nfs_subs.c revision 1.158 1 /* $NetBSD: nfs_subs.c,v 1.158 2006/03/01 12:38:32 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.158 2006/03/01 12:38:32 yamt Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 #include <sys/once.h>
101
102 #include <uvm/uvm_extern.h>
103
104 #include <nfs/rpcv2.h>
105 #include <nfs/nfsproto.h>
106 #include <nfs/nfsnode.h>
107 #include <nfs/nfs.h>
108 #include <nfs/xdr_subs.h>
109 #include <nfs/nfsm_subs.h>
110 #include <nfs/nfsmount.h>
111 #include <nfs/nqnfs.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114
115 #include <miscfs/specfs/specdev.h>
116
117 #include <netinet/in.h>
118 #ifdef ISO
119 #include <netiso/iso.h>
120 #endif
121
122 /*
123 * Data items converted to xdr at startup, since they are constant
124 * This is kinda hokey, but may save a little time doing byte swaps
125 */
126 u_int32_t nfs_xdrneg1;
127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
128 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
129 rpc_auth_kerb;
130 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
131
132 /* And other global data */
133 const nfstype nfsv2_type[9] =
134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142 int nfs_commitsize;
143
144 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
145
146 /* NFS client/server stats. */
147 struct nfsstats nfsstats;
148
149 /*
150 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
151 */
152 const int nfsv3_procid[NFS_NPROCS] = {
153 NFSPROC_NULL,
154 NFSPROC_GETATTR,
155 NFSPROC_SETATTR,
156 NFSPROC_NOOP,
157 NFSPROC_LOOKUP,
158 NFSPROC_READLINK,
159 NFSPROC_READ,
160 NFSPROC_NOOP,
161 NFSPROC_WRITE,
162 NFSPROC_CREATE,
163 NFSPROC_REMOVE,
164 NFSPROC_RENAME,
165 NFSPROC_LINK,
166 NFSPROC_SYMLINK,
167 NFSPROC_MKDIR,
168 NFSPROC_RMDIR,
169 NFSPROC_READDIR,
170 NFSPROC_FSSTAT,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP,
177 NFSPROC_NOOP,
178 NFSPROC_NOOP
179 };
180
181 /*
182 * and the reverse mapping from generic to Version 2 procedure numbers
183 */
184 const int nfsv2_procid[NFS_NPROCS] = {
185 NFSV2PROC_NULL,
186 NFSV2PROC_GETATTR,
187 NFSV2PROC_SETATTR,
188 NFSV2PROC_LOOKUP,
189 NFSV2PROC_NOOP,
190 NFSV2PROC_READLINK,
191 NFSV2PROC_READ,
192 NFSV2PROC_WRITE,
193 NFSV2PROC_CREATE,
194 NFSV2PROC_MKDIR,
195 NFSV2PROC_SYMLINK,
196 NFSV2PROC_CREATE,
197 NFSV2PROC_REMOVE,
198 NFSV2PROC_RMDIR,
199 NFSV2PROC_RENAME,
200 NFSV2PROC_LINK,
201 NFSV2PROC_READDIR,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_STATFS,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_NOOP,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 NFSV2PROC_NOOP,
209 NFSV2PROC_NOOP,
210 NFSV2PROC_NOOP,
211 };
212
213 /*
214 * Maps errno values to nfs error numbers.
215 * Use NFSERR_IO as the catch all for ones not specifically defined in
216 * RFC 1094.
217 */
218 static const u_char nfsrv_v2errmap[ELAST] = {
219 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
223 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
231 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
232 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
233 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
234 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
235 NFSERR_IO, NFSERR_IO,
236 };
237
238 /*
239 * Maps errno values to nfs error numbers.
240 * Although it is not obvious whether or not NFS clients really care if
241 * a returned error value is in the specified list for the procedure, the
242 * safest thing to do is filter them appropriately. For Version 2, the
243 * X/Open XNFS document is the only specification that defines error values
244 * for each RPC (The RFC simply lists all possible error values for all RPCs),
245 * so I have decided to not do this for Version 2.
246 * The first entry is the default error return and the rest are the valid
247 * errors for that RPC in increasing numeric order.
248 */
249 static const short nfsv3err_null[] = {
250 0,
251 0,
252 };
253
254 static const short nfsv3err_getattr[] = {
255 NFSERR_IO,
256 NFSERR_IO,
257 NFSERR_STALE,
258 NFSERR_BADHANDLE,
259 NFSERR_SERVERFAULT,
260 0,
261 };
262
263 static const short nfsv3err_setattr[] = {
264 NFSERR_IO,
265 NFSERR_PERM,
266 NFSERR_IO,
267 NFSERR_ACCES,
268 NFSERR_INVAL,
269 NFSERR_NOSPC,
270 NFSERR_ROFS,
271 NFSERR_DQUOT,
272 NFSERR_STALE,
273 NFSERR_BADHANDLE,
274 NFSERR_NOT_SYNC,
275 NFSERR_SERVERFAULT,
276 0,
277 };
278
279 static const short nfsv3err_lookup[] = {
280 NFSERR_IO,
281 NFSERR_NOENT,
282 NFSERR_IO,
283 NFSERR_ACCES,
284 NFSERR_NOTDIR,
285 NFSERR_NAMETOL,
286 NFSERR_STALE,
287 NFSERR_BADHANDLE,
288 NFSERR_SERVERFAULT,
289 0,
290 };
291
292 static const short nfsv3err_access[] = {
293 NFSERR_IO,
294 NFSERR_IO,
295 NFSERR_STALE,
296 NFSERR_BADHANDLE,
297 NFSERR_SERVERFAULT,
298 0,
299 };
300
301 static const short nfsv3err_readlink[] = {
302 NFSERR_IO,
303 NFSERR_IO,
304 NFSERR_ACCES,
305 NFSERR_INVAL,
306 NFSERR_STALE,
307 NFSERR_BADHANDLE,
308 NFSERR_NOTSUPP,
309 NFSERR_SERVERFAULT,
310 0,
311 };
312
313 static const short nfsv3err_read[] = {
314 NFSERR_IO,
315 NFSERR_IO,
316 NFSERR_NXIO,
317 NFSERR_ACCES,
318 NFSERR_INVAL,
319 NFSERR_STALE,
320 NFSERR_BADHANDLE,
321 NFSERR_SERVERFAULT,
322 NFSERR_JUKEBOX,
323 0,
324 };
325
326 static const short nfsv3err_write[] = {
327 NFSERR_IO,
328 NFSERR_IO,
329 NFSERR_ACCES,
330 NFSERR_INVAL,
331 NFSERR_FBIG,
332 NFSERR_NOSPC,
333 NFSERR_ROFS,
334 NFSERR_DQUOT,
335 NFSERR_STALE,
336 NFSERR_BADHANDLE,
337 NFSERR_SERVERFAULT,
338 NFSERR_JUKEBOX,
339 0,
340 };
341
342 static const short nfsv3err_create[] = {
343 NFSERR_IO,
344 NFSERR_IO,
345 NFSERR_ACCES,
346 NFSERR_EXIST,
347 NFSERR_NOTDIR,
348 NFSERR_NOSPC,
349 NFSERR_ROFS,
350 NFSERR_NAMETOL,
351 NFSERR_DQUOT,
352 NFSERR_STALE,
353 NFSERR_BADHANDLE,
354 NFSERR_NOTSUPP,
355 NFSERR_SERVERFAULT,
356 0,
357 };
358
359 static const short nfsv3err_mkdir[] = {
360 NFSERR_IO,
361 NFSERR_IO,
362 NFSERR_ACCES,
363 NFSERR_EXIST,
364 NFSERR_NOTDIR,
365 NFSERR_NOSPC,
366 NFSERR_ROFS,
367 NFSERR_NAMETOL,
368 NFSERR_DQUOT,
369 NFSERR_STALE,
370 NFSERR_BADHANDLE,
371 NFSERR_NOTSUPP,
372 NFSERR_SERVERFAULT,
373 0,
374 };
375
376 static const short nfsv3err_symlink[] = {
377 NFSERR_IO,
378 NFSERR_IO,
379 NFSERR_ACCES,
380 NFSERR_EXIST,
381 NFSERR_NOTDIR,
382 NFSERR_NOSPC,
383 NFSERR_ROFS,
384 NFSERR_NAMETOL,
385 NFSERR_DQUOT,
386 NFSERR_STALE,
387 NFSERR_BADHANDLE,
388 NFSERR_NOTSUPP,
389 NFSERR_SERVERFAULT,
390 0,
391 };
392
393 static const short nfsv3err_mknod[] = {
394 NFSERR_IO,
395 NFSERR_IO,
396 NFSERR_ACCES,
397 NFSERR_EXIST,
398 NFSERR_NOTDIR,
399 NFSERR_NOSPC,
400 NFSERR_ROFS,
401 NFSERR_NAMETOL,
402 NFSERR_DQUOT,
403 NFSERR_STALE,
404 NFSERR_BADHANDLE,
405 NFSERR_NOTSUPP,
406 NFSERR_SERVERFAULT,
407 NFSERR_BADTYPE,
408 0,
409 };
410
411 static const short nfsv3err_remove[] = {
412 NFSERR_IO,
413 NFSERR_NOENT,
414 NFSERR_IO,
415 NFSERR_ACCES,
416 NFSERR_NOTDIR,
417 NFSERR_ROFS,
418 NFSERR_NAMETOL,
419 NFSERR_STALE,
420 NFSERR_BADHANDLE,
421 NFSERR_SERVERFAULT,
422 0,
423 };
424
425 static const short nfsv3err_rmdir[] = {
426 NFSERR_IO,
427 NFSERR_NOENT,
428 NFSERR_IO,
429 NFSERR_ACCES,
430 NFSERR_EXIST,
431 NFSERR_NOTDIR,
432 NFSERR_INVAL,
433 NFSERR_ROFS,
434 NFSERR_NAMETOL,
435 NFSERR_NOTEMPTY,
436 NFSERR_STALE,
437 NFSERR_BADHANDLE,
438 NFSERR_NOTSUPP,
439 NFSERR_SERVERFAULT,
440 0,
441 };
442
443 static const short nfsv3err_rename[] = {
444 NFSERR_IO,
445 NFSERR_NOENT,
446 NFSERR_IO,
447 NFSERR_ACCES,
448 NFSERR_EXIST,
449 NFSERR_XDEV,
450 NFSERR_NOTDIR,
451 NFSERR_ISDIR,
452 NFSERR_INVAL,
453 NFSERR_NOSPC,
454 NFSERR_ROFS,
455 NFSERR_MLINK,
456 NFSERR_NAMETOL,
457 NFSERR_NOTEMPTY,
458 NFSERR_DQUOT,
459 NFSERR_STALE,
460 NFSERR_BADHANDLE,
461 NFSERR_NOTSUPP,
462 NFSERR_SERVERFAULT,
463 0,
464 };
465
466 static const short nfsv3err_link[] = {
467 NFSERR_IO,
468 NFSERR_IO,
469 NFSERR_ACCES,
470 NFSERR_EXIST,
471 NFSERR_XDEV,
472 NFSERR_NOTDIR,
473 NFSERR_INVAL,
474 NFSERR_NOSPC,
475 NFSERR_ROFS,
476 NFSERR_MLINK,
477 NFSERR_NAMETOL,
478 NFSERR_DQUOT,
479 NFSERR_STALE,
480 NFSERR_BADHANDLE,
481 NFSERR_NOTSUPP,
482 NFSERR_SERVERFAULT,
483 0,
484 };
485
486 static const short nfsv3err_readdir[] = {
487 NFSERR_IO,
488 NFSERR_IO,
489 NFSERR_ACCES,
490 NFSERR_NOTDIR,
491 NFSERR_STALE,
492 NFSERR_BADHANDLE,
493 NFSERR_BAD_COOKIE,
494 NFSERR_TOOSMALL,
495 NFSERR_SERVERFAULT,
496 0,
497 };
498
499 static const short nfsv3err_readdirplus[] = {
500 NFSERR_IO,
501 NFSERR_IO,
502 NFSERR_ACCES,
503 NFSERR_NOTDIR,
504 NFSERR_STALE,
