
2461 nfsm_srvfattr(nfsd, vap, fp)
2462 struct nfsrv_descript *nfsd;
2463 struct vattr *vap;
2464 struct nfs_fattr *fp;
2465 {
2466
2467 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2468 fp->fa_uid = txdr_unsigned(vap->va_uid);
2469 fp->fa_gid = txdr_unsigned(vap->va_gid);
2470 if (nfsd->nd_flag & ND_NFSV3) {
2471 fp->fa_type = vtonfsv3_type(vap->va_type);
2472 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2473 txdr_hyper(vap->va_size, &fp->fa3_size);
2474 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2475 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2476 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2477 fp->fa3_fsid.nfsuquad[0] = 0;
2478 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2479 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2480 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2481 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2482 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2483 } else {
2484 fp->fa_type = vtonfsv2_type(vap->va_type);
2485 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2486 fp->fa2_size = txdr_unsigned(vap->va_size);
2487 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2488 if (vap->va_type == VFIFO)
2489 fp->fa2_rdev = 0xffffffff;
2490 else
2491 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2492 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2493 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2494 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2495 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2496 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2497 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2498 }
2499 }
2500
2501 #ifdef NFSSERVER
2502 /*
2503 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2504 * - look up fsid in mount list (if not found ret error)
2505 * - get vp and export rights by calling VFS_FHTOVP()
2506 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2507 * - if not lockflag unlock it with VOP_UNLOCK()
2508 */
2509 int
2510 nfsrv_fhtovp(nfsrvfh_t *nsfh, int lockflag, struct vnode **vpp,
2511 kauth_cred_t cred, struct nfssvc_sock *slp, struct mbuf *nam, int *rdonlyp,
2512 int kerbflag, int pubflag)
2513 {
2514 struct mount *mp;
2515 kauth_cred_t credanon;
2516 int error, exflags;
2517 struct sockaddr_in *saddr;
2518 fhandle_t *fhp;
2519
2520 fhp = NFSRVFH_FHANDLE(nsfh);
2521 *vpp = (struct vnode *)0;
2522
2523 if (nfs_ispublicfh(nsfh)) {
2524 if (!pubflag || !nfs_pub.np_valid)
2525 return (ESTALE);
2526 fhp = nfs_pub.np_handle;
2527 }
2528
2529 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2530 if (error) {
2531 return error;
2532 }
2533
2534 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2535 if (error)
2536 return (error);
2537
2538 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2539 saddr = mtod(nam, struct sockaddr_in *);
2540 if ((saddr->sin_family == AF_INET) &&
2541 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2542 vput(*vpp);
2543 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2544 }
2545 #ifdef INET6
2546 if ((saddr->sin_family == AF_INET6) &&
2547 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2548 vput(*vpp);
2549 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2550 }
2551 #endif
2552 }
2553 /*
2554 * Check/setup credentials.
2555 */
2556 if (exflags & MNT_EXKERB) {
2557 if (!kerbflag) {
2558 vput(*vpp);
2559 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2560 }
2561 } else if (kerbflag) {
2562 vput(*vpp);
2563 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2564 } else if (kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER,
2565 NULL) == 0 || (exflags & MNT_EXPORTANON)) {
2566 kauth_cred_clone(credanon, cred);
2567 }
2568 if (exflags & MNT_EXRDONLY)
2569 *rdonlyp = 1;
2570 else
2571 *rdonlyp = 0;
2572 if (!lockflag)
2573 VOP_UNLOCK(*vpp, 0);
2574 return (0);
2575 }
2576
2577 /*
2578 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2579 * means a length of 0, for v2 it means all zeroes.
2580 */
2581 int
2582 nfs_ispublicfh(const nfsrvfh_t *nsfh)
2583 {
2584 const char *cp = (const void *)(NFSRVFH_DATA(nsfh));
2585 int i;
2586
2587 if (NFSRVFH_SIZE(nsfh) == 0) {
2588 return true;
2589 }
2590 if (NFSRVFH_SIZE(nsfh) != NFSX_V2FH) {
2591 return false;
2592 }
2593 for (i = 0; i < NFSX_V2FH; i++)
2594 if (*cp++ != 0)
2595 return false;
2596 return true;
2597 }
2598 #endif /* NFSSERVER */
2599
2600 /*
2601 * This function compares two net addresses by family and returns true
2602 * if they are the same host.
