nfs_subs.c revision 1.160 1 /* $NetBSD: nfs_subs.c,v 1.160 2006/04/15 01:45:15 christos Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.160 2006/04/15 01:45:15 christos Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 #include <sys/once.h>
101
102 #include <uvm/uvm_extern.h>
103
104 #include <nfs/rpcv2.h>
105 #include <nfs/nfsproto.h>
106 #include <nfs/nfsnode.h>
107 #include <nfs/nfs.h>
108 #include <nfs/xdr_subs.h>
109 #include <nfs/nfsm_subs.h>
110 #include <nfs/nfsmount.h>
111 #include <nfs/nqnfs.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114
115 #include <miscfs/specfs/specdev.h>
116
117 #include <netinet/in.h>
118 #ifdef ISO
119 #include <netiso/iso.h>
120 #endif
121
122 /*
123 * Data items converted to xdr at startup, since they are constant
124 * This is kinda hokey, but may save a little time doing byte swaps
125 */
126 u_int32_t nfs_xdrneg1;
127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
128 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
129 rpc_auth_kerb;
130 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
131
132 /* And other global data */
133 const nfstype nfsv2_type[9] =
134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142 int nfs_commitsize;
143
144 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
145
146 /* NFS client/server stats. */
147 struct nfsstats nfsstats;
148
149 /*
150 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
151 */
152 const int nfsv3_procid[NFS_NPROCS] = {
153 NFSPROC_NULL,
154 NFSPROC_GETATTR,
155 NFSPROC_SETATTR,
156 NFSPROC_NOOP,
157 NFSPROC_LOOKUP,
158 NFSPROC_READLINK,
159 NFSPROC_READ,
160 NFSPROC_NOOP,
161 NFSPROC_WRITE,
162 NFSPROC_CREATE,
163 NFSPROC_REMOVE,
164 NFSPROC_RENAME,
165 NFSPROC_LINK,
166 NFSPROC_SYMLINK,
167 NFSPROC_MKDIR,
168 NFSPROC_RMDIR,
169 NFSPROC_READDIR,
170 NFSPROC_FSSTAT,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP,
177 NFSPROC_NOOP,
178 NFSPROC_NOOP
179 };
180
181 /*
182 * and the reverse mapping from generic to Version 2 procedure numbers
183 */
184 const int nfsv2_procid[NFS_NPROCS] = {
185 NFSV2PROC_NULL,
186 NFSV2PROC_GETATTR,
187 NFSV2PROC_SETATTR,
188 NFSV2PROC_LOOKUP,
189 NFSV2PROC_NOOP,
190 NFSV2PROC_READLINK,
191 NFSV2PROC_READ,
192 NFSV2PROC_WRITE,
193 NFSV2PROC_CREATE,
194 NFSV2PROC_MKDIR,
195 NFSV2PROC_SYMLINK,
196 NFSV2PROC_CREATE,
197 NFSV2PROC_REMOVE,
198 NFSV2PROC_RMDIR,
199 NFSV2PROC_RENAME,
200 NFSV2PROC_LINK,
201 NFSV2PROC_READDIR,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_STATFS,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_NOOP,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 NFSV2PROC_NOOP,
209 NFSV2PROC_NOOP,
210 NFSV2PROC_NOOP,
211 };
212
213 /*
214 * Maps errno values to nfs error numbers.
215 * Use NFSERR_IO as the catch all for ones not specifically defined in
216 * RFC 1094.
217 */
218 static const u_char nfsrv_v2errmap[ELAST] = {
219 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
223 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
231 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
232 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
233 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
234 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
235 NFSERR_IO, NFSERR_IO,
236 };
237
238 /*
239 * Maps errno values to nfs error numbers.
240 * Although it is not obvious whether or not NFS clients really care if
241 * a returned error value is in the specified list for the procedure, the
242 * safest thing to do is filter them appropriately. For Version 2, the
243 * X/Open XNFS document is the only specification that defines error values
244 * for each RPC (The RFC simply lists all possible error values for all RPCs),
245 * so I have decided to not do this for Version 2.
246 * The first entry is the default error return and the rest are the valid
247 * errors for that RPC in increasing numeric order.
248 */
249 static const short nfsv3err_null[] = {
250 0,
251 0,
252 };
253
254 static const short nfsv3err_getattr[] = {
255 NFSERR_IO,
256 NFSERR_IO,
257 NFSERR_STALE,
258 NFSERR_BADHANDLE,
259 NFSERR_SERVERFAULT,
260 0,
261 };
262
263 static const short nfsv3err_setattr[] = {
264 NFSERR_IO,
265 NFSERR_PERM,
266 NFSERR_IO,
267 NFSERR_ACCES,
268 NFSERR_INVAL,
269 NFSERR_NOSPC,
270 NFSERR_ROFS,
271 NFSERR_DQUOT,
272 NFSERR_STALE,
273 NFSERR_BADHANDLE,
274 NFSERR_NOT_SYNC,
275 NFSERR_SERVERFAULT,
276 0,
277 };
278
279 static const short nfsv3err_lookup[] = {
280 NFSERR_IO,
281 NFSERR_NOENT,
282 NFSERR_IO,
283 NFSERR_ACCES,
284 NFSERR_NOTDIR,
285 NFSERR_NAMETOL,
286 NFSERR_STALE,
287 NFSERR_BADHANDLE,
288 NFSERR_SERVERFAULT,
289 0,
290 };
291
292 static const short nfsv3err_access[] = {
293 NFSERR_IO,
294 NFSERR_IO,
295 NFSERR_STALE,
296 NFSERR_BADHANDLE,
297 NFSERR_SERVERFAULT,
298 0,
299 };
300
301 static const short nfsv3err_readlink[] = {
302 NFSERR_IO,
303 NFSERR_IO,
304 NFSERR_ACCES,
305 NFSERR_INVAL,
306 NFSERR_STALE,
307 NFSERR_BADHANDLE,
308 NFSERR_NOTSUPP,
309 NFSERR_SERVERFAULT,
310 0,
311 };
312
313 static const short nfsv3err_read[] = {
314 NFSERR_IO,
315 NFSERR_IO,
316 NFSERR_NXIO,
317 NFSERR_ACCES,
318 NFSERR_INVAL,
319 NFSERR_STALE,
320 NFSERR_BADHANDLE,
321 NFSERR_SERVERFAULT,
322 NFSERR_JUKEBOX,
323 0,
324 };
325
326 static const short nfsv3err_write[] = {
327 NFSERR_IO,
328 NFSERR_IO,
329 NFSERR_ACCES,
330 NFSERR_INVAL,
331 NFSERR_FBIG,
332 NFSERR_NOSPC,
333 NFSERR_ROFS,
334 NFSERR_DQUOT,
335 NFSERR_STALE,
336 NFSERR_BADHANDLE,
337 NFSERR_SERVERFAULT,
338 NFSERR_JUKEBOX,
339 0,
340 };
341
342 static const short nfsv3err_create[] = {
343 NFSERR_IO,
344 NFSERR_IO,
345 NFSERR_ACCES,
346 NFSERR_EXIST,
347 NFSERR_NOTDIR,
348 NFSERR_NOSPC,
349 NFSERR_ROFS,
350 NFSERR_NAMETOL,
351 NFSERR_DQUOT,
352 NFSERR_STALE,
353 NFSERR_BADHANDLE,
354 NFSERR_NOTSUPP,
355 NFSERR_SERVERFAULT,
356 0,
357 };
358
359 static const short nfsv3err_mkdir[] = {
360 NFSERR_IO,
361 NFSERR_IO,
362 NFSERR_ACCES,
363 NFSERR_EXIST,
364 NFSERR_NOTDIR,
365 NFSERR_NOSPC,
366 NFSERR_ROFS,
367 NFSERR_NAMETOL,
368 NFSERR_DQUOT,
369 NFSERR_STALE,
370 NFSERR_BADHANDLE,
371 NFSERR_NOTSUPP,
372 NFSERR_SERVERFAULT,
373 0,
374 };
375
376 static const short nfsv3err_symlink[] = {
377 NFSERR_IO,
378 NFSERR_IO,
379 NFSERR_ACCES,
380 NFSERR_EXIST,
381 NFSERR_NOTDIR,
382 NFSERR_NOSPC,
383 NFSERR_ROFS,
384 NFSERR_NAMETOL,
385 NFSERR_DQUOT,
386 NFSERR_STALE,
387 NFSERR_BADHANDLE,
388 NFSERR_NOTSUPP,
389 NFSERR_SERVERFAULT,
390 0,
391 };
392
393 static const short nfsv3err_mknod[] = {
394 NFSERR_IO,
395 NFSERR_IO,
396 NFSERR_ACCES,
397 NFSERR_EXIST,
398 NFSERR_NOTDIR,
399 NFSERR_NOSPC,
400 NFSERR_ROFS,
401 NFSERR_NAMETOL,
402 NFSERR_DQUOT,
403 NFSERR_STALE,
404 NFSERR_BADHANDLE,
405 NFSERR_NOTSUPP,
406 NFSERR_SERVERFAULT,
407 NFSERR_BADTYPE,
408 0,
409 };
410
411 static const short nfsv3err_remove[] = {
412 NFSERR_IO,
413 NFSERR_NOENT,
414 NFSERR_IO,
415 NFSERR_ACCES,
416 NFSERR_NOTDIR,
417 NFSERR_ROFS,
418 NFSERR_NAMETOL,
419 NFSERR_STALE,
420 NFSERR_BADHANDLE,
421 NFSERR_SERVERFAULT,
422 0,
423 };
424
425 static const short nfsv3err_rmdir[] = {
426 NFSERR_IO,
427 NFSERR_NOENT,
428 NFSERR_IO,
429 NFSERR_ACCES,
430 NFSERR_EXIST,
431 NFSERR_NOTDIR,
432 NFSERR_INVAL,
433 NFSERR_ROFS,
434 NFSERR_NAMETOL,
435 NFSERR_NOTEMPTY,
436 NFSERR_STALE,
437 NFSERR_BADHANDLE,
438 NFSERR_NOTSUPP,
439 NFSERR_SERVERFAULT,
440 0,
441 };
442
443 static const short nfsv3err_rename[] = {
444 NFSERR_IO,
445 NFSERR_NOENT,
446 NFSERR_IO,
447 NFSERR_ACCES,
448 NFSERR_EXIST,
449 NFSERR_XDEV,
450 NFSERR_NOTDIR,
451 NFSERR_ISDIR,
452 NFSERR_INVAL,
453 NFSERR_NOSPC,
454 NFSERR_ROFS,
455 NFSERR_MLINK,
456 NFSERR_NAMETOL,
457 NFSERR_NOTEMPTY,
458 NFSERR_DQUOT,
459 NFSERR_STALE,
460 NFSERR_BADHANDLE,
461 NFSERR_NOTSUPP,
462 NFSERR_SERVERFAULT,
463 0,
464 };
465
466 static const short nfsv3err_link[] = {
467 NFSERR_IO,
468 NFSERR_IO,
469 NFSERR_ACCES,
470 NFSERR_EXIST,
471 NFSERR_XDEV,
472 NFSERR_NOTDIR,
473 NFSERR_INVAL,
474 NFSERR_NOSPC,
475 NFSERR_ROFS,
476 NFSERR_MLINK,
477 NFSERR_NAMETOL,
478 NFSERR_DQUOT,
479 NFSERR_STALE,
480 NFSERR_BADHANDLE,
481 NFSERR_NOTSUPP,
482 NFSERR_SERVERFAULT,
483 0,
484 };
485
486 static const short nfsv3err_readdir[] = {
487 NFSERR_IO,
488 NFSERR_IO,
489 NFSERR_ACCES,
490 NFSERR_NOTDIR,
491 NFSERR_STALE,
492 NFSERR_BADHANDLE,
493 NFSERR_BAD_COOKIE,
494 NFSERR_TOOSMALL,
495 NFSERR_SERVERFAULT,
496 0,
497 };
498
499 static const short nfsv3err_readdirplus[] = {
500 NFSERR_IO,
501 NFSERR_IO,
502 NFSERR_ACCES,
503 NFSERR_NOTDIR,
504 NFSERR_STALE,
505 NFSERR_BADHANDLE,
506 NFSERR_BAD_COOKIE,
507 NFSERR_NOTSUPP,
508 NFSERR_TOOSMALL,
509 NFSERR_SERVERFAULT,
510 0,
511 };
512
513 static const short nfsv3err_fsstat[] = {
514 NFSERR_IO,
515 NFSERR_IO,
516 NFSERR_STALE,
517 NFSERR_BADHANDLE,
518 NFSERR_SERVERFAULT,
519 0,
520 };
521
522 static const short nfsv3err_fsinfo[] = {
523 NFSERR_STALE,
524 NFSERR_STALE,
525 NFSERR_BADHANDLE,
526 NFSERR_SERVERFAULT,
527 0,
528 };
529
530 static const short nfsv3err_pathconf[] = {
531 NFSERR_STALE,
532 NFSERR_STALE,
533 NFSERR_BADHANDLE,
534 NFSERR_SERVERFAULT,
535 0,
536 };
537
538 static const short nfsv3err_commit[] = {
539 NFSERR_IO,
540 NFSERR_IO,
541 NFSERR_STALE,
542 NFSERR_BADHANDLE,
543 NFSERR_SERVERFAULT,
544 0,
545 };
546
547 static const short * const nfsrv_v3errmap[] = {
548 nfsv3err_null,
549 nfsv3err_getattr,
550 nfsv3err_setattr,
551 nfsv3err_lookup,
552 nfsv3err_access,
553 nfsv3err_readlink,
554 nfsv3err_read,
555 nfsv3err_write,
556 nfsv3err_create,
557 nfsv3err_mkdir,
558 nfsv3err_symlink,
559 nfsv3err_mknod,
560 nfsv3err_remove,
561 nfsv3err_rmdir,
562 nfsv3err_rename,
563 nfsv3err_link,
564 nfsv3err_readdir,
565 nfsv3err_readdirplus,
566 nfsv3err_fsstat,
567 nfsv3err_fsinfo,
568 nfsv3err_pathconf,
569 nfsv3err_commit,
570 };
571
572 extern struct nfsrtt nfsrtt;
573 extern time_t nqnfsstarttime;
574 extern int nqsrv_clockskew;
575 extern int nqsrv_writeslack;
576 extern int nqsrv_maxlease;
577 extern const int nqnfs_piggy[NFS_NPROCS];
578 extern struct nfsnodehashhead *nfsnodehashtbl;
579 extern u_long nfsnodehash;
580
581 u_long nfsdirhashmask;
582
583 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
584
585 /*
586 * Create the header for an rpc request packet
587 * The hsiz is the size of the rest of the nfs request header.
588 * (just used to decide if a cluster is a good idea)
589 */
590 struct mbuf *
591 nfsm_reqh(np, procid, hsiz, bposp)
592 struct nfsnode *np;
593 u_long procid;
594 int hsiz;
595 caddr_t *bposp;
596 {
597 struct mbuf *mb;
598 caddr_t bpos;
599 #ifndef NFS_V2_ONLY
600 struct nfsmount *nmp;
601 u_int32_t *tl;
602 int nqflag;
603 #endif
604
605 mb = m_get(M_WAIT, MT_DATA);
606 MCLAIM(mb, &nfs_mowner);
607 if (hsiz >= MINCLSIZE)
608 m_clget(mb, M_WAIT);
609 mb->m_len = 0;
610 bpos = mtod(mb, caddr_t);
611
612 #ifndef NFS_V2_ONLY
613 /*
614 * For NQNFS, add lease request.
615 */
616 if (np) {
617 nmp = VFSTONFS(np->n_vnode->v_mount);
618 if (nmp->nm_flag & NFSMNT_NQNFS) {
619 nqflag = NQNFS_NEEDLEASE(np, procid);
620 if (nqflag) {
621 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
622 *tl++ = txdr_unsigned(nqflag);
623 *tl = txdr_unsigned(nmp->nm_leaseterm);
624 } else {
625 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
626 *tl = 0;
627 }
628 }
629 }
630 #endif
631 /* Finally, return values */
632 *bposp = bpos;
633 return (mb);
634 }
635
636 /*
637 * Build the RPC header and fill in the authorization info.
638 * The authorization string argument is only used when the credentials
639 * come from outside of the kernel.
640 * Returns the head of the mbuf list.
641 */
642 struct mbuf *
643 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
644 verf_str, mrest, mrest_len, mbp, xidp)
645 struct ucred *cr;
646 int nmflag;
647 int procid;
648 int auth_type;
649 int auth_len;
650 char *auth_str;
651 int verf_len;
652 char *verf_str;
653 struct mbuf *mrest;
654 int mrest_len;
655 struct mbuf **mbp;
656 u_int32_t *xidp;
657 {
658 struct mbuf *mb;
659 u_int32_t *tl;
660 caddr_t bpos;
661 int i;
662 struct mbuf *mreq;
663 int siz, grpsiz, authsiz;
664
665 authsiz = nfsm_rndup(auth_len);
666 mb = m_gethdr(M_WAIT, MT_DATA);
667 MCLAIM(mb, &nfs_mowner);
668 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
669 m_clget(mb, M_WAIT);
670 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
671 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
672 } else {
673 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
674 }
675 mb->m_len = 0;
676 mreq = mb;
677 bpos = mtod(mb, caddr_t);
678
679 /*
680 * First the RPC header.
681 */
682 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
683
684 *tl++ = *xidp = nfs_getxid();
685 *tl++ = rpc_call;
686 *tl++ = rpc_vers;
687 if (nmflag & NFSMNT_NQNFS) {
688 *tl++ = txdr_unsigned(NQNFS_PROG);
689 *tl++ = txdr_unsigned(NQNFS_VER3);
690 } else {
691 *tl++ = txdr_unsigned(NFS_PROG);
692 if (nmflag & NFSMNT_NFSV3)
693 *tl++ = txdr_unsigned(NFS_VER3);
694 else
695 *tl++ = txdr_unsigned(NFS_VER2);
696 }
697 if (nmflag & NFSMNT_NFSV3)
698 *tl++ = txdr_unsigned(procid);
699 else
700 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
701
702 /*
703 * And then the authorization cred.
704 */
705 *tl++ = txdr_unsigned(auth_type);
706 *tl = txdr_unsigned(authsiz);
707 switch (auth_type) {
708 case RPCAUTH_UNIX:
709 nfsm_build(tl, u_int32_t *, auth_len);
710 *tl++ = 0; /* stamp ?? */
711 *tl++ = 0; /* NULL hostname */
712 *tl++ = txdr_unsigned(cr->cr_uid);
713 *tl++ = txdr_unsigned(cr->cr_gid);
714 grpsiz = (auth_len >> 2) - 5;
715 *tl++ = txdr_unsigned(grpsiz);
716 for (i = 0; i < grpsiz; i++)
717 *tl++ = txdr_unsigned(cr->cr_groups[i]);
718 break;
719 case RPCAUTH_KERB4:
720 siz = auth_len;
721 while (siz > 0) {
722 if (M_TRAILINGSPACE(mb) == 0) {
723 struct mbuf *mb2;
724 mb2 = m_get(M_WAIT, MT_DATA);
725 MCLAIM(mb2, &nfs_mowner);
726 if (siz >= MINCLSIZE)
727 m_clget(mb2, M_WAIT);
728 mb->m_next = mb2;
729 mb = mb2;
730 mb->m_len = 0;
731 bpos = mtod(mb, caddr_t);
732 }
733 i = min(siz, M_TRAILINGSPACE(mb));
734 memcpy(bpos, auth_str, i);
735 mb->m_len += i;
736 auth_str += i;
737 bpos += i;
738 siz -= i;
739 }
740 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
741 for (i = 0; i < siz; i++)
742 *bpos++ = '\0';
743 mb->m_len += siz;
744 }
745 break;
746 };
747
748 /*
749 * And the verifier...
750 */
751 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
752 if (verf_str) {
753 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
754 *tl = txdr_unsigned(verf_len);
755 siz = verf_len;
756 while (siz > 0) {
757 if (M_TRAILINGSPACE(mb) == 0) {
758 struct mbuf *mb2;
759 mb2 = m_get(M_WAIT, MT_DATA);
760 MCLAIM(mb2, &nfs_mowner);
761 if (siz >= MINCLSIZE)
762 m_clget(mb2, M_WAIT);
763 mb->m_next = mb2;
764 mb = mb2;
765 mb->m_len = 0;
766 bpos = mtod(mb, caddr_t);
767 }
768 i = min(siz, M_TRAILINGSPACE(mb));
769 memcpy(bpos, verf_str, i);
770 mb->m_len += i;
771 verf_str += i;
772 bpos += i;
773 siz -= i;
774 }
775 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
776 for (i = 0; i < siz; i++)
777 *bpos++ = '\0';
778 mb->m_len += siz;
779 }
780 } else {
781 *tl++ = txdr_unsigned(RPCAUTH_NULL);
782 *tl = 0;
783 }
784 mb->m_next = mrest;
785 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
786 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
787 *mbp = mb;
788 return (mreq);
789 }
790
791 /*
792 * copies mbuf chain to the uio scatter/gather list
793 */
794 int
795 nfsm_mbuftouio(mrep, uiop, siz, dpos)
796 struct mbuf **mrep;
797 struct uio *uiop;
798 int siz;
799 caddr_t *dpos;
800 {
801 char *mbufcp, *uiocp;
802 int xfer, left, len;
803 struct mbuf *mp;
804 long uiosiz, rem;
805 int error = 0;
806
807 mp = *mrep;
808 mbufcp = *dpos;
809 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
810 rem = nfsm_rndup(siz)-siz;
811 while (siz > 0) {
812 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
813 return (EFBIG);
814 left = uiop->uio_iov->iov_len;
815 uiocp = uiop->uio_iov->iov_base;
816 if (left > siz)
817 left = siz;
818 uiosiz = left;
819 while (left > 0) {
820 while (len == 0) {
821 mp = mp->m_next;
822 if (mp == NULL)
823 return (EBADRPC);
824 mbufcp = mtod(mp, caddr_t);
825 len = mp->m_len;
826 }
827 xfer = (left > len) ? len : left;
828 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
829 uiocp, xfer);
830 if (error) {
831 return error;
832 }
833 left -= xfer;
834 len -= xfer;
835 mbufcp += xfer;
836 uiocp += xfer;
837 uiop->uio_offset += xfer;
838 uiop->uio_resid -= xfer;
839 }
840 if (uiop->uio_iov->iov_len <= siz) {
841 uiop->uio_iovcnt--;
842 uiop->uio_iov++;
843 } else {
844 uiop->uio_iov->iov_base =
845 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
846 uiop->uio_iov->iov_len -= uiosiz;
847 }
848 siz -= uiosiz;
849 }
850 *dpos = mbufcp;
851 *mrep = mp;
852 if (rem > 0) {
853 if (len < rem)
854 error = nfs_adv(mrep, dpos, rem, len);
855 else
856 *dpos += rem;
857 }
858 return (error);
859 }
860
861 /*
862 * copies a uio scatter/gather list to an mbuf chain.
863 * NOTE: can ony handle iovcnt == 1
864 */
865 int
866 nfsm_uiotombuf(uiop, mq, siz, bpos)
867 struct uio *uiop;
868 struct mbuf **mq;
869 int siz;
870 caddr_t *bpos;
871 {
872 char *uiocp;
873 struct mbuf *mp, *mp2;
874 int xfer, left, mlen;
875 int uiosiz, clflg, rem;
876 char *cp;
877 int error;
878
879 #ifdef DIAGNOSTIC
880 if (uiop->uio_iovcnt != 1)
881 panic("nfsm_uiotombuf: iovcnt != 1");
882 #endif
883
884 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
885 clflg = 1;
886 else
887 clflg = 0;
888 rem = nfsm_rndup(siz)-siz;
889 mp = mp2 = *mq;
890 while (siz > 0) {
891 left = uiop->uio_iov->iov_len;
892 uiocp = uiop->uio_iov->iov_base;
893 if (left > siz)
894 left = siz;
895 uiosiz = left;
896 while (left > 0) {
897 mlen = M_TRAILINGSPACE(mp);
898 if (mlen == 0) {
899 mp = m_get(M_WAIT, MT_DATA);
900 MCLAIM(mp, &nfs_mowner);
901 if (clflg)
902 m_clget(mp, M_WAIT);
903 mp->m_len = 0;
904 mp2->m_next = mp;
905 mp2 = mp;
906 mlen = M_TRAILINGSPACE(mp);
907 }
908 xfer = (left > mlen) ? mlen : left;
909 cp = mtod(mp, caddr_t) + mp->m_len;
910 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
911 xfer);
912 if (error) {
913 /* XXX */
914 }
915 mp->m_len += xfer;
916 left -= xfer;
917 uiocp += xfer;
918 uiop->uio_offset += xfer;
919 uiop->uio_resid -= xfer;
920 }
921 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
922 uiosiz;
923 uiop->uio_iov->iov_len -= uiosiz;
924 siz -= uiosiz;
925 }
926 if (rem > 0) {
927 if (rem > M_TRAILINGSPACE(mp)) {
928 mp = m_get(M_WAIT, MT_DATA);
929 MCLAIM(mp, &nfs_mowner);
930 mp->m_len = 0;
931 mp2->m_next = mp;
932 }
933 cp = mtod(mp, caddr_t) + mp->m_len;
934 for (left = 0; left < rem; left++)
935 *cp++ = '\0';
936 mp->m_len += rem;
937 *bpos = cp;
938 } else
939 *bpos = mtod(mp, caddr_t)+mp->m_len;
940 *mq = mp;
941 return (0);
942 }
943
944 /*
945 * Get at least "siz" bytes of correctly aligned data.
946 * When called the mbuf pointers are not necessarily correct,
947 * dsosp points to what ought to be in m_data and left contains
948 * what ought to be in m_len.
949 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
950 * cases. (The macros use the vars. dpos and dpos2)
951 */
952 int
953 nfsm_disct(mdp, dposp, siz, left, cp2)
954 struct mbuf **mdp;
955 caddr_t *dposp;
956 int siz;
957 int left;
958 caddr_t *cp2;
959 {
960 struct mbuf *m1, *m2;
961 struct mbuf *havebuf = NULL;
962 caddr_t src = *dposp;
963 caddr_t dst;
964 int len;
965
966 #ifdef DEBUG
967 if (left < 0)
968 panic("nfsm_disct: left < 0");
969 #endif
970 m1 = *mdp;
971 /*
972 * Skip through the mbuf chain looking for an mbuf with
973 * some data. If the first mbuf found has enough data
974 * and it is correctly aligned return it.
975 */
976 while (left == 0) {
977 havebuf = m1;
978 *mdp = m1 = m1->m_next;
979 if (m1 == NULL)
980 return (EBADRPC);
981 src = mtod(m1, caddr_t);
982 left = m1->m_len;
983 /*
984 * If we start a new mbuf and it is big enough
985 * and correctly aligned just return it, don't
986 * do any pull up.
987 */
988 if (left >= siz && nfsm_aligned(src)) {
989 *cp2 = src;
990 *dposp = src + siz;
991 return (0);
992 }
993 }
994 if (m1->m_flags & M_EXT) {
995 if (havebuf) {
996 /* If the first mbuf with data has external data
997 * and there is a previous empty mbuf use it
998 * to move the data into.
999 */
1000 m2 = m1;
1001 *mdp = m1 = havebuf;
1002 if (m1->m_flags & M_EXT) {
1003 MEXTREMOVE(m1);
1004 }
1005 } else {
1006 /*
1007 * If the first mbuf has a external data
1008 * and there is no previous empty mbuf
1009 * allocate a new mbuf and move the external
1010 * data to the new mbuf. Also make the first
1011 * mbuf look empty.
1012 */
1013 m2 = m_get(M_WAIT, MT_DATA);
1014 m2->m_ext = m1->m_ext;
1015 m2->m_data = src;
1016 m2->m_len = left;
1017 MCLADDREFERENCE(m1, m2);
1018 MEXTREMOVE(m1);
1019 m2->m_next = m1->m_next;
1020 m1->m_next = m2;
1021 }
1022 m1->m_len = 0;
1023 if (m1->m_flags & M_PKTHDR)
1024 dst = m1->m_pktdat;
1025 else
1026 dst = m1->m_dat;
1027 m1->m_data = dst;
1028 } else {
1029 /*
1030 * If the first mbuf has no external data
1031 * move the data to the front of the mbuf.
1032 */
1033 if (m1->m_flags & M_PKTHDR)
1034 dst = m1->m_pktdat;
1035 else
1036 dst = m1->m_dat;
1037 m1->m_data = dst;
1038 if (dst != src)
1039 memmove(dst, src, left);
1040 dst += left;
1041 m1->m_len = left;
1042 m2 = m1->m_next;
1043 }
1044 *cp2 = m1->m_data;
1045 *dposp = mtod(m1, caddr_t) + siz;
1046 /*
1047 * Loop through mbufs pulling data up into first mbuf until
1048 * the first mbuf is full or there is no more data to
1049 * pullup.
1050 */
1051 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1052 if ((len = min(len, m2->m_len)) != 0)
1053 memcpy(dst, m2->m_data, len);
1054 m1->m_len += len;
1055 dst += len;
1056 m2->m_data += len;
1057 m2->m_len -= len;
1058 m2 = m2->m_next;
1059 }
1060 if (m1->m_len < siz)
1061 return (EBADRPC);
1062 return (0);
1063 }
1064
1065 /*
1066 * Advance the position in the mbuf chain.
1067 */
1068 int
1069 nfs_adv(mdp, dposp, offs, left)
1070 struct mbuf **mdp;
1071 caddr_t *dposp;
1072 int offs;
1073 int left;
1074 {
1075 struct mbuf *m;
1076 int s;
1077
1078 m = *mdp;
1079 s = left;
1080 while (s < offs) {
1081 offs -= s;
1082 m = m->m_next;
1083 if (m == NULL)
1084 return (EBADRPC);
1085 s = m->m_len;
1086 }
1087 *mdp = m;
1088 *dposp = mtod(m, caddr_t)+offs;
1089 return (0);
1090 }
1091
1092 /*
1093 * Copy a string into mbufs for the hard cases...
1094 */
1095 int
1096 nfsm_strtmbuf(mb, bpos, cp, siz)
1097 struct mbuf **mb;
1098 char **bpos;
1099 const char *cp;
1100 long siz;
1101 {
1102 struct mbuf *m1 = NULL, *m2;
1103 long left, xfer, len, tlen;
1104 u_int32_t *tl;
1105 int putsize;
1106
1107 putsize = 1;
1108 m2 = *mb;
1109 left = M_TRAILINGSPACE(m2);
1110 if (left > 0) {
1111 tl = ((u_int32_t *)(*bpos));
1112 *tl++ = txdr_unsigned(siz);
1113 putsize = 0;
1114 left -= NFSX_UNSIGNED;
1115 m2->m_len += NFSX_UNSIGNED;
1116 if (left > 0) {
1117 memcpy((caddr_t) tl, cp, left);
1118 siz -= left;
1119 cp += left;
1120 m2->m_len += left;
1121 left = 0;
1122 }
1123 }
1124 /* Loop around adding mbufs */
1125 while (siz > 0) {
1126 m1 = m_get(M_WAIT, MT_DATA);
1127 MCLAIM(m1, &nfs_mowner);
1128 if (siz > MLEN)
1129 m_clget(m1, M_WAIT);
1130 m1->m_len = NFSMSIZ(m1);
1131 m2->m_next = m1;
1132 m2 = m1;
1133 tl = mtod(m1, u_int32_t *);
1134 tlen = 0;
1135 if (putsize) {
1136 *tl++ = txdr_unsigned(siz);
1137 m1->m_len -= NFSX_UNSIGNED;
1138 tlen = NFSX_UNSIGNED;
1139 putsize = 0;
1140 }
1141 if (siz < m1->m_len) {
1142 len = nfsm_rndup(siz);
1143 xfer = siz;
1144 if (xfer < len)
1145 *(tl+(xfer>>2)) = 0;
1146 } else {
1147 xfer = len = m1->m_len;
1148 }
1149 memcpy((caddr_t) tl, cp, xfer);
1150 m1->m_len = len+tlen;
1151 siz -= xfer;
1152 cp += xfer;
1153 }
1154 *mb = m1;
1155 *bpos = mtod(m1, caddr_t)+m1->m_len;
1156 return (0);
1157 }
1158
1159 /*
1160 * Directory caching routines. They work as follows:
1161 * - a cache is maintained per VDIR nfsnode.
1162 * - for each offset cookie that is exported to userspace, and can
1163 * thus be thrown back at us as an offset to VOP_READDIR, store
1164 * information in the cache.
1165 * - cached are:
1166 * - cookie itself
1167 * - blocknumber (essentially just a search key in the buffer cache)
1168 * - entry number in block.
1169 * - offset cookie of block in which this entry is stored
1170 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1171 * - entries are looked up in a hash table
1172 * - also maintained is an LRU list of entries, used to determine
1173 * which ones to delete if the cache grows too large.
1174 * - if 32 <-> 64 translation mode is requested for a filesystem,
1175 * the cache also functions as a translation table
1176 * - in the translation case, invalidating the cache does not mean
1177 * flushing it, but just marking entries as invalid, except for
1178 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1179 * still be able to use the cache as a translation table.
1180 * - 32 bit cookies are uniquely created by combining the hash table
1181 * entry value, and one generation count per hash table entry,
1182 * incremented each time an entry is appended to the chain.
1183 * - the cache is invalidated each time a direcory is modified
1184 * - sanity checks are also done; if an entry in a block turns
1185 * out not to have a matching cookie, the cache is invalidated
1186 * and a new block starting from the wanted offset is fetched from
1187 * the server.
1188 * - directory entries as read from the server are extended to contain
1189 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1190 * the cache and exporting them to userspace through the cookie
1191 * argument to VOP_READDIR.
1192 */
1193
1194 u_long
1195 nfs_dirhash(off)
1196 off_t off;
1197 {
1198 int i;
1199 char *cp = (char *)&off;
1200 u_long sum = 0L;
1201
1202 for (i = 0 ; i < sizeof (off); i++)
1203 sum += *cp++;
1204
1205 return sum;
1206 }
1207
1208 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1209 #define NFSDC_LOCK(np) simple_lock(_NFSDC_MTX(np))
1210 #define NFSDC_UNLOCK(np) simple_unlock(_NFSDC_MTX(np))
1211 #define NFSDC_ASSERT_LOCKED(np) LOCK_ASSERT(simple_lock_held(_NFSDC_MTX(np)))
1212
1213 void
1214 nfs_initdircache(vp)
1215 struct vnode *vp;
1216 {
1217 struct nfsnode *np = VTONFS(vp);
1218 struct nfsdirhashhead *dircache;
1219
1220 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1221 M_WAITOK, &nfsdirhashmask);
1222
1223 NFSDC_LOCK(np);
1224 if (np->n_dircache == NULL) {
1225 np->n_dircachesize = 0;
1226 np->n_dircache = dircache;
1227 dircache = NULL;
1228 TAILQ_INIT(&np->n_dirchain);
1229 }
1230 NFSDC_UNLOCK(np);
1231 if (dircache)
1232 hashdone(dircache, M_NFSDIROFF);
1233 }
1234
1235 void
1236 nfs_initdirxlatecookie(vp)
1237 struct vnode *vp;
1238 {
1239 struct nfsnode *np = VTONFS(vp);
1240 unsigned *dirgens;
1241
1242 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1243
1244 dirgens = malloc(NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1245 M_WAITOK|M_ZERO);
1246 NFSDC_LOCK(np);
1247 if (np->n_dirgens == NULL) {
1248 np->n_dirgens = dirgens;
1249 dirgens = NULL;
1250 }
1251 NFSDC_UNLOCK(np);
1252 if (dirgens)
1253 free(dirgens, M_NFSDIROFF);
1254 }
1255
1256 static const struct nfsdircache dzero;
1257
1258 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1259 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1260 struct nfsdircache *));
1261
1262 static void
1263 nfs_unlinkdircache(np, ndp)
1264 struct nfsnode *np;
1265 struct nfsdircache *ndp;
1266 {
1267
1268 NFSDC_ASSERT_LOCKED(np);
1269 KASSERT(ndp != &dzero);
1270
1271 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1272 return;
1273
1274 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1275 LIST_REMOVE(ndp, dc_hash);
1276 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1277
1278 nfs_putdircache_unlocked(np, ndp);
1279 }
1280
1281 void
1282 nfs_putdircache(np, ndp)
1283 struct nfsnode *np;
1284 struct nfsdircache *ndp;
1285 {
1286 int ref;
1287
1288 if (ndp == &dzero)
1289 return;
1290
1291 KASSERT(ndp->dc_refcnt > 0);
1292 NFSDC_LOCK(np);
1293 ref = --ndp->dc_refcnt;
1294 NFSDC_UNLOCK(np);
1295
1296 if (ref == 0)
1297 free(ndp, M_NFSDIROFF);
1298 }
1299
1300 static void
1301 nfs_putdircache_unlocked(np, ndp)
1302 struct nfsnode *np;
1303 struct nfsdircache *ndp;
1304 {
1305 int ref;
1306
1307 NFSDC_ASSERT_LOCKED(np);
1308
1309 if (ndp == &dzero)
1310 return;
1311
1312 KASSERT(ndp->dc_refcnt > 0);
1313 ref = --ndp->dc_refcnt;
1314 if (ref == 0)
1315 free(ndp, M_NFSDIROFF);
1316 }
1317
1318 struct nfsdircache *
1319 nfs_searchdircache(vp, off, do32, hashent)
1320 struct vnode *vp;
1321 off_t off;
1322 int do32;
1323 int *hashent;
1324 {
1325 struct nfsdirhashhead *ndhp;
1326 struct nfsdircache *ndp = NULL;
1327 struct nfsnode *np = VTONFS(vp);
1328 unsigned ent;
1329
1330 /*
1331 * Zero is always a valid cookie.
1332 */
1333 if (off == 0)
1334 /* XXXUNCONST */
1335 return (struct nfsdircache *)__UNCONST(&dzero);
1336
1337 if (!np->n_dircache)
1338 return NULL;
1339
1340 /*
1341 * We use a 32bit cookie as search key, directly reconstruct
1342 * the hashentry. Else use the hashfunction.
1343 */
1344 if (do32) {
1345 ent = (u_int32_t)off >> 24;
1346 if (ent >= NFS_DIRHASHSIZ)
1347 return NULL;
1348 ndhp = &np->n_dircache[ent];
1349 } else {
1350 ndhp = NFSDIRHASH(np, off);
1351 }
1352
1353 if (hashent)
1354 *hashent = (int)(ndhp - np->n_dircache);
1355
1356 NFSDC_LOCK(np);
1357 if (do32) {
1358 LIST_FOREACH(ndp, ndhp, dc_hash) {
1359 if (ndp->dc_cookie32 == (u_int32_t)off) {
1360 /*
1361 * An invalidated entry will become the
1362 * start of a new block fetched from
1363 * the server.
1364 */
1365 if (ndp->dc_flags & NFSDC_INVALID) {
1366 ndp->dc_blkcookie = ndp->dc_cookie;
1367 ndp->dc_entry = 0;
1368 ndp->dc_flags &= ~NFSDC_INVALID;
1369 }
1370 break;
1371 }
1372 }
1373 } else {
1374 LIST_FOREACH(ndp, ndhp, dc_hash) {
1375 if (ndp->dc_cookie == off)
1376 break;
1377 }
1378 }
1379 if (ndp != NULL)
1380 ndp->dc_refcnt++;
1381 NFSDC_UNLOCK(np);
1382 return ndp;
1383 }
1384
1385
1386 struct nfsdircache *
1387 nfs_enterdircache(vp, off, blkoff, en, blkno)
1388 struct vnode *vp;
1389 off_t off, blkoff;
1390 int en;
1391 daddr_t blkno;
1392 {
1393 struct nfsnode *np = VTONFS(vