nfs_subs.c revision 1.149.2.7 1 /* $NetBSD: nfs_subs.c,v 1.149.2.7 2007/12/07 17:34:44 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.149.2.7 2007/12/07 17:34:44 yamt Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 #include <sys/once.h>
101 #include <sys/kauth.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include <nfs/rpcv2.h>
106 #include <nfs/nfsproto.h>
107 #include <nfs/nfsnode.h>
108 #include <nfs/nfs.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114
115 #include <miscfs/specfs/specdev.h>
116
117 #include <netinet/in.h>
118 #ifdef ISO
119 #include <netiso/iso.h>
120 #endif
121
122 /*
123 * Data items converted to xdr at startup, since they are constant
124 * This is kinda hokey, but may save a little time doing byte swaps
125 */
126 u_int32_t nfs_xdrneg1;
127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
128 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
129 rpc_auth_kerb;
130 u_int32_t nfs_prog, nfs_true, nfs_false;
131
132 /* And other global data */
133 const nfstype nfsv2_type[9] =
134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142 int nfs_commitsize;
143
144 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
145
146 /* NFS client/server stats. */
147 struct nfsstats nfsstats;
148
149 /*
150 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
151 */
152 const int nfsv3_procid[NFS_NPROCS] = {
153 NFSPROC_NULL,
154 NFSPROC_GETATTR,
155 NFSPROC_SETATTR,
156 NFSPROC_NOOP,
157 NFSPROC_LOOKUP,
158 NFSPROC_READLINK,
159 NFSPROC_READ,
160 NFSPROC_NOOP,
161 NFSPROC_WRITE,
162 NFSPROC_CREATE,
163 NFSPROC_REMOVE,
164 NFSPROC_RENAME,
165 NFSPROC_LINK,
166 NFSPROC_SYMLINK,
167 NFSPROC_MKDIR,
168 NFSPROC_RMDIR,
169 NFSPROC_READDIR,
170 NFSPROC_FSSTAT,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP
176 };
177
178 /*
179 * and the reverse mapping from generic to Version 2 procedure numbers
180 */
181 const int nfsv2_procid[NFS_NPROCS] = {
182 NFSV2PROC_NULL,
183 NFSV2PROC_GETATTR,
184 NFSV2PROC_SETATTR,
185 NFSV2PROC_LOOKUP,
186 NFSV2PROC_NOOP,
187 NFSV2PROC_READLINK,
188 NFSV2PROC_READ,
189 NFSV2PROC_WRITE,
190 NFSV2PROC_CREATE,
191 NFSV2PROC_MKDIR,
192 NFSV2PROC_SYMLINK,
193 NFSV2PROC_CREATE,
194 NFSV2PROC_REMOVE,
195 NFSV2PROC_RMDIR,
196 NFSV2PROC_RENAME,
197 NFSV2PROC_LINK,
198 NFSV2PROC_READDIR,
199 NFSV2PROC_NOOP,
200 NFSV2PROC_STATFS,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 };
206
207 /*
208 * Maps errno values to nfs error numbers.
209 * Use NFSERR_IO as the catch all for ones not specifically defined in
210 * RFC 1094.
211 */
212 static const u_char nfsrv_v2errmap[ELAST] = {
213 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
214 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
215 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
216 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
217 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
226 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO,
230 };
231
232 /*
233 * Maps errno values to nfs error numbers.
234 * Although it is not obvious whether or not NFS clients really care if
235 * a returned error value is in the specified list for the procedure, the
236 * safest thing to do is filter them appropriately. For Version 2, the
237 * X/Open XNFS document is the only specification that defines error values
238 * for each RPC (The RFC simply lists all possible error values for all RPCs),
239 * so I have decided to not do this for Version 2.
240 * The first entry is the default error return and the rest are the valid
241 * errors for that RPC in increasing numeric order.
242 */
243 static const short nfsv3err_null[] = {
244 0,
245 0,
246 };
247
248 static const short nfsv3err_getattr[] = {
249 NFSERR_IO,
250 NFSERR_IO,
251 NFSERR_STALE,
252 NFSERR_BADHANDLE,
253 NFSERR_SERVERFAULT,
254 0,
255 };
256
257 static const short nfsv3err_setattr[] = {
258 NFSERR_IO,
259 NFSERR_PERM,
260 NFSERR_IO,
261 NFSERR_ACCES,
262 NFSERR_INVAL,
263 NFSERR_NOSPC,
264 NFSERR_ROFS,
265 NFSERR_DQUOT,
266 NFSERR_STALE,
267 NFSERR_BADHANDLE,
268 NFSERR_NOT_SYNC,
269 NFSERR_SERVERFAULT,
270 0,
271 };
272
273 static const short nfsv3err_lookup[] = {
274 NFSERR_IO,
275 NFSERR_NOENT,
276 NFSERR_IO,
277 NFSERR_ACCES,
278 NFSERR_NOTDIR,
279 NFSERR_NAMETOL,
280 NFSERR_STALE,
281 NFSERR_BADHANDLE,
282 NFSERR_SERVERFAULT,
283 0,
284 };
285
286 static const short nfsv3err_access[] = {
287 NFSERR_IO,
288 NFSERR_IO,
289 NFSERR_STALE,
290 NFSERR_BADHANDLE,
291 NFSERR_SERVERFAULT,
292 0,
293 };
294
295 static const short nfsv3err_readlink[] = {
296 NFSERR_IO,
297 NFSERR_IO,
298 NFSERR_ACCES,
299 NFSERR_INVAL,
300 NFSERR_STALE,
301 NFSERR_BADHANDLE,
302 NFSERR_NOTSUPP,
303 NFSERR_SERVERFAULT,
304 0,
305 };
306
307 static const short nfsv3err_read[] = {
308 NFSERR_IO,
309 NFSERR_IO,
310 NFSERR_NXIO,
311 NFSERR_ACCES,
312 NFSERR_INVAL,
313 NFSERR_STALE,
314 NFSERR_BADHANDLE,
315 NFSERR_SERVERFAULT,
316 NFSERR_JUKEBOX,
317 0,
318 };
319
320 static const short nfsv3err_write[] = {
321 NFSERR_IO,
322 NFSERR_IO,
323 NFSERR_ACCES,
324 NFSERR_INVAL,
325 NFSERR_FBIG,
326 NFSERR_NOSPC,
327 NFSERR_ROFS,
328 NFSERR_DQUOT,
329 NFSERR_STALE,
330 NFSERR_BADHANDLE,
331 NFSERR_SERVERFAULT,
332 NFSERR_JUKEBOX,
333 0,
334 };
335
336 static const short nfsv3err_create[] = {
337 NFSERR_IO,
338 NFSERR_IO,
339 NFSERR_ACCES,
340 NFSERR_EXIST,
341 NFSERR_NOTDIR,
342 NFSERR_NOSPC,
343 NFSERR_ROFS,
344 NFSERR_NAMETOL,
345 NFSERR_DQUOT,
346 NFSERR_STALE,
347 NFSERR_BADHANDLE,
348 NFSERR_NOTSUPP,
349 NFSERR_SERVERFAULT,
350 0,
351 };
352
353 static const short nfsv3err_mkdir[] = {
354 NFSERR_IO,
355 NFSERR_IO,
356 NFSERR_ACCES,
357 NFSERR_EXIST,
358 NFSERR_NOTDIR,
359 NFSERR_NOSPC,
360 NFSERR_ROFS,
361 NFSERR_NAMETOL,
362 NFSERR_DQUOT,
363 NFSERR_STALE,
364 NFSERR_BADHANDLE,
365 NFSERR_NOTSUPP,
366 NFSERR_SERVERFAULT,
367 0,
368 };
369
370 static const short nfsv3err_symlink[] = {
371 NFSERR_IO,
372 NFSERR_IO,
373 NFSERR_ACCES,
374 NFSERR_EXIST,
375 NFSERR_NOTDIR,
376 NFSERR_NOSPC,
377 NFSERR_ROFS,
378 NFSERR_NAMETOL,
379 NFSERR_DQUOT,
380 NFSERR_STALE,
381 NFSERR_BADHANDLE,
382 NFSERR_NOTSUPP,
383 NFSERR_SERVERFAULT,
384 0,
385 };
386
387 static const short nfsv3err_mknod[] = {
388 NFSERR_IO,
389 NFSERR_IO,
390 NFSERR_ACCES,
391 NFSERR_EXIST,
392 NFSERR_NOTDIR,
393 NFSERR_NOSPC,
394 NFSERR_ROFS,
395 NFSERR_NAMETOL,
396 NFSERR_DQUOT,
397 NFSERR_STALE,
398 NFSERR_BADHANDLE,
399 NFSERR_NOTSUPP,
400 NFSERR_SERVERFAULT,
401 NFSERR_BADTYPE,
402 0,
403 };
404
405 static const short nfsv3err_remove[] = {
406 NFSERR_IO,
407 NFSERR_NOENT,
408 NFSERR_IO,
409 NFSERR_ACCES,
410 NFSERR_NOTDIR,
411 NFSERR_ROFS,
412 NFSERR_NAMETOL,
413 NFSERR_STALE,
414 NFSERR_BADHANDLE,
415 NFSERR_SERVERFAULT,
416 0,
417 };
418
419 static const short nfsv3err_rmdir[] = {
420 NFSERR_IO,
421 NFSERR_NOENT,
422 NFSERR_IO,
423 NFSERR_ACCES,
424 NFSERR_EXIST,
425 NFSERR_NOTDIR,
426 NFSERR_INVAL,
427 NFSERR_ROFS,
428 NFSERR_NAMETOL,
429 NFSERR_NOTEMPTY,
430 NFSERR_STALE,
431 NFSERR_BADHANDLE,
432 NFSERR_NOTSUPP,
433 NFSERR_SERVERFAULT,
434 0,
435 };
436
437 static const short nfsv3err_rename[] = {
438 NFSERR_IO,
439 NFSERR_NOENT,
440 NFSERR_IO,
441 NFSERR_ACCES,
442 NFSERR_EXIST,
443 NFSERR_XDEV,
444 NFSERR_NOTDIR,
445 NFSERR_ISDIR,
446 NFSERR_INVAL,
447 NFSERR_NOSPC,
448 NFSERR_ROFS,
449 NFSERR_MLINK,
450 NFSERR_NAMETOL,
451 NFSERR_NOTEMPTY,
452 NFSERR_DQUOT,
453 NFSERR_STALE,
454 NFSERR_BADHANDLE,
455 NFSERR_NOTSUPP,
456 NFSERR_SERVERFAULT,
457 0,
458 };
459
460 static const short nfsv3err_link[] = {
461 NFSERR_IO,
462 NFSERR_IO,
463 NFSERR_ACCES,
464 NFSERR_EXIST,
465 NFSERR_XDEV,
466 NFSERR_NOTDIR,
467 NFSERR_INVAL,
468 NFSERR_NOSPC,
469 NFSERR_ROFS,
470 NFSERR_MLINK,
471 NFSERR_NAMETOL,
472 NFSERR_DQUOT,
473 NFSERR_STALE,
474 NFSERR_BADHANDLE,
475 NFSERR_NOTSUPP,
476 NFSERR_SERVERFAULT,
477 0,
478 };
479
480 static const short nfsv3err_readdir[] = {
481 NFSERR_IO,
482 NFSERR_IO,
483 NFSERR_ACCES,
484 NFSERR_NOTDIR,
485 NFSERR_STALE,
486 NFSERR_BADHANDLE,
487 NFSERR_BAD_COOKIE,
488 NFSERR_TOOSMALL,
489 NFSERR_SERVERFAULT,
490 0,
491 };
492
493 static const short nfsv3err_readdirplus[] = {
494 NFSERR_IO,
495 NFSERR_IO,
496 NFSERR_ACCES,
497 NFSERR_NOTDIR,
498 NFSERR_STALE,
499 NFSERR_BADHANDLE,
500 NFSERR_BAD_COOKIE,
501 NFSERR_NOTSUPP,
502 NFSERR_TOOSMALL,
503 NFSERR_SERVERFAULT,
504 0,
505 };
506
507 static const short nfsv3err_fsstat[] = {
508 NFSERR_IO,
509 NFSERR_IO,
510 NFSERR_STALE,
511 NFSERR_BADHANDLE,
512 NFSERR_SERVERFAULT,
513 0,
514 };
515
516 static const short nfsv3err_fsinfo[] = {
517 NFSERR_STALE,
518 NFSERR_STALE,
519 NFSERR_BADHANDLE,
520 NFSERR_SERVERFAULT,
521 0,
522 };
523
524 static const short nfsv3err_pathconf[] = {
525 NFSERR_STALE,
526 NFSERR_STALE,
527 NFSERR_BADHANDLE,
528 NFSERR_SERVERFAULT,
529 0,
530 };
531
532 static const short nfsv3err_commit[] = {
533 NFSERR_IO,
534 NFSERR_IO,
535 NFSERR_STALE,
536 NFSERR_BADHANDLE,
537 NFSERR_SERVERFAULT,
538 0,
539 };
540
541 static const short * const nfsrv_v3errmap[] = {
542 nfsv3err_null,
543 nfsv3err_getattr,
544 nfsv3err_setattr,
545 nfsv3err_lookup,
546 nfsv3err_access,
547 nfsv3err_readlink,
548 nfsv3err_read,
549 nfsv3err_write,
550 nfsv3err_create,
551 nfsv3err_mkdir,
552 nfsv3err_symlink,
553 nfsv3err_mknod,
554 nfsv3err_remove,
555 nfsv3err_rmdir,
556 nfsv3err_rename,
557 nfsv3err_link,
558 nfsv3err_readdir,
559 nfsv3err_readdirplus,
560 nfsv3err_fsstat,
561 nfsv3err_fsinfo,
562 nfsv3err_pathconf,
563 nfsv3err_commit,
564 };
565
566 extern struct nfsrtt nfsrtt;
567 extern struct nfsnodehashhead *nfsnodehashtbl;
568 extern u_long nfsnodehash;
569
570 u_long nfsdirhashmask;
571
572 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
573
574 /*
575 * Create the header for an rpc request packet
576 * The hsiz is the size of the rest of the nfs request header.