2603 * If there is any doubt, return false.
2604 * The AF_INET family is handled as a special case so that address mbufs
2605 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2606 */
2607 int
2608 netaddr_match(family, haddr, nam)
2609 int family;
2610 union nethostaddr *haddr;
2611 struct mbuf *nam;
2612 {
2613 struct sockaddr_in *inetaddr;
2614
2615 switch (family) {
2616 case AF_INET:
2617 inetaddr = mtod(nam, struct sockaddr_in *);
2618 if (inetaddr->sin_family == AF_INET &&
2619 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2620 return (1);
2621 break;
2622 #ifdef INET6
2623 case AF_INET6:
2624 {
2625 struct sockaddr_in6 *sin6_1, *sin6_2;
2626
2627 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2628 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2629 if (sin6_1->sin6_family == AF_INET6 &&
2630 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2631 return 1;
2632 }
2633 #endif
2634 #ifdef ISO
2635 case AF_ISO:
2636 {
2637 struct sockaddr_iso *isoaddr1, *isoaddr2;
2638
2639 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2640 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2641 if (isoaddr1->siso_family == AF_ISO &&
2642 isoaddr1->siso_nlen > 0 &&
2643 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2644 SAME_ISOADDR(isoaddr1, isoaddr2))
2645 return (1);
2646 break;
2647 }
2648 #endif /* ISO */
2649 default:
2650 break;
2651 };
2652 return (0);
2653 }
2654
2655 /*
2656 * The write verifier has changed (probably due to a server reboot), so all
2657 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2658 * as dirty or are being written out just now, all this takes is clearing
2659 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2660 * the mount point.
2661 */
2662 void
2663 nfs_clearcommit(mp)
2664 struct mount *mp;
2665 {
2666 struct vnode *vp;
2667 struct nfsnode *np;
2668 struct vm_page *pg;
2669 struct nfsmount *nmp = VFSTONFS(mp);
2670
2671 rw_enter(&nmp->nm_writeverflock, RW_WRITER);
2672
2673 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2674 KASSERT(vp->v_mount == mp);
2675 if (vp->v_type != VREG)
2676 continue;
2677 np = VTONFS(vp);
2678 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2679 np->n_pushedhi = 0;
2680 np->n_commitflags &=
2681 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2682 simple_lock(&vp->v_uobj.vmobjlock);
2683 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2684 pg->flags &= ~PG_NEEDCOMMIT;
2685 }
2686 simple_unlock(&vp->v_uobj.vmobjlock);
2687 }
2688 simple_lock(&nmp->nm_slock);
2689 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2690 simple_unlock(&nmp->nm_slock);
2691 rw_exit(&nmp->nm_writeverflock);
2692 }
2693
2694 void
2695 nfs_merge_commit_ranges(vp)
2696 struct vnode *vp;
2697 {
2698 struct nfsnode *np = VTONFS(vp);
2699
2700 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2701
2702 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2703 np->n_pushedlo = np->n_pushlo;
2704 np->n_pushedhi = np->n_pushhi;
2705 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2706 } else {
2707 if (np->n_pushlo < np->n_pushedlo)
2708 np->n_pushedlo = np->n_pushlo;
2709 if (np->n_pushhi > np->n_pushedhi)
2710 np->n_pushedhi = np->n_pushhi;
2711 }
2712
2713 np->n_pushlo = np->n_pushhi = 0;
2714 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2715
2716 #ifdef NFS_DEBUG_COMMIT
2717 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2718 (unsigned)np->n_pushedhi);
2719 #endif
2720 }
2721
2722 int
2723 nfs_in_committed_range(vp, off, len)
2724 struct vnode *vp;
2725 off_t off, len;
2726 {
2727 struct nfsnode *np = VTONFS(vp);
2728 off_t lo, hi;
2729
2730 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2731 return 0;
2732 lo = off;
