nfs_subs.c revision 1.156 1 /* $NetBSD: nfs_subs.c,v 1.156 2005/12/11 12:25:16 christos Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.156 2005/12/11 12:25:16 christos Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 #include <sys/once.h>
101
102 #include <uvm/uvm_extern.h>
103
104 #include <nfs/rpcv2.h>
105 #include <nfs/nfsproto.h>
106 #include <nfs/nfsnode.h>
107 #include <nfs/nfs.h>
108 #include <nfs/xdr_subs.h>
109 #include <nfs/nfsm_subs.h>
110 #include <nfs/nfsmount.h>
111 #include <nfs/nqnfs.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114
115 #include <miscfs/specfs/specdev.h>
116
117 #include <netinet/in.h>
118 #ifdef ISO
119 #include <netiso/iso.h>
120 #endif
121
122 /*
123 * Data items converted to xdr at startup, since they are constant
124 * This is kinda hokey, but may save a little time doing byte swaps
125 */
126 u_int32_t nfs_xdrneg1;
127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
128 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
129 rpc_auth_kerb;
130 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
131
132 /* And other global data */
133 const nfstype nfsv2_type[9] =
134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142 int nfs_commitsize;
143
144 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
145
146 /* NFS client/server stats. */
147 struct nfsstats nfsstats;
148
149 /*
150 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
151 */
152 const int nfsv3_procid[NFS_NPROCS] = {
153 NFSPROC_NULL,
154 NFSPROC_GETATTR,
155 NFSPROC_SETATTR,
156 NFSPROC_NOOP,
157 NFSPROC_LOOKUP,
158 NFSPROC_READLINK,
159 NFSPROC_READ,
160 NFSPROC_NOOP,
161 NFSPROC_WRITE,
162 NFSPROC_CREATE,
163 NFSPROC_REMOVE,
164 NFSPROC_RENAME,
165 NFSPROC_LINK,
166 NFSPROC_SYMLINK,
167 NFSPROC_MKDIR,
168 NFSPROC_RMDIR,
169 NFSPROC_READDIR,
170 NFSPROC_FSSTAT,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP,
177 NFSPROC_NOOP,
178 NFSPROC_NOOP
179 };
180
181 /*
182 * and the reverse mapping from generic to Version 2 procedure numbers
183 */
184 const int nfsv2_procid[NFS_NPROCS] = {
185 NFSV2PROC_NULL,
186 NFSV2PROC_GETATTR,
187 NFSV2PROC_SETATTR,
188 NFSV2PROC_LOOKUP,
189 NFSV2PROC_NOOP,
190 NFSV2PROC_READLINK,
191 NFSV2PROC_READ,
192 NFSV2PROC_WRITE,
193 NFSV2PROC_CREATE,
194 NFSV2PROC_MKDIR,
195 NFSV2PROC_SYMLINK,
196 NFSV2PROC_CREATE,
197 NFSV2PROC_REMOVE,
198 NFSV2PROC_RMDIR,
199 NFSV2PROC_RENAME,
200 NFSV2PROC_LINK,
201 NFSV2PROC_READDIR,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_STATFS,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_NOOP,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 NFSV2PROC_NOOP,
209 NFSV2PROC_NOOP,
210 NFSV2PROC_NOOP,
211 };
212
213 /*
214 * Maps errno values to nfs error numbers.
215 * Use NFSERR_IO as the catch all for ones not specifically defined in
216 * RFC 1094.
217 */
218 static const u_char nfsrv_v2errmap[ELAST] = {
219 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
223 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
231 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
232 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
233 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
234 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
235 NFSERR_IO, NFSERR_IO,
236 };
237
238 /*
239 * Maps errno values to nfs error numbers.
240 * Although it is not obvious whether or not NFS clients really care if
241 * a returned error value is in the specified list for the procedure, the
242 * safest thing to do is filter them appropriately. For Version 2, the
243 * X/Open XNFS document is the only specification that defines error values
244 * for each RPC (The RFC simply lists all possible error values for all RPCs),
245 * so I have decided to not do this for Version 2.
246 * The first entry is the default error return and the rest are the valid
247 * errors for that RPC in increasing numeric order.
248 */
249 static const short nfsv3err_null[] = {
250 0,
251 0,
252 };
253
254 static const short nfsv3err_getattr[] = {
255 NFSERR_IO,
256 NFSERR_IO,
257 NFSERR_STALE,
258 NFSERR_BADHANDLE,
259 NFSERR_SERVERFAULT,
260 0,
261 };
262
263 static const short nfsv3err_setattr[] = {
264 NFSERR_IO,
265 NFSERR_PERM,
266 NFSERR_IO,
267 NFSERR_ACCES,
268 NFSERR_INVAL,
269 NFSERR_NOSPC,
270 NFSERR_ROFS,
271 NFSERR_DQUOT,
272 NFSERR_STALE,
273 NFSERR_BADHANDLE,
274 NFSERR_NOT_SYNC,
275 NFSERR_SERVERFAULT,
276 0,
277 };
278
279 static const short nfsv3err_lookup[] = {
280 NFSERR_IO,
281 NFSERR_NOENT,
282 NFSERR_IO,
283 NFSERR_ACCES,
284 NFSERR_NOTDIR,
285 NFSERR_NAMETOL,
286 NFSERR_STALE,
287 NFSERR_BADHANDLE,
288 NFSERR_SERVERFAULT,
289 0,
290 };
291
292 static const short nfsv3err_access[] = {
293 NFSERR_IO,
294 NFSERR_IO,
295 NFSERR_STALE,
296 NFSERR_BADHANDLE,
297 NFSERR_SERVERFAULT,
298 0,
299 };
300
301 static const short nfsv3err_readlink[] = {
302 NFSERR_IO,
303 NFSERR_IO,
304 NFSERR_ACCES,
305 NFSERR_INVAL,
306 NFSERR_STALE,
307 NFSERR_BADHANDLE,
308 NFSERR_NOTSUPP,
309 NFSERR_SERVERFAULT,
310 0,
311 };
312
313 static const short nfsv3err_read[] = {
314 NFSERR_IO,
315 NFSERR_IO,
316 NFSERR_NXIO,
317 NFSERR_ACCES,
318 NFSERR_INVAL,
319 NFSERR_STALE,
320 NFSERR_BADHANDLE,
321 NFSERR_SERVERFAULT,
322 NFSERR_JUKEBOX,
323 0,
324 };
325
326 static const short nfsv3err_write[] = {
327 NFSERR_IO,
328 NFSERR_IO,
329 NFSERR_ACCES,
330 NFSERR_INVAL,
331 NFSERR_FBIG,
332 NFSERR_NOSPC,
333 NFSERR_ROFS,
334 NFSERR_DQUOT,
335 NFSERR_STALE,
336 NFSERR_BADHANDLE,
337 NFSERR_SERVERFAULT,
338 NFSERR_JUKEBOX,
339 0,
340 };
341
342 static const short nfsv3err_create[] = {
343 NFSERR_IO,
344 NFSERR_IO,
345 NFSERR_ACCES,
346 NFSERR_EXIST,
347 NFSERR_NOTDIR,
348 NFSERR_NOSPC,
349 NFSERR_ROFS,
350 NFSERR_NAMETOL,
351 NFSERR_DQUOT,
352 NFSERR_STALE,
353 NFSERR_BADHANDLE,
354 NFSERR_NOTSUPP,
355 NFSERR_SERVERFAULT,
356 0,
357 };
358
359 static const short nfsv3err_mkdir[] = {
360 NFSERR_IO,
361 NFSERR_IO,
362 NFSERR_ACCES,
363 NFSERR_EXIST,
364 NFSERR_NOTDIR,
365 NFSERR_NOSPC,
366 NFSERR_ROFS,
367 NFSERR_NAMETOL,
368 NFSERR_DQUOT,
369 NFSERR_STALE,
370 NFSERR_BADHANDLE,
371 NFSERR_NOTSUPP,
372 NFSERR_SERVERFAULT,
373 0,
374 };
375
376 static const short nfsv3err_symlink[] = {
377 NFSERR_IO,
378 NFSERR_IO,
379 NFSERR_ACCES,
380 NFSERR_EXIST,
381 NFSERR_NOTDIR,
382 NFSERR_NOSPC,
383 NFSERR_ROFS,
384 NFSERR_NAMETOL,
385 NFSERR_DQUOT,
386 NFSERR_STALE,
387 NFSERR_BADHANDLE,
388 NFSERR_NOTSUPP,
389 NFSERR_SERVERFAULT,
390 0,
391 };
392
393 static const short nfsv3err_mknod[] = {
394 NFSERR_IO,
395 NFSERR_IO,
396 NFSERR_ACCES,
397 NFSERR_EXIST,
398 NFSERR_NOTDIR,
399 NFSERR_NOSPC,
400 NFSERR_ROFS,
401 NFSERR_NAMETOL,
402 NFSERR_DQUOT,
403 NFSERR_STALE,
404 NFSERR_BADHANDLE,
405 NFSERR_NOTSUPP,
406 NFSERR_SERVERFAULT,
407 NFSERR_BADTYPE,
408 0,
409 };
410
411 static const short nfsv3err_remove[] = {
412 NFSERR_IO,
413 NFSERR_NOENT,
414 NFSERR_IO,
415 NFSERR_ACCES,
416 NFSERR_NOTDIR,
417 NFSERR_ROFS,
418 NFSERR_NAMETOL,
419 NFSERR_STALE,
420 NFSERR_BADHANDLE,
421 NFSERR_SERVERFAULT,
422 0,
423 };
424
425 static const short nfsv3err_rmdir[] = {
426 NFSERR_IO,
427 NFSERR_NOENT,
428 NFSERR_IO,
429 NFSERR_ACCES,
430 NFSERR_EXIST,
431 NFSERR_NOTDIR,
432 NFSERR_INVAL,
433 NFSERR_ROFS,
434 NFSERR_NAMETOL,
435 NFSERR_NOTEMPTY,
436 NFSERR_STALE,
437 NFSERR_BADHANDLE,
438 NFSERR_NOTSUPP,
439 NFSERR_SERVERFAULT,
440 0,
441 };
442
443 static const short nfsv3err_rename[] = {
444 NFSERR_IO,
445 NFSERR_NOENT,
446 NFSERR_IO,
447 NFSERR_ACCES,
448 NFSERR_EXIST,
449 NFSERR_XDEV,
450 NFSERR_NOTDIR,
451 NFSERR_ISDIR,
452 NFSERR_INVAL,
453 NFSERR_NOSPC,
454 NFSERR_ROFS,
455 NFSERR_MLINK,
456 NFSERR_NAMETOL,
457 NFSERR_NOTEMPTY,
458 NFSERR_DQUOT,
459 NFSERR_STALE,
460 NFSERR_BADHANDLE,
461 NFSERR_NOTSUPP,
462 NFSERR_SERVERFAULT,
463 0,
464 };
465
466 static const short nfsv3err_link[] = {
467 NFSERR_IO,
468 NFSERR_IO,
469 NFSERR_ACCES,
470 NFSERR_EXIST,
471 NFSERR_XDEV,
472 NFSERR_NOTDIR,
473 NFSERR_INVAL,
474 NFSERR_NOSPC,
475 NFSERR_ROFS,
476 NFSERR_MLINK,
477 NFSERR_NAMETOL,
478 NFSERR_DQUOT,
479 NFSERR_STALE,
480 NFSERR_BADHANDLE,
481 NFSERR_NOTSUPP,
482 NFSERR_SERVERFAULT,
483 0,
484 };
485
486 static const short nfsv3err_readdir[] = {
487 NFSERR_IO,
488 NFSERR_IO,
489 NFSERR_ACCES,
490 NFSERR_NOTDIR,
491 NFSERR_STALE,
492 NFSERR_BADHANDLE,
493 NFSERR_BAD_COOKIE,
494 NFSERR_TOOSMALL,
495 NFSERR_SERVERFAULT,
496 0,
497 };
498
499 static const short nfsv3err_readdirplus[] = {
500 NFSERR_IO,
501 NFSERR_IO,
502 NFSERR_ACCES,
503 NFSERR_NOTDIR,
504 NFSERR_STALE,
505 NFSERR_BADHANDLE,
506 NFSERR_BAD_COOKIE,
507 NFSERR_NOTSUPP,
508 NFSERR_TOOSMALL,
509 NFSERR_SERVERFAULT,