577 * (just used to decide if a cluster is a good idea)
578 */
579 struct mbuf *
580 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
581 {
582 struct mbuf *mb;
583 char *bpos;
584
585 mb = m_get(M_WAIT, MT_DATA);
586 MCLAIM(mb, &nfs_mowner);
587 if (hsiz >= MINCLSIZE)
588 m_clget(mb, M_WAIT);
589 mb->m_len = 0;
590 bpos = mtod(mb, void *);
591
592 /* Finally, return values */
593 *bposp = bpos;
594 return (mb);
595 }
596
597 /*
598 * Build the RPC header and fill in the authorization info.
599 * The authorization string argument is only used when the credentials
600 * come from outside of the kernel.
601 * Returns the head of the mbuf list.
602 */
603 struct mbuf *
604 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
605 verf_str, mrest, mrest_len, mbp, xidp)
606 kauth_cred_t cr;
607 int nmflag;
608 int procid;
609 int auth_type;
610 int auth_len;
611 char *auth_str;
612 int verf_len;
613 char *verf_str;
614 struct mbuf *mrest;
615 int mrest_len;
616 struct mbuf **mbp;
617 u_int32_t *xidp;
618 {
619 struct mbuf *mb;
620 u_int32_t *tl;
621 char *bpos;
622 int i;
623 struct mbuf *mreq;
624 int siz, grpsiz, authsiz;
625
626 authsiz = nfsm_rndup(auth_len);
627 mb = m_gethdr(M_WAIT, MT_DATA);
628 MCLAIM(mb, &nfs_mowner);
629 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
630 m_clget(mb, M_WAIT);
631 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
632 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
633 } else {
634 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
635 }
636 mb->m_len = 0;
637 mreq = mb;
638 bpos = mtod(mb, void *);
639
640 /*
641 * First the RPC header.
642 */
643 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
644
645 *tl++ = *xidp = nfs_getxid();
646 *tl++ = rpc_call;
647 *tl++ = rpc_vers;
648 *tl++ = txdr_unsigned(NFS_PROG);
649 if (nmflag & NFSMNT_NFSV3)
650 *tl++ = txdr_unsigned(NFS_VER3);
651 else
652 *tl++ = txdr_unsigned(NFS_VER2);
653 if (nmflag & NFSMNT_NFSV3)
654 *tl++ = txdr_unsigned(procid);
655 else
656 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
657
658 /*
659 * And then the authorization cred.
660 */
661 *tl++ = txdr_unsigned(auth_type);
662 *tl = txdr_unsigned(authsiz);
663 switch (auth_type) {
664 case RPCAUTH_UNIX:
665 nfsm_build(tl, u_int32_t *, auth_len);
666 *tl++ = 0; /* stamp ?? */
667 *tl++ = 0; /* NULL hostname */
668 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
669 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
670 grpsiz = (auth_len >> 2) - 5;
671 *tl++ = txdr_unsigned(grpsiz);
672 for (i = 0; i < grpsiz; i++)
673 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
674 break;
675 case RPCAUTH_KERB4:
676 siz = auth_len;
677 while (siz > 0) {
678 if (M_TRAILINGSPACE(mb) == 0) {
679 struct mbuf *mb2;
680 mb2 = m_get(M_WAIT, MT_DATA);
681 MCLAIM(mb2, &nfs_mowner);
682 if (siz >= MINCLSIZE)
683 m_clget(mb2, M_WAIT);
684 mb->m_next = mb2;
685 mb = mb2;
686 mb->m_len = 0;
687 bpos = mtod(mb, void *);
688 }
689 i = min(siz, M_TRAILINGSPACE(mb));
690 memcpy(bpos, auth_str, i);
691 mb->m_len += i;
692 auth_str += i;
693 bpos += i;
694 siz -= i;
695 }
696 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
697 for (i = 0; i < siz; i++)
698 *bpos++ = '\0';
699 mb->m_len += siz;
700 }
701 break;
702 };
703
704 /*
705 * And the verifier...
706 */
707 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
708 if (verf_str) {
709 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
710 *tl = txdr_unsigned(verf_len);
711 siz = verf_len;
712 while (siz > 0) {
713 if (M_TRAILINGSPACE(mb) == 0) {
714 struct mbuf *mb2;
715 mb2 = m_get(M_WAIT, MT_DATA);
716 MCLAIM(mb2, &nfs_mowner);
717 if (siz >= MINCLSIZE)
718 m_clget(mb2, M_WAIT);
719 mb->m_next = mb2;
720 mb = mb2;
721 mb->m_len = 0;
722 bpos = mtod(mb, void *);
723 }
724 i = min(siz, M_TRAILINGSPACE(mb));
725 memcpy(bpos, verf_str, i);
726 mb->m_len += i;
727 verf_str += i;
728 bpos += i;
729 siz -= i;
730 }
731 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
732 for (i = 0; i < siz; i++)
733 *bpos++ = '\0';
734 mb->m_len += siz;
735 }
736 } else {
737 *tl++ = txdr_unsigned(RPCAUTH_NULL);
738 *tl = 0;
739 }
740 mb->m_next = mrest;
741 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
742 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
743 *mbp = mb;
744 return (mreq);
745 }
746
747 /*
748 * copies mbuf chain to the uio scatter/gather list
749 */
750 int
751 nfsm_mbuftouio(mrep, uiop, siz, dpos)
752 struct mbuf **mrep;
753 struct uio *uiop;
754 int siz;
755 char **dpos;
756 {
757 char *mbufcp, *uiocp;
758 int xfer, left, len;
759 struct mbuf *mp;
760 long uiosiz, rem;
761 int error = 0;
762
763 mp = *mrep;
764 mbufcp = *dpos;
765 len = mtod(mp, char *) + mp->m_len - mbufcp;
766 rem = nfsm_rndup(siz)-siz;
767 while (siz > 0) {
768 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
769 return (EFBIG);
770 left = uiop->uio_iov->iov_len;
771 uiocp = uiop->uio_iov->iov_base;
772 if (left > siz)
773 left = siz;
774 uiosiz = left;
775 while (left > 0) {
776 while (len == 0) {
777 mp = mp->m_next;
778 if (mp == NULL)
779 return (EBADRPC);
780 mbufcp = mtod(mp, void *);
781 len = mp->m_len;
782 }
783 xfer = (left > len) ? len : left;
784 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
785 uiocp, xfer);
786 if (error) {
787 return error;
788 }
789 left -= xfer;
790 len -= xfer;
791 mbufcp += xfer;
792 uiocp += xfer;
793 uiop->uio_offset += xfer;
794 uiop->uio_resid -= xfer;
795 }
796 if (uiop->uio_iov->iov_len <= siz) {
797 uiop->uio_iovcnt--;
798 uiop->uio_iov++;
799 } else {
800 uiop->uio_iov->iov_base =
801 (char *)uiop->uio_iov->iov_base + uiosiz;
802 uiop->uio_iov->iov_len -= uiosiz;
803 }
804 siz -= uiosiz;
805 }
806 *dpos = mbufcp;
807 *mrep = mp;
808 if (rem > 0) {
809 if (len < rem)
810 error = nfs_adv(mrep, dpos, rem, len);
811 else
812 *dpos += rem;
813 }
814 return (error);
815 }
816
817 /*
818 * copies a uio scatter/gather list to an mbuf chain.