2733 hi = lo + len;
2734
2735 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2736 }
2737
2738 int
2739 nfs_in_tobecommitted_range(vp, off, len)
2740 struct vnode *vp;
2741 off_t off, len;
2742 {
2743 struct nfsnode *np = VTONFS(vp);
2744 off_t lo, hi;
2745
2746 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2747 return 0;
2748 lo = off;
2749 hi = lo + len;
2750
2751 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2752 }
2753
2754 void
2755 nfs_add_committed_range(vp, off, len)
2756 struct vnode *vp;
2757 off_t off, len;
2758 {
2759 struct nfsnode *np = VTONFS(vp);
2760 off_t lo, hi;
2761
2762 lo = off;
2763 hi = lo + len;
2764
2765 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2766 np->n_pushedlo = lo;
2767 np->n_pushedhi = hi;
2768 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2769 } else {
2770 if (hi > np->n_pushedhi)
2771 np->n_pushedhi = hi;
2772 if (lo < np->n_pushedlo)
2773 np->n_pushedlo = lo;
2774 }
2775 #ifdef NFS_DEBUG_COMMIT
2776 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2777 (unsigned)np->n_pushedhi);
2778 #endif
2779 }
2780
2781 void
2782 nfs_del_committed_range(vp, off, len)
2783 struct vnode *vp;
2784 off_t off, len;
2785 {
2786 struct nfsnode *np = VTONFS(vp);
2787 off_t lo, hi;
2788
2789 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2790 return;
2791
2792 lo = off;
2793 hi = lo + len;
2794
2795 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2796 return;
2797 if (lo <= np->n_pushedlo)
2798 np->n_pushedlo = hi;
2799 else if (hi >= np->n_pushedhi)
2800 np->n_pushedhi = lo;
2801 else {
2802 /*
2803 * XXX There's only one range. If the deleted range
2804 * is in the middle, pick the largest of the
2805 * contiguous ranges that it leaves.
2806 */
2807 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2808 np->n_pushedhi = lo;
2809 else
2810 np->n_pushedlo = hi;
2811 }
2812 #ifdef NFS_DEBUG_COMMIT
2813 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2814 (unsigned)np->n_pushedhi);
2815 #endif
2816 }
2817
2818 void
2819 nfs_add_tobecommitted_range(vp, off, len)
2820 struct vnode *vp;
2821 off_t off, len;
2822 {
2823 struct nfsnode *np = VTONFS(vp);
2824 off_t lo, hi;
2825
2826 lo = off;
2827 hi = lo + len;
2828
2829 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2830 np->n_pushlo = lo;
2831 np->n_pushhi = hi;
2832 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2833 } else {
2834 if (lo < np->n_pushlo)
2835 np->n_pushlo = lo;
2836 if (hi > np->n_pushhi)
2837 np->n_pushhi = hi;
2838 }
2839 #ifdef NFS_DEBUG_COMMIT
2840 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2841 (unsigned)np->n_pushhi);
2842 #endif
2843 }
2844
2845 void
2846 nfs_del_tobecommitted_range(vp, off, len)
2847 struct vnode *vp;
2848 off_t off, len;
2849 {
2850 struct nfsnode *np = VTONFS(vp);
2851 off_t lo, hi;
2852
2853 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2854 return;
2855
2856 lo = off;
2857 hi = lo + len;
2858
2859 if (lo > np->n_pushhi || hi < np->n_pushlo)
2860 return;
2861
2862 if (lo <= np->n_pushlo)
2863 np->n_pushlo = hi;
2864 else if (hi >= np->n_pushhi)
2865 np->n_pushhi = lo;
2866 else {
2867 /*
2868 * XXX There's only one range. If the deleted range
2869 * is in the middle, pick the largest of the
2870 * contiguous ranges that it leaves.
2871 */
2872 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2873 np->n_pushhi = lo;
2874 else
2875 np->n_pushlo = hi;
2876 }
2877 #ifdef NFS_DEBUG_COMMIT
2878 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2879 (unsigned)np->n_pushhi);
2880 #endif
2881 }
2882
2883 /*
2884 * Map errnos to NFS error numbers. For Version 3 also filter out error
2885 * numbers not specified for the associated procedure.