505 NFSERR_BADHANDLE,
506 NFSERR_BAD_COOKIE,
507 NFSERR_NOTSUPP,
508 NFSERR_TOOSMALL,
509 NFSERR_SERVERFAULT,
510 0,
511 };
512
513 static const short nfsv3err_fsstat[] = {
514 NFSERR_IO,
515 NFSERR_IO,
516 NFSERR_STALE,
517 NFSERR_BADHANDLE,
518 NFSERR_SERVERFAULT,
519 0,
520 };
521
522 static const short nfsv3err_fsinfo[] = {
523 NFSERR_STALE,
524 NFSERR_STALE,
525 NFSERR_BADHANDLE,
526 NFSERR_SERVERFAULT,
527 0,
528 };
529
530 static const short nfsv3err_pathconf[] = {
531 NFSERR_STALE,
532 NFSERR_STALE,
533 NFSERR_BADHANDLE,
534 NFSERR_SERVERFAULT,
535 0,
536 };
537
538 static const short nfsv3err_commit[] = {
539 NFSERR_IO,
540 NFSERR_IO,
541 NFSERR_STALE,
542 NFSERR_BADHANDLE,
543 NFSERR_SERVERFAULT,
544 0,
545 };
546
547 static const short * const nfsrv_v3errmap[] = {
548 nfsv3err_null,
549 nfsv3err_getattr,
550 nfsv3err_setattr,
551 nfsv3err_lookup,
552 nfsv3err_access,
553 nfsv3err_readlink,
554 nfsv3err_read,
555 nfsv3err_write,
556 nfsv3err_create,
557 nfsv3err_mkdir,
558 nfsv3err_symlink,
559 nfsv3err_mknod,
560 nfsv3err_remove,
561 nfsv3err_rmdir,
562 nfsv3err_rename,
563 nfsv3err_link,
564 nfsv3err_readdir,
565 nfsv3err_readdirplus,
566 nfsv3err_fsstat,
567 nfsv3err_fsinfo,
568 nfsv3err_pathconf,
569 nfsv3err_commit,
570 };
571
572 extern struct nfsrtt nfsrtt;
573 extern time_t nqnfsstarttime;
574 extern int nqsrv_clockskew;
575 extern int nqsrv_writeslack;
576 extern int nqsrv_maxlease;
577 extern const int nqnfs_piggy[NFS_NPROCS];
578 extern struct nfsnodehashhead *nfsnodehashtbl;
579 extern u_long nfsnodehash;
580
581 u_long nfsdirhashmask;
582
583 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
584
585 /*
586 * Create the header for an rpc request packet
587 * The hsiz is the size of the rest of the nfs request header.
588 * (just used to decide if a cluster is a good idea)
589 */
590 struct mbuf *
591 nfsm_reqh(np, procid, hsiz, bposp)
592 struct nfsnode *np;
593 u_long procid;
594 int hsiz;
595 caddr_t *bposp;
596 {
597 struct mbuf *mb;
598 caddr_t bpos;
599 #ifndef NFS_V2_ONLY
600 struct nfsmount *nmp;
601 u_int32_t *tl;
602 int nqflag;
603 #endif
604
605 mb = m_get(M_WAIT, MT_DATA);
606 MCLAIM(mb, &nfs_mowner);
607 if (hsiz >= MINCLSIZE)
608 m_clget(mb, M_WAIT);
609 mb->m_len = 0;
610 bpos = mtod(mb, caddr_t);
611
612 #ifndef NFS_V2_ONLY
613 /*
614 * For NQNFS, add lease request.
615 */
616 if (np) {
617 nmp = VFSTONFS(np->n_vnode->v_mount);
618 if (nmp->nm_flag & NFSMNT_NQNFS) {
619 nqflag = NQNFS_NEEDLEASE(np, procid);
620 if (nqflag) {
621 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
622 *tl++ = txdr_unsigned(nqflag);
623 *tl = txdr_unsigned(nmp->nm_leaseterm);
624 } else {
625 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
626 *tl = 0;
627 }
628 }
629 }
630 #endif
631 /* Finally, return values */
632 *bposp = bpos;
633 return (mb);
634 }
635
636 /*
637 * Build the RPC header and fill in the authorization info.
638 * The authorization string argument is only used when the credentials
639 * come from outside of the kernel.
640 * Returns the head of the mbuf list.
641 */
642 struct mbuf *
643 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
644 verf_str, mrest, mrest_len, mbp, xidp)
645 struct ucred *cr;
646 int nmflag;
647 int procid;
648 int auth_type;
649 int auth_len;
650 char *auth_str;
651 int verf_len;
652 char *verf_str;
653 struct mbuf *mrest;
654 int mrest_len;
655 struct mbuf **mbp;
656 u_int32_t *xidp;
657 {
658 struct mbuf *mb;
659 u_int32_t *tl;
660 caddr_t bpos;
661 int i;
662 struct mbuf *mreq;
663 int siz, grpsiz, authsiz;
664
665 authsiz = nfsm_rndup(auth_len);
666 mb = m_gethdr(M_WAIT, MT_DATA);
667 MCLAIM(mb, &nfs_mowner);
668 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
669 m_clget(mb, M_WAIT);
670 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
671 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
672 } else {
673 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
674 }
675 mb->m_len = 0;
676 mreq = mb;
677 bpos = mtod(mb, caddr_t);
678
679 /*
680 * First the RPC header.
681 */
682 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
683
684 *tl++ = *xidp = nfs_getxid();
685 *tl++ = rpc_call;
686 *tl++ = rpc_vers;
687 if (nmflag & NFSMNT_NQNFS) {
688 *tl++ = txdr_unsigned(NQNFS_PROG);
689 *tl++ = txdr_unsigned(NQNFS_VER3);
690 } else {
691 *tl++ = txdr_unsigned(NFS_PROG);
692 if (nmflag & NFSMNT_NFSV3)
693 *tl++ = txdr_unsigned(NFS_VER3);
694 else
695 *tl++ = txdr_unsigned(NFS_VER2);
696 }
697 if (nmflag & NFSMNT_NFSV3)
698 *tl++ = txdr_unsigned(procid);
699 else
700 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
701
702 /*
703 * And then the authorization cred.
704 */
705 *tl++ = txdr_unsigned(auth_type);
706 *tl = txdr_unsigned(authsiz);
707 switch (auth_type) {
708 case RPCAUTH_UNIX:
709 nfsm_build(tl, u_int32_t *, auth_len);
710 *tl++ = 0; /* stamp ?? */
711 *tl++ = 0; /* NULL hostname */
712 *tl++ = txdr_unsigned(cr->cr_uid);
713 *tl++ = txdr_unsigned(cr->cr_gid);
714 grpsiz = (auth_len >> 2) - 5;
715 *tl++ = txdr_unsigned(grpsiz);
716 for (i = 0; i < grpsiz; i++)
717 *tl++ = txdr_unsigned(cr->cr_groups[i]);
718 break;
719 case RPCAUTH_KERB4:
720 siz = auth_len;
721 while (siz > 0) {
722 if (M_TRAILINGSPACE(mb) == 0) {
723 struct mbuf *mb2;
724 mb2 = m_get(M_WAIT, MT_DATA);
725 MCLAIM(mb2, &nfs_mowner);
726 if (siz >= MINCLSIZE)
727 m_clget(mb2, M_WAIT);
728 mb->m_next = mb2;
729 mb = mb2;
730 mb->m_len = 0;
731 bpos = mtod(mb, caddr_t);
732 }
733 i = min(siz, M_TRAILINGSPACE(mb));
734 memcpy(bpos, auth_str, i);
735 mb->m_len += i;
736 auth_str += i;
737 bpos += i;
738 siz -= i;
739 }
740 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
741 for (i = 0; i < siz; i++)
742 *bpos++ = '\0';
743 mb->m_len += siz;
744 }
745 break;
746 };
747
748 /*
749 * And the verifier...
750 */
751 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
752 if (verf_str) {
753 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
754 *tl = txdr_unsigned(verf_len);
755 siz = verf_len;
756 while (siz > 0) {
757 if (M_TRAILINGSPACE(mb) == 0) {
758 struct mbuf *mb2;
759 mb2 = m_get(M_WAIT, MT_DATA);
760 MCLAIM(mb2, &nfs_mowner);
761 if (siz >= MINCLSIZE)
762 m_clget(mb2, M_WAIT);
763 mb->m_next = mb2;
764 mb = mb2;
765 mb->m_len = 0;
766 bpos = mtod(mb, caddr_t);
767 }
768 i = min(siz, M_TRAILINGSPACE(mb));
769 memcpy(bpos, verf_str, i);
770 mb->m_len += i;
771 verf_str += i;
772 bpos += i;
773 siz -= i;
774 }
775 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
776 for (i = 0; i < siz; i++)
777 *bpos++ = '\0';
778 mb->m_len += siz;
779 }
780 } else {
781 *tl++ = txdr_unsigned(RPCAUTH_NULL);
782 *tl = 0;
783 }
784 mb->m_next = mrest;
785 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
786 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
787 *mbp = mb;
788 return (mreq);
789 }
790
791 /*
792 * copies mbuf chain to the uio scatter/gather list
793 */
794 int
795 nfsm_mbuftouio(mrep, uiop, siz, dpos)
796 struct mbuf **mrep;
797 struct uio *uiop;
798 int siz;
799 caddr_t *dpos;
800 {
801 char *mbufcp, *uiocp;
802 int xfer, left, len;
803 struct mbuf *mp;
804 long uiosiz, rem;
805 int error = 0;
806
807 mp = *mrep;
808 mbufcp = *dpos;
809 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
810 rem = nfsm_rndup(siz)-siz;
811 while (siz > 0) {
812 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
813 return (EFBIG);
814 left = uiop->uio_iov->iov_len;
815 uiocp = uiop->uio_iov->iov_base;
816 if (left > siz)
817 left = siz;
818 uiosiz = left;
819 while (left > 0) {
820 while (len == 0) {
821 mp = mp->m_next;
822 if (mp == NULL)
823 return (EBADRPC);
824 mbufcp = mtod(mp, caddr_t);
825 len = mp->m_len;
826 }
827 xfer = (left > len) ? len : left;
828 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
829 uiocp, xfer);
830 if (error) {
831 return error;
832 }
833 left -= xfer;
834 len -= xfer;
835 mbufcp += xfer;
836 uiocp += xfer;
837 uiop->uio_offset += xfer;
838 uiop->uio_resid -= xfer;
839 }
840 if (uiop->uio_iov->iov_len <= siz) {
841 uiop->uio_iovcnt--;
842 uiop->uio_iov++;
843 } else {
844 uiop->uio_iov->iov_base =
845 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
846 uiop->uio_iov->iov_len -= uiosiz;
847 }
848 siz -= uiosiz;
849 }
850 *dpos = mbufcp;
851 *mrep = mp;
852 if (rem > 0) {
853 if (len < rem)
854 error = nfs_adv(mrep, dpos, rem, len);
855 else
856 *dpos += rem;
857 }
858 return (error);
859 }
860
861 /*
862 * copies a uio scatter/gather list to an mbuf chain.