819 * NOTE: can ony handle iovcnt == 1
820 */
821 int
822 nfsm_uiotombuf(uiop, mq, siz, bpos)
823 struct uio *uiop;
824 struct mbuf **mq;
825 int siz;
826 char **bpos;
827 {
828 char *uiocp;
829 struct mbuf *mp, *mp2;
830 int xfer, left, mlen;
831 int uiosiz, clflg, rem;
832 char *cp;
833 int error;
834
835 #ifdef DIAGNOSTIC
836 if (uiop->uio_iovcnt != 1)
837 panic("nfsm_uiotombuf: iovcnt != 1");
838 #endif
839
840 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
841 clflg = 1;
842 else
843 clflg = 0;
844 rem = nfsm_rndup(siz)-siz;
845 mp = mp2 = *mq;
846 while (siz > 0) {
847 left = uiop->uio_iov->iov_len;
848 uiocp = uiop->uio_iov->iov_base;
849 if (left > siz)
850 left = siz;
851 uiosiz = left;
852 while (left > 0) {
853 mlen = M_TRAILINGSPACE(mp);
854 if (mlen == 0) {
855 mp = m_get(M_WAIT, MT_DATA);
856 MCLAIM(mp, &nfs_mowner);
857 if (clflg)
858 m_clget(mp, M_WAIT);
859 mp->m_len = 0;
860 mp2->m_next = mp;
861 mp2 = mp;
862 mlen = M_TRAILINGSPACE(mp);
863 }
864 xfer = (left > mlen) ? mlen : left;
865 cp = mtod(mp, char *) + mp->m_len;
866 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
867 xfer);
868 if (error) {
869 /* XXX */
870 }
871 mp->m_len += xfer;
872 left -= xfer;
873 uiocp += xfer;
874 uiop->uio_offset += xfer;
875 uiop->uio_resid -= xfer;
876 }
877 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
878 uiosiz;
879 uiop->uio_iov->iov_len -= uiosiz;
880 siz -= uiosiz;
881 }
882 if (rem > 0) {
883 if (rem > M_TRAILINGSPACE(mp)) {
884 mp = m_get(M_WAIT, MT_DATA);
885 MCLAIM(mp, &nfs_mowner);
886 mp->m_len = 0;
887 mp2->m_next = mp;
888 }
889 cp = mtod(mp, char *) + mp->m_len;
890 for (left = 0; left < rem; left++)
891 *cp++ = '\0';
892 mp->m_len += rem;
893 *bpos = cp;
894 } else
895 *bpos = mtod(mp, char *) + mp->m_len;
896 *mq = mp;
897 return (0);
898 }
899
900 /*
901 * Get at least "siz" bytes of correctly aligned data.
902 * When called the mbuf pointers are not necessarily correct,
903 * dsosp points to what ought to be in m_data and left contains
904 * what ought to be in m_len.
905 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
906 * cases. (The macros use the vars. dpos and dpos2)
907 */
908 int
909 nfsm_disct(mdp, dposp, siz, left, cp2)
910 struct mbuf **mdp;
911 char **dposp;
912 int siz;
913 int left;
914 char **cp2;
915 {
916 struct mbuf *m1, *m2;
917 struct mbuf *havebuf = NULL;
918 char *src = *dposp;
919 char *dst;
920 int len;
921
922 #ifdef DEBUG
923 if (left < 0)
924 panic("nfsm_disct: left < 0");
925 #endif
926 m1 = *mdp;
927 /*
928 * Skip through the mbuf chain looking for an mbuf with
929 * some data. If the first mbuf found has enough data
930 * and it is correctly aligned return it.
931 */
932 while (left == 0) {
933 havebuf = m1;
934 *mdp = m1 = m1->m_next;
935 if (m1 == NULL)
936 return (EBADRPC);
937 src = mtod(m1, void *);
938 left = m1->m_len;
939 /*
940 * If we start a new mbuf and it is big enough
941 * and correctly aligned just return it, don't
942 * do any pull up.
943 */
944 if (left >= siz && nfsm_aligned(src)) {
945 *cp2 = src;
946 *dposp = src + siz;
947 return (0);
948 }
949 }
950 if ((m1->m_flags & M_EXT) != 0) {
951 if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
952 nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
953 /*
954 * If the first mbuf with data has external data
955 * and there is a previous mbuf with some trailing
956 * space, use it to move the data into.
957 */
958 m2 = m1;
959 *mdp = m1 = havebuf;
960 *cp2 = mtod(m1, char *) + m1->m_len;
961 } else if (havebuf) {
962 /*
963 * If the first mbuf has a external data
964 * and there is no previous empty mbuf
965 * allocate a new mbuf and move the external
966 * data to the new mbuf. Also make the first
967 * mbuf look empty.
968 */
969 m2 = m1;
970 *mdp = m1 = m_get(M_WAIT, MT_DATA);
971 MCLAIM(m1, m2->m_owner);
972 if ((m2->m_flags & M_PKTHDR) != 0) {
973 /* XXX MOVE */
974 M_COPY_PKTHDR(m1, m2);
975 m_tag_delete_chain(m2, NULL);
976 m2->m_flags &= ~M_PKTHDR;
977 }
978 if (havebuf) {
979 havebuf->m_next = m1;
980 }
981 m1->m_next = m2;
982 MRESETDATA(m1);
983 m1->m_len = 0;
984 m2->m_data = src;
985 m2->m_len = left;
986 *cp2 = mtod(m1, char *);
987 } else {
988 struct mbuf **nextp = &m1->m_next;
989
990 m1->m_len -= left;
991 do {
992 m2 = m_get(M_WAIT, MT_DATA);
993 MCLAIM(m2, m1->m_owner);
994 if (left >= MINCLSIZE) {
995 MCLGET(m2, M_WAIT);
996 }
997 m2->m_next = *nextp;
998 *nextp = m2;
999 nextp = &m2->m_next;
1000 len = (m2->m_flags & M_EXT) != 0 ?
1001 MCLBYTES : MLEN;
1002 if (len > left) {
1003 len = left;
1004 }
1005 memcpy(mtod(m2, char *), src, len);
1006 m2->m_len = len;
1007 src += len;
1008 left -= len;
1009 } while (left > 0);
1010 *mdp = m1 = m1->m_next;
1011 m2 = m1->m_next;
1012 *cp2 = mtod(m1, char *);
1013 }
1014 } else {
1015 /*
1016 * If the first mbuf has no external data
1017 * move the data to the front of the mbuf.
1018 */
1019 MRESETDATA(m1);
1020 dst = mtod(m1, char *);
1021 if (dst != src) {
1022 memmove(dst, src, left);
1023 }
1024 m1->m_len = left;
1025 m2 = m1->m_next;
1026 *cp2 = m1->m_data;
1027 }
1028 *dposp = *cp2 + siz;
1029 /*
1030 * Loop through mbufs pulling data up into first mbuf until
1031 * the first mbuf is full or there is no more data to
1032 * pullup.
1033 */
1034 dst = mtod(m1, char *) + m1->m_len;
1035 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1036 if ((len = min(len, m2->m_len)) != 0) {
1037 memcpy(dst, mtod(m2, char *), len);
1038 }
1039 m1->m_len += len;
1040 dst += len;
1041 m2->m_data += len;
1042 m2->m_len -= len;
1043 m2 = m2->m_next;
1044 }
1045 if (m1->m_len < siz)
1046 return (EBADRPC);
1047 return (0);
1048 }
1049
1050 /*
1051 * Advance the position in the mbuf chain.
1052 */
1053 int
1054 nfs_adv(mdp, dposp, offs, left)
1055 struct mbuf **mdp;
1056 char **dposp;
1057 int offs;
1058 int left;
1059 {
1060 struct mbuf *m;
1061 int s;
1062
1063 m = *mdp;
1064 s = left;
1065 while (s < offs) {
1066 offs -= s;
1067 m = m->m_next;
1068 if (m == NULL)
1069 return (EBADRPC);
1070 s = m->m_len;
1071 }
1072 *mdp = m;
1073 *dposp = mtod(m, char *) + offs;
1074 return (0);
1075 }
1076
1077 /*
1078 * Copy a string into mbufs for the hard cases...
1079 */
1080 int
1081 nfsm_strtmbuf(mb, bpos, cp, siz)
1082 struct mbuf **mb;
1083 char **bpos;
1084 const char *cp;
1085 long siz;
1086 {
1087 struct mbuf *m1 = NULL, *m2;
1088 long left, xfer, len, tlen;
1089 u_int32_t *tl;
1090 int putsize;
1091
1092 putsize = 1;
1093 m2 = *mb;
1094 left = M_TRAILINGSPACE(m2);
1095 if (left > 0) {
1096 tl = ((u_int32_t *)(*bpos));
1097 *tl++ = txdr_unsigned(siz);
1098 putsize = 0;
1099 left -= NFSX_UNSIGNED;
1100 m2->m_len += NFSX_UNSIGNED;
1101 if (left > 0) {
1102 memcpy((void *) tl, cp, left);
1103 siz -= left;
1104 cp += left;
1105 m2->m_len += left;
1106 left = 0;
1107 }
1108 }
1109 /* Loop around adding mbufs */
1110 while (siz > 0) {
1111 m1 = m_get(M_WAIT, MT_DATA);
1112 MCLAIM(m1, &nfs_mowner);
1113 if (siz > MLEN)
1114 m_clget(m1, M_WAIT);
1115 m1->m_len = NFSMSIZ(m1);
1116 m2->m_next = m1;
1117 m2 = m1;
1118 tl = mtod(m1, u_int32_t *);
1119 tlen = 0;
1120 if (putsize) {
1121 *tl++ = txdr_unsigned(siz);
1122 m1->m_len -= NFSX_UNSIGNED;
1123 tlen = NFSX_UNSIGNED;
1124 putsize = 0;
1125 }
1126 if (siz < m1->m_len) {
1127 len = nfsm_rndup(siz);
1128 xfer = siz;
1129 if (xfer < len)
1130 *(tl+(xfer>>2)) = 0;
1131 } else {
1132 xfer = len = m1->m_len;
1133 }
1134 memcpy((void *) tl, cp, xfer);
1135 m1->m_len = len+tlen;
1136 siz -= xfer;
1137 cp += xfer;
1138 }
1139 *mb = m1;
1140 *bpos = mtod(m1, char *) + m1->m_len;
1141 return (0);
1142 }
1143
1144 /*
1145 * Directory caching routines. They work as follows:
1146 * - a cache is maintained per VDIR nfsnode.
1147 * - for each offset cookie that is exported to userspace, and can
1148 * thus be thrown back at us as an offset to VOP_READDIR, store
1149 * information in the cache.
1150 * - cached are:
1151 * - cookie itself
1152 * - blocknumber (essentially just a search key in the buffer cache)
1153 * - entry number in block.
1154 * - offset cookie of block in which this entry is stored
1155 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1156 * - entries are looked up in a hash table
1157 * - also maintained is an LRU list of entries, used to determine
1158 * which ones to delete if the cache grows too large.
1159 * - if 32 <-> 64 translation mode is requested for a filesystem,
1160 * the cache also functions as a translation table
1161 * - in the translation case, invalidating the cache does not mean
1162 * flushing it, but just marking entries as invalid, except for
1163 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1164 * still be able to use the cache as a translation table.
1165 * - 32 bit cookies are uniquely created by combining the hash table
1166 * entry value, and one generation count per hash table entry,
1167 * incremented each time an entry is appended to the chain.
1168 * - the cache is invalidated each time a direcory is modified
1169 * - sanity checks are also done; if an entry in a block turns
1170 * out not to have a matching cookie, the cache is invalidated
1171 * and a new block starting from the wanted offset is fetched from
1172 * the server.
1173 * - directory entries as read from the server are extended to contain
1174 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1175 * the cache and exporting them to userspace through the cookie
1176 * argument to VOP_READDIR.