2886 */
2887 int
2888 nfsrv_errmap(nd, err)
2889 struct nfsrv_descript *nd;
2890 int err;
2891 {
2892 const short *defaulterrp, *errp;
2893
2894 if (nd->nd_flag & ND_NFSV3) {
2895 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2896 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2897 while (*++errp) {
2898 if (*errp == err)
2899 return (err);
2900 else if (*errp > err)
2901 break;
2902 }
2903 return ((int)*defaulterrp);
2904 } else
2905 return (err & 0xffff);
2906 }
2907 if (err <= ELAST)
2908 return ((int)nfsrv_v2errmap[err - 1]);
2909 return (NFSERR_IO);
2910 }
2911
2912 u_int32_t
2913 nfs_getxid()
2914 {
2915 static u_int32_t base;
2916 static u_int32_t nfs_xid = 0;
2917 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2918 u_int32_t newxid;
2919
2920 simple_lock(&nfs_xidlock);
2921 /*
2922 * derive initial xid from system time
2923 * XXX time is invalid if root not yet mounted
2924 */
2925 if (__predict_false(!base && (rootvp))) {
2926 struct timeval tv;
2927
2928 microtime(&tv);
2929 base = tv.tv_sec << 12;
2930 nfs_xid = base;
2931 }
2932
2933 /*
2934 * Skip zero xid if it should ever happen.
2935 */
2936 if (__predict_false(++nfs_xid == 0))
2937 nfs_xid++;
2938 newxid = nfs_xid;
2939 simple_unlock(&nfs_xidlock);
2940
2941 return txdr_unsigned(newxid);
2942 }
2943
2944 /*
2945 * assign a new xid for existing request.
2946 * used for NFSERR_JUKEBOX handling.
2947 */
2948 void
2949 nfs_renewxid(struct nfsreq *req)
2950 {
2951 u_int32_t xid;
2952 int off;
2953
2954 xid = nfs_getxid();
2955 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2956 off = sizeof(u_int32_t); /* RPC record mark */
2957 else
2958 off = 0;
2959
2960 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2961 req->r_xid = xid;
2962 }
2963
2964 #if defined(NFSSERVER)
2965 int
2966 nfsrv_composefh(struct vnode *vp, nfsrvfh_t *nsfh, bool v3)
2967 {
2968 int error;
2969 size_t fhsize;
2970
2971 fhsize = NFSD_MAXFHSIZE;
2972 error = vfs_composefh(vp, (void *)NFSRVFH_DATA(nsfh), &fhsize);
2973 if (NFSX_FHTOOBIG_P(fhsize, v3)) {
2974 error = EOPNOTSUPP;
2975 }
2976 if (error != 0) {
2977 return error;
2978 }
2979 if (!v3 && fhsize < NFSX_V2FH) {
2980 memset((char *)NFSRVFH_DATA(nsfh) + fhsize, 0,
2981 NFSX_V2FH - fhsize);
2982 fhsize = NFSX_V2FH;
2983 }
2984 if ((fhsize % NFSX_UNSIGNED) != 0) {
2985 return EOPNOTSUPP;
2986 }
2987 nsfh->nsfh_size = fhsize;
2988 return 0;
2989 }
2990
2991 int
2992 nfsrv_comparefh(const nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2993 {
2994
2995 if (NFSRVFH_SIZE(fh1) != NFSRVFH_SIZE(fh2)) {
2996 return NFSRVFH_SIZE(fh2) - NFSRVFH_SIZE(fh1);
2997 }
2998 return memcmp(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), NFSRVFH_SIZE(fh1));
2999 }
3000
3001 void
3002 nfsrv_copyfh(nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
3003 {
3004 size_t size;
3005
3006 fh1->nsfh_size = size = NFSRVFH_SIZE(fh2);
3007 memcpy(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), size);
3008 }
3009 #endif /* defined(NFSSERVER) */
3010