863 * NOTE: can ony handle iovcnt == 1
864 */
865 int
866 nfsm_uiotombuf(uiop, mq, siz, bpos)
867 struct uio *uiop;
868 struct mbuf **mq;
869 int siz;
870 caddr_t *bpos;
871 {
872 char *uiocp;
873 struct mbuf *mp, *mp2;
874 int xfer, left, mlen;
875 int uiosiz, clflg, rem;
876 char *cp;
877 int error;
878
879 #ifdef DIAGNOSTIC
880 if (uiop->uio_iovcnt != 1)
881 panic("nfsm_uiotombuf: iovcnt != 1");
882 #endif
883
884 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
885 clflg = 1;
886 else
887 clflg = 0;
888 rem = nfsm_rndup(siz)-siz;
889 mp = mp2 = *mq;
890 while (siz > 0) {
891 left = uiop->uio_iov->iov_len;
892 uiocp = uiop->uio_iov->iov_base;
893 if (left > siz)
894 left = siz;
895 uiosiz = left;
896 while (left > 0) {
897 mlen = M_TRAILINGSPACE(mp);
898 if (mlen == 0) {
899 mp = m_get(M_WAIT, MT_DATA);
900 MCLAIM(mp, &nfs_mowner);
901 if (clflg)
902 m_clget(mp, M_WAIT);
903 mp->m_len = 0;
904 mp2->m_next = mp;
905 mp2 = mp;
906 mlen = M_TRAILINGSPACE(mp);
907 }
908 xfer = (left > mlen) ? mlen : left;
909 cp = mtod(mp, caddr_t) + mp->m_len;
910 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
911 xfer);
912 if (error) {
913 /* XXX */
914 }
915 mp->m_len += xfer;
916 left -= xfer;
917 uiocp += xfer;
918 uiop->uio_offset += xfer;
919 uiop->uio_resid -= xfer;
920 }
921 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
922 uiosiz;
923 uiop->uio_iov->iov_len -= uiosiz;
924 siz -= uiosiz;
925 }
926 if (rem > 0) {
927 if (rem > M_TRAILINGSPACE(mp)) {
928 mp = m_get(M_WAIT, MT_DATA);
929 MCLAIM(mp, &nfs_mowner);
930 mp->m_len = 0;
931 mp2->m_next = mp;
932 }
933 cp = mtod(mp, caddr_t) + mp->m_len;
934 for (left = 0; left < rem; left++)
935 *cp++ = '\0';
936 mp->m_len += rem;
937 *bpos = cp;
938 } else
939 *bpos = mtod(mp, caddr_t)+mp->m_len;
940 *mq = mp;
941 return (0);
942 }
943
944 /*
945 * Get at least "siz" bytes of correctly aligned data.
946 * When called the mbuf pointers are not necessarily correct,
947 * dsosp points to what ought to be in m_data and left contains
948 * what ought to be in m_len.
949 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
950 * cases. (The macros use the vars. dpos and dpos2)
951 */
952 int
953 nfsm_disct(mdp, dposp, siz, left, cp2)
954 struct mbuf **mdp;
955 caddr_t *dposp;
956 int siz;
957 int left;
958 caddr_t *cp2;
959 {
960 struct mbuf *m1, *m2;
961 struct mbuf *havebuf = NULL;
962 caddr_t src = *dposp;
963 caddr_t dst;
964 int len;
965
966 #ifdef DEBUG
967 if (left < 0)
968 panic("nfsm_disct: left < 0");
969 #endif
970 m1 = *mdp;
971 /*
972 * Skip through the mbuf chain looking for an mbuf with
973 * some data. If the first mbuf found has enough data
974 * and it is correctly aligned return it.
975 */
976 while (left == 0) {
977 havebuf = m1;
978 *mdp = m1 = m1->m_next;
979 if (m1 == NULL)
980 return (EBADRPC);
981 src = mtod(m1, caddr_t);
982 left = m1->m_len;
983 /*
984 * If we start a new mbuf and it is big enough
985 * and correctly aligned just return it, don't
986 * do any pull up.
987 */
988 if (left >= siz && nfsm_aligned(src)) {
989 *cp2 = src;
990 *dposp = src + siz;
991 return (0);
992 }
993 }
994 if (m1->m_flags & M_EXT) {
995 if (havebuf) {
996 /* If the first mbuf with data has external data
997 * and there is a previous empty mbuf use it
998 * to move the data into.
999 */
1000 m2 = m1;
1001 *mdp = m1 = havebuf;
1002 if (m1->m_flags & M_EXT) {
1003 MEXTREMOVE(m1);
1004 }
1005 } else {
1006 /*
1007 * If the first mbuf has a external data
1008 * and there is no previous empty mbuf
1009 * allocate a new mbuf and move the external
1010 * data to the new mbuf. Also make the first
1011 * mbuf look empty.
1012 */
1013 m2 = m_get(M_WAIT, MT_DATA);
1014 m2->m_ext = m1->m_ext;
1015 m2->m_data = src;
1016 m2->m_len = left;
1017 MCLADDREFERENCE(m1, m2);
1018 MEXTREMOVE(m1);
1019 m2->m_next = m1->m_next;
1020 m1->m_next = m2;
1021 }
1022 m1->m_len = 0;
1023 if (m1->m_flags & M_PKTHDR)
1024 dst = m1->m_pktdat;
1025 else
1026 dst = m1->m_dat;
1027 m1->m_data = dst;
1028 } else {
1029 /*
1030 * If the first mbuf has no external data
1031 * move the data to the front of the mbuf.
1032 */
1033 if (m1->m_flags & M_PKTHDR)
1034 dst = m1->m_pktdat;
1035 else
1036 dst = m1->m_dat;
1037 m1->m_data = dst;
1038 if (dst != src)
1039 memmove(dst, src, left);
1040 dst += left;
1041 m1->m_len = left;
1042 m2 = m1->m_next;
1043 }
1044 *cp2 = m1->m_data;
1045 *dposp = mtod(m1, caddr_t) + siz;
1046 /*
1047 * Loop through mbufs pulling data up into first mbuf until
1048 * the first mbuf is full or there is no more data to
1049 * pullup.
1050 */
1051 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1052 if ((len = min(len, m2->m_len)) != 0)
1053 memcpy(dst, m2->m_data, len);
1054 m1->m_len += len;
1055 dst += len;
1056 m2->m_data += len;
1057 m2->m_len -= len;
1058 m2 = m2->m_next;
1059 }
1060 if (m1->m_len < siz)
1061 return (EBADRPC);
1062 return (0);
1063 }
1064
1065 /*
1066 * Advance the position in the mbuf chain.
1067 */
1068 int
1069 nfs_adv(mdp, dposp, offs, left)
1070 struct mbuf **mdp;
1071 caddr_t *dposp;
1072 int offs;
1073 int left;
1074 {
1075 struct mbuf *m;
1076 int s;
1077
1078 m = *mdp;
1079 s = left;
1080 while (s < offs) {
1081 offs -= s;
1082 m = m->m_next;
1083 if (m == NULL)
1084 return (EBADRPC);
1085 s = m->m_len;
1086 }
1087 *mdp = m;
1088 *dposp = mtod(m, caddr_t)+offs;
1089 return (0);
1090 }
1091
1092 /*
1093 * Copy a string into mbufs for the hard cases...
1094 */
1095 int
1096 nfsm_strtmbuf(mb, bpos, cp, siz)
1097 struct mbuf **mb;
1098 char **bpos;
1099 const char *cp;
1100 long siz;
1101 {
1102 struct mbuf *m1 = NULL, *m2;
1103 long left, xfer, len, tlen;
1104 u_int32_t *tl;
1105 int putsize;
1106
1107 putsize = 1;
1108 m2 = *mb;
1109 left = M_TRAILINGSPACE(m2);
1110 if (left > 0) {
1111 tl = ((u_int32_t *)(*bpos));
1112 *tl++ = txdr_unsigned(siz);
1113 putsize = 0;
1114 left -= NFSX_UNSIGNED;
1115 m2->m_len += NFSX_UNSIGNED;
1116 if (left > 0) {
1117 memcpy((caddr_t) tl, cp, left);
1118 siz -= left;
1119 cp += left;
1120 m2->m_len += left;
1121 left = 0;
1122 }
1123 }
1124 /* Loop around adding mbufs */
1125 while (siz > 0) {
1126 m1 = m_get(M_WAIT, MT_DATA);
1127 MCLAIM(m1, &nfs_mowner);
1128 if (siz > MLEN)
1129 m_clget(m1, M_WAIT);
1130 m1->m_len = NFSMSIZ(m1);
1131 m2->m_next = m1;
1132 m2 = m1;
1133 tl = mtod(m1, u_int32_t *);
1134 tlen = 0;
1135 if (putsize) {
1136 *tl++ = txdr_unsigned(siz);
1137 m1->m_len -= NFSX_UNSIGNED;
1138 tlen = NFSX_UNSIGNED;
1139 putsize = 0;
1140 }
1141 if (siz < m1->m_len) {
1142 len = nfsm_rndup(siz);
1143 xfer = siz;
1144 if (xfer < len)
1145 *(tl+(xfer>>2)) = 0;
1146 } else {
1147 xfer = len = m1->m_len;
1148 }
1149 memcpy((caddr_t) tl, cp, xfer);
1150 m1->m_len = len+tlen;
1151 siz -= xfer;
1152 cp += xfer;
1153 }
1154 *mb = m1;
1155 *bpos = mtod(m1, caddr_t)+m1->m_len;
1156 return (0);
1157 }
1158
1159 /*
1160 * Directory caching routines. They work as follows:
1161 * - a cache is maintained per VDIR nfsnode.
1162 * - for each offset cookie that is exported to userspace, and can
1163 * thus be thrown back at us as an offset to VOP_READDIR, store
1164 * information in the cache.
1165 * - cached are:
1166 * - cookie itself
1167 * - blocknumber (essentially just a search key in the buffer cache)
1168 * - entry number in block.
1169 * - offset cookie of block in which this entry is stored
1170 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1171 * - entries are looked up in a hash table
1172 * - also maintained is an LRU list of entries, used to determine
1173 * which ones to delete if the cache grows too large.
1174 * - if 32 <-> 64 translation mode is requested for a filesystem,
1175 * the cache also functions as a translation table
1176 * - in the translation case, invalidating the cache does not mean
1177 * flushing it, but just marking entries as invalid, except for
1178 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1179 * still be able to use the cache as a translation table.
1180 * - 32 bit cookies are uniquely created by combining the hash table
1181 * entry value, and one generation count per hash table entry,
1182 * incremented each time an entry is appended to the chain.
1183 * - the cache is invalidated each time a direcory is modified
1184 * - sanity checks are also done; if an entry in a block turns
1185 * out not to have a matching cookie, the cache is invalidated
1186 * and a new block starting from the wanted offset is fetched from
1187 * the server.
1188 * - directory entries as read from the server are extended to contain
1189 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1190 * the cache and exporting them to userspace through the cookie
1191 * argument to VOP_READDIR.
1192 */
1193
1194 u_long
1195 nfs_dirhash(off)
1196 off_t off;
1197 {
1198 int i;
1199 char *cp = (char *)&off;
1200 u_long sum = 0L;
1201
1202 for (i = 0 ; i < sizeof (off); i++)
1203 sum += *cp++;
1204
1205 return sum;
1206 }
1207
1208 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1209 #define NFSDC_LOCK(np) simple_lock(_NFSDC_MTX(np))
1210 #define NFSDC_UNLOCK(np) simple_unlock(_NFSDC_MTX(np))
1211 #define NFSDC_ASSERT_LOCKED(np) LOCK_ASSERT(simple_lock_held(_NFSDC_MTX(np)))
1212
1213 void
1214 nfs_initdircache(vp)
1215 struct vnode *vp;
1216 {
1217 struct nfsnode *np = VTONFS(vp);
1218 struct nfsdirhashhead *dircache;
1219
1220 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1221 M_WAITOK, &nfsdirhashmask);
1222
1223 NFSDC_LOCK(np);
1224 if (np->n_dircache == NULL) {
1225 np->n_dircachesize = 0;
1226 np->n_dircache = dircache;
1227 dircache = NULL;
1228 TAILQ_INIT(&np->n_dirchain);
1229 }
1230 NFSDC_UNLOCK(np);
1231 if (dircache)
1232 hashdone(dircache, M_NFSDIROFF);
1233 }
1234
1235 void
1236 nfs_initdirxlatecookie(vp)
1237 struct vnode *vp;
1238 {
1239 struct nfsnode *np = VTONFS(vp);
1240 unsigned *dirgens;
1241
1242 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1243
1244 dirgens = malloc(NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1245 M_WAITOK|M_ZERO);
1246 NFSDC_LOCK(np);
1247 if (np->n_dirgens == NULL) {
1248 np->n_dirgens = dirgens;
1249 dirgens = NULL;
1250 }
1251 NFSDC_UNLOCK(np);
1252 if (dirgens)
1253 free(dirgens, M_NFSDIROFF);
1254 }
1255
1256 static const struct nfsdircache dzero;
1257
1258 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1259 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1260 struct nfsdircache *));
1261
1262 static void
1263 nfs_unlinkdircache(np, ndp)
1264 struct nfsnode *np;
1265 struct nfsdircache *ndp;
1266 {
1267
1268 NFSDC_ASSERT_LOCKED(np);
1269 KASSERT(ndp != &dzero);
1270
1271 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1272 return;
1273
1274 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1275 LIST_REMOVE(ndp, dc_hash);
1276 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1277
1278 nfs_putdircache_unlocked(np, ndp);
1279 }
1280
1281 void
1282 nfs_putdircache(np, ndp)
1283 struct nfsnode *np;
1284 struct nfsdircache *ndp;
1285 {
1286 int ref;
1287
1288 if (ndp == &dzero)
1289 return;
1290
1291 KASSERT(ndp->dc_refcnt > 0);
1292 NFSDC_LOCK(np);
1293 ref = --ndp->dc_refcnt;
1294 NFSDC_UNLOCK(np);
1295
1296 if (ref == 0)
1297 free(ndp, M_NFSDIROFF);
1298 }
1299
1300 static void
1301 nfs_putdircache_unlocked(np, ndp)
1302 struct nfsnode *np;
1303 struct nfsdircache *ndp;
1304 {
1305 int ref;
1306
1307 NFSDC_ASSERT_LOCKED(np);
1308
1309 if (ndp == &dzero)
1310 return;
1311
1312 KASSERT(ndp->dc_refcnt > 0);
1313 ref = --ndp->dc_refcnt;
1314 if (ref == 0)
1315 free(ndp, M_NFSDIROFF);
1316 }
1317
1318 struct nfsdircache *
1319 nfs_searchdircache(vp, off, do32, hashent)
1320 struct vnode *vp;
1321 off_t off;
1322 int do32;
1323 int *hashent;
1324 {
1325 struct nfsdirhashhead *ndhp;
1326 struct nfsdircache *ndp = NULL;
1327 struct nfsnode *np = VTONFS(vp);
1328 unsigned ent;
1329
1330 /*
1331 * Zero is always a valid cookie.
1332 */
1333 if (off == 0)
1334 /* XXXUNCONST */
1335 return (struct nfsdircache *)__UNCONST(&dzero);
1336
1337 if (!np->n_dircache)
1338 return NULL;
1339
1340 /*
1341 * We use a 32bit cookie as search key, directly reconstruct
1342 * the hashentry. Else use the hashfunction.
1343 */
1344 if (do32) {
1345 ent = (u_int32_t)off >> 24;
1346 if (ent >= NFS_DIRHASHSIZ)
1347 return NULL;
1348 ndhp = &np->n_dircache[ent];
1349 } else {
1350 ndhp = NFSDIRHASH(np, off);
1351 }
1352
1353 if (hashent)
1354 *hashent = (int)(ndhp - np->n_dircache);
1355
1356 NFSDC_LOCK(np);
1357 if (do32) {
1358 LIST_FOREACH(ndp, ndhp, dc_hash) {
1359 if (ndp->dc_cookie32 == (u_int32_t)off) {
1360 /*
1361 * An invalidated entry will become the
1362 * start of a new block fetched from
1363 * the server.
1364 */
1365 if (ndp->dc_flags & NFSDC_INVALID) {
1366 ndp->dc_blkcookie = ndp->dc_cookie;
1367 ndp->dc_entry = 0;
1368 ndp->dc_flags &= ~NFSDC_INVALID;
1369 }
1370 break;
1371 }
1372 }
1373 } else {
1374 LIST_FOREACH(ndp, ndhp, dc_hash) {
1375 if (ndp->dc_cookie == off)
1376 break;
1377 }
1378 }
1379 if (ndp != NULL)
1380 ndp->dc_refcnt++;
1381 NFSDC_UNLOCK(np);
1382 return ndp;
1383 }
1384
1385
1386 struct nfsdircache *
1387 nfs_enterdircache(vp, off, blkoff, en, blkno)
1388 struct vnode *vp;
1389 off_t off, blkoff;
1390 int en;
1391 daddr_t blkno;
1392 {
1393 struct nfsnode *np = VTONFS(vp);
1394 struct nfsdirhashhead *ndhp;
1395 struct nfsdircache *ndp = NULL;
1396 struct nfsdircache *newndp = NULL;
1397 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1398 int hashent, gen, overwrite;
1399
1400 /*
1401 * XXX refuse entries for offset 0. amd(8) erroneously sets
1402 * cookie 0 for the '.' entry, making this necessary. This
1403 * isn't so bad, as 0 is a special case anyway.
1404 */
1405 if (off == 0)
1406 /* XXXUNCONST */
1407 return (struct nfsdircache *)__UNCONST(&dzero);
1408
1409 if (!np->n_dircache)
1410 /*
1411 * XXX would like to do this in nfs_nget but vtype
1412 * isn't known at that time.
1413 */
1414 nfs_initdircache(vp);
1415
1416 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1417 nfs_initdirxlatecookie(vp);
1418
1419 retry:
1420 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1421
1422 NFSDC_LOCK(np);
1423 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1424 /*
1425 * Overwriting an old entry. Check if it's the same.
1426 * If so, just return. If not, remove the old entry.
1427 */
1428 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1429 goto done;
1430 nfs_unlinkdircache(np, ndp);
1431 nfs_putdircache_unlocked(np, ndp);
1432 ndp = NULL;
1433 }
1434
1435 ndhp = &np->n_dircache[hashent];
1436
1437 if (!ndp) {
1438 if (newndp == NULL) {
1439 NFSDC_UNLOCK(np);
1440 newndp = malloc(sizeof(*ndp), M_NFSDIROFF, M_WAITOK);
1441 newndp->dc_refcnt = 1;
1442 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1443 goto retry;
1444 }
1445 ndp = newndp;
1446 newndp = NULL;
1447 overwrite = 0;
1448 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1449 /*
1450 * We're allocating a new entry, so bump the
1451 * generation number.
1452 */
1453 gen = ++np->n_dirgens[hashent];
1454 if (gen == 0) {
1455 np->n_dirgens[hashent]++;
1456 gen++;
1457 }
1458 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1459 }
1460 } else
1461 overwrite = 1;
1462
1463 ndp->dc_cookie = off;
1464 ndp->dc_blkcookie = blkoff;
1465 ndp->dc_entry = en;
1466 ndp->dc_flags = 0;
1467
1468 if (overwrite)
1469 goto done;
1470
1471 /*
1472 * If the maximum directory cookie cache size has been reached
1473 * for this node, take one off the front. The idea is that
1474 * directories are typically read front-to-back once, so that
1475 * the oldest entries can be thrown away without much performance
1476 * loss.
1477 */
1478 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1479 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1480 } else
1481 np->n_dircachesize++;
1482
1483 KASSERT(ndp->dc_refcnt == 1);
1484 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1485 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1486 ndp->dc_refcnt++;
1487 done:
1488 KASSERT(ndp->dc_refcnt > 0);
1489 NFSDC_UNLOCK(np);
1490 if (newndp)
1491 nfs_putdircache(np, newndp);
1492 return ndp;
1493 }
1494
1495 void
1496 nfs_invaldircache(vp, flags)
1497 struct vnode *vp;
1498 int flags;
1499 {
1500 struct nfsnode *np = VTONFS(vp);
1501 struct nfsdircache *ndp = NULL;
1502 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1503 const boolean_t forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1504
1505 #ifdef DIAGNOSTIC
1506 if (vp->v_type != VDIR)
1507 panic("nfs: invaldircache: not dir");
1508 #endif
1509
1510 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1511 np->n_flag &= ~NEOFVALID;
1512
1513 if (!np->n_dircache)
1514 return;
1515
1516 NFSDC_LOCK(np);
1517 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1518 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1519 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1520 nfs_unlinkdircache(np, ndp);
1521 }
1522 np->n_dircachesize = 0;
1523 if (forcefree && np->n_dirgens) {
1524 FREE(np->n_dirgens, M_NFSDIROFF);
1525 np->n_dirgens = NULL;
1526 }
1527 } else {
1528 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1529 ndp->dc_flags |= NFSDC_INVALID;
1530 }
1531
1532 NFSDC_UNLOCK(np);
1533 }
1534
1535 /*
1536 * Called once before VFS init to initialize shared and
1537 * server-specific data structures.
1538 */
1539 static int
1540 nfs_init0(void)
1541 {
1542 nfsrtt.pos = 0;
1543 rpc_vers = txdr_unsigned(RPC_VER2);
1544 rpc_call = txdr_unsigned(RPC_CALL);
1545 rpc_reply = txdr_unsigned(RPC_REPLY);
1546 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1547 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1548 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1549 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1550 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1551 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1552 nfs_prog = txdr_unsigned(NFS_PROG);
1553 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1554 nfs_true = txdr_unsigned(TRUE);
1555 nfs_false = txdr_unsigned(FALSE);
1556 nfs_xdrneg1 = txdr_unsigned(-1);
1557 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1558 if (nfs_ticks < 1)
1559 nfs_ticks = 1;
1560 #ifdef NFSSERVER
1561 nfsrv_init(0); /* Init server data structures */
1562 nfsrv_initcache(); /* Init the server request cache */
1563 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
1564 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr);
1565 #endif /* NFSSERVER */
1566
1567 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1568 /*
1569 * Initialize the nqnfs data structures.
1570 */
1571 if (nqnfsstarttime == 0) {
1572 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1573 + nqsrv_clockskew + nqsrv_writeslack;
1574 NQLOADNOVRAM(nqnfsstarttime);
1575 CIRCLEQ_INIT(&nqtimerhead);
1576 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1577 M_WAITOK, &nqfhhash);
1578 }
1579 #endif
1580
1581 exithook_establish(nfs_exit, NULL);
1582
1583 /*
1584 * Initialize reply list and start timer
1585 */
1586 TAILQ_INIT(&nfs_reqq);
1587 nfs_timer(NULL);
1588 MOWNER_ATTACH(&nfs_mowner);
1589
1590 #ifdef NFS
1591 /* Initialize the kqueue structures */
1592 nfs_kqinit();
1593 /* Initialize the iod structures */
1594 nfs_iodinit();
1595 #endif
1596 return 0;
1597 }
1598
1599 void
1600 nfs_init(void)
1601 {
1602 static ONCE_DECL(nfs_init_once);
1603
1604 RUN_ONCE(&nfs_init_once, nfs_init0);
1605 }
1606
1607 #ifdef NFS
1608 /*
1609 * Called once at VFS init to initialize client-specific data structures.
1610 */
1611 void
1612 nfs_vfs_init()
1613 {
1614 /* Initialize NFS server / client shared data. */
1615 nfs_init();
1616
1617 nfs_nhinit(); /* Init the nfsnode table */
1618 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1619 }
1620
1621 void
1622 nfs_vfs_reinit()
1623 {
1624 nfs_nhreinit();
1625 }
1626
1627 void
1628 nfs_vfs_done()
1629 {
1630 nfs_nhdone();
1631 }
1632
1633 /*
1634 * Attribute cache routines.
1635 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1636 * that are on the mbuf list
1637 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1638 * error otherwise
1639 */
1640
1641 /*
1642 * Load the attribute cache (that lives in the nfsnode entry) with
1643 * the values on the mbuf list and
1644 * Iff vap not NULL
1645 * copy the attributes to *vaper
1646 */
1647 int
1648 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1649 struct vnode **vpp;
1650 struct mbuf **mdp;
1651 caddr_t *dposp;
1652 struct vattr *vaper;
1653 int flags;
1654 {
1655 int32_t t1;
1656 caddr_t cp2;
1657 int error = 0;
1658 struct mbuf *md;
1659 int v3 = NFS_ISV3(*vpp);
1660
1661 md = *mdp;
1662 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1663 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1664 if (error)
1665 return (error);
1666 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1667 }
1668
1669 int
1670 nfs_loadattrcache(vpp, fp, vaper, flags)
1671 struct vnode **vpp;
1672 struct nfs_fattr *fp;
1673 struct vattr *vaper;
1674 int flags;
1675 {
1676 struct vnode *vp = *vpp;
1677 struct vattr *vap;
1678 int v3 = NFS_ISV3(vp);
1679 enum vtype vtyp;
1680 u_short vmode;
1681 struct timespec mtime;
1682 struct timespec ctime;
1683 struct vnode *nvp;
1684 int32_t rdev;
1685 struct nfsnode *np;
1686 extern int (**spec_nfsv2nodeop_p) __P((void *));
1687 uid_t uid;
1688 gid_t gid;
1689
1690 if (v3) {
1691 vtyp = nfsv3tov_type(fp->fa_type);
1692 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1693 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1694 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1695 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1696 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1697 } else {
1698 vtyp = nfsv2tov_type(fp->fa_type);
1699 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1700 if (vtyp == VNON || vtyp == VREG)
1701 vtyp = IFTOVT(vmode);
1702 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1703 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1704 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1705 fp->fa2_ctime.nfsv2_sec);
1706 ctime.tv_nsec = 0;
1707
1708 /*
1709 * Really ugly NFSv2 kludge.
1710 */
1711 if (vtyp == VCHR && rdev == 0xffffffff)
1712 vtyp = VFIFO;
1713 }
1714
1715 vmode &= ALLPERMS;
1716
1717 /*
1718 * If v_type == VNON it is a new node, so fill in the v_type,
1719 * n_mtime fields. Check to see if it represents a special
1720 * device, and if so, check for a possible alias. Once the
1721 * correct vnode has been obtained, fill in the rest of the
1722 * information.
1723 */
1724 np = VTONFS(vp);
1725 if (vp->v_type == VNON) {
1726 vp->v_type = vtyp;
1727 if (vp->v_type == VFIFO) {
1728 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1729 vp->v_op = fifo_nfsv2nodeop_p;
1730 } else if (vp->v_type == VREG) {
1731 lockinit(&np->n_commitlock, PINOD, "nfsclock", 0, 0);
1732 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1733 vp->v_op = spec_nfsv2nodeop_p;
1734 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1735 if (nvp) {
1736 /*
1737 * Discard unneeded vnode, but save its nfsnode.
1738 * Since the nfsnode does not have a lock, its
1739 * vnode lock has to be carried over.
1740 */
1741 /*
1742 * XXX is the old node sure to be locked here?
1743 */
1744 KASSERT(lockstatus(&vp->v_lock) ==
1745 LK_EXCLUSIVE);
1746 nvp->v_data = vp->v_data;
1747 vp->v_data = NULL;
1748 VOP_UNLOCK(vp, 0);
1749 vp->v_op = spec_vnodeop_p;
1750 vrele(vp);
1751 vgone(vp);
1752 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1753 &nvp->v_interlock);
1754 /*
1755 * Reinitialize aliased node.
1756 */
1757 np->n_vnode = nvp;
1758 *vpp = vp = nvp;
1759 }
1760 }
1761 np->n_mtime = mtime;
1762 }
1763 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1764 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1765 vap = np->n_vattr;
1766
1767 /*
1768 * Invalidate access cache if uid, gid, mode or ctime changed.
1769 */
1770 if (np->n_accstamp != -1 &&
1771 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1772 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1773 np->n_accstamp = -1;
1774
1775 vap->va_type = vtyp;
1776 vap->va_mode = vmode;
1777 vap->va_rdev = (dev_t)rdev;
1778 vap->va_mtime = mtime;
1779 vap->va_ctime = ctime;
1780 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1781 switch (vtyp) {
1782 case VDIR:
1783 vap->va_blocksize = NFS_DIRFRAGSIZ;
1784 break;
1785 case VBLK:
1786 vap->va_blocksize = BLKDEV_IOSIZE;
1787 break;
1788 case VCHR:
1789 vap->va_blocksize = MAXBSIZE;
1790 break;
1791 default:
1792 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1793 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1794 break;
1795 }
1796 if (v3) {
1797 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1798 vap->va_uid = uid;
1799 vap->va_gid = gid;
1800 vap->va_size = fxdr_hyper(&fp->fa3_size);
1801 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1802 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1803 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1804 vap->va_flags = 0;
1805 vap->va_filerev = 0;
1806 } else {
1807 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1808 vap->va_uid = uid;
1809 vap->va_gid = gid;
1810 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1811 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1812 * NFS_FABLKSIZE;
1813 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1814 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1815 vap->va_flags = 0;
1816 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1817 vap->va_filerev = 0;
1818 }
1819 if (vap->va_size != np->n_size) {
1820 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1821 vap->va_size = np->n_size;
1822 } else {
1823 np->n_size = vap->va_size;
1824 if (vap->va_type == VREG) {
1825 /*
1826 * we can't free pages if NAC_NOTRUNC because
1827 * the pages can be owned by ourselves.
1828 */
1829 if (flags & NAC_NOTRUNC) {
1830 np->n_flag |= NTRUNCDELAYED;
1831 } else {
1832 simple_lock(&vp->v_interlock);
1833 (void)VOP_PUTPAGES(vp, 0,
1834 0, PGO_SYNCIO | PGO_CLEANIT |
1835 PGO_FREE | PGO_ALLPAGES);
1836 uvm_vnp_setsize(vp, np->n_size);
1837 }
1838 }
1839 }
1840 }
1841 np->n_attrstamp = mono_time.tv_sec;
1842 if (vaper != NULL) {
1843 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1844 if (np->n_flag & NCHG) {
1845 if (np->n_flag & NACC)
1846 vaper->va_atime = np->n_atim;
1847 if (np->n_flag & NUPD)
1848 vaper->va_mtime = np->n_mtim;
1849 }
1850 }
1851 return (0);
1852 }
1853
1854 /*
1855 * Check the time stamp
1856 * If the cache is valid, copy contents to *vap and return 0
1857 * otherwise return an error
1858 */
1859 int
1860 nfs_getattrcache(vp, vaper)
1861 struct vnode *vp;
1862 struct vattr *vaper;
1863 {
1864 struct nfsnode *np = VTONFS(vp);
1865 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1866 struct vattr *vap;
1867
1868 if (np->n_attrstamp == 0 ||
1869 (mono_time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(nmp, np)) {
1870 nfsstats.attrcache_misses++;
1871 return (ENOENT);
1872 }
1873 nfsstats.attrcache_hits++;
1874 vap = np->n_vattr;
1875 if (vap->va_size != np->n_size) {
1876 if (vap->va_type == VREG) {
1877 if (np->n_flag & NMODIFIED) {
1878 if (vap->va_size < np->n_size)
1879 vap->va_size = np->n_size;
1880 else
1881 np->n_size = vap->va_size;
1882 } else
1883 np->n_size = vap->va_size;
1884 uvm_vnp_setsize(vp, np->n_size);
1885 } else
1886 np->n_size = vap->va_size;
1887 }
1888 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1889 if (np->n_flag & NCHG) {
1890 if (np->n_flag & NACC)
1891 vaper->va_atime = np->n_atim;
1892 if (np->n_flag & NUPD)
1893 vaper->va_mtime = np->n_mtim;
1894 }
1895 return (0);
1896 }
1897
1898 void
1899 nfs_delayedtruncate(vp)
1900 struct vnode *vp;
1901 {
1902 struct nfsnode *np = VTONFS(vp);
1903
1904 if (np->n_flag & NTRUNCDELAYED) {
1905 np->n_flag &= ~NTRUNCDELAYED;
1906 simple_lock(&vp->v_interlock);
1907 (void)VOP_PUTPAGES(vp, 0,
1908 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1909 uvm_vnp_setsize(vp, np->n_size);
1910 }
1911 }
1912
1913 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1914 #define NFS_WCCKLUDGE(nmp, now) \
1915 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1916 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1917
1918 /*
1919 * nfs_check_wccdata: check inaccurate wcc_data
1920 *
1921 * => return non-zero if we shouldn't trust the wcc_data.