1177 */
1178
1179 u_long
1180 nfs_dirhash(off)
1181 off_t off;
1182 {
1183 int i;
1184 char *cp = (char *)&off;
1185 u_long sum = 0L;
1186
1187 for (i = 0 ; i < sizeof (off); i++)
1188 sum += *cp++;
1189
1190 return sum;
1191 }
1192
1193 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1194 #define NFSDC_LOCK(np) simple_lock(_NFSDC_MTX(np))
1195 #define NFSDC_UNLOCK(np) simple_unlock(_NFSDC_MTX(np))
1196 #define NFSDC_ASSERT_LOCKED(np) LOCK_ASSERT(simple_lock_held(_NFSDC_MTX(np)))
1197
1198 void
1199 nfs_initdircache(vp)
1200 struct vnode *vp;
1201 {
1202 struct nfsnode *np = VTONFS(vp);
1203 struct nfsdirhashhead *dircache;
1204
1205 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1206 M_WAITOK, &nfsdirhashmask);
1207
1208 NFSDC_LOCK(np);
1209 if (np->n_dircache == NULL) {
1210 np->n_dircachesize = 0;
1211 np->n_dircache = dircache;
1212 dircache = NULL;
1213 TAILQ_INIT(&np->n_dirchain);
1214 }
1215 NFSDC_UNLOCK(np);
1216 if (dircache)
1217 hashdone(dircache, M_NFSDIROFF);
1218 }
1219
1220 void
1221 nfs_initdirxlatecookie(vp)
1222 struct vnode *vp;
1223 {
1224 struct nfsnode *np = VTONFS(vp);
1225 unsigned *dirgens;
1226
1227 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1228
1229 dirgens = malloc(NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1230 M_WAITOK|M_ZERO);
1231 NFSDC_LOCK(np);
1232 if (np->n_dirgens == NULL) {
1233 np->n_dirgens = dirgens;
1234 dirgens = NULL;
1235 }
1236 NFSDC_UNLOCK(np);
1237 if (dirgens)
1238 free(dirgens, M_NFSDIROFF);
1239 }
1240
1241 static const struct nfsdircache dzero;
1242
1243 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1244 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1245 struct nfsdircache *));
1246
1247 static void
1248 nfs_unlinkdircache(np, ndp)
1249 struct nfsnode *np;
1250 struct nfsdircache *ndp;
1251 {
1252
1253 NFSDC_ASSERT_LOCKED(np);
1254 KASSERT(ndp != &dzero);
1255
1256 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1257 return;
1258
1259 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1260 LIST_REMOVE(ndp, dc_hash);
1261 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1262
1263 nfs_putdircache_unlocked(np, ndp);
1264 }
1265
1266 void
1267 nfs_putdircache(np, ndp)
1268 struct nfsnode *np;
1269 struct nfsdircache *ndp;
1270 {
1271 int ref;
1272
1273 if (ndp == &dzero)
1274 return;
1275
1276 KASSERT(ndp->dc_refcnt > 0);
1277 NFSDC_LOCK(np);
1278 ref = --ndp->dc_refcnt;
1279 NFSDC_UNLOCK(np);
1280
1281 if (ref == 0)
1282 free(ndp, M_NFSDIROFF);
1283 }
1284
1285 static void
1286 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1287 {
1288 int ref;
1289
1290 NFSDC_ASSERT_LOCKED(np);
1291
1292 if (ndp == &dzero)
1293 return;
1294
1295 KASSERT(ndp->dc_refcnt > 0);
1296 ref = --ndp->dc_refcnt;
1297 if (ref == 0)
1298 free(ndp, M_NFSDIROFF);
1299 }
1300
1301 struct nfsdircache *
1302 nfs_searchdircache(vp, off, do32, hashent)
1303 struct vnode *vp;
1304 off_t off;
1305 int do32;
1306 int *hashent;
1307 {
1308 struct nfsdirhashhead *ndhp;
1309 struct nfsdircache *ndp = NULL;
1310 struct nfsnode *np = VTONFS(vp);
1311 unsigned ent;
1312
1313 /*
1314 * Zero is always a valid cookie.
1315 */
1316 if (off == 0)
1317 /* XXXUNCONST */
1318 return (struct nfsdircache *)__UNCONST(&dzero);
1319
1320 if (!np->n_dircache)
1321 return NULL;
1322
1323 /*
1324 * We use a 32bit cookie as search key, directly reconstruct
1325 * the hashentry. Else use the hashfunction.
1326 */
1327 if (do32) {
1328 ent = (u_int32_t)off >> 24;
1329 if (ent >= NFS_DIRHASHSIZ)
1330 return NULL;
1331 ndhp = &np->n_dircache[ent];
1332 } else {
1333 ndhp = NFSDIRHASH(np, off);
1334 }
1335
1336 if (hashent)
1337 *hashent = (int)(ndhp - np->n_dircache);
1338
1339 NFSDC_LOCK(np);
1340 if (do32) {
1341 LIST_FOREACH(ndp, ndhp, dc_hash) {
1342 if (ndp->dc_cookie32 == (u_int32_t)off) {
1343 /*
1344 * An invalidated entry will become the
1345 * start of a new block fetched from
1346 * the server.
1347 */
1348 if (ndp->dc_flags & NFSDC_INVALID) {
1349 ndp->dc_blkcookie = ndp->dc_cookie;
1350 ndp->dc_entry = 0;
1351 ndp->dc_flags &= ~NFSDC_INVALID;
1352 }
1353 break;
1354 }
1355 }
1356 } else {
1357 LIST_FOREACH(ndp, ndhp, dc_hash) {
1358 if (ndp->dc_cookie == off)
1359 break;
1360 }
1361 }
1362 if (ndp != NULL)
1363 ndp->dc_refcnt++;
1364 NFSDC_UNLOCK(np);
1365 return ndp;
1366 }
1367
1368
1369 struct nfsdircache *
1370 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1371 daddr_t blkno)
1372 {
1373 struct nfsnode *np = VTONFS(vp);
1374 struct nfsdirhashhead *ndhp;
1375 struct nfsdircache *ndp = NULL;
1376 struct nfsdircache *newndp = NULL;
1377 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1378 int hashent = 0, gen, overwrite; /* XXX: GCC */
1379
1380 /*
1381 * XXX refuse entries for offset 0. amd(8) erroneously sets
1382 * cookie 0 for the '.' entry, making this necessary. This
1383 * isn't so bad, as 0 is a special case anyway.
1384 */
1385 if (off == 0)
1386 /* XXXUNCONST */
1387 return (struct nfsdircache *)__UNCONST(&dzero);
1388
1389 if (!np->n_dircache)
1390 /*
1391 * XXX would like to do this in nfs_nget but vtype
1392 * isn't known at that time.
1393 */
1394 nfs_initdircache(vp);
1395
1396 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1397 nfs_initdirxlatecookie(vp);
1398
1399 retry:
1400 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1401
1402 NFSDC_LOCK(np);
1403 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1404 /*
1405 * Overwriting an old entry. Check if it's the same.
1406 * If so, just return. If not, remove the old entry.
1407 */
1408 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1409 goto done;
1410 nfs_unlinkdircache(np, ndp);
1411 nfs_putdircache_unlocked(np, ndp);
1412 ndp = NULL;
1413 }
1414
1415 ndhp = &np->n_dircache[hashent];
1416
1417 if (!ndp) {
1418 if (newndp == NULL) {
1419 NFSDC_UNLOCK(np);
1420 newndp = malloc(sizeof(*ndp), M_NFSDIROFF, M_WAITOK);
1421 newndp->dc_refcnt = 1;
1422 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1423 goto retry;
1424 }
1425 ndp = newndp;
1426 newndp = NULL;
1427 overwrite = 0;
1428 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1429 /*
1430 * We're allocating a new entry, so bump the
1431 * generation number.
1432 */
1433 KASSERT(np->n_dirgens);
1434 gen = ++np->n_dirgens[hashent];
1435 if (gen == 0) {
1436 np->n_dirgens[hashent]++;
1437 gen++;
1438 }
1439 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1440 }
1441 } else
1442 overwrite = 1;
1443
1444 ndp->dc_cookie = off;
1445 ndp->dc_blkcookie = blkoff;
1446 ndp->dc_entry = en;
1447 ndp->dc_flags = 0;
1448
1449 if (overwrite)
1450 goto done;
1451
1452 /*
1453 * If the maximum directory cookie cache size has been reached
1454 * for this node, take one off the front. The idea is that
1455 * directories are typically read front-to-back once, so that
1456 * the oldest entries can be thrown away without much performance
1457 * loss.
1458 */
1459 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1460 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1461 } else
1462 np->n_dircachesize++;
1463
1464 KASSERT(ndp->dc_refcnt == 1);
1465 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1466 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1467 ndp->dc_refcnt++;
1468 done:
1469 KASSERT(ndp->dc_refcnt > 0);
1470 NFSDC_UNLOCK(np);
1471 if (newndp)
1472 nfs_putdircache(np, newndp);
1473 return ndp;
1474 }
1475
1476 void
1477 nfs_invaldircache(vp, flags)
1478 struct vnode *vp;
1479 int flags;
1480 {
1481 struct nfsnode *np = VTONFS(vp);
1482 struct nfsdircache *ndp = NULL;
1483 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1484 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1485
1486 #ifdef DIAGNOSTIC
1487 if (vp->v_type != VDIR)
1488 panic("nfs: invaldircache: not dir");
1489 #endif
1490
1491 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1492 np->n_flag &= ~NEOFVALID;
1493
1494 if (!np->n_dircache)
1495 return;
1496
1497 NFSDC_LOCK(np);
1498 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1499 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1500 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1501 nfs_unlinkdircache(np, ndp);
1502 }
1503 np->n_dircachesize = 0;
1504 if (forcefree && np->n_dirgens) {
1505 FREE(np->n_dirgens, M_NFSDIROFF);
1506 np->n_dirgens = NULL;
1507 }
1508 } else {
1509 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1510 ndp->dc_flags |= NFSDC_INVALID;
1511 }
1512
1513 NFSDC_UNLOCK(np);
1514 }
1515
1516 /*
1517 * Called once before VFS init to initialize shared and
1518 * server-specific data structures.
1519 */
1520 static int
1521 nfs_init0(void)
1522 {
1523
1524 nfsrtt.pos = 0;
1525 rpc_vers = txdr_unsigned(RPC_VER2);
1526 rpc_call = txdr_unsigned(RPC_CALL);
1527 rpc_reply = txdr_unsigned(RPC_REPLY);
1528 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1529 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1530 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1531 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1532 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1533 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1534 nfs_prog = txdr_unsigned(NFS_PROG);
1535 nfs_true = txdr_unsigned(true);
1536 nfs_false = txdr_unsigned(false);
1537 nfs_xdrneg1 = txdr_unsigned(-1);
1538 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1539 if (nfs_ticks < 1)
1540 nfs_ticks = 1;
1541 #ifdef NFSSERVER
1542 nfsrv_init(0); /* Init server data structures */
1543 nfsrv_initcache(); /* Init the server request cache */
1544 {
1545 extern krwlock_t netexport_lock; /* XXX */
1546 rw_init(&netexport_lock);
1547 }
1548 #endif /* NFSSERVER */
1549
1550 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
1551 nfsdreq_init();
1552 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
1553
1554 /*
1555 * Initialize reply list and start timer
1556 */
1557 TAILQ_INIT(&nfs_reqq);
1558 nfs_timer_init();
1559 MOWNER_ATTACH(&nfs_mowner);
1560
1561 #ifdef NFS
1562 /* Initialize the kqueue structures */
1563 nfs_kqinit();
1564 /* Initialize the iod structures */
1565 nfs_iodinit();
1566 #endif
1567 return 0;
1568 }
1569
1570 void
1571 nfs_init(void)
1572 {
1573 static ONCE_DECL(nfs_init_once);
1574
1575 RUN_ONCE(&nfs_init_once, nfs_init0);
1576 }
1577
1578 #ifdef NFS
1579 /*
1580 * Called once at VFS init to initialize client-specific data structures.
1581 */
1582 void
1583 nfs_vfs_init()
1584 {
1585 /* Initialize NFS server / client shared data. */
1586 nfs_init();
1587
1588 nfs_nhinit(); /* Init the nfsnode table */
1589 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1590 }
1591
1592 void
1593 nfs_vfs_reinit()
1594 {
1595 nfs_nhreinit();
1596 }
1597
1598 void
1599 nfs_vfs_done()
1600 {
1601 nfs_nhdone();
1602 }
1603
1604 /*
1605 * Attribute cache routines.
1606 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1607 * that are on the mbuf list
1608 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1609 * error otherwise
1610 */
1611
1612 /*
1613 * Load the attribute cache (that lives in the nfsnode entry) with
1614 * the values on the mbuf list and
1615 * Iff vap not NULL
1616 * copy the attributes to *vaper
1617 */
1618 int
1619 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1620 struct vnode **vpp;
1621 struct mbuf **mdp;
1622 char **dposp;
1623 struct vattr *vaper;
1624 int flags;
1625 {
1626 int32_t t1;
1627 char *cp2;
1628 int error = 0;
1629 struct mbuf *md;
1630 int v3 = NFS_ISV3(*vpp);
1631
1632 md = *mdp;
1633 t1 = (mtod(md, char *) + md->m_len) - *dposp;
1634 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1635 if (error)
1636 return (error);
1637 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1638 }
1639
1640 int
1641 nfs_loadattrcache(vpp, fp, vaper, flags)
1642 struct vnode **vpp;
1643 struct nfs_fattr *fp;
1644 struct vattr *vaper;
1645 int flags;
1646 {
1647 struct vnode *vp = *vpp;
1648 struct vattr *vap;
1649 int v3 = NFS_ISV3(vp);
1650 enum vtype vtyp;
1651 u_short vmode;
1652 struct timespec mtime;
1653 struct timespec ctime;
1654 struct vnode *nvp;
1655 int32_t rdev;
1656 struct nfsnode *np;
1657 extern int (**spec_nfsv2nodeop_p) __P((void *));
1658 uid_t uid;
1659 gid_t gid;
1660
1661 if (v3) {
1662 vtyp = nfsv3tov_type(fp->fa_type);
1663 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1664 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1665 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1666 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1667 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1668 } else {
1669 vtyp = nfsv2tov_type(fp->fa_type);
1670 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1671 if (vtyp == VNON || vtyp == VREG)
1672 vtyp = IFTOVT(vmode);
1673 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1674 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1675 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1676 fp->fa2_ctime.nfsv2_sec);
1677 ctime.tv_nsec = 0;
1678
1679 /*
1680 * Really ugly NFSv2 kludge.
1681 */
1682 if (vtyp == VCHR && rdev == 0xffffffff)
1683 vtyp = VFIFO;
1684 }
1685
1686 vmode &= ALLPERMS;
1687
1688 /*
1689 * If v_type == VNON it is a new node, so fill in the v_type,
1690 * n_mtime fields. Check to see if it represents a special
1691 * device, and if so, check for a possible alias. Once the
1692 * correct vnode has been obtained, fill in the rest of the
1693 * information.
1694 */
1695 np = VTONFS(vp);
1696 if (vp->v_type == VNON) {
1697 vp->v_type = vtyp;
1698 if (vp->v_type == VFIFO) {
1699 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1700 vp->v_op = fifo_nfsv2nodeop_p;
1701 } else if (vp->v_type == VREG) {
1702 mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
1703 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1704 vp->v_op = spec_nfsv2nodeop_p;
1705 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1706 if (nvp) {
1707 /*
1708 * Discard unneeded vnode, but save its nfsnode.
1709 * Since the nfsnode does not have a lock, its
1710 * vnode lock has to be carried over.
1711 */
1712 /*
1713 * XXX is the old node sure to be locked here?
1714 */
1715 KASSERT(lockstatus(&vp->v_lock) ==
1716 LK_EXCLUSIVE);
1717 nvp->v_data = vp->v_data;
1718 vp->v_data = NULL;
1719 VOP_UNLOCK(vp, 0);
1720 vp->v_op = spec_vnodeop_p;
1721 vrele(vp);
1722 vgone(vp);
1723 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1724 &nvp->v_interlock);
1725 /*
1726 * Reinitialize aliased node.
1727 */
1728 np->n_vnode = nvp;
1729 *vpp = vp = nvp;
1730 }
1731 }
1732 np->n_mtime = mtime;
1733 }
1734 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1735 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1736 vap = np->n_vattr;
1737
1738 /*
1739 * Invalidate access cache if uid, gid, mode or ctime changed.
1740 */
1741 if (np->n_accstamp != -1 &&
1742 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1743 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1744 np->n_accstamp = -1;
1745
1746 vap->va_type = vtyp;
1747 vap->va_mode = vmode;
1748 vap->va_rdev = (dev_t)rdev;
1749 vap->va_mtime = mtime;
1750 vap->va_ctime = ctime;
1751 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1752 switch (vtyp) {
1753 case VDIR:
1754 vap->va_blocksize = NFS_DIRFRAGSIZ;
1755 break;
1756 case VBLK:
1757 vap->va_blocksize = BLKDEV_IOSIZE;
1758 break;
1759 case VCHR:
1760 vap->va_blocksize = MAXBSIZE;
1761 break;
1762 default:
1763 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1764 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1765 break;
1766 }
1767 if (v3) {
1768 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1769 vap->va_uid = uid;
1770 vap->va_gid = gid;
1771 vap->va_size = fxdr_hyper(&fp->fa3_size);
1772 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1773 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1774 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1775 vap->va_flags = 0;
1776 vap->va_filerev = 0;
1777 } else {
1778 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1779 vap->va_uid = uid;
1780 vap->va_gid = gid;
1781 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1782 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1783 * NFS_FABLKSIZE;
1784 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1785 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1786 vap->va_flags = 0;
1787 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1788 vap->va_filerev = 0;
1789 }
1790 if (vap->va_size != np->n_size) {
1791 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1792 vap->va_size = np->n_size;
1793 } else {
1794 np->n_size = vap->va_size;
1795 if (vap->va_type == VREG) {
1796 /*
1797 * we can't free pages if NAC_NOTRUNC because
1798 * the pages can be owned by ourselves.
1799 */
1800 if (flags & NAC_NOTRUNC) {
1801 np->n_flag |= NTRUNCDELAYED;
1802 } else {
1803 genfs_node_wrlock(vp);
1804 simple_lock(&vp->v_interlock);
1805 (void)VOP_PUTPAGES(vp, 0,
1806 0, PGO_SYNCIO | PGO_CLEANIT |
1807 PGO_FREE | PGO_ALLPAGES);
1808 uvm_vnp_setsize(vp, np->n_size);
1809 genfs_node_unlock(vp);
1810 }
1811 }
1812 }
1813 }
1814 np->n_attrstamp = time_second;
1815 if (vaper != NULL) {
1816 memcpy((void *)vaper, (void *)vap, sizeof(*vap));
1817 if (np->n_flag & NCHG) {
1818 if (np->n_flag & NACC)
1819 vaper->va_atime = np->n_atim;
1820 if (np->n_flag & NUPD)
1821 vaper->va_mtime = np->n_mtim;
1822 }
1823 }
1824 return (0);
1825 }
1826
1827 /*
1828 * Check the time stamp
1829 * If the cache is valid, copy contents to *vap and return 0
1830 * otherwise return an error
1831 */
1832 int
1833 nfs_getattrcache(vp, vaper)
1834 struct vnode *vp;
1835 struct vattr *vaper;
1836 {
1837 struct nfsnode *np = VTONFS(vp);
1838 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1839 struct vattr *vap;
1840
1841 if (np->n_attrstamp == 0 ||
1842 (time_second - np->n_attrstamp) >= nfs_attrtimeo(nmp, np)) {
1843 nfsstats.attrcache_misses++;
1844 return (ENOENT);
1845 }
1846 nfsstats.attrcache_hits++;
1847 vap = np->n_vattr;
1848 if (vap->va_size != np->n_size) {
1849 if (vap->va_type == VREG) {
1850 if ((np->n_flag & NMODIFIED) != 0 &&
1851 vap->va_size < np->n_size) {
1852 vap->va_size = np->n_size;
1853 } else {
1854 np->n_size = vap->va_size;
1855 }
1856 genfs_node_wrlock(vp);
1857 uvm_vnp_setsize(vp, np->n_size);
1858 genfs_node_unlock(vp);
1859 } else
1860 np->n_size = vap->va_size;
1861 }
1862 memcpy((void *)vaper, (void *)vap, sizeof(struct vattr));
1863 if (np->n_flag & NCHG) {
1864 if (np->n_flag & NACC)
1865 vaper->va_atime = np->n_atim;
1866 if (np->n_flag & NUPD)
1867 vaper->va_mtime = np->n_mtim;
1868 }
1869 return (0);
1870 }
1871
1872 void
1873 nfs_delayedtruncate(vp)
1874 struct vnode *vp;
1875 {
1876 struct nfsnode *np = VTONFS(vp);
1877
1878 if (np->n_flag & NTRUNCDELAYED) {
1879 np->n_flag &= ~NTRUNCDELAYED;
1880 genfs_node_wrlock(vp);
1881 simple_lock(&vp->v_interlock);
1882 (void)VOP_PUTPAGES(vp, 0,
1883 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1884 uvm_vnp_setsize(vp, np->n_size);
1885 genfs_node_unlock(vp);
1886 }
1887 }
1888
1889 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1890 #define NFS_WCCKLUDGE(nmp, now) \
1891 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1892 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1893
1894 /*
1895 * nfs_check_wccdata: check inaccurate wcc_data
1896 *
1897 * => return non-zero if we shouldn't trust the wcc_data.
1898 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1899 */
1900
1901 int
1902 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1903 struct timespec *mtime, bool docheck)
1904 {
1905 int error = 0;
1906
1907 #if !defined(NFS_V2_ONLY)
1908
1909 if (docheck) {
1910 struct vnode *vp = NFSTOV(np);
1911 struct nfsmount *nmp;
1912 long now = time_second;
1913 const struct timespec *omtime = &np->n_vattr->va_mtime;
1914 const struct timespec *octime = &np->n_vattr->va_ctime;
1915 #if defined(DEBUG)
1916 const char *reason = NULL; /* XXX: gcc */
1917 #endif
1918
1919 if (timespeccmp(omtime, mtime, <=)) {
1920 #if defined(DEBUG)
1921 reason = "mtime";
1922 #endif
1923 error = EINVAL;
1924 }
1925
1926 if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
1927 #if defined(DEBUG)
1928 reason = "ctime";
1929 #endif
1930 error = EINVAL;
1931 }
1932
1933 nmp = VFSTONFS(vp->v_mount);
1934 if (error) {
1935
1936 /*
1937 * despite of the fact that we've updated the file,
1938 * timestamps of the file were not updated as we
1939 * expected.