510 0,
511 };
512
513 static const short nfsv3err_fsstat[] = {
514 NFSERR_IO,
515 NFSERR_IO,
516 NFSERR_STALE,
517 NFSERR_BADHANDLE,
518 NFSERR_SERVERFAULT,
519 0,
520 };
521
522 static const short nfsv3err_fsinfo[] = {
523 NFSERR_STALE,
524 NFSERR_STALE,
525 NFSERR_BADHANDLE,
526 NFSERR_SERVERFAULT,
527 0,
528 };
529
530 static const short nfsv3err_pathconf[] = {
531 NFSERR_STALE,
532 NFSERR_STALE,
533 NFSERR_BADHANDLE,
534 NFSERR_SERVERFAULT,
535 0,
536 };
537
538 static const short nfsv3err_commit[] = {
539 NFSERR_IO,
540 NFSERR_IO,
541 NFSERR_STALE,
542 NFSERR_BADHANDLE,
543 NFSERR_SERVERFAULT,
544 0,
545 };
546
547 static const short * const nfsrv_v3errmap[] = {
548 nfsv3err_null,
549 nfsv3err_getattr,
550 nfsv3err_setattr,
551 nfsv3err_lookup,
552 nfsv3err_access,
553 nfsv3err_readlink,
554 nfsv3err_read,
555 nfsv3err_write,
556 nfsv3err_create,
557 nfsv3err_mkdir,
558 nfsv3err_symlink,
559 nfsv3err_mknod,
560 nfsv3err_remove,
561 nfsv3err_rmdir,
562 nfsv3err_rename,
563 nfsv3err_link,
564 nfsv3err_readdir,
565 nfsv3err_readdirplus,
566 nfsv3err_fsstat,
567 nfsv3err_fsinfo,
568 nfsv3err_pathconf,
569 nfsv3err_commit,
570 };
571
572 extern struct nfsrtt nfsrtt;
573 extern time_t nqnfsstarttime;
574 extern int nqsrv_clockskew;
575 extern int nqsrv_writeslack;
576 extern int nqsrv_maxlease;
577 extern const int nqnfs_piggy[NFS_NPROCS];
578 extern struct nfsnodehashhead *nfsnodehashtbl;
579 extern u_long nfsnodehash;
580
581 u_long nfsdirhashmask;
582
583 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
584
585 /*
586 * Create the header for an rpc request packet
587 * The hsiz is the size of the rest of the nfs request header.
588 * (just used to decide if a cluster is a good idea)
589 */
590 struct mbuf *
591 nfsm_reqh(np, procid, hsiz, bposp)
592 struct nfsnode *np;
593 u_long procid;
594 int hsiz;
595 caddr_t *bposp;
596 {
597 struct mbuf *mb;
598 caddr_t bpos;
599 #ifndef NFS_V2_ONLY
600 struct nfsmount *nmp;
601 u_int32_t *tl;
602 int nqflag;
603 #endif
604
605 mb = m_get(M_WAIT, MT_DATA);
606 MCLAIM(mb, &nfs_mowner);
607 if (hsiz >= MINCLSIZE)
608 m_clget(mb, M_WAIT);
609 mb->m_len = 0;
610 bpos = mtod(mb, caddr_t);
611
612 #ifndef NFS_V2_ONLY
613 /*
614 * For NQNFS, add lease request.
615 */
616 if (np) {
617 nmp = VFSTONFS(np->n_vnode->v_mount);
618 if (nmp->nm_flag & NFSMNT_NQNFS) {
619 nqflag = NQNFS_NEEDLEASE(np, procid);
620 if (nqflag) {
621 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
622 *tl++ = txdr_unsigned(nqflag);
623 *tl = txdr_unsigned(nmp->nm_leaseterm);
624 } else {
625 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
626 *tl = 0;
627 }
628 }
629 }
630 #endif
631 /* Finally, return values */
632 *bposp = bpos;
633 return (mb);
634 }
635
636 /*
637 * Build the RPC header and fill in the authorization info.
638 * The authorization string argument is only used when the credentials
639 * come from outside of the kernel.
640 * Returns the head of the mbuf list.
641 */
642 struct mbuf *
643 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
644 verf_str, mrest, mrest_len, mbp, xidp)
645 struct ucred *cr;
646 int nmflag;
647 int procid;
648 int auth_type;
649 int auth_len;
650 char *auth_str;
651 int verf_len;
652 char *verf_str;
653 struct mbuf *mrest;
654 int mrest_len;
655 struct mbuf **mbp;
656 u_int32_t *xidp;
657 {
658 struct mbuf *mb;
659 u_int32_t *tl;
660 caddr_t bpos;
661 int i;
662 struct mbuf *mreq;
663 int siz, grpsiz, authsiz;
664
665 authsiz = nfsm_rndup(auth_len);
666 mb = m_gethdr(M_WAIT, MT_DATA);
667 MCLAIM(mb, &nfs_mowner);
668 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
669 m_clget(mb, M_WAIT);
670 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
671 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
672 } else {
673 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
674 }
675 mb->m_len = 0;
676 mreq = mb;
677 bpos = mtod(mb, caddr_t);
678
679 /*
680 * First the RPC header.
681 */
682 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
683
684 *tl++ = *xidp = nfs_getxid();
685 *tl++ = rpc_call;
686 *tl++ = rpc_vers;
687 if (nmflag & NFSMNT_NQNFS) {
688 *tl++ = txdr_unsigned(NQNFS_PROG);
689 *tl++ = txdr_unsigned(NQNFS_VER3);
690 } else {
691 *tl++ = txdr_unsigned(NFS_PROG);
692 if (nmflag & NFSMNT_NFSV3)
693 *tl++ = txdr_unsigned(NFS_VER3);
694 else
695 *tl++ = txdr_unsigned(NFS_VER2);
696 }
697 if (nmflag & NFSMNT_NFSV3)
698 *tl++ = txdr_unsigned(procid);
699 else
700 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
701
702 /*
703 * And then the authorization cred.
704 */
705 *tl++ = txdr_unsigned(auth_type);
706 *tl = txdr_unsigned(authsiz);
707 switch (auth_type) {
708 case RPCAUTH_UNIX:
709 nfsm_build(tl, u_int32_t *, auth_len);
710 *tl++ = 0; /* stamp ?? */
711 *tl++ = 0; /* NULL hostname */
712 *tl++ = txdr_unsigned(cr->cr_uid);
713 *tl++ = txdr_unsigned(cr->cr_gid);
714 grpsiz = (auth_len >> 2) - 5;
715 *tl++ = txdr_unsigned(grpsiz);
716 for (i = 0; i < grpsiz; i++)
717 *tl++ = txdr_unsigned(cr->cr_groups[i]);
718 break;
719 case RPCAUTH_KERB4:
720 siz = auth_len;
721 while (siz > 0) {
722 if (M_TRAILINGSPACE(mb) == 0) {
723 struct mbuf *mb2;
724 mb2 = m_get(M_WAIT, MT_DATA);
725 MCLAIM(mb2, &nfs_mowner);
726 if (siz >= MINCLSIZE)
727 m_clget(mb2, M_WAIT);
728 mb->m_next = mb2;
729 mb = mb2;
730 mb->m_len = 0;
731 bpos = mtod(mb, caddr_t);
732 }
733 i = min(siz, M_TRAILINGSPACE(mb));
734 memcpy(bpos, auth_str, i);
735 mb->m_len += i;
736 auth_str += i;
737 bpos += i;
738 siz -= i;
739 }
740 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
741 for (i = 0; i < siz; i++)
742 *bpos++ = '\0';
743 mb->m_len += siz;
744 }
745 break;
746 };
747
748 /*
749 * And the verifier...
750 */
751 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
752 if (verf_str) {
753 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
754 *tl = txdr_unsigned(verf_len);
755 siz = verf_len;
756 while (siz > 0) {
757 if (M_TRAILINGSPACE(mb) == 0) {
758 struct mbuf *mb2;
759 mb2 = m_get(M_WAIT, MT_DATA);
760 MCLAIM(mb2, &nfs_mowner);
761 if (siz >= MINCLSIZE)
762 m_clget(mb2, M_WAIT);
763 mb->m_next = mb2;
764 mb = mb2;
765 mb->m_len = 0;
766 bpos = mtod(mb, caddr_t);
767 }
768 i = min(siz, M_TRAILINGSPACE(mb));
769 memcpy(bpos, verf_str, i);
770 mb->m_len += i;
771 verf_str += i;
772 bpos += i;
773 siz -= i;
774 }
775 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
776 for (i = 0; i < siz; i++)
777 *bpos++ = '\0';
778 mb->m_len += siz;
779 }
780 } else {
781 *tl++ = txdr_unsigned(RPCAUTH_NULL);
782 *tl = 0;
783 }
784 mb->m_next = mrest;
785 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
786 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
787 *mbp = mb;
788 return (mreq);
789 }
790
791 /*
792 * copies mbuf chain to the uio scatter/gather list
793 */
794 int
795 nfsm_mbuftouio(mrep, uiop, siz, dpos)
796 struct mbuf **mrep;
797 struct uio *uiop;
798 int siz;
799 caddr_t *dpos;
800 {
801 char *mbufcp, *uiocp;
802 int xfer, left, len;
803 struct mbuf *mp;
804 long uiosiz, rem;
805 int error = 0;
806
807 mp = *mrep;
808 mbufcp = *dpos;
809 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
810 rem = nfsm_rndup(siz)-siz;
811 while (siz > 0) {
812 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
813 return (EFBIG);
814 left = uiop->uio_iov->iov_len;
815 uiocp = uiop->uio_iov->iov_base;
816 if (left > siz)
817 left = siz;
818 uiosiz = left;
819 while (left > 0) {
820 while (len == 0) {
821 mp = mp->m_next;
822 if (mp == NULL)
823 return (EBADRPC);
824 mbufcp = mtod(mp, caddr_t);
825 len = mp->m_len;
826 }
827 xfer = (left > len) ? len : left;
828 #ifdef notdef
829 /* Not Yet.. */
830 if (uiop->uio_iov->iov_op != NULL)
831 (*(uiop->uio_iov->iov_op))
832 (mbufcp, uiocp, xfer);
833 else
834 #endif
835 if (uiop->uio_segflg == UIO_SYSSPACE)
836 memcpy(uiocp, mbufcp, xfer);
837 else
838 if ((error = copyout_proc(uiop->uio_lwp->l_proc,
839 mbufcp, uiocp, xfer)) != 0)
840 return error;
841 left -= xfer;
842 len -= xfer;
843 mbufcp += xfer;
844 uiocp += xfer;
845 uiop->uio_offset += xfer;
846 uiop->uio_resid -= xfer;
847 }
848 if (uiop->uio_iov->iov_len <= siz) {
849 uiop->uio_iovcnt--;
850 uiop->uio_iov++;
851 } else {
852 uiop->uio_iov->iov_base =
853 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
854 uiop->uio_iov->iov_len -= uiosiz;
855 }
856 siz -= uiosiz;
857 }
858 *dpos = mbufcp;
859 *mrep = mp;
860 if (rem > 0) {
861 if (len < rem)
862 error = nfs_adv(mrep, dpos, rem, len);
863 else
864 *dpos += rem;
865 }
866 return (error);
867 }
868
869 /*
870 * copies a uio scatter/gather list to an mbuf chain.