1922 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1923 */
1924
1925 int
1926 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1927 struct timespec *mtime, boolean_t docheck)
1928 {
1929 int error = 0;
1930
1931 #if !defined(NFS_V2_ONLY)
1932
1933 if (docheck) {
1934 struct vnode *vp = NFSTOV(np);
1935 struct nfsmount *nmp;
1936 long now = mono_time.tv_sec;
1937 #if defined(DEBUG)
1938 const char *reason = NULL; /* XXX: gcc */
1939 #endif
1940
1941 if (timespeccmp(&np->n_vattr->va_mtime, mtime, <=)) {
1942 #if defined(DEBUG)
1943 reason = "mtime";
1944 #endif
1945 error = EINVAL;
1946 }
1947
1948 if (vp->v_type == VDIR &&
1949 timespeccmp(&np->n_vattr->va_ctime, ctime, <=)) {
1950 #if defined(DEBUG)
1951 reason = "ctime";
1952 #endif
1953 error = EINVAL;
1954 }
1955
1956 nmp = VFSTONFS(vp->v_mount);
1957 if (error) {
1958
1959 /*
1960 * despite of the fact that we've updated the file,
1961 * timestamps of the file were not updated as we
1962 * expected.
1963 * it means that the server has incompatible
1964 * semantics of timestamps or (more likely)
1965 * the server time is not precise enough to
1966 * track each modifications.
1967 * in that case, we disable wcc processing.
1968 *
1969 * yes, strictly speaking, we should disable all
1970 * caching. it's a compromise.
1971 */
1972
1973 simple_lock(&nmp->nm_slock);
1974 #if defined(DEBUG)
1975 if (!NFS_WCCKLUDGE(nmp, now)) {
1976 printf("%s: inaccurate wcc data (%s) detected,"
1977 " disabling wcc\n",
1978 vp->v_mount->mnt_stat.f_mntfromname,
1979 reason);
1980 }
1981 #endif
1982 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1983 nmp->nm_wcckludgetime = now;
1984 simple_unlock(&nmp->nm_slock);
1985 } else if (NFS_WCCKLUDGE(nmp, now)) {
1986 error = EPERM; /* XXX */
1987 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1988 simple_lock(&nmp->nm_slock);
1989 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1990 #if defined(DEBUG)
1991 printf("%s: re-enabling wcc\n",
1992 vp->v_mount->mnt_stat.f_mntfromname);
1993 #endif
1994 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1995 }
1996 simple_unlock(&nmp->nm_slock);
1997 }
1998 }
1999
2000 #endif /* !defined(NFS_V2_ONLY) */
2001
2002 return error;
2003 }
2004
2005 /*
2006 * Heuristic to see if the server XDR encodes directory cookies or not.
2007 * it is not supposed to, but a lot of servers may do this. Also, since
2008 * most/all servers will implement V2 as well, it is expected that they
2009 * may return just 32 bits worth of cookie information, so we need to
2010 * find out in which 32 bits this information is available. We do this
2011 * to avoid trouble with emulated binaries that can't handle 64 bit
2012 * directory offsets.
2013 */
2014
2015 void
2016 nfs_cookieheuristic(vp, flagp, l, cred)
2017 struct vnode *vp;
2018 int *flagp;
2019 struct lwp *l;
2020 struct ucred *cred;
2021 {
2022 struct uio auio;
2023 struct iovec aiov;
2024 caddr_t tbuf, cp;
2025 struct dirent *dp;
2026 off_t *cookies = NULL, *cop;
2027 int error, eof, nc, len;
2028
2029 MALLOC(tbuf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
2030
2031 aiov.iov_base = tbuf;
2032 aiov.iov_len = NFS_DIRFRAGSIZ;
2033 auio.uio_iov = &aiov;
2034 auio.uio_iovcnt = 1;
2035 auio.uio_rw = UIO_READ;
2036 auio.uio_resid = NFS_DIRFRAGSIZ;
2037 auio.uio_offset = 0;
2038 UIO_SETUP_SYSSPACE(&auio);
2039
2040 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
2041
2042 len = NFS_DIRFRAGSIZ - auio.uio_resid;
2043 if (error || len == 0) {
2044 FREE(tbuf, M_TEMP);
2045 if (cookies)
2046 free(cookies, M_TEMP);
2047 return;
2048 }
2049
2050 /*
2051 * Find the first valid entry and look at its offset cookie.
2052 */
2053
2054 cp = tbuf;
2055 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2056 dp = (struct dirent *)cp;
2057 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2058 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2059 *flagp |= NFSMNT_SWAPCOOKIE;
2060 nfs_invaldircache(vp, 0);
2061 nfs_vinvalbuf(vp, 0, cred, l, 1);
2062 }
2063 break;
2064 }
2065 cop++;
2066 cp += dp->d_reclen;
2067 }
2068
2069 FREE(tbuf, M_TEMP);
2070 free(cookies, M_TEMP);
2071 }
2072 #endif /* NFS */
2073
2074 #ifdef NFSSERVER
2075 /*
2076 * Set up nameidata for a lookup() call and do it.
2077 *
2078 * If pubflag is set, this call is done for a lookup operation on the
2079 * public filehandle. In that case we allow crossing mountpoints and
2080 * absolute pathnames. However, the caller is expected to check that
2081 * the lookup result is within the public fs, and deny access if
2082 * it is not.
2083 */
2084 int
2085 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2086 struct nameidata *ndp;
2087 fhandle_t *fhp;
2088 uint32_t len;
2089 struct nfssvc_sock *slp;
2090 struct mbuf *nam;
2091 struct mbuf **mdp;
2092 caddr_t *dposp;
2093 struct vnode **retdirp;
2094 struct lwp *l;
2095 int kerbflag, pubflag;
2096 {
2097 int i, rem;
2098 struct mbuf *md;
2099 char *fromcp, *tocp, *cp;
2100 struct iovec aiov;
2101 struct uio auio;
2102 struct vnode *dp;
2103 int error, rdonly, linklen;
2104 struct componentname *cnp = &ndp->ni_cnd;
2105
2106 *retdirp = (struct vnode *)0;
2107
2108 if ((len + 1) > MAXPATHLEN)
2109 return (ENAMETOOLONG);
2110 if (len == 0)
2111 return (EACCES);
2112 cnp->cn_pnbuf = PNBUF_GET();
2113
2114 /*
2115 * Copy the name from the mbuf list to ndp->ni_pnbuf
2116 * and set the various ndp fields appropriately.
2117 */
2118 fromcp = *dposp;
2119 tocp = cnp->cn_pnbuf;
2120 md = *mdp;
2121 rem = mtod(md, caddr_t) + md->m_len - fromcp;
2122 for (i = 0; i < len; i++) {
2123 while (rem == 0) {
2124 md = md->m_next;
2125 if (md == NULL) {
2126 error = EBADRPC;
2127 goto out;
2128 }
2129 fromcp = mtod(md, caddr_t);
2130 rem = md->m_len;
2131 }
2132 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2133 error = EACCES;
2134 goto out;
2135 }
2136 *tocp++ = *fromcp++;
2137 rem--;
2138 }
2139 *tocp = '\0';
2140 *mdp = md;
2141 *dposp = fromcp;
2142 len = nfsm_rndup(len)-len;
2143 if (len > 0) {
2144 if (rem >= len)
2145 *dposp += len;
2146 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2147 goto out;
2148 }
2149
2150 /*
2151 * Extract and set starting directory.
2152 */
2153 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
2154 nam, &rdonly, kerbflag, pubflag);
2155 if (error)
2156 goto out;
2157 if (dp->v_type != VDIR) {
2158 vrele(dp);
2159 error = ENOTDIR;
2160 goto out;
2161 }
2162
2163 if (rdonly)
2164 cnp->cn_flags |= RDONLY;
2165
2166 *retdirp = dp;
2167
2168 if (pubflag) {
2169 /*
2170 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2171 * and the 'native path' indicator.
2172 */
2173 cp = PNBUF_GET();
2174 fromcp = cnp->cn_pnbuf;
2175 tocp = cp;
2176 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2177 switch ((unsigned char)*fromcp) {
2178 case WEBNFS_NATIVE_CHAR:
2179 /*
2180 * 'Native' path for us is the same
2181 * as a path according to the NFS spec,
2182 * just skip the escape char.
2183 */
2184 fromcp++;
2185 break;
2186 /*
2187 * More may be added in the future, range 0x80-0xff
2188 */
2189 default:
2190 error = EIO;
2191 PNBUF_PUT(cp);
2192 goto out;
2193 }
2194 }
2195 /*
2196 * Translate the '%' escapes, URL-style.