1940 * it means that the server has incompatible
1941 * semantics of timestamps or (more likely)
1942 * the server time is not precise enough to
1943 * track each modifications.
1944 * in that case, we disable wcc processing.
1945 *
1946 * yes, strictly speaking, we should disable all
1947 * caching. it's a compromise.
1948 */
1949
1950 mutex_enter(&nmp->nm_lock);
1951 #if defined(DEBUG)
1952 if (!NFS_WCCKLUDGE(nmp, now)) {
1953 printf("%s: inaccurate wcc data (%s) detected,"
1954 " disabling wcc"
1955 " (ctime %u.%09u %u.%09u,"
1956 " mtime %u.%09u %u.%09u)\n",
1957 vp->v_mount->mnt_stat.f_mntfromname,
1958 reason,
1959 (unsigned int)octime->tv_sec,
1960 (unsigned int)octime->tv_nsec,
1961 (unsigned int)ctime->tv_sec,
1962 (unsigned int)ctime->tv_nsec,
1963 (unsigned int)omtime->tv_sec,
1964 (unsigned int)omtime->tv_nsec,
1965 (unsigned int)mtime->tv_sec,
1966 (unsigned int)mtime->tv_nsec);
1967 }
1968 #endif
1969 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1970 nmp->nm_wcckludgetime = now;
1971 mutex_exit(&nmp->nm_lock);
1972 } else if (NFS_WCCKLUDGE(nmp, now)) {
1973 error = EPERM; /* XXX */
1974 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1975 mutex_enter(&nmp->nm_lock);
1976 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1977 #if defined(DEBUG)
1978 printf("%s: re-enabling wcc\n",
1979 vp->v_mount->mnt_stat.f_mntfromname);
1980 #endif
1981 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1982 }
1983 mutex_exit(&nmp->nm_lock);
1984 }
1985 }
1986
1987 #endif /* !defined(NFS_V2_ONLY) */
1988
1989 return error;
1990 }
1991
1992 /*
1993 * Heuristic to see if the server XDR encodes directory cookies or not.
1994 * it is not supposed to, but a lot of servers may do this. Also, since
1995 * most/all servers will implement V2 as well, it is expected that they
1996 * may return just 32 bits worth of cookie information, so we need to
1997 * find out in which 32 bits this information is available. We do this
1998 * to avoid trouble with emulated binaries that can't handle 64 bit
1999 * directory offsets.
2000 */
2001
2002 void
2003 nfs_cookieheuristic(vp, flagp, l, cred)
2004 struct vnode *vp;
2005 int *flagp;
2006 struct lwp *l;
2007 kauth_cred_t cred;
2008 {
2009 struct uio auio;
2010 struct iovec aiov;
2011 char *tbuf, *cp;
2012 struct dirent *dp;
2013 off_t *cookies = NULL, *cop;
2014 int error, eof, nc, len;
2015
2016 MALLOC(tbuf, void *, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
2017
2018 aiov.iov_base = tbuf;
2019 aiov.iov_len = NFS_DIRFRAGSIZ;
2020 auio.uio_iov = &aiov;
2021 auio.uio_iovcnt = 1;
2022 auio.uio_rw = UIO_READ;
2023 auio.uio_resid = NFS_DIRFRAGSIZ;
2024 auio.uio_offset = 0;
2025 UIO_SETUP_SYSSPACE(&auio);
2026
2027 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
2028
2029 len = NFS_DIRFRAGSIZ - auio.uio_resid;
2030 if (error || len == 0) {
2031 FREE(tbuf, M_TEMP);
2032 if (cookies)
2033 free(cookies, M_TEMP);
2034 return;
2035 }
2036
2037 /*
2038 * Find the first valid entry and look at its offset cookie.
2039 */
2040
2041 cp = tbuf;
2042 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2043 dp = (struct dirent *)cp;
2044 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2045 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2046 *flagp |= NFSMNT_SWAPCOOKIE;
2047 nfs_invaldircache(vp, 0);
2048 nfs_vinvalbuf(vp, 0, cred, l, 1);
2049 }
2050 break;
2051 }
2052 cop++;
2053 cp += dp->d_reclen;
2054 }
2055
2056 FREE(tbuf, M_TEMP);
2057 free(cookies, M_TEMP);
2058 }
2059 #endif /* NFS */
2060
2061 #ifdef NFSSERVER
2062 /*
2063 * Set up nameidata for a lookup() call and do it.
2064 *
2065 * If pubflag is set, this call is done for a lookup operation on the
2066 * public filehandle. In that case we allow crossing mountpoints and
2067 * absolute pathnames. However, the caller is expected to check that
2068 * the lookup result is within the public fs, and deny access if
2069 * it is not.
2070 */
2071 int
2072 nfs_namei(ndp, nsfh, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2073 struct nameidata *ndp;
2074 nfsrvfh_t *nsfh;
2075 uint32_t len;
2076 struct nfssvc_sock *slp;
2077 struct mbuf *nam;
2078 struct mbuf **mdp;
2079 char **dposp;
2080 struct vnode **retdirp;
2081 struct lwp *l;
2082 int kerbflag, pubflag;
2083 {
2084 int i, rem;
2085 struct mbuf *md;
2086 char *fromcp, *tocp, *cp;
2087 struct iovec aiov;
2088 struct uio auio;
2089 struct vnode *dp;
2090 int error, rdonly, linklen;
2091 struct componentname *cnp = &ndp->ni_cnd;
2092
2093 *retdirp = NULL;
2094
2095 if ((len + 1) > MAXPATHLEN)
2096 return (ENAMETOOLONG);
2097 if (len == 0)
2098 return (EACCES);
2099 cnp->cn_pnbuf = PNBUF_GET();
2100
2101 /*
2102 * Copy the name from the mbuf list to ndp->ni_pnbuf
2103 * and set the various ndp fields appropriately.
2104 */
2105 fromcp = *dposp;
2106 tocp = cnp->cn_pnbuf;
2107 md = *mdp;
2108 rem = mtod(md, char *) + md->m_len - fromcp;
2109 for (i = 0; i < len; i++) {
2110 while (rem == 0) {
2111 md = md->m_next;
2112 if (md == NULL) {
2113 error = EBADRPC;
2114 goto out;
2115 }
2116 fromcp = mtod(md, void *);
2117 rem = md->m_len;
2118 }
2119 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2120 error = EACCES;
2121 goto out;
2122 }
2123 *tocp++ = *fromcp++;
2124 rem--;
2125 }
2126 *tocp = '\0';
2127 *mdp = md;
2128 *dposp = fromcp;
2129 len = nfsm_rndup(len)-len;
2130 if (len > 0) {
2131 if (rem >= len)
2132 *dposp += len;
2133 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2134 goto out;
2135 }
2136
2137 /*
2138 * Extract and set starting directory.
2139 */
2140 error = nfsrv_fhtovp(nsfh, false, &dp, ndp->ni_cnd.cn_cred, slp,
2141 nam, &rdonly, kerbflag, pubflag);
2142 if (error)
2143 goto out;
2144 if (dp->v_type != VDIR) {
2145 vrele(dp);
2146 error = ENOTDIR;
2147 goto out;
2148 }
2149
2150 if (rdonly)
2151 cnp->cn_flags |= RDONLY;
2152
2153 *retdirp = dp;
2154
2155 if (pubflag) {
2156 /*
2157 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2158 * and the 'native path' indicator.
2159 */
2160 cp = PNBUF_GET();
2161 fromcp = cnp->cn_pnbuf;
2162 tocp = cp;
2163 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2164 switch ((unsigned char)*fromcp) {
2165 case WEBNFS_NATIVE_CHAR:
2166 /*
2167 * 'Native' path for us is the same
2168 * as a path according to the NFS spec,
2169 * just skip the escape char.
2170 */
2171 fromcp++;
2172 break;
2173 /*
2174 * More may be added in the future, range 0x80-0xff
2175 */
2176 default:
2177 error = EIO;
2178 vrele(dp);
2179 PNBUF_PUT(cp);
2180 goto out;
2181 }
2182 }
2183 /*
2184 * Translate the '%' escapes, URL-style.
2185 */
2186 while (*fromcp != '\0') {
2187 if (*fromcp == WEBNFS_ESC_CHAR) {
2188 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2189 fromcp++;
2190 *tocp++ = HEXSTRTOI(fromcp);
2191 fromcp += 2;
2192 continue;
2193 } else {
2194 error = ENOENT;
2195 vrele(dp);
2196 PNBUF_PUT(cp);
2197 goto out;
2198 }
2199 } else
2200 *tocp++ = *fromcp++;
2201 }
2202 *tocp = '\0';
2203 PNBUF_PUT(cnp->cn_pnbuf);
2204 cnp->cn_pnbuf = cp;
2205 }
2206
2207 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2208 ndp->ni_segflg = UIO_SYSSPACE;
2209 ndp->ni_rootdir = rootvnode;
2210 ndp->ni_erootdir = NULL;
2211
2212 if (pubflag) {
2213 ndp->ni_loopcnt = 0;
2214 if (cnp->cn_pnbuf[0] == '/')
2215 dp = rootvnode;
2216 } else {
2217 cnp->cn_flags |= NOCROSSMOUNT;
2218 }
2219
2220 cnp->cn_lwp = l;
2221 VREF(dp);
2222 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2223
2224 for (;;) {
2225 cnp->cn_nameptr = cnp->cn_pnbuf;
2226 ndp->ni_startdir = dp;
2227
2228 /*
2229 * And call lookup() to do the real work
2230 */
2231 error = lookup(ndp);
2232 if (error) {
2233 if (ndp->ni_dvp) {
2234 vput(ndp->ni_dvp);
2235 }
2236 PNBUF_PUT(cnp->cn_pnbuf);
2237 return (error);
2238 }
2239
2240 /*
2241 * Check for encountering a symbolic link
2242 */
2243 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2244 if ((cnp->cn_flags & LOCKPARENT) == 0 && ndp->ni_dvp) {
2245 if (ndp->ni_dvp == ndp->ni_vp) {
2246 vrele(ndp->ni_dvp);
2247 } else {
2248 vput(ndp->ni_dvp);
2249 }
2250 }
2251 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2252 cnp->cn_flags |= HASBUF;
2253 else
2254 PNBUF_PUT(cnp->cn_pnbuf);
2255 return (0);
2256 } else {
2257 if (!pubflag) {
2258 error = EINVAL;
2259 break;
2260 }
2261 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2262 error = ELOOP;
2263 break;
2264 }
2265 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2266 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred);
2267 if (error != 0)
2268 break;
2269 }
2270 if (ndp->ni_pathlen > 1)
2271 cp = PNBUF_GET();
2272 else
2273 cp = cnp->cn_pnbuf;
2274 aiov.iov_base = cp;
2275 aiov.iov_len = MAXPATHLEN;
2276 auio.uio_iov = &aiov;
2277 auio.uio_iovcnt = 1;
2278 auio.uio_offset = 0;
2279 auio.uio_rw = UIO_READ;
2280 auio.uio_resid = MAXPATHLEN;
2281 UIO_SETUP_SYSSPACE(&auio);
2282 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2283 if (error) {
2284 badlink:
2285 if (ndp->ni_pathlen > 1)
2286 PNBUF_PUT(cp);
2287 break;
2288 }
2289 linklen = MAXPATHLEN - auio.uio_resid;
2290 if (linklen == 0) {
2291 error = ENOENT;
2292 goto badlink;
2293 }
2294 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2295 error = ENAMETOOLONG;
2296 goto badlink;
2297 }
2298 if (ndp->ni_pathlen > 1) {
2299 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2300 PNBUF_PUT(cnp->cn_pnbuf);
2301 cnp->cn_pnbuf = cp;
2302 } else
2303 cnp->cn_pnbuf[linklen] = '\0';
2304 ndp->ni_pathlen += linklen;
2305 vput(ndp->ni_vp);
2306 dp = ndp->ni_dvp;
2307
2308 /*
2309 * Check if root directory should replace current directory.