871 * NOTE: can ony handle iovcnt == 1
872 */
873 int
874 nfsm_uiotombuf(uiop, mq, siz, bpos)
875 struct uio *uiop;
876 struct mbuf **mq;
877 int siz;
878 caddr_t *bpos;
879 {
880 char *uiocp;
881 struct mbuf *mp, *mp2;
882 int xfer, left, mlen;
883 int uiosiz, clflg, rem;
884 char *cp;
885
886 #ifdef DIAGNOSTIC
887 if (uiop->uio_iovcnt != 1)
888 panic("nfsm_uiotombuf: iovcnt != 1");
889 #endif
890
891 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
892 clflg = 1;
893 else
894 clflg = 0;
895 rem = nfsm_rndup(siz)-siz;
896 mp = mp2 = *mq;
897 while (siz > 0) {
898 left = uiop->uio_iov->iov_len;
899 uiocp = uiop->uio_iov->iov_base;
900 if (left > siz)
901 left = siz;
902 uiosiz = left;
903 while (left > 0) {
904 mlen = M_TRAILINGSPACE(mp);
905 if (mlen == 0) {
906 mp = m_get(M_WAIT, MT_DATA);
907 MCLAIM(mp, &nfs_mowner);
908 if (clflg)
909 m_clget(mp, M_WAIT);
910 mp->m_len = 0;
911 mp2->m_next = mp;
912 mp2 = mp;
913 mlen = M_TRAILINGSPACE(mp);
914 }
915 xfer = (left > mlen) ? mlen : left;
916 cp = mtod(mp, caddr_t) + mp->m_len;
917 #ifdef notdef
918 /* Not Yet.. */
919 if (uiop->uio_iov->iov_op != NULL)
920 (*(uiop->uio_iov->iov_op))(uiocp, cp, xfer);
921 else
922 #endif
923 if (uiop->uio_segflg == UIO_SYSSPACE)
924 (void)memcpy(cp, uiocp, xfer);
925 else
926 /*XXX: Check error */
927 (void)copyin_proc(uiop->uio_lwp->l_proc, uiocp,
928 cp, xfer);
929 mp->m_len += xfer;
930 left -= xfer;
931 uiocp += xfer;
932 uiop->uio_offset += xfer;
933 uiop->uio_resid -= xfer;
934 }
935 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
936 uiosiz;
937 uiop->uio_iov->iov_len -= uiosiz;
938 siz -= uiosiz;
939 }
940 if (rem > 0) {
941 if (rem > M_TRAILINGSPACE(mp)) {
942 mp = m_get(M_WAIT, MT_DATA);
943 MCLAIM(mp, &nfs_mowner);
944 mp->m_len = 0;
945 mp2->m_next = mp;
946 }
947 cp = mtod(mp, caddr_t) + mp->m_len;
948 for (left = 0; left < rem; left++)
949 *cp++ = '\0';
950 mp->m_len += rem;
951 *bpos = cp;
952 } else
953 *bpos = mtod(mp, caddr_t)+mp->m_len;
954 *mq = mp;
955 return (0);
956 }
957
958 /*
959 * Get at least "siz" bytes of correctly aligned data.
960 * When called the mbuf pointers are not necessarily correct,
961 * dsosp points to what ought to be in m_data and left contains
962 * what ought to be in m_len.
963 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
964 * cases. (The macros use the vars. dpos and dpos2)
965 */
966 int
967 nfsm_disct(mdp, dposp, siz, left, cp2)
968 struct mbuf **mdp;
969 caddr_t *dposp;
970 int siz;
971 int left;
972 caddr_t *cp2;
973 {
974 struct mbuf *m1, *m2;
975 struct mbuf *havebuf = NULL;
976 caddr_t src = *dposp;
977 caddr_t dst;
978 int len;
979
980 #ifdef DEBUG
981 if (left < 0)
982 panic("nfsm_disct: left < 0");
983 #endif
984 m1 = *mdp;
985 /*
986 * Skip through the mbuf chain looking for an mbuf with
987 * some data. If the first mbuf found has enough data
988 * and it is correctly aligned return it.
989 */
990 while (left == 0) {
991 havebuf = m1;
992 *mdp = m1 = m1->m_next;
993 if (m1 == NULL)
994 return (EBADRPC);
995 src = mtod(m1, caddr_t);
996 left = m1->m_len;
997 /*
998 * If we start a new mbuf and it is big enough
999 * and correctly aligned just return it, don't
1000 * do any pull up.
1001 */
1002 if (left >= siz && nfsm_aligned(src)) {
1003 *cp2 = src;
1004 *dposp = src + siz;
1005 return (0);
1006 }
1007 }
1008 if (m1->m_flags & M_EXT) {
1009 if (havebuf) {
1010 /* If the first mbuf with data has external data
1011 * and there is a previous empty mbuf use it
1012 * to move the data into.
1013 */
1014 m2 = m1;
1015 *mdp = m1 = havebuf;
1016 if (m1->m_flags & M_EXT) {
1017 MEXTREMOVE(m1);
1018 }
1019 } else {
1020 /*
1021 * If the first mbuf has a external data
1022 * and there is no previous empty mbuf
1023 * allocate a new mbuf and move the external
1024 * data to the new mbuf. Also make the first
1025 * mbuf look empty.
1026 */
1027 m2 = m_get(M_WAIT, MT_DATA);
1028 m2->m_ext = m1->m_ext;
1029 m2->m_data = src;
1030 m2->m_len = left;
1031 MCLADDREFERENCE(m1, m2);
1032 MEXTREMOVE(m1);
1033 m2->m_next = m1->m_next;
1034 m1->m_next = m2;
1035 }
1036 m1->m_len = 0;
1037 if (m1->m_flags & M_PKTHDR)
1038 dst = m1->m_pktdat;
1039 else
1040 dst = m1->m_dat;
1041 m1->m_data = dst;
1042 } else {
1043 /*
1044 * If the first mbuf has no external data
1045 * move the data to the front of the mbuf.
1046 */
1047 if (m1->m_flags & M_PKTHDR)
1048 dst = m1->m_pktdat;
1049 else
1050 dst = m1->m_dat;
1051 m1->m_data = dst;
1052 if (dst != src)
1053 memmove(dst, src, left);
1054 dst += left;
1055 m1->m_len = left;
1056 m2 = m1->m_next;
1057 }
1058 *cp2 = m1->m_data;
1059 *dposp = mtod(m1, caddr_t) + siz;
1060 /*
1061 * Loop through mbufs pulling data up into first mbuf until
1062 * the first mbuf is full or there is no more data to
1063 * pullup.
1064 */
1065 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1066 if ((len = min(len, m2->m_len)) != 0)
1067 memcpy(dst, m2->m_data, len);
1068 m1->m_len += len;
1069 dst += len;
1070 m2->m_data += len;
1071 m2->m_len -= len;
1072 m2 = m2->m_next;
1073 }
1074 if (m1->m_len < siz)
1075 return (EBADRPC);
1076 return (0);
1077 }
1078
1079 /*
1080 * Advance the position in the mbuf chain.
1081 */
1082 int
1083 nfs_adv(mdp, dposp, offs, left)
1084 struct mbuf **mdp;
1085 caddr_t *dposp;
1086 int offs;
1087 int left;
1088 {
1089 struct mbuf *m;
1090 int s;
1091
1092 m = *mdp;
1093 s = left;
1094 while (s < offs) {
1095 offs -= s;
1096 m = m->m_next;
1097 if (m == NULL)
1098 return (EBADRPC);
1099 s = m->m_len;
1100 }
1101 *mdp = m;
1102 *dposp = mtod(m, caddr_t)+offs;
1103 return (0);
1104 }
1105
1106 /*
1107 * Copy a string into mbufs for the hard cases...
1108 */
1109 int
1110 nfsm_strtmbuf(mb, bpos, cp, siz)
1111 struct mbuf **mb;
1112 char **bpos;
1113 const char *cp;
1114 long siz;
1115 {
1116 struct mbuf *m1 = NULL, *m2;
1117 long left, xfer, len, tlen;
1118 u_int32_t *tl;
1119 int putsize;
1120
1121 putsize = 1;
1122 m2 = *mb;
1123 left = M_TRAILINGSPACE(m2);
1124 if (left > 0) {
1125 tl = ((u_int32_t *)(*bpos));
1126 *tl++ = txdr_unsigned(siz);
1127 putsize = 0;
1128 left -= NFSX_UNSIGNED;
1129 m2->m_len += NFSX_UNSIGNED;
1130 if (left > 0) {
1131 memcpy((caddr_t) tl, cp, left);
1132 siz -= left;
1133 cp += left;
1134 m2->m_len += left;
1135 left = 0;
1136 }
1137 }
1138 /* Loop around adding mbufs */
1139 while (siz > 0) {
1140 m1 = m_get(M_WAIT, MT_DATA);
1141 MCLAIM(m1, &nfs_mowner);
1142 if (siz > MLEN)
1143 m_clget(m1, M_WAIT);
1144 m1->m_len = NFSMSIZ(m1);
1145 m2->m_next = m1;
1146 m2 = m1;
1147 tl = mtod(m1, u_int32_t *);
1148 tlen = 0;
1149 if (putsize) {
1150 *tl++ = txdr_unsigned(siz);
1151 m1->m_len -= NFSX_UNSIGNED;
1152 tlen = NFSX_UNSIGNED;
1153 putsize = 0;
1154 }
1155 if (siz < m1->m_len) {
1156 len = nfsm_rndup(siz);
1157 xfer = siz;
1158 if (xfer < len)
1159 *(tl+(xfer>>2)) = 0;
1160 } else {
1161 xfer = len = m1->m_len;
1162 }
1163 memcpy((caddr_t) tl, cp, xfer);
1164 m1->m_len = len+tlen;
1165 siz -= xfer;
1166 cp += xfer;
1167 }
1168 *mb = m1;
1169 *bpos = mtod(m1, caddr_t)+m1->m_len;
1170 return (0);
1171 }
1172
1173 /*
1174 * Directory caching routines. They work as follows:
1175 * - a cache is maintained per VDIR nfsnode.
1176 * - for each offset cookie that is exported to userspace, and can
1177 * thus be thrown back at us as an offset to VOP_READDIR, store
1178 * information in the cache.
1179 * - cached are:
1180 * - cookie itself
1181 * - blocknumber (essentially just a search key in the buffer cache)
1182 * - entry number in block.
1183 * - offset cookie of block in which this entry is stored
1184 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1185 * - entries are looked up in a hash table
1186 * - also maintained is an LRU list of entries, used to determine
1187 * which ones to delete if the cache grows too large.
1188 * - if 32 <-> 64 translation mode is requested for a filesystem,
1189 * the cache also functions as a translation table
1190 * - in the translation case, invalidating the cache does not mean
1191 * flushing it, but just marking entries as invalid, except for
1192 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1193 * still be able to use the cache as a translation table.
1194 * - 32 bit cookies are uniquely created by combining the hash table
1195 * entry value, and one generation count per hash table entry,
1196 * incremented each time an entry is appended to the chain.
1197 * - the cache is invalidated each time a direcory is modified
1198 * - sanity checks are also done; if an entry in a block turns
1199 * out not to have a matching cookie, the cache is invalidated
1200 * and a new block starting from the wanted offset is fetched from
1201 * the server.
1202 * - directory entries as read from the server are extended to contain
1203 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1204 * the cache and exporting them to userspace through the cookie
1205 * argument to VOP_READDIR.
1206 */
1207
1208 u_long
1209 nfs_dirhash(off)
1210 off_t off;
1211 {
1212 int i;
1213 char *cp = (char *)&off;
1214 u_long sum = 0L;
1215
1216 for (i = 0 ; i < sizeof (off); i++)
1217 sum += *cp++;
1218
1219 return sum;
1220 }
1221
1222 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1223 #define NFSDC_LOCK(np) simple_lock(_NFSDC_MTX(np))
1224 #define NFSDC_UNLOCK(np) simple_unlock(_NFSDC_MTX(np))
1225 #define NFSDC_ASSERT_LOCKED(np) LOCK_ASSERT(simple_lock_held(_NFSDC_MTX(np)))
1226
1227 void
1228 nfs_initdircache(vp)
1229 struct vnode *vp;
1230 {
1231 struct nfsnode *np = VTONFS(vp);
1232 struct nfsdirhashhead *dircache;
1233
1234 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1235 M_WAITOK, &nfsdirhashmask);
1236
1237 NFSDC_LOCK(np);
1238 if (np->n_dircache == NULL) {
1239 np->n_dircachesize = 0;
1240 np->n_dircache = dircache;
1241 dircache = NULL;
1242 TAILQ_INIT(&np->n_dirchain);
1243 }
1244 NFSDC_UNLOCK(np);
1245 if (dircache)
1246 hashdone(dircache, M_NFSDIROFF);
1247 }
1248
1249 void
1250 nfs_initdirxlatecookie(vp)
1251 struct vnode *vp;
1252 {
1253 struct nfsnode *np = VTONFS(vp);
1254 unsigned *dirgens;
1255
1256 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1257
1258 dirgens = malloc(NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1259 M_WAITOK|M_ZERO);
1260 NFSDC_LOCK(np);
1261 if (np->n_dirgens == NULL) {
1262 np->n_dirgens = dirgens;
1263 dirgens = NULL;
1264 }
1265 NFSDC_UNLOCK(np);
1266 if (dirgens)
1267 free(dirgens, M_NFSDIROFF);
1268 }
1269
1270 static const struct nfsdircache dzero;
1271
1272 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1273 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1274 struct nfsdircache *));
1275
1276 static void
1277 nfs_unlinkdircache(np, ndp)
1278 struct nfsnode *np;
1279 struct nfsdircache *ndp;
1280 {
1281
1282 NFSDC_ASSERT_LOCKED(np);
1283 KASSERT(ndp != &dzero);
1284
1285 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1286 return;
1287
1288 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1289 LIST_REMOVE(ndp, dc_hash);
1290 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1291
1292 nfs_putdircache_unlocked(np, ndp);
1293 }
1294
1295 void
1296 nfs_putdircache(np, ndp)
1297 struct nfsnode *np;
1298 struct nfsdircache *ndp;
1299 {
1300 int ref;
1301
1302 if (ndp == &dzero)
1303 return;
1304
1305 KASSERT(ndp->dc_refcnt > 0);
1306 NFSDC_LOCK(np);
1307 ref = --ndp->dc_refcnt;
1308 NFSDC_UNLOCK(np);
1309
1310 if (ref == 0)
1311 free(ndp, M_NFSDIROFF);
1312 }
1313
1314 static void
1315 nfs_putdircache_unlocked(np, ndp)
1316 struct nfsnode *np;
1317 struct nfsdircache *ndp;
1318 {
1319 int ref;
1320
1321 NFSDC_ASSERT_LOCKED(np);
1322
1323 if (ndp == &dzero)
1324 return;
1325
1326 KASSERT(ndp->dc_refcnt > 0);
1327 ref = --ndp->dc_refcnt;
1328 if (ref == 0)
1329 free(ndp, M_NFSDIROFF);
1330 }
1331
1332 struct nfsdircache *
1333 nfs_searchdircache(vp, off, do32, hashent)
1334 struct vnode *vp;
1335 off_t off;
1336 int do32;
1337 int *hashent;
1338 {
1339 struct nfsdirhashhead *ndhp;
1340 struct nfsdircache *ndp = NULL;
1341 struct nfsnode *np = VTONFS(vp);
1342 unsigned ent;
1343
1344 /*
1345 * Zero is always a valid cookie.
1346 */
1347 if (off == 0)
1348 /* XXXUNCONST */
1349 return (struct nfsdircache *)__UNCONST(&dzero);
1350
1351 if (!np->n_dircache)
1352 return NULL;
1353
1354 /*
1355 * We use a 32bit cookie as search key, directly reconstruct
1356 * the hashentry. Else use the hashfunction.
1357 */
1358 if (do32) {
1359 ent = (u_int32_t)off >> 24;
1360 if (ent >= NFS_DIRHASHSIZ)
1361 return NULL;
1362 ndhp = &np->n_dircache[ent];
1363 } else {
1364 ndhp = NFSDIRHASH(np, off);
1365 }
1366
1367 if (hashent)
1368 *hashent = (int)(ndhp - np->n_dircache);
1369
1370 NFSDC_LOCK(np);
1371 if (do32) {
1372 LIST_FOREACH(ndp, ndhp, dc_hash) {
1373 if (ndp->dc_cookie32 == (u_int32_t)off) {
1374 /*
1375 * An invalidated entry will become the
1376 * start of a new block fetched from
1377 * the server.
1378 */
1379 if (ndp->dc_flags & NFSDC_INVALID) {
1380 ndp->dc_blkcookie = ndp->dc_cookie;
1381 ndp->dc_entry = 0;
1382 ndp->dc_flags &= ~NFSDC_INVALID;
1383 }
1384 break;
1385 }
1386 }
1387 } else {
1388 LIST_FOREACH(ndp, ndhp, dc_hash) {
1389 if (ndp->dc_cookie == off)
1390 break;
1391 }
1392 }
1393 if (ndp != NULL)
1394 ndp->dc_refcnt++;
1395 NFSDC_UNLOCK(np);
1396 return ndp;
1397 }
1398
1399
1400 struct nfsdircache *
1401 nfs_enterdircache(vp, off, blkoff, en, blkno)
1402 struct vnode *vp;
1403 off_t off, blkoff;
1404 int en;
1405 daddr_t blkno;
1406 {
1407 struct nfsnode *np = VTONFS(vp);
1408 struct nfsdirhashhead *ndhp;
1409 struct nfsdircache *ndp = NULL;
1410 struct nfsdircache *newndp = NULL;
1411 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1412 int hashent, gen, overwrite;
1413
1414 /*
1415 * XXX refuse entries for offset 0. amd(8) erroneously sets
1416 * cookie 0 for the '.' entry, making this necessary. This
1417 * isn't so bad, as 0 is a special case anyway.
1418 */
1419 if (off == 0)
1420 /* XXXUNCONST */
1421 return (struct nfsdircache *)__UNCONST(&dzero);
1422
1423 if (!np->n_dircache)
1424 /*
1425 * XXX would like to do this in nfs_nget but vtype
1426 * isn't known at that time.
1427 */
1428 nfs_initdircache(vp);
1429
1430 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1431 nfs_initdirxlatecookie(vp);
1432
1433 retry:
1434 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1435
1436 NFSDC_LOCK(np);
1437 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1438 /*
1439 * Overwriting an old entry. Check if it's the same.
1440 * If so, just return. If not, remove the old entry.
1441 */
1442 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1443 goto done;
1444 nfs_unlinkdircache(np, ndp);
1445 nfs_putdircache_unlocked(np, ndp);
1446 ndp = NULL;
1447 }
1448
1449 ndhp = &np->n_dircache[hashent];
1450
1451 if (!ndp) {
1452 if (newndp == NULL) {
1453 NFSDC_UNLOCK(np);
1454 newndp = malloc(sizeof(*ndp), M_NFSDIROFF, M_WAITOK);
1455 newndp->dc_refcnt = 1;
1456 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1457 goto retry;
1458 }
1459 ndp = newndp;
1460 newndp = NULL;
1461 overwrite = 0;
1462 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1463 /*
1464 * We're allocating a new entry, so bump the
1465 * generation number.
1466 */
1467 gen = ++np->n_dirgens[hashent];
1468 if (gen == 0) {
1469 np->n_dirgens[hashent]++;
1470 gen++;
1471 }
1472 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1473 }
1474 } else
1475 overwrite = 1;
1476
1477 ndp->dc_cookie = off;
1478 ndp->dc_blkcookie = blkoff;
1479 ndp->dc_entry = en;
1480 ndp->dc_flags = 0;
1481
1482 if (overwrite)
1483 goto done;
1484
1485 /*
1486 * If the maximum directory cookie cache size has been reached
1487 * for this node, take one off the front. The idea is that
1488 * directories are typically read front-to-back once, so that
1489 * the oldest entries can be thrown away without much performance
1490 * loss.
1491 */
1492 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1493 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1494 } else
1495 np->n_dircachesize++;
1496
1497 KASSERT(ndp->dc_refcnt == 1);
1498 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1499 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1500 ndp->dc_refcnt++;
1501 done:
1502 KASSERT(ndp->dc_refcnt > 0);
1503 NFSDC_UNLOCK(np);
1504 if (newndp)
1505 nfs_putdircache(np, newndp);
1506 return ndp;
1507 }
1508
1509 void
1510 nfs_invaldircache(vp, flags)
1511 struct vnode *vp;
1512 int flags;
1513 {
1514 struct nfsnode *np = VTONFS(vp);
1515 struct nfsdircache *ndp = NULL;
1516 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1517 const boolean_t forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1518
1519 #ifdef DIAGNOSTIC
1520 if (vp->v_type != VDIR)
1521 panic("nfs: invaldircache: not dir");
1522 #endif
1523
1524 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1525 np->n_flag &= ~NEOFVALID;
1526
1527 if (!np->n_dircache)
1528 return;
1529
1530 NFSDC_LOCK(np);
1531 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1532 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1533 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1534 nfs_unlinkdircache(np, ndp);
1535 }
1536 np->n_dircachesize = 0;
1537 if (forcefree && np->n_dirgens) {
1538 FREE(np->n_dirgens, M_NFSDIROFF);
1539 np->n_dirgens = NULL;
1540 }
1541 } else {
1542 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1543 ndp->dc_flags |= NFSDC_INVALID;
1544 }
1545
1546 NFSDC_UNLOCK(np);
1547 }
1548
1549 /*
1550 * Called once before VFS init to initialize shared and
1551 * server-specific data structures.
1552 */
1553 static void
1554 nfs_init0(void)
1555 {
1556 nfsrtt.pos = 0;
1557 rpc_vers = txdr_unsigned(RPC_VER2);
1558 rpc_call = txdr_unsigned(RPC_CALL);
1559 rpc_reply = txdr_unsigned(RPC_REPLY);
1560 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1561 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1562 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1563 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1564 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1565 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1566 nfs_prog = txdr_unsigned(NFS_PROG);
1567 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1568 nfs_true = txdr_unsigned(TRUE);
1569 nfs_false = txdr_unsigned(FALSE);
1570 nfs_xdrneg1 = txdr_unsigned(-1);
1571 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1572 if (nfs_ticks < 1)
1573 nfs_ticks = 1;
1574 #ifdef NFSSERVER
1575 nfsrv_init(0); /* Init server data structures */
1576 nfsrv_initcache(); /* Init the server request cache */
1577 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
1578 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr);
1579 #endif /* NFSSERVER */
1580
1581 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1582 /*
1583 * Initialize the nqnfs data structures.
1584 */
1585 if (nqnfsstarttime == 0) {
1586 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1587 + nqsrv_clockskew + nqsrv_writeslack;
1588 NQLOADNOVRAM(nqnfsstarttime);
1589 CIRCLEQ_INIT(&nqtimerhead);
1590 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1591 M_WAITOK, &nqfhhash);
1592 }
1593 #endif
1594
1595 exithook_establish(nfs_exit, NULL);
1596
1597 /*
1598 * Initialize reply list and start timer
1599 */
1600 TAILQ_INIT(&nfs_reqq);
1601 nfs_timer(NULL);
1602 MOWNER_ATTACH(&nfs_mowner);
1603
1604 #ifdef NFS
1605 /* Initialize the kqueue structures */
1606 nfs_kqinit();
1607 /* Initialize the iod structures */
1608 nfs_iodinit();
1609 #endif
1610 }
1611
1612 void
1613 nfs_init(void)
1614 {
1615 static ONCE_DECL(nfs_init_once);
1616
1617 RUN_ONCE(&nfs_init_once, nfs_init0);
1618 }
1619
1620 #ifdef NFS
1621 /*
1622 * Called once at VFS init to initialize client-specific data structures.
1623 */
1624 void
1625 nfs_vfs_init()
1626 {
1627 /* Initialize NFS server / client shared data. */
1628 nfs_init();
1629
1630 nfs_nhinit(); /* Init the nfsnode table */
1631 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1632 }
1633
1634 void
1635 nfs_vfs_reinit()
1636 {
1637 nfs_nhreinit();
1638 }
1639
1640 void
1641 nfs_vfs_done()
1642 {
1643 nfs_nhdone();
1644 }
1645
1646 /*
1647 * Attribute cache routines.
1648 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1649 * that are on the mbuf list
1650 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1651 * error otherwise
1652 */
1653
1654 /*
1655 * Load the attribute cache (that lives in the nfsnode entry) with
1656 * the values on the mbuf list and
1657 * Iff vap not NULL
1658 * copy the attributes to *vaper
1659 */
1660 int
1661 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1662 struct vnode **vpp;
1663 struct mbuf **mdp;
1664 caddr_t *dposp;
1665 struct vattr *vaper;
1666 int flags;
1667 {
1668 int32_t t1;
1669 caddr_t cp2;
1670 int error = 0;
1671 struct mbuf *md;
1672 int v3 = NFS_ISV3(*vpp);
1673
1674 md = *mdp;
1675 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1676 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1677 if (error)
1678 return (error);
1679 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1680 }
1681
1682 int
1683 nfs_loadattrcache(vpp, fp, vaper, flags)
1684 struct vnode **vpp;
1685 struct nfs_fattr *fp;
1686 struct vattr *vaper;
1687 int flags;
1688 {
1689 struct vnode *vp = *vpp;
1690 struct vattr *vap;
1691 int v3 = NFS_ISV3(vp);
1692 enum vtype vtyp;
1693 u_short vmode;
1694 struct timespec mtime;
1695 struct timespec ctime;
1696 struct vnode *nvp;
1697 int32_t rdev;
1698 struct nfsnode *np;
1699 extern int (**spec_nfsv2nodeop_p) __P((void *));
1700 uid_t uid;
1701 gid_t gid;
1702
1703 if (v3) {
1704 vtyp = nfsv3tov_type(fp->fa_type);
1705 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1706 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1707 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1708 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1709 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1710 } else {
1711 vtyp = nfsv2tov_type(fp->fa_type);
1712 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1713 if (vtyp == VNON || vtyp == VREG)
1714 vtyp = IFTOVT(vmode);
1715 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1716 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1717 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1718 fp->fa2_ctime.nfsv2_sec);
1719 ctime.tv_nsec = 0;
1720
1721 /*
1722 * Really ugly NFSv2 kludge.
1723 */
1724 if (vtyp == VCHR && rdev == 0xffffffff)
1725 vtyp = VFIFO;
1726 }
1727
1728 vmode &= ALLPERMS;
1729
1730 /*
1731 * If v_type == VNON it is a new node, so fill in the v_type,
1732 * n_mtime fields. Check to see if it represents a special
1733 * device, and if so, check for a possible alias. Once the
1734 * correct vnode has been obtained, fill in the rest of the
1735 * information.
1736 */
1737 np = VTONFS(vp);
1738 if (vp->v_type == VNON) {
1739 vp->v_type = vtyp;
1740 if (vp->v_type == VFIFO) {
1741 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1742 vp->v_op = fifo_nfsv2nodeop_p;
1743 } else if (vp->v_type == VREG) {
1744 lockinit(&np->n_commitlock, PINOD, "nfsclock", 0, 0);
1745 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1746 vp->v_op = spec_nfsv2nodeop_p;
1747 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1748 if (nvp) {
1749 /*
1750 * Discard unneeded vnode, but save its nfsnode.
1751 * Since the nfsnode does not have a lock, its
1752 * vnode lock has to be carried over.
1753 */
1754 /*
1755 * XXX is the old node sure to be locked here?
1756 */
1757 KASSERT(lockstatus(&vp->v_lock) ==
1758 LK_EXCLUSIVE);
1759 nvp->v_data = vp->v_data;
1760 vp->v_data = NULL;
1761 VOP_UNLOCK(vp, 0);
1762 vp->v_op = spec_vnodeop_p;
1763 vrele(vp);
1764 vgone(vp);
1765 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1766 &nvp->v_interlock);
1767 /*
1768 * Reinitialize aliased node.
1769 */
1770 np->n_vnode = nvp;
1771 *vpp = vp = nvp;
1772 }
1773 }
1774 np->n_mtime = mtime;
1775 }
1776 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1777 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1778 vap = np->n_vattr;
1779
1780 /*
1781 * Invalidate access cache if uid, gid, mode or ctime changed.
1782 */
1783 if (np->n_accstamp != -1 &&
1784 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1785 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1786 np->n_accstamp = -1;
1787
1788 vap->va_type = vtyp;
1789 vap->va_mode = vmode;
1790 vap->va_rdev = (dev_t)rdev;
1791 vap->va_mtime = mtime;
1792 vap->va_ctime = ctime;
1793 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1794 switch (vtyp) {
1795 case VDIR:
1796 vap->va_blocksize = NFS_DIRFRAGSIZ;
1797 break;
1798 case VBLK:
1799 vap->va_blocksize = BLKDEV_IOSIZE;
1800 break;
1801 case VCHR:
1802 vap->va_blocksize = MAXBSIZE;
1803 break;
1804 default:
1805 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1806 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1807 break;
1808 }
1809 if (v3) {
1810 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1811 vap->va_uid = uid;
1812 vap->va_gid = gid;
1813 vap->va_size = fxdr_hyper(&fp->fa3_size);
1814 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1815 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1816 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1817 vap->va_flags = 0;
1818 vap->va_filerev = 0;
1819 } else {
1820 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1821 vap->va_uid = uid;
1822 vap->va_gid = gid;
1823 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1824 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1825 * NFS_FABLKSIZE;
1826 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1827 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1828 vap->va_flags = 0;
1829 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1830 vap->va_filerev = 0;
1831 }
1832 if (vap->va_size != np->n_size) {
1833 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1834 vap->va_size = np->n_size;
1835 } else {
1836 np->n_size = vap->va_size;
1837 if (vap->va_type == VREG) {
1838 /*
1839 * we can't free pages if NAC_NOTRUNC because
1840 * the pages can be owned by ourselves.
1841 */
1842 if (flags & NAC_NOTRUNC) {
1843 np->n_flag |= NTRUNCDELAYED;
1844 } else {
1845 simple_lock(&vp->v_interlock);
1846 (void)VOP_PUTPAGES(vp, 0,
1847 0, PGO_SYNCIO | PGO_CLEANIT |
1848 PGO_FREE | PGO_ALLPAGES);
1849 uvm_vnp_setsize(vp, np->n_size);
1850 }
1851 }
1852 }
1853 }
1854 np->n_attrstamp = mono_time.tv_sec;
1855 if (vaper != NULL) {
1856 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1857 if (np->n_flag & NCHG) {
1858 if (np->n_flag & NACC)
1859 vaper->va_atime = np->n_atim;
1860 if (np->n_flag & NUPD)
1861 vaper->va_mtime = np->n_mtim;
1862 }
1863 }
1864 return (0);
1865 }
1866
1867 /*
1868 * Check the time stamp
1869 * If the cache is valid, copy contents to *vap and return 0
1870 * otherwise return an error
1871 */
1872 int
1873 nfs_getattrcache(vp, vaper)
1874 struct vnode *vp;
1875 struct vattr *vaper;
1876 {
1877 struct nfsnode *np = VTONFS(vp);
1878 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1879 struct vattr *vap;
1880
1881 if (np->n_attrstamp == 0 ||
1882 (mono_time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(nmp, np)) {
1883 nfsstats.attrcache_misses++;
1884 return (ENOENT);
1885 }
1886 nfsstats.attrcache_hits++;
1887 vap = np->n_vattr;
1888 if (vap->va_size != np->n_size) {
1889 if (vap->va_type == VREG) {
1890 if (np->n_flag & NMODIFIED) {
1891 if (vap->va_size < np->n_size)
1892 vap->va_size = np->n_size;
1893 else
1894 np->n_size = vap->va_size;
1895 } else
1896 np->n_size = vap->va_size;
1897 uvm_vnp_setsize(vp, np->n_size);
1898 } else
1899 np->n_size = vap->va_size;
1900 }
1901 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1902 if (np->n_flag & NCHG) {
1903 if (np->n_flag & NACC)
1904 vaper->va_atime = np->n_atim;
1905 if (np->n_flag & NUPD)
1906 vaper->va_mtime = np->n_mtim;
1907 }
1908 return (0);
1909 }
1910
1911 void
1912 nfs_delayedtruncate(vp)
1913 struct vnode *vp;
1914 {
1915 struct nfsnode *np = VTONFS(vp);
1916
1917 if (np->n_flag & NTRUNCDELAYED) {
1918 np->n_flag &= ~NTRUNCDELAYED;
1919 simple_lock(&vp->v_interlock);
1920 (void)VOP_PUTPAGES(vp, 0,
1921 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1922 uvm_vnp_setsize(vp, np->n_size);
1923 }
1924 }
1925
1926 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1927 #define NFS_WCCKLUDGE(nmp, now) \
1928 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1929 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1930
1931 /*
1932 * nfs_check_wccdata: check inaccurate wcc_data
1933 *
1934 * => return non-zero if we shouldn't trust the wcc_data.
1935 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1936 */
1937
1938 int
1939 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1940 struct timespec *mtime, boolean_t docheck)
1941 {
1942 int error = 0;
1943
1944 #if !defined(NFS_V2_ONLY)
1945
1946 if (docheck) {
1947 struct vnode *vp = NFSTOV(np);
1948 struct nfsmount *nmp;
1949 long now = mono_time.tv_sec;
1950 #if defined(DEBUG)
1951 const char *reason = NULL; /* XXX: gcc */
1952 #endif
1953
1954 if (timespeccmp(&np->n_vattr->va_mtime, mtime, <=)) {
1955 #if defined(DEBUG)
1956 reason = "mtime";
1957 #endif
1958 error = EINVAL;
1959 }
1960
1961 if (vp->v_type == VDIR &&
1962 timespeccmp(&np->n_vattr->va_ctime, ctime, <=)) {
1963 #if defined(DEBUG)
1964 reason = "ctime";
1965 #endif
1966 error = EINVAL;
1967 }
1968
1969 nmp = VFSTONFS(vp->v_mount);
1970 if (error) {
1971
1972 /*
1973 * despite of the fact that we've updated the file,
1974 * timestamps of the file were not updated as we
1975 * expected.
1976 * it means that the server has incompatible
1977 * semantics of timestamps or (more likely)
1978 * the server time is not precise enough to
1979 * track each modifications.
1980 * in that case, we disable wcc processing.
1981 *
1982 * yes, strictly speaking, we should disable all
1983 * caching. it's a compromise.
1984 */
1985
1986 simple_lock(&nmp->nm_slock);
1987 #if defined(DEBUG)
1988 if (!NFS_WCCKLUDGE(nmp, now)) {
1989 printf("%s: inaccurate wcc data (%s) detected,"
1990 " disabling wcc\n",
1991 vp->v_mount->mnt_stat.f_mntfromname,
1992 reason);
1993 }
1994 #endif
1995 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1996 nmp->nm_wcckludgetime = now;
1997 simple_unlock(&nmp->nm_slock);
1998 } else if (NFS_WCCKLUDGE(nmp, now)) {
1999 error = EPERM; /* XXX */
2000 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
2001 simple_lock(&nmp->nm_slock);
2002 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
2003 #if defined(DEBUG)
2004 printf("%s: re-enabling wcc\n",
2005 vp->v_mount->mnt_stat.f_mntfromname);
2006 #endif
2007 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
2008 }
2009 simple_unlock(&nmp->nm_slock);
2010 }
2011 }
2012
2013 #endif /* !defined(NFS_V2_ONLY) */
2014
2015 return error;
2016 }
2017
2018 /*
2019 * Heuristic to see if the server XDR encodes directory cookies or not.
2020 * it is not supposed to, but a lot of servers may do this. Also, since
2021 * most/all servers will implement V2 as well, it is expected that they
2022 * may return just 32 bits worth of cookie information, so we need to
2023 * find out in which 32 bits this information is available. We do this
2024 * to avoid trouble with emulated binaries that can't handle 64 bit
2025 * directory offsets.
2026 */
2027
2028 void
2029 nfs_cookieheuristic(vp, flagp, l, cred)
2030 struct vnode *vp;
2031 int *flagp;
2032 struct lwp *l;
2033 struct ucred *cred;
2034 {
2035 struct uio auio;
2036 struct iovec aiov;
2037 caddr_t tbuf, cp;
2038 struct dirent *dp;
2039 off_t *cookies = NULL, *cop;
2040 int error, eof, nc, len;
2041
2042 MALLOC(tbuf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
2043
2044 aiov.iov_base = tbuf;
2045 aiov.iov_len = NFS_DIRFRAGSIZ;
2046 auio.uio_iov = &aiov;
2047 auio.uio_iovcnt = 1;
2048 auio.uio_rw = UIO_READ;
2049 auio.uio_segflg = UIO_SYSSPACE;
2050 auio.uio_lwp = NULL;
2051 auio.uio_resid = NFS_DIRFRAGSIZ;
2052 auio.uio_offset = 0;
2053
2054 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
2055
2056 len = NFS_DIRFRAGSIZ - auio.uio_resid;
2057 if (error || len == 0) {
2058 FREE(tbuf, M_TEMP);
2059 if (cookies)
2060 free(cookies, M_TEMP);
2061 return;
2062 }
2063
2064 /*
2065 * Find the first valid entry and look at its offset cookie.
2066 */
2067
2068 cp = tbuf;
2069 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2070 dp = (struct dirent *)cp;
2071 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2072 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2073 *flagp |= NFSMNT_SWAPCOOKIE;
2074 nfs_invaldircache(vp, 0);
2075 nfs_vinvalbuf(vp, 0, cred, l, 1);
2076 }
2077 break;
2078 }
2079 cop++;
2080 cp += dp->d_reclen;
2081 }
2082
2083 FREE(tbuf, M_TEMP);
2084 free(cookies, M_TEMP);
2085 }
2086 #endif /* NFS */
2087
2088 #ifdef NFSSERVER
2089 /*
2090 * Set up nameidata for a lookup() call and do it.
2091 *
2092 * If pubflag is set, this call is done for a lookup operation on the
2093 * public filehandle. In that case we allow crossing mountpoints and
2094 * absolute pathnames. However, the caller is expected to check that
2095 * the lookup result is within the public fs, and deny access if
2096 * it is not.
2097 */
2098 int
2099 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2100 struct nameidata *ndp;
2101 fhandle_t *fhp;
2102 uint32_t len;
2103 struct nfssvc_sock *slp;
2104 struct mbuf *nam;
2105 struct mbuf **mdp;
2106 caddr_t *dposp;
2107 struct vnode **retdirp;
2108 struct lwp *l;
2109 int kerbflag, pubflag;
2110 {
2111 int i, rem;
2112 struct mbuf *md;
2113 char *fromcp, *tocp, *cp;
2114 struct iovec aiov;
2115 struct uio auio;
2116 struct vnode *dp;
2117 int error, rdonly, linklen;
2118 struct componentname *cnp = &ndp->ni_cnd;
2119
2120 *retdirp = (struct vnode *)0;
2121
2122 if ((len + 1) > MAXPATHLEN)
2123 return (ENAMETOOLONG);
2124 if (len == 0)
2125 return (EACCES);
2126 cnp->cn_pnbuf = PNBUF_GET();
2127
2128 /*
2129 * Copy the name from the mbuf list to ndp->ni_pnbuf
2130 * and set the various ndp fields appropriately.
2131 */
2132 fromcp = *dposp;
2133 tocp = cnp->cn_pnbuf;
2134 md = *mdp;
2135 rem = mtod(md, caddr_t) + md->m_len - fromcp;
2136 for (i = 0; i < len; i++) {
2137 while (rem == 0) {
2138 md = md->m_next;
2139 if (md == NULL) {
2140 error = EBADRPC;
2141 goto out;
2142 }
2143 fromcp = mtod(md, caddr_t);
2144 rem = md->m_len;
2145 }
2146 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2147 error = EACCES;
2148 goto out;
2149 }
2150 *tocp++ = *fromcp++;
2151 rem--;
2152 }
2153 *tocp = '\0';
2154 *mdp = md;
2155 *dposp = fromcp;
2156 len = nfsm_rndup(len)-len;
2157 if (len > 0) {
2158 if (rem >= len)
2159 *dposp += len;
2160 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2161 goto out;
2162 }
2163
2164 /*
2165 * Extract and set starting directory.
2166 */
2167 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
2168 nam, &rdonly, kerbflag, pubflag);
2169 if (error)
2170 goto out;
2171 if (dp->v_type != VDIR) {
2172 vrele(dp);
2173 error = ENOTDIR;
2174 goto out;
2175 }
2176
2177 if (rdonly)
2178 cnp->cn_flags |= RDONLY;
2179
2180 *retdirp = dp;
2181
2182 if (pubflag) {
2183 /*
2184 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2185 * and the 'native path' indicator.
2186 */
2187 cp = PNBUF_GET();
2188 fromcp = cnp->cn_pnbuf;
2189 tocp = cp;
2190 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2191 switch ((unsigned char)*fromcp) {
2192 case WEBNFS_NATIVE_CHAR:
2193 /*
2194 * 'Native' path for us is the same
2195 * as a path according to the NFS spec,
2196 * just skip the escape char.
2197 */
2198 fromcp++;
2199 break;
2200 /*
2201 * More may be added in the future, range 0x80-0xff
2202 */
2203 default:
2204 error = EIO;
2205 PNBUF_PUT(cp);
2206 goto out;
2207 }
2208 }
2209 /*
2210 * Translate the '%' escapes, URL-style.
2211 */
2212 while (*fromcp != '\0') {
2213 if (*fromcp == WEBNFS_ESC_CHAR) {
2214 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2215 fromcp++;
2216 *tocp++ = HEXSTRTOI(fromcp);
2217 fromcp += 2;
2218 continue;
2219 } else {
2220 error = ENOENT;
2221 PNBUF_PUT(cp);
2222 goto out;
2223 }
2224 } else
2225 *tocp++ = *fromcp++;
2226 }
2227 *tocp = '\0';
2228 PNBUF_PUT(cnp->cn_pnbuf);
2229 cnp->cn_pnbuf = cp;
2230 }
2231
2232 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2233 ndp->ni_segflg = UIO_SYSSPACE;
2234 ndp->ni_rootdir = rootvnode;
2235
2236 if (pubflag) {
2237 ndp->ni_loopcnt = 0;
2238 if (cnp->cn_pnbuf[0] == '/')
2239 dp = rootvnode;
2240 } else {
2241 cnp->cn_flags |= NOCROSSMOUNT;
2242 }
2243
2244 cnp->cn_lwp = l;
2245 VREF(dp);
2246
2247 for (;;) {
2248 cnp->cn_nameptr = cnp->cn_pnbuf;
2249 ndp->ni_startdir = dp;
2250 /*
2251 * And call lookup() to do the real work
2252 */
2253 error = lookup(ndp);
2254 if (error) {
2255 PNBUF_PUT(cnp->cn_pnbuf);
2256 return (error);
2257 }
2258 /*
2259 * Check for encountering a symbolic link
2260 */
2261 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2262 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2263 cnp->cn_flags |= HASBUF;
2264 else
2265 PNBUF_PUT(cnp->cn_pnbuf);
2266 return (0);
2267 } else {
2268 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
2269 VOP_UNLOCK(ndp->ni_dvp, 0);
2270 if (!pubflag) {
2271 error = EINVAL;
2272 break;
2273 }
2274
2275 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2276 error = ELOOP;
2277 break;
2278 }
2279 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2280 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2281 cnp->cn_lwp);
2282 if (error != 0)
2283 break;
2284 }
2285 if (ndp->ni_pathlen > 1)
2286 cp = PNBUF_GET();
2287 else
2288 cp = cnp->cn_pnbuf;
2289 aiov.iov_base = cp;
2290 aiov.iov_len = MAXPATHLEN;
2291 auio.uio_iov = &aiov;
2292 auio.uio_iovcnt = 1;
2293 auio.uio_offset = 0;
2294 auio.uio_rw = UIO_READ;
2295 auio.uio_segflg = UIO_SYSSPACE;
2296 auio.uio_lwp = NULL;
2297 auio.uio_resid = MAXPATHLEN;
2298 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2299 if (error) {
2300 badlink:
2301 if (ndp->ni_pathlen > 1)
2302 PNBUF_PUT(cp);
2303 break;
2304 }
2305 linklen = MAXPATHLEN - auio.uio_resid;
2306 if (linklen == 0) {
2307 error = ENOENT;
2308 goto badlink;
2309 }
2310 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2311 error = ENAMETOOLONG;
2312 goto badlink;
2313 }
2314 if (ndp->ni_pathlen > 1) {
2315 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2316 PNBUF_PUT(cnp->cn_pnbuf);
2317 cnp->cn_pnbuf = cp;
2318 } else
2319 cnp->cn_pnbuf[linklen] = '\0';
2320 ndp->ni_pathlen += linklen;
2321 vput(ndp->ni_vp);
2322 dp = ndp->ni_dvp;
2323 /*
2324 * Check if root directory should replace current directory.
2325 */
2326 if (cnp->cn_pnbuf[0] == '/') {
2327 vrele(dp);
2328 dp = ndp->ni_rootdir;
2329 VREF(dp);
2330 }
2331 }
2332 }
2333 vrele(ndp->ni_dvp);
2334 vput(ndp->ni_vp);
2335 ndp->ni_vp = NULL;
2336 out:
2337 PNBUF_PUT(cnp->cn_pnbuf);
2338 return (error);
2339 }
2340 #endif /* NFSSERVER */
2341
2342 /*
2343 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2344 * boundary and only trims off the back end
2345 *
2346 * 1. trim off 'len' bytes as m_adj(mp, -len).
2347 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2348 */
2349 void
2350 nfs_zeropad(mp, len, nul)
2351 struct mbuf *mp;
2352 int len;
2353 int nul;
2354 {
2355 struct mbuf *m;
2356 int count;
2357
2358 /*
2359 * Trim from tail. Scan the mbuf chain,
2360 * calculating its length and finding the last mbuf.
2361 * If the adjustment only affects this mbuf, then just
2362 * adjust and return. Otherwise, rescan and truncate
2363 * after the remaining size.
2364 */
2365 count = 0;
2366 m = mp;
2367 for (;;) {
2368 count += m->m_len;
2369 if (m->m_next == NULL)
2370 break;
2371 m = m->m_next;
2372 }
2373
2374 KDASSERT(count >= len);
2375
2376 if (m->m_len >= len) {
2377 m->m_len -= len;
2378 } else {
2379 count -= len;
2380 /*
2381 * Correct length for chain is "count".
2382 * Find the mbuf with last data, adjust its length,
2383 * and toss data from remaining mbufs on chain.
2384 */
2385 for (m = mp; m; m = m->m_next) {
2386 if (m->m_len >= count) {
2387 m->m_len = count;
2388 break;
2389 }
2390 count -= m->m_len;
2391 }
2392 m_freem(m->m_next);
2393 m->m_next = NULL;
2394 }
2395
2396 KDASSERT(m->m_next == NULL);
2397
2398 /*
2399 * zero-padding.
2400 */
2401 if (nul > 0) {
2402 char *cp;
2403 int i;
2404
2405 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2406 struct mbuf *n;
2407
2408 KDASSERT(MLEN >= nul);
2409 n = m_get(M_WAIT, MT_DATA);
2410 MCLAIM(n, &nfs_mowner);
2411 n->m_len = nul;
2412 n->m_next = NULL;
2413 m->m_next = n;
2414 cp = mtod(n, caddr_t);
2415 } else {
2416 cp = mtod(m, caddr_t) + m->m_len;
2417 m->m_len += nul;
2418 }
2419 for (i = 0; i < nul; i++)
2420 *cp++ = '\0';
2421 }
2422 return;
2423 }
2424
2425 /*
2426 * Make these functions instead of macros, so that the kernel text size
2427 * doesn't get too big...
2428 */
2429 void
2430 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2431 struct nfsrv_descript *nfsd;
2432 int before_ret;
2433 struct vattr *before_vap;
2434 int after_ret;
2435 struct vattr *after_vap;
2436 struct mbuf **mbp;
2437 char **bposp;
2438 {
2439 struct mbuf *mb = *mbp;
2440 char *bpos = *bposp;
2441 u_int32_t *tl;
2442
2443 if (before_ret) {
2444 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2445 *tl = nfs_false;
2446 } else {
2447 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2448 *tl++ = nfs_true;
2449 txdr_hyper(before_vap->va_size, tl);
2450 tl += 2;
2451 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2452 tl += 2;
2453 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2454 }
2455 *bposp = bpos;
2456 *mbp = mb;
2457 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2458 }
2459
2460 void
2461 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2462 struct nfsrv_descript *nfsd;
2463 int after_ret;
2464 struct vattr *after_vap;
2465 struct mbuf **mbp;
2466 char **bposp;
2467 {
2468 struct mbuf *mb = *mbp;
2469 char *bpos = *bposp;
2470 u_int32_t *tl;
2471 struct nfs_fattr *fp;
2472
2473 if (after_ret) {
2474 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2475 *tl = nfs_false;
2476 } else {
2477 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2478 *tl++ = nfs_true;
2479 fp = (struct nfs_fattr *)tl;
2480 nfsm_srvfattr(nfsd, after_vap, fp);
2481 }
2482 *mbp = mb;
2483 *bposp = bpos;
2484 }
2485
2486 void
2487 nfsm_srvfattr(nfsd, vap, fp)
2488 struct nfsrv_descript *nfsd;
2489 struct vattr *vap;
2490 struct nfs_fattr *fp;
2491 {
2492
2493 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2494 fp->fa_uid = txdr_unsigned(vap->va_uid);
2495 fp->fa_gid = txdr_unsigned(vap->va_gid);
2496 if (nfsd->nd_flag & ND_NFSV3) {
2497 fp->fa_type = vtonfsv3_type(vap->va_type);
2498 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2499 txdr_hyper(vap->va_size, &fp->fa3_size);
2500 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2501 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2502 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2503 fp->fa3_fsid.nfsuquad[0] = 0;
2504 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2505 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2506 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2507 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2508 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2509 } else {
2510 fp->fa_type = vtonfsv2_type(vap->va_type);
2511 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2512 fp->fa2_size = txdr_unsigned(vap->va_size);
2513 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2514 if (vap->va_type == VFIFO)
2515 fp->fa2_rdev = 0xffffffff;
2516 else
2517 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2518 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2519 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2520 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2521 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2522 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2523 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2524 }
2525 }
2526
2527 #ifdef NFSSERVER
2528 /*
2529 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2530 * - look up fsid in mount list (if not found ret error)
2531 * - get vp and export rights by calling VFS_FHTOVP()
2532 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2533 * - if not lockflag unlock it with VOP_UNLOCK()
2534 */
2535 int
2536 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2537 fhandle_t *fhp;
2538 int lockflag;
2539 struct vnode **vpp;
2540 struct ucred *cred;
2541 struct nfssvc_sock *slp;
2542 struct mbuf *nam;
2543 int *rdonlyp;
2544 int kerbflag;
2545 {
2546 struct mount *mp;
2547 int i;
2548 struct ucred *credanon;
2549 int error, exflags;
2550 struct sockaddr_in *saddr;
2551
2552 *vpp = (struct vnode *)0;
2553
2554 if (nfs_ispublicfh(fhp)) {
2555 if (!pubflag || !nfs_pub.np_valid)
2556 return (ESTALE);
2557 fhp = &nfs_pub.np_handle;
2558 }
2559
2560 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2561 if (error) {
2562 return error;
2563 }
2564
2565 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2566 if (error)
2567 return (error);
2568
2569 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2570 saddr = mtod(nam, struct sockaddr_in *);
2571 if ((saddr->sin_family == AF_INET) &&
2572 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2573 vput(*vpp);
2574 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2575 }
2576 #ifdef INET6
2577 if ((saddr->sin_family == AF_INET6) &&
2578 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2579 vput(*vpp);
2580 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2581 }
2582 #endif
2583 }
2584 /*
2585 * Check/setup credentials.
2586 */
2587 if (exflags & MNT_EXKERB) {
2588 if (!kerbflag) {
2589 vput(*vpp);
2590 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2591 }
2592 } else if (kerbflag) {
2593 vput(*vpp);
2594 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2595 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2596 cred->cr_uid = credanon->cr_uid;
2597 cred->cr_gid = credanon->cr_gid;
2598 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2599 cred->cr_groups[i] = credanon->cr_groups[i];
2600 cred->cr_ngroups = i;
2601 }
2602 if (exflags & MNT_EXRDONLY)
2603 *rdonlyp = 1;
2604 else
2605 *rdonlyp = 0;
2606 if (!lockflag)
2607 VOP_UNLOCK(*vpp, 0);
2608 return (0);
2609 }
2610
2611 /*
2612 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2613 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2614 * transformed this to all zeroes in both cases, so check for it.
2615 */
2616 int
2617 nfs_ispublicfh(fhp)
2618 fhandle_t *fhp;
2619 {
2620 char *cp = (char *)fhp;
2621 int i;
2622
2623 for (i = 0; i < NFSX_V3FH; i++)
2624 if (*cp++ != 0)
2625 return (FALSE);
2626 return (TRUE);
2627 }
2628 #endif /* NFSSERVER */
2629
2630 /*
2631 * This function compares two net addresses by family and returns TRUE
2632 * if they are the same host.
2633 * If there is any doubt, return FALSE.
2634 * The AF_INET family is handled as a special case so that address mbufs
2635 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2636 */
2637 int
2638 netaddr_match(family, haddr, nam)
2639 int family;
2640 union nethostaddr *haddr;
2641 struct mbuf *nam;
2642 {
2643 struct sockaddr_in *inetaddr;
2644
2645 switch (family) {
2646 case AF_INET:
2647 inetaddr = mtod(nam, struct sockaddr_in *);
2648 if (inetaddr->sin_family == AF_INET &&
2649 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2650 return (1);
2651 break;
2652 #ifdef INET6
2653 case AF_INET6:
2654 {
2655 struct sockaddr_in6 *sin6_1, *sin6_2;
2656
2657 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2658 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2659 if (sin6_1->sin6_family == AF_INET6 &&
2660 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2661 return 1;
2662 }
2663 #endif
2664 #ifdef ISO
2665 case AF_ISO:
2666 {
2667 struct sockaddr_iso *isoaddr1, *isoaddr2;
2668
2669 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2670 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2671 if (isoaddr1->siso_family == AF_ISO &&
2672 isoaddr1->siso_nlen > 0 &&
2673 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2674 SAME_ISOADDR(isoaddr1, isoaddr2))
2675 return (1);
2676 break;
2677 }
2678 #endif /* ISO */
2679 default:
2680 break;
2681 };
2682 return (0);
2683 }
2684
2685 /*
2686 * The write verifier has changed (probably due to a server reboot), so all
2687 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2688 * as dirty or are being written out just now, all this takes is clearing
2689 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2690 * the mount point.
2691 */
2692 void
2693 nfs_clearcommit(mp)
2694 struct mount *mp;
2695 {
2696 struct vnode *vp;
2697 struct nfsnode *np;
2698 struct vm_page *pg;
2699 struct nfsmount *nmp = VFSTONFS(mp);
2700
2701 lockmgr(&nmp->nm_writeverflock, LK_EXCLUSIVE, NULL);
2702
2703 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2704 KASSERT(vp->v_mount == mp);
2705 if (vp->v_type != VREG)
2706 continue;
2707 np = VTONFS(vp);
2708 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2709 np->n_pushedhi = 0;
2710 np->n_commitflags &=
2711 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2712 simple_lock(&vp->v_uobj.vmobjlock);
2713 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2714 pg->flags &= ~PG_NEEDCOMMIT;
2715 }
2716 simple_unlock(&vp->v_uobj.vmobjlock);
2717 }
2718 simple_lock(&nmp->nm_slock);
2719 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2720 simple_unlock(&nmp->nm_slock);
2721 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
2722 }
2723
2724 void
2725 nfs_merge_commit_ranges(vp)
2726 struct vnode *vp;
2727 {
2728 struct nfsnode *np = VTONFS(vp);
2729
2730 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2731
2732 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2733 np->n_pushedlo = np->n_pushlo;
2734 np->n_pushedhi = np->n_pushhi;
2735 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2736 } else {
2737 if (np->n_pushlo < np->n_pushedlo)
2738 np->n_pushedlo = np->n_pushlo;
2739 if (np->n_pushhi > np->n_pushedhi)
2740 np->n_pushedhi = np->n_pushhi;
2741 }
2742
2743 np->n_pushlo = np->n_pushhi = 0;
2744 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2745
2746 #ifdef NFS_DEBUG_COMMIT
2747 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2748 (unsigned)np->n_pushedhi);
2749 #endif
2750 }
2751
2752 int
2753 nfs_in_committed_range(vp, off, len)
2754 struct vnode *vp;
2755 off_t off, len;
2756 {
2757 struct nfsnode *np = VTONFS(vp);
2758 off_t lo, hi;
2759
2760 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2761 return 0;
2762 lo = off;
2763 hi = lo + len;
2764
2765 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2766 }
2767
2768 int
2769 nfs_in_tobecommitted_range(vp, off, len)
2770 struct vnode *vp;
2771 off_t off, len;
2772 {
2773 struct nfsnode *np = VTONFS(vp);
2774 off_t lo, hi;
2775
2776 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2777 return 0;
2778 lo = off;
2779 hi = lo + len;
2780
2781 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2782 }
2783
2784 void
2785 nfs_add_committed_range(vp, off, len)
2786 struct vnode *vp;
2787 off_t off, len;
2788 {
2789 struct nfsnode *np = VTONFS(vp);
2790 off_t lo, hi;
2791
2792 lo = off;
2793 hi = lo + len;
2794
2795 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2796 np->n_pushedlo = lo;
2797 np->n_pushedhi = hi;
2798 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2799 } else {
2800 if (hi > np->n_pushedhi)
2801 np->n_pushedhi = hi;
2802 if (lo < np->n_pushedlo)
2803 np->n_pushedlo = lo;
2804 }
2805 #ifdef NFS_DEBUG_COMMIT
2806 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2807 (unsigned)np->n_pushedhi);
2808 #endif
2809 }
2810
2811 void
2812 nfs_del_committed_range(vp, off, len)
2813 struct vnode *vp;
2814 off_t off, len;
2815 {
2816 struct nfsnode *np = VTONFS(vp);
2817 off_t lo, hi;
2818
2819 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2820 return;
2821
2822 lo = off;
2823 hi = lo + len;
2824
2825 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2826 return;
2827 if (lo <= np->n_pushedlo)
2828 np->n_pushedlo = hi;
2829 else if (hi >= np->n_pushedhi)
2830 np->n_pushedhi = lo;
2831 else {
2832 /*
2833 * XXX There's only one range. If the deleted range
2834 * is in the middle, pick the largest of the
2835 * contiguous ranges that it leaves.
2836 */
2837 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2838 np->n_pushedhi = lo;
2839 else
2840 np->n_pushedlo = hi;
2841 }
2842 #ifdef NFS_DEBUG_COMMIT
2843 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2844 (unsigned)np->n_pushedhi);
2845 #endif
2846 }
2847
2848 void
2849 nfs_add_tobecommitted_range(vp, off, len)
2850 struct vnode *vp;
2851 off_t off, len;
2852 {
2853 struct nfsnode *np = VTONFS(vp);
2854 off_t lo, hi;
2855
2856 lo = off;
2857 hi = lo + len;
2858
2859 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2860 np->n_pushlo = lo;
2861 np->n_pushhi = hi;
2862 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2863 } else {
2864 if (lo < np->n_pushlo)
2865 np->n_pushlo = lo;
2866 if (hi > np->n_pushhi)
2867 np->n_pushhi = hi;
2868 }
2869 #ifdef NFS_DEBUG_COMMIT
2870 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2871 (unsigned)np->n_pushhi);
2872 #endif
2873 }
2874
2875 void
2876 nfs_del_tobecommitted_range(vp, off, len)
2877 struct vnode *vp;
2878 off_t off, len;
2879 {
2880 struct nfsnode *np = VTONFS(vp);
2881 off_t lo, hi;
2882
2883 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2884 return;
2885
2886 lo = off;
2887 hi = lo + len;
2888
2889 if (lo > np->n_pushhi || hi < np->n_pushlo)
2890 return;
2891
2892 if (lo <= np->n_pushlo)
2893 np->n_pushlo = hi;
2894 else if (hi >= np->n_pushhi)
2895 np->n_pushhi = lo;
2896 else {
2897 /*
2898 * XXX There's only one range. If the deleted range
2899 * is in the middle, pick the largest of the
2900 * contiguous ranges that it leaves.
2901 */
2902 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2903 np->n_pushhi = lo;
2904 else
2905 np->n_pushlo = hi;
2906 }
2907 #ifdef NFS_DEBUG_COMMIT
2908 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2909 (unsigned)np->n_pushhi);
2910 #endif
2911 }
2912
2913 /*
2914 * Map errnos to NFS error numbers. For Version 3 also filter out error
2915 * numbers not specified for the associated procedure.
2916 */
2917 int
2918 nfsrv_errmap(nd, err)
2919 struct nfsrv_descript *nd;
2920 int err;
2921 {
2922 const short *defaulterrp, *errp;
2923
2924 if (nd->nd_flag & ND_NFSV3) {
2925 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2926 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2927 while (*++errp) {
2928 if (*errp == err)
2929 return (err);
2930 else if (*errp > err)
2931 break;
2932 }
2933 return ((int)*defaulterrp);
2934 } else
2935 return (err & 0xffff);
2936 }
2937 if (err <= ELAST)
2938 return ((int)nfsrv_v2errmap[err - 1]);
2939 return (NFSERR_IO);
2940 }
2941
2942 /*
2943 * Sort the group list in increasing numerical order.
2944 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2945 * that used to be here.)
2946 */
2947 void
2948 nfsrvw_sort(list, num)
2949 gid_t *list;
2950 int num;
2951 {
2952 int i, j;
2953 gid_t v;
2954
2955 /* Insertion sort. */
2956 for (i = 1; i < num; i++) {
2957 v = list[i];
2958 /* find correct slot for value v, moving others up */
2959 for (j = i; --j >= 0 && v < list[j];)
2960 list[j + 1] = list[j];
2961 list[j + 1] = v;
2962 }
2963 }
2964
2965 /*
2966 * copy credentials making sure that the result can be compared with memcmp().
2967 */
2968 void
2969 nfsrv_setcred(incred, outcred)
2970 struct ucred *incred, *outcred;
2971 {
2972 int i;
2973
2974 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2975 outcred->cr_ref = 1;
2976 outcred->cr_uid = incred->cr_uid;
2977 outcred->cr_gid = incred->cr_gid;
2978 outcred->cr_ngroups = incred->cr_ngroups;
2979 for (i = 0; i < incred->cr_ngroups; i++)
2980 outcred->cr_groups[i] = incred->cr_groups[i];
2981 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2982 }
2983
2984 u_int32_t
2985 nfs_getxid()
2986 {
2987 static u_int32_t base;
2988 static u_int32_t nfs_xid = 0;
2989 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2990 u_int32_t newxid;
2991
2992 simple_lock(&nfs_xidlock);
2993 /*
2994 * derive initial xid from system time
2995 * XXX time is invalid if root not yet mounted
2996 */
2997 if (__predict_false(!base && (rootvp))) {
2998 struct timeval tv;
2999
3000 microtime(&tv);
3001 base = tv.tv_sec << 12;
3002 nfs_xid = base;
3003 }
3004
3005 /*
3006 * Skip zero xid if it should ever happen.
3007 */
3008 if (__predict_false(++nfs_xid == 0))
3009 nfs_xid++;
3010 newxid = nfs_xid;
3011 simple_unlock(&nfs_xidlock);
3012
3013 return txdr_unsigned(newxid);
3014 }
3015
3016 /*
3017 * assign a new xid for existing request.
3018 * used for NFSERR_JUKEBOX handling.
3019 */
3020 void
3021 nfs_renewxid(struct nfsreq *req)
3022 {
3023 u_int32_t xid;
3024 int off;
3025
3026 xid = nfs_getxid();
3027 if (req->r_nmp->nm_sotype == SOCK_STREAM)
3028 off = sizeof(u_int32_t); /* RPC record mark */
3029 else
3030 off = 0;
3031
3032 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
3033 req->r_xid = xid;
3034 }
3035