2197 */
2198 while (*fromcp != '\0') {
2199 if (*fromcp == WEBNFS_ESC_CHAR) {
2200 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2201 fromcp++;
2202 *tocp++ = HEXSTRTOI(fromcp);
2203 fromcp += 2;
2204 continue;
2205 } else {
2206 error = ENOENT;
2207 PNBUF_PUT(cp);
2208 goto out;
2209 }
2210 } else
2211 *tocp++ = *fromcp++;
2212 }
2213 *tocp = '\0';
2214 PNBUF_PUT(cnp->cn_pnbuf);
2215 cnp->cn_pnbuf = cp;
2216 }
2217
2218 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2219 ndp->ni_segflg = UIO_SYSSPACE;
2220 ndp->ni_rootdir = rootvnode;
2221
2222 if (pubflag) {
2223 ndp->ni_loopcnt = 0;
2224 if (cnp->cn_pnbuf[0] == '/')
2225 dp = rootvnode;
2226 } else {
2227 cnp->cn_flags |= NOCROSSMOUNT;
2228 }
2229
2230 cnp->cn_lwp = l;
2231 VREF(dp);
2232
2233 for (;;) {
2234 cnp->cn_nameptr = cnp->cn_pnbuf;
2235 ndp->ni_startdir = dp;
2236 /*
2237 * And call lookup() to do the real work
2238 */
2239 error = lookup(ndp);
2240 if (error) {
2241 PNBUF_PUT(cnp->cn_pnbuf);
2242 return (error);
2243 }
2244 /*
2245 * Check for encountering a symbolic link
2246 */
2247 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2248 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2249 cnp->cn_flags |= HASBUF;
2250 else
2251 PNBUF_PUT(cnp->cn_pnbuf);
2252 return (0);
2253 } else {
2254 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
2255 VOP_UNLOCK(ndp->ni_dvp, 0);
2256 if (!pubflag) {
2257 error = EINVAL;
2258 break;
2259 }
2260
2261 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2262 error = ELOOP;
2263 break;
2264 }
2265 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2266 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2267 cnp->cn_lwp);
2268 if (error != 0)
2269 break;
2270 }
2271 if (ndp->ni_pathlen > 1)
2272 cp = PNBUF_GET();
2273 else
2274 cp = cnp->cn_pnbuf;
2275 aiov.iov_base = cp;
2276 aiov.iov_len = MAXPATHLEN;
2277 auio.uio_iov = &aiov;
2278 auio.uio_iovcnt = 1;
2279 auio.uio_offset = 0;
2280 auio.uio_rw = UIO_READ;
2281 auio.uio_resid = MAXPATHLEN;
2282 UIO_SETUP_SYSSPACE(&auio);
2283 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2284 if (error) {
2285 badlink:
2286 if (ndp->ni_pathlen > 1)
2287 PNBUF_PUT(cp);
2288 break;
2289 }
2290 linklen = MAXPATHLEN - auio.uio_resid;
2291 if (linklen == 0) {
2292 error = ENOENT;
2293 goto badlink;
2294 }
2295 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2296 error = ENAMETOOLONG;
2297 goto badlink;
2298 }
2299 if (ndp->ni_pathlen > 1) {
2300 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2301 PNBUF_PUT(cnp->cn_pnbuf);
2302 cnp->cn_pnbuf = cp;
2303 } else
2304 cnp->cn_pnbuf[linklen] = '\0';
2305 ndp->ni_pathlen += linklen;
2306 vput(ndp->ni_vp);
2307 dp = ndp->ni_dvp;
2308 /*
2309 * Check if root directory should replace current directory.
2310 */
2311 if (cnp->cn_pnbuf[0] == '/') {
2312 vrele(dp);
2313 dp = ndp->ni_rootdir;
2314 VREF(dp);
2315 }
2316 }
2317 }
2318 vrele(ndp->ni_dvp);
2319 vput(ndp->ni_vp);
2320 ndp->ni_vp = NULL;
2321 out:
2322 PNBUF_PUT(cnp->cn_pnbuf);
2323 return (error);
2324 }
2325 #endif /* NFSSERVER */
2326
2327 /*
2328 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2329 * boundary and only trims off the back end
2330 *
2331 * 1. trim off 'len' bytes as m_adj(mp, -len).
2332 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2333 */
2334 void
2335 nfs_zeropad(mp, len, nul)
2336 struct mbuf *mp;
2337 int len;
2338 int nul;
2339 {
2340 struct mbuf *m;
2341 int count;
2342
2343 /*
2344 * Trim from tail. Scan the mbuf chain,
2345 * calculating its length and finding the last mbuf.
2346 * If the adjustment only affects this mbuf, then just
2347 * adjust and return. Otherwise, rescan and truncate
2348 * after the remaining size.
2349 */
2350 count = 0;
2351 m = mp;
2352 for (;;) {
2353 count += m->m_len;
2354 if (m->m_next == NULL)
2355 break;
2356 m = m->m_next;
2357 }
2358
2359 KDASSERT(count >= len);
2360
2361 if (m->m_len >= len) {
2362 m->m_len -= len;
2363 } else {
2364 count -= len;
2365 /*
2366 * Correct length for chain is "count".
2367 * Find the mbuf with last data, adjust its length,
2368 * and toss data from remaining mbufs on chain.
2369 */
2370 for (m = mp; m; m = m->m_next) {
2371 if (m->m_len >= count) {
2372 m->m_len = count;
2373 break;
2374 }
2375 count -= m->m_len;
2376 }
2377 m_freem(m->m_next);
2378 m->m_next = NULL;
2379 }
2380
2381 KDASSERT(m->m_next == NULL);
2382
2383 /*
2384 * zero-padding.
2385 */
2386 if (nul > 0) {
2387 char *cp;
2388 int i;
2389
2390 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2391 struct mbuf *n;
2392
2393 KDASSERT(MLEN >= nul);
2394 n = m_get(M_WAIT, MT_DATA);
2395 MCLAIM(n, &nfs_mowner);
2396 n->m_len = nul;
2397 n->m_next = NULL;
2398 m->m_next = n;
2399 cp = mtod(n, caddr_t);
2400 } else {
2401 cp = mtod(m, caddr_t) + m->m_len;
2402 m->m_len += nul;
2403 }
2404 for (i = 0; i < nul; i++)
2405 *cp++ = '\0';
2406 }
2407 return;
2408 }
2409
2410 /*
2411 * Make these functions instead of macros, so that the kernel text size
2412 * doesn't get too big...
2413 */
2414 void
2415 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2416 struct nfsrv_descript *nfsd;
2417 int before_ret;
2418 struct vattr *before_vap;
2419 int after_ret;
2420 struct vattr *after_vap;
2421 struct mbuf **mbp;
2422 char **bposp;
2423 {
2424 struct mbuf *mb = *mbp;
2425 char *bpos = *bposp;
2426 u_int32_t *tl;
2427
2428 if (before_ret) {
2429 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2430 *tl = nfs_false;
2431 } else {
2432 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2433 *tl++ = nfs_true;
2434 txdr_hyper(before_vap->va_size, tl);
2435 tl += 2;
2436 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2437 tl += 2;
2438 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2439 }
2440 *bposp = bpos;
2441 *mbp = mb;
2442 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2443 }
2444
2445 void
2446 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2447 struct nfsrv_descript *nfsd;
2448 int after_ret;
2449 struct vattr *after_vap;
2450 struct mbuf **mbp;
2451 char **bposp;
2452 {
2453 struct mbuf *mb = *mbp;
2454 char *bpos = *bposp;
2455 u_int32_t *tl;
2456 struct nfs_fattr *fp;
2457
2458 if (after_ret) {
2459 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2460 *tl = nfs_false;
2461 } else {
2462 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2463 *tl++ = nfs_true;
2464 fp = (struct nfs_fattr *)tl;
2465 nfsm_srvfattr(nfsd, after_vap, fp);
2466 }
2467 *mbp = mb;
2468 *bposp = bpos;
2469 }
2470
2471 void
2472 nfsm_srvfattr(nfsd, vap, fp)
2473 struct nfsrv_descript *nfsd;
2474 struct vattr *vap;
2475 struct nfs_fattr *fp;
2476 {
2477
2478 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2479 fp->fa_uid = txdr_unsigned(vap->va_uid);
2480 fp->fa_gid = txdr_unsigned(vap->va_gid);
2481 if (nfsd->nd_flag & ND_NFSV3) {
2482 fp->fa_type = vtonfsv3_type(vap->va_type);
2483 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2484 txdr_hyper(vap->va_size, &fp->fa3_size);
2485 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2486 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2487 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2488 fp->fa3_fsid.nfsuquad[0] = 0;
2489 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2490 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2491 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2492 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2493 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2494 } else {
2495 fp->fa_type = vtonfsv2_type(vap->va_type);
2496 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2497 fp->fa2_size = txdr_unsigned(vap->va_size);
2498 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2499 if (vap->va_type == VFIFO)
2500 fp->fa2_rdev = 0xffffffff;
2501 else
2502 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2503 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2504 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2505 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2506 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2507 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2508 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2509 }
2510 }
2511
2512 #ifdef NFSSERVER
2513 /*
2514 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2515 * - look up fsid in mount list (if not found ret error)
2516 * - get vp and export rights by calling VFS_FHTOVP()
2517 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2518 * - if not lockflag unlock it with VOP_UNLOCK()
2519 */
2520 int
2521 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2522 fhandle_t *fhp;
2523 int lockflag;
2524 struct vnode **vpp;
2525 struct ucred *cred;
2526 struct nfssvc_sock *slp;
2527 struct mbuf *nam;
2528 int *rdonlyp;
2529 int kerbflag;
2530 {
2531 struct mount *mp;
2532 int i;
2533 struct ucred *credanon;
2534 int error, exflags;
2535 struct sockaddr_in *saddr;
2536
2537 *vpp = (struct vnode *)0;
2538
2539 if (nfs_ispublicfh(fhp)) {
2540 if (!pubflag || !nfs_pub.np_valid)
2541 return (ESTALE);
2542 fhp = &nfs_pub.np_handle;
2543 }
2544
2545 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2546 if (error) {
2547 return error;
2548 }
2549
2550 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2551 if (error)
2552 return (error);
2553
2554 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2555 saddr = mtod(nam, struct sockaddr_in *);
2556 if ((saddr->sin_family == AF_INET) &&
2557 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2558 vput(*vpp);
2559 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2560 }
2561 #ifdef INET6
2562 if ((saddr->sin_family == AF_INET6) &&
2563 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2564 vput(*vpp);
2565 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2566 }
2567 #endif
2568 }
2569 /*
2570 * Check/setup credentials.
2571 */
2572 if (exflags & MNT_EXKERB) {
2573 if (!kerbflag) {
2574 vput(*vpp);
2575 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2576 }
2577 } else if (kerbflag) {
2578 vput(*vpp);
2579 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2580 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2581 cred->cr_uid = credanon->cr_uid;
2582 cred->cr_gid = credanon->cr_gid;
2583 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2584 cred->cr_groups[i] = credanon->cr_groups[i];
2585 cred->cr_ngroups = i;
2586 }
2587 if (exflags & MNT_EXRDONLY)
2588 *rdonlyp = 1;
2589 else
2590 *rdonlyp = 0;
2591 if (!lockflag)
2592 VOP_UNLOCK(*vpp, 0);
2593 return (0);
2594 }
2595
2596 /*
2597 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2598 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2599 * transformed this to all zeroes in both cases, so check for it.
2600 */
2601 int
2602 nfs_ispublicfh(fhp)
2603 fhandle_t *fhp;
2604 {
2605 char *cp = (char *)fhp;
2606 int i;
2607
2608 for (i = 0; i < NFSX_V3FH; i++)
2609 if (*cp++ != 0)
2610 return (FALSE);
2611 return (TRUE);
2612 }
2613 #endif /* NFSSERVER */
2614
2615 /*
2616 * This function compares two net addresses by family and returns TRUE
2617 * if they are the same host.
2618 * If there is any doubt, return FALSE.
2619 * The AF_INET family is handled as a special case so that address mbufs
2620 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2621 */
2622 int
2623 netaddr_match(family, haddr, nam)
2624 int family;
2625 union nethostaddr *haddr;
2626 struct mbuf *nam;
2627 {
2628 struct sockaddr_in *inetaddr;
2629
2630 switch (family) {
2631 case AF_INET:
2632 inetaddr = mtod(nam, struct sockaddr_in *);
2633 if (inetaddr->sin_family == AF_INET &&
2634 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2635 return (1);
2636 break;
2637 #ifdef INET6
2638 case AF_INET6:
2639 {
2640 struct sockaddr_in6 *sin6_1, *sin6_2;
2641
2642 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2643 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2644 if (sin6_1->sin6_family == AF_INET6 &&
2645 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2646 return 1;
2647 }
2648 #endif
2649 #ifdef ISO
2650 case AF_ISO:
2651 {
2652 struct sockaddr_iso *isoaddr1, *isoaddr2;
2653
2654 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2655 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2656 if (isoaddr1->siso_family == AF_ISO &&
2657 isoaddr1->siso_nlen > 0 &&
2658 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2659 SAME_ISOADDR(isoaddr1, isoaddr2))
2660 return (1);
2661 break;
2662 }
2663 #endif /* ISO */
2664 default:
2665 break;
2666 };
2667 return (0);
2668 }
2669
2670 /*
2671 * The write verifier has changed (probably due to a server reboot), so all
2672 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2673 * as dirty or are being written out just now, all this takes is clearing
2674 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2675 * the mount point.
2676 */
2677 void
2678 nfs_clearcommit(mp)
2679 struct mount *mp;
2680 {
2681 struct vnode *vp;
2682 struct nfsnode *np;
2683 struct vm_page *pg;
2684 struct nfsmount *nmp = VFSTONFS(mp);
2685
2686 lockmgr(&nmp->nm_writeverflock, LK_EXCLUSIVE, NULL);
2687
2688 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2689 KASSERT(vp->v_mount == mp);
2690 if (vp->v_type != VREG)
2691 continue;
2692 np = VTONFS(vp);
2693 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2694 np->n_pushedhi = 0;
2695 np->n_commitflags &=
2696 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2697 simple_lock(&vp->v_uobj.vmobjlock);
2698 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2699 pg->flags &= ~PG_NEEDCOMMIT;
2700 }
2701 simple_unlock(&vp->v_uobj.vmobjlock);
2702 }
2703 simple_lock(&nmp->nm_slock);
2704 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2705 simple_unlock(&nmp->nm_slock);
2706 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
2707 }
2708
2709 void
2710 nfs_merge_commit_ranges(vp)
2711 struct vnode *vp;
2712 {
2713 struct nfsnode *np = VTONFS(vp);
2714
2715 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2716
2717 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2718 np->n_pushedlo = np->n_pushlo;
2719 np->n_pushedhi = np->n_pushhi;
2720 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2721 } else {
2722 if (np->n_pushlo < np->n_pushedlo)
2723 np->n_pushedlo = np->n_pushlo;
2724 if (np->n_pushhi > np->n_pushedhi)
2725 np->n_pushedhi = np->n_pushhi;
2726 }
2727
2728 np->n_pushlo = np->n_pushhi = 0;
2729 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2730
2731 #ifdef NFS_DEBUG_COMMIT
2732 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2733 (unsigned)np->n_pushedhi);
2734 #endif
2735 }
2736
2737 int
2738 nfs_in_committed_range(vp, off, len)
2739 struct vnode *vp;
2740 off_t off, len;
2741 {
2742 struct nfsnode *np = VTONFS(vp);
2743 off_t lo, hi;
2744
2745 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2746 return 0;
2747 lo = off;
2748 hi = lo + len;
2749
2750 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2751 }
2752
2753 int
2754 nfs_in_tobecommitted_range(vp, off, len)
2755 struct vnode *vp;
2756 off_t off, len;
2757 {
2758 struct nfsnode *np = VTONFS(vp);
2759 off_t lo, hi;
2760
2761 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2762 return 0;
2763 lo = off;
2764 hi = lo + len;
2765
2766 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2767 }
2768
2769 void
2770 nfs_add_committed_range(vp, off, len)
2771 struct vnode *vp;
2772 off_t off, len;
2773 {
2774 struct nfsnode *np = VTONFS(vp);
2775 off_t lo, hi;
2776
2777 lo = off;
2778 hi = lo + len;
2779
2780 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2781 np->n_pushedlo = lo;
2782 np->n_pushedhi = hi;
2783 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2784 } else {
2785 if (hi > np->n_pushedhi)
2786 np->n_pushedhi = hi;
2787 if (lo < np->n_pushedlo)
2788 np->n_pushedlo = lo;
2789 }
2790 #ifdef NFS_DEBUG_COMMIT
2791 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2792 (unsigned)np->n_pushedhi);
2793 #endif
2794 }
2795
2796 void
2797 nfs_del_committed_range(vp, off, len)
2798 struct vnode *vp;
2799 off_t off, len;
2800 {
2801 struct nfsnode *np = VTONFS(vp);
2802 off_t lo, hi;
2803
2804 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2805 return;
2806
2807 lo = off;
2808 hi = lo + len;
2809
2810 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2811 return;
2812 if (lo <= np->n_pushedlo)
2813 np->n_pushedlo = hi;
2814 else if (hi >= np->n_pushedhi)
2815 np->n_pushedhi = lo;
2816 else {
2817 /*
2818 * XXX There's only one range. If the deleted range
2819 * is in the middle, pick the largest of the
2820 * contiguous ranges that it leaves.
2821 */
2822 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2823 np->n_pushedhi = lo;
2824 else
2825 np->n_pushedlo = hi;
2826 }
2827 #ifdef NFS_DEBUG_COMMIT
2828 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2829 (unsigned)np->n_pushedhi);
2830 #endif
2831 }
2832
2833 void
2834 nfs_add_tobecommitted_range(vp, off, len)
2835 struct vnode *vp;
2836 off_t off, len;
2837 {
2838 struct nfsnode *np = VTONFS(vp);
2839 off_t lo, hi;
2840
2841 lo = off;
2842 hi = lo + len;
2843
2844 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2845 np->n_pushlo = lo;
2846 np->n_pushhi = hi;
2847 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2848 } else {
2849 if (lo < np->n_pushlo)
2850 np->n_pushlo = lo;
2851 if (hi > np->n_pushhi)
2852 np->n_pushhi = hi;
2853 }
2854 #ifdef NFS_DEBUG_COMMIT
2855 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2856 (unsigned)np->n_pushhi);
2857 #endif
2858 }
2859
2860 void
2861 nfs_del_tobecommitted_range(vp, off, len)
2862 struct vnode *vp;
2863 off_t off, len;
2864 {
2865 struct nfsnode *np = VTONFS(vp);
2866 off_t lo, hi;
2867
2868 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2869 return;
2870
2871 lo = off;
2872 hi = lo + len;
2873
2874 if (lo > np->n_pushhi || hi < np->n_pushlo)
2875 return;
2876
2877 if (lo <= np->n_pushlo)
2878 np->n_pushlo = hi;
2879 else if (hi >= np->n_pushhi)
2880 np->n_pushhi = lo;
2881 else {
2882 /*
2883 * XXX There's only one range. If the deleted range
2884 * is in the middle, pick the largest of the
2885 * contiguous ranges that it leaves.
2886 */
2887 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2888 np->n_pushhi = lo;
2889 else
2890 np->n_pushlo = hi;
2891 }
2892 #ifdef NFS_DEBUG_COMMIT
2893 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2894 (unsigned)np->n_pushhi);
2895 #endif
2896 }
2897
2898 /*
2899 * Map errnos to NFS error numbers. For Version 3 also filter out error
2900 * numbers not specified for the associated procedure.
2901 */
2902 int
2903 nfsrv_errmap(nd, err)
2904 struct nfsrv_descript *nd;
2905 int err;
2906 {
2907 const short *defaulterrp, *errp;
2908
2909 if (nd->nd_flag & ND_NFSV3) {
2910 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2911 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2912 while (*++errp) {
2913 if (*errp == err)
2914 return (err);
2915 else if (*errp > err)
2916 break;
2917 }
2918 return ((int)*defaulterrp);
2919 } else
2920 return (err & 0xffff);
2921 }
2922 if (err <= ELAST)
2923 return ((int)nfsrv_v2errmap[err - 1]);
2924 return (NFSERR_IO);
2925 }
2926
2927 /*
2928 * Sort the group list in increasing numerical order.
2929 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2930 * that used to be here.)
2931 */
2932 void
2933 nfsrvw_sort(list, num)
2934 gid_t *list;
2935 int num;
2936 {
2937 int i, j;
2938 gid_t v;
2939
2940 /* Insertion sort. */
2941 for (i = 1; i < num; i++) {
2942 v = list[i];
2943 /* find correct slot for value v, moving others up */
2944 for (j = i; --j >= 0 && v < list[j];)
2945 list[j + 1] = list[j];
2946 list[j + 1] = v;
2947 }
2948 }
2949
2950 /*
2951 * copy credentials making sure that the result can be compared with memcmp().
2952 */
2953 void
2954 nfsrv_setcred(incred, outcred)
2955 struct ucred *incred, *outcred;
2956 {
2957 int i;
2958
2959 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2960 outcred->cr_ref = 1;
2961 outcred->cr_uid = incred->cr_uid;
2962 outcred->cr_gid = incred->cr_gid;
2963 outcred->cr_ngroups = incred->cr_ngroups;
2964 for (i = 0; i < incred->cr_ngroups; i++)
2965 outcred->cr_groups[i] = incred->cr_groups[i];
2966 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2967 }
2968
2969 u_int32_t
2970 nfs_getxid()
2971 {
2972 static u_int32_t base;
2973 static u_int32_t nfs_xid = 0;
2974 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2975 u_int32_t newxid;
2976
2977 simple_lock(&nfs_xidlock);
2978 /*
2979 * derive initial xid from system time
2980 * XXX time is invalid if root not yet mounted
2981 */
2982 if (__predict_false(!base && (rootvp))) {
2983 struct timeval tv;
2984
2985 microtime(&tv);
2986 base = tv.tv_sec << 12;
2987 nfs_xid = base;
2988 }
2989
2990 /*
2991 * Skip zero xid if it should ever happen.
2992 */
2993 if (__predict_false(++nfs_xid == 0))
2994 nfs_xid++;
2995 newxid = nfs_xid;
2996 simple_unlock(&nfs_xidlock);
2997
2998 return txdr_unsigned(newxid);
2999 }
3000
3001 /*
3002 * assign a new xid for existing request.
3003 * used for NFSERR_JUKEBOX handling.
3004 */
3005 void
3006 nfs_renewxid(struct nfsreq *req)
3007 {
3008 u_int32_t xid;
3009 int off;
3010
3011 xid = nfs_getxid();
3012 if (req->r_nmp->nm_sotype == SOCK_STREAM)
3013 off = sizeof(u_int32_t); /* RPC record mark */
3014 else
3015 off = 0;
3016
3017 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
3018 req->r_xid = xid;
3019 }
3020