2310 */
2311 if (cnp->cn_pnbuf[0] == '/') {
2312 vput(dp);
2313 dp = ndp->ni_rootdir;
2314 VREF(dp);
2315 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2316 }
2317 }
2318 }
2319 vput(ndp->ni_dvp);
2320 vput(ndp->ni_vp);
2321 ndp->ni_vp = NULL;
2322 out:
2323 PNBUF_PUT(cnp->cn_pnbuf);
2324 return (error);
2325 }
2326 #endif /* NFSSERVER */
2327
2328 /*
2329 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2330 * boundary and only trims off the back end
2331 *
2332 * 1. trim off 'len' bytes as m_adj(mp, -len).
2333 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2334 */
2335 void
2336 nfs_zeropad(mp, len, nul)
2337 struct mbuf *mp;
2338 int len;
2339 int nul;
2340 {
2341 struct mbuf *m;
2342 int count;
2343
2344 /*
2345 * Trim from tail. Scan the mbuf chain,
2346 * calculating its length and finding the last mbuf.
2347 * If the adjustment only affects this mbuf, then just
2348 * adjust and return. Otherwise, rescan and truncate
2349 * after the remaining size.
2350 */
2351 count = 0;
2352 m = mp;
2353 for (;;) {
2354 count += m->m_len;
2355 if (m->m_next == NULL)
2356 break;
2357 m = m->m_next;
2358 }
2359
2360 KDASSERT(count >= len);
2361
2362 if (m->m_len >= len) {
2363 m->m_len -= len;
2364 } else {
2365 count -= len;
2366 /*
2367 * Correct length for chain is "count".
2368 * Find the mbuf with last data, adjust its length,
2369 * and toss data from remaining mbufs on chain.
2370 */
2371 for (m = mp; m; m = m->m_next) {
2372 if (m->m_len >= count) {
2373 m->m_len = count;
2374 break;
2375 }
2376 count -= m->m_len;
2377 }
2378 KASSERT(m && m->m_next);
2379 m_freem(m->m_next);
2380 m->m_next = NULL;
2381 }
2382
2383 KDASSERT(m->m_next == NULL);
2384
2385 /*
2386 * zero-padding.
2387 */
2388 if (nul > 0) {
2389 char *cp;
2390 int i;
2391
2392 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2393 struct mbuf *n;
2394
2395 KDASSERT(MLEN >= nul);
2396 n = m_get(M_WAIT, MT_DATA);
2397 MCLAIM(n, &nfs_mowner);
2398 n->m_len = nul;
2399 n->m_next = NULL;
2400 m->m_next = n;
2401 cp = mtod(n, void *);
2402 } else {
2403 cp = mtod(m, char *) + m->m_len;
2404 m->m_len += nul;
2405 }
2406 for (i = 0; i < nul; i++)
2407 *cp++ = '\0';
2408 }
2409 return;
2410 }
2411
2412 /*
2413 * Make these functions instead of macros, so that the kernel text size
2414 * doesn't get too big...
2415 */
2416 void
2417 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2418 struct nfsrv_descript *nfsd;
2419 int before_ret;
2420 struct vattr *before_vap;
2421 int after_ret;
2422 struct vattr *after_vap;
2423 struct mbuf **mbp;
2424 char **bposp;
2425 {
2426 struct mbuf *mb = *mbp;
2427 char *bpos = *bposp;
2428 u_int32_t *tl;
2429
2430 if (before_ret) {
2431 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2432 *tl = nfs_false;
2433 } else {
2434 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2435 *tl++ = nfs_true;
2436 txdr_hyper(before_vap->va_size, tl);
2437 tl += 2;
2438 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2439 tl += 2;
2440 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2441 }
2442 *bposp = bpos;
2443 *mbp = mb;
2444 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2445 }
2446
2447 void
2448 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2449 struct nfsrv_descript *nfsd;
2450 int after_ret;
2451 struct vattr *after_vap;
2452 struct mbuf **mbp;
2453 char **bposp;
2454 {
2455 struct mbuf *mb = *mbp;
2456 char *bpos = *bposp;
2457 u_int32_t *tl;
2458 struct nfs_fattr *fp;
2459
2460 if (after_ret) {
2461 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2462 *tl = nfs_false;
2463 } else {
2464 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2465 *tl++ = nfs_true;
2466 fp = (struct nfs_fattr *)tl;
2467 nfsm_srvfattr(nfsd, after_vap, fp);
2468 }
2469 *mbp = mb;
2470 *bposp = bpos;
2471 }
2472
2473 void
2474 nfsm_srvfattr(nfsd, vap, fp)
2475 struct nfsrv_descript *nfsd;
2476 struct vattr *vap;
2477 struct nfs_fattr *fp;
2478 {
2479
2480 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2481 fp->fa_uid = txdr_unsigned(vap->va_uid);
2482 fp->fa_gid = txdr_unsigned(vap->va_gid);
2483 if (nfsd->nd_flag & ND_NFSV3) {
2484 fp->fa_type = vtonfsv3_type(vap->va_type);
2485 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2486 txdr_hyper(vap->va_size, &fp->fa3_size);
2487 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2488 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2489 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2490 fp->fa3_fsid.nfsuquad[0] = 0;
2491 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2492 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2493 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2494 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2495 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2496 } else {
2497 fp->fa_type = vtonfsv2_type(vap->va_type);
2498 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2499 fp->fa2_size = txdr_unsigned(vap->va_size);
2500 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2501 if (vap->va_type == VFIFO)
2502 fp->fa2_rdev = 0xffffffff;
2503 else
2504 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2505 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2506 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2507 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2508 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2509 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2510 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2511 }
2512 }
2513
2514 #ifdef NFSSERVER
2515 /*
2516 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2517 * - look up fsid in mount list (if not found ret error)
2518 * - get vp and export rights by calling VFS_FHTOVP()
2519 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2520 * - if not lockflag unlock it with VOP_UNLOCK()
2521 */
2522 int
2523 nfsrv_fhtovp(nfsrvfh_t *nsfh, int lockflag, struct vnode **vpp,
2524 kauth_cred_t cred, struct nfssvc_sock *slp, struct mbuf *nam, int *rdonlyp,
2525 int kerbflag, int pubflag)
2526 {
2527 struct mount *mp;
2528 kauth_cred_t credanon;
2529 int error, exflags;
2530 struct sockaddr_in *saddr;
2531 fhandle_t *fhp;
2532
2533 fhp = NFSRVFH_FHANDLE(nsfh);
2534 *vpp = (struct vnode *)0;
2535
2536 if (nfs_ispublicfh(nsfh)) {
2537 if (!pubflag || !nfs_pub.np_valid)
2538 return (ESTALE);
2539 fhp = nfs_pub.np_handle;
2540 }
2541
2542 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2543 if (error) {
2544 return error;
2545 }
2546
2547 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2548 if (error)
2549 return (error);
2550
2551 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2552 saddr = mtod(nam, struct sockaddr_in *);
2553 if ((saddr->sin_family == AF_INET) &&
2554 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2555 vput(*vpp);
2556 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2557 }
2558 #ifdef INET6
2559 if ((saddr->sin_family == AF_INET6) &&
2560 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2561 vput(*vpp);
2562 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2563 }
2564 #endif
2565 }
2566 /*
2567 * Check/setup credentials.
2568 */
2569 if (exflags & MNT_EXKERB) {
2570 if (!kerbflag) {
2571 vput(*vpp);
2572 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2573 }
2574 } else if (kerbflag) {
2575 vput(*vpp);
2576 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2577 } else if (kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER,
2578 NULL) == 0 || (exflags & MNT_EXPORTANON)) {
2579 kauth_cred_clone(credanon, cred);
2580 }
2581 if (exflags & MNT_EXRDONLY)
2582 *rdonlyp = 1;
2583 else
2584 *rdonlyp = 0;
2585 if (!lockflag)
2586 VOP_UNLOCK(*vpp, 0);
2587 return (0);
2588 }
2589
2590 /*
2591 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2592 * means a length of 0, for v2 it means all zeroes.
2593 */
2594 int
2595 nfs_ispublicfh(const nfsrvfh_t *nsfh)
2596 {
2597 const char *cp = (const void *)(NFSRVFH_DATA(nsfh));
2598 int i;
2599
2600 if (NFSRVFH_SIZE(nsfh) == 0) {
2601 return true;
2602 }
2603 if (NFSRVFH_SIZE(nsfh) != NFSX_V2FH) {
2604 return false;
2605 }
2606 for (i = 0; i < NFSX_V2FH; i++)
2607 if (*cp++ != 0)
2608 return false;
2609 return true;
2610 }
2611 #endif /* NFSSERVER */
2612
2613 /*
2614 * This function compares two net addresses by family and returns true
2615 * if they are the same host.
2616 * If there is any doubt, return false.
2617 * The AF_INET family is handled as a special case so that address mbufs
2618 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2619 */
2620 int
2621 netaddr_match(family, haddr, nam)
2622 int family;
2623 union nethostaddr *haddr;
2624 struct mbuf *nam;
2625 {
2626 struct sockaddr_in *inetaddr;
2627
2628 switch (family) {
2629 case AF_INET:
2630 inetaddr = mtod(nam, struct sockaddr_in *);
2631 if (inetaddr->sin_family == AF_INET &&
2632 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2633 return (1);
2634 break;
2635 #ifdef INET6
2636 case AF_INET6:
2637 {
2638 struct sockaddr_in6 *sin6_1, *sin6_2;
2639
2640 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2641 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2642 if (sin6_1->sin6_family == AF_INET6 &&
2643 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2644 return 1;
2645 }
2646 #endif
2647 #ifdef ISO
2648 case AF_ISO:
2649 {
2650 struct sockaddr_iso *isoaddr1, *isoaddr2;
2651
2652 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2653 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2654 if (isoaddr1->siso_family == AF_ISO &&
2655 isoaddr1->siso_nlen > 0 &&
2656 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2657 SAME_ISOADDR(isoaddr1, isoaddr2))
2658 return (1);
2659 break;
2660 }
2661 #endif /* ISO */
2662 default:
2663 break;
2664 };
2665 return (0);
2666 }
2667
2668 /*
2669 * The write verifier has changed (probably due to a server reboot), so all
2670 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2671 * as dirty or are being written out just now, all this takes is clearing
2672 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2673 * the mount point.
2674 */
2675 void
2676 nfs_clearcommit(mp)
2677 struct mount *mp;
2678 {
2679 struct vnode *vp;
2680 struct nfsnode *np;
2681 struct vm_page *pg;
2682 struct nfsmount *nmp = VFSTONFS(mp);
2683
2684 rw_enter(&nmp->nm_writeverflock, RW_WRITER);
2685
2686 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2687 KASSERT(vp->v_mount == mp);
2688 if (vp->v_type != VREG)
2689 continue;
2690 np = VTONFS(vp);
2691 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2692 np->n_pushedhi = 0;
2693 np->n_commitflags &=
2694 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2695 simple_lock(&vp->v_uobj.vmobjlock);
2696 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2697 pg->flags &= ~PG_NEEDCOMMIT;
2698 }
2699 simple_unlock(&vp->v_uobj.vmobjlock);
2700 }
2701 mutex_enter(&nmp->nm_lock);
2702 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2703 mutex_exit(&nmp->nm_lock);
2704 rw_exit(&nmp->nm_writeverflock);
2705 }
2706
2707 void
2708 nfs_merge_commit_ranges(vp)
2709 struct vnode *vp;
2710 {
2711 struct nfsnode *np = VTONFS(vp);
2712
2713 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2714
2715 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2716 np->n_pushedlo = np->n_pushlo;
2717 np->n_pushedhi = np->n_pushhi;
2718 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2719 } else {
2720 if (np->n_pushlo < np->n_pushedlo)
2721 np->n_pushedlo = np->n_pushlo;
2722 if (np->n_pushhi > np->n_pushedhi)
2723 np->n_pushedhi = np->n_pushhi;
2724 }
2725
2726 np->n_pushlo = np->n_pushhi = 0;
2727 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2728
2729 #ifdef NFS_DEBUG_COMMIT
2730 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2731 (unsigned)np->n_pushedhi);
2732 #endif
2733 }
2734
2735 int
2736 nfs_in_committed_range(vp, off, len)
2737 struct vnode *vp;
2738 off_t off, len;
2739 {
2740 struct nfsnode *np = VTONFS(vp);
2741 off_t lo, hi;
2742
2743 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2744 return 0;
2745 lo = off;
2746 hi = lo + len;
2747
2748 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2749 }
2750
2751 int
2752 nfs_in_tobecommitted_range(vp, off, len)
2753 struct vnode *vp;
2754 off_t off, len;
2755 {
2756 struct nfsnode *np = VTONFS(vp);
2757 off_t lo, hi;
2758
2759 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2760 return 0;
2761 lo = off;
2762 hi = lo + len;
2763
2764 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2765 }
2766
2767 void
2768 nfs_add_committed_range(vp, off, len)
2769 struct vnode *vp;
2770 off_t off, len;
2771 {
2772 struct nfsnode *np = VTONFS(vp);
2773 off_t lo, hi;
2774
2775 lo = off;
2776 hi = lo + len;
2777
2778 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2779 np->n_pushedlo = lo;
2780 np->n_pushedhi = hi;
2781 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2782 } else {
2783 if (hi > np->n_pushedhi)
2784 np->n_pushedhi = hi;
2785 if (lo < np->n_pushedlo)
2786 np->n_pushedlo = lo;
2787 }
2788 #ifdef NFS_DEBUG_COMMIT
2789 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2790 (unsigned)np->n_pushedhi);
2791 #endif
2792 }
2793
2794 void
2795 nfs_del_committed_range(vp, off, len)
2796 struct vnode *vp;
2797 off_t off, len;
2798 {
2799 struct nfsnode *np = VTONFS(vp);
2800 off_t lo, hi;
2801
2802 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2803 return;
2804
2805 lo = off;
2806 hi = lo + len;
2807
2808 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2809 return;
2810 if (lo <= np->n_pushedlo)
2811 np->n_pushedlo = hi;
2812 else if (hi >= np->n_pushedhi)
2813 np->n_pushedhi = lo;
2814 else {
2815 /*
2816 * XXX There's only one range. If the deleted range
2817 * is in the middle, pick the largest of the
2818 * contiguous ranges that it leaves.
2819 */
2820 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2821 np->n_pushedhi = lo;
2822 else
2823 np->n_pushedlo = hi;
2824 }
2825 #ifdef NFS_DEBUG_COMMIT
2826 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2827 (unsigned)np->n_pushedhi);
2828 #endif
2829 }
2830
2831 void
2832 nfs_add_tobecommitted_range(vp, off, len)
2833 struct vnode *vp;
2834 off_t off, len;
2835 {
2836 struct nfsnode *np = VTONFS(vp);
2837 off_t lo, hi;
2838
2839 lo = off;
2840 hi = lo + len;
2841
2842 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2843 np->n_pushlo = lo;
2844 np->n_pushhi = hi;
2845 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2846 } else {
2847 if (lo < np->n_pushlo)
2848 np->n_pushlo = lo;
2849 if (hi > np->n_pushhi)
2850 np->n_pushhi = hi;
2851 }
2852 #ifdef NFS_DEBUG_COMMIT
2853 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2854 (unsigned)np->n_pushhi);
2855 #endif
2856 }
2857
2858 void
2859 nfs_del_tobecommitted_range(vp, off, len)
2860 struct vnode *vp;
2861 off_t off, len;
2862 {
2863 struct nfsnode *np = VTONFS(vp);
2864 off_t lo, hi;
2865
2866 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2867 return;
2868
2869 lo = off;
2870 hi = lo + len;
2871
2872 if (lo > np->n_pushhi || hi < np->n_pushlo)
2873 return;
2874
2875 if (lo <= np->n_pushlo)
2876 np->n_pushlo = hi;
2877 else if (hi >= np->n_pushhi)
2878 np->n_pushhi = lo;
2879 else {
2880 /*
2881 * XXX There's only one range. If the deleted range
2882 * is in the middle, pick the largest of the
2883 * contiguous ranges that it leaves.
2884 */
2885 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2886 np->n_pushhi = lo;
2887 else
2888 np->n_pushlo = hi;
2889 }
2890 #ifdef NFS_DEBUG_COMMIT
2891 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2892 (unsigned)np->n_pushhi);
2893 #endif
2894 }
2895
2896 /*
2897 * Map errnos to NFS error numbers. For Version 3 also filter out error
2898 * numbers not specified for the associated procedure.
2899 */
2900 int
2901 nfsrv_errmap(nd, err)
2902 struct nfsrv_descript *nd;
2903 int err;
2904 {
2905 const short *defaulterrp, *errp;
2906
2907 if (nd->nd_flag & ND_NFSV3) {
2908 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2909 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2910 while (*++errp) {
2911 if (*errp == err)
2912 return (err);
2913 else if (*errp > err)
2914 break;
2915 }
2916 return ((int)*defaulterrp);
2917 } else
2918 return (err & 0xffff);
2919 }
2920 if (err <= ELAST)
2921 return ((int)nfsrv_v2errmap[err - 1]);
2922 return (NFSERR_IO);
2923 }
2924
2925 u_int32_t
2926 nfs_getxid()
2927 {
2928 static u_int32_t base;
2929 static u_int32_t nfs_xid = 0;
2930 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2931 u_int32_t newxid;
2932
2933 simple_lock(&nfs_xidlock);
2934 /*
2935 * derive initial xid from system time
2936 * XXX time is invalid if root not yet mounted
2937 */
2938 if (__predict_false(!base && (rootvp))) {
2939 struct timeval tv;
2940
2941 microtime(&tv);
2942 base = tv.tv_sec << 12;
2943 nfs_xid = base;
2944 }
2945
2946 /*
2947 * Skip zero xid if it should ever happen.
2948 */
2949 if (__predict_false(++nfs_xid == 0))
2950 nfs_xid++;
2951 newxid = nfs_xid;
2952 simple_unlock(&nfs_xidlock);
2953
2954 return txdr_unsigned(newxid);
2955 }
2956
2957 /*
2958 * assign a new xid for existing request.
2959 * used for NFSERR_JUKEBOX handling.
2960 */
2961 void
2962 nfs_renewxid(struct nfsreq *req)
2963 {
2964 u_int32_t xid;
2965 int off;
2966
2967 xid = nfs_getxid();
2968 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2969 off = sizeof(u_int32_t); /* RPC record mark */
2970 else
2971 off = 0;
2972
2973 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2974 req->r_xid = xid;
2975 }
2976
2977 #if defined(NFSSERVER)
2978 int
2979 nfsrv_composefh(struct vnode *vp, nfsrvfh_t *nsfh, bool v3)
2980 {
2981 int error;
2982 size_t fhsize;
2983
2984 fhsize = NFSD_MAXFHSIZE;
2985 error = vfs_composefh(vp, (void *)NFSRVFH_DATA(nsfh), &fhsize);
2986 if (NFSX_FHTOOBIG_P(fhsize, v3)) {
2987 error = EOPNOTSUPP;
2988 }
2989 if (error != 0) {
2990 return error;
2991 }
2992 if (!v3 && fhsize < NFSX_V2FH) {
2993 memset((char *)NFSRVFH_DATA(nsfh) + fhsize, 0,
2994 NFSX_V2FH - fhsize);
2995 fhsize = NFSX_V2FH;
2996 }
2997 if ((fhsize % NFSX_UNSIGNED) != 0) {
2998 return EOPNOTSUPP;
2999 }
3000 nsfh->nsfh_size = fhsize;
3001 return 0;
3002 }
3003
3004 int
3005 nfsrv_comparefh(const nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
3006 {
3007
3008 if (NFSRVFH_SIZE(fh1) != NFSRVFH_SIZE(fh2)) {
3009 return NFSRVFH_SIZE(fh2) - NFSRVFH_SIZE(fh1);
3010 }
3011 return memcmp(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), NFSRVFH_SIZE(fh1));
3012 }
3013
3014 void
3015 nfsrv_copyfh(nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
3016 {
3017 size_t size;
3018
3019 fh1->nsfh_size = size = NFSRVFH_SIZE(fh2);
3020 memcpy(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), size);
3021 }
3022 #endif /* defined(NFSSERVER) */
3023
3024 #if defined(NFS)
3025 /*
3026 * Set the attribute timeout based on how recently the file has been modified.
3027 */
3028
3029 time_t
3030 nfs_attrtimeo(struct nfsmount *nmp, struct nfsnode *np)
3031 {
3032 time_t timeo;
3033
3034 if ((nmp->nm_flag & NFSMNT_NOAC) != 0)
3035 return 0;
3036
3037 if (((np)->n_flag & NMODIFIED) != 0)
3038 return NFS_MINATTRTIMO;
3039
3040 timeo = (time_second - np->n_mtime.tv_sec) / 10;
3041 timeo = max(timeo, NFS_MINATTRTIMO);
3042 timeo = min(timeo, NFS_MAXATTRTIMO);
3043 return timeo;
3044 }
3045 #endif /* defined(NFS) */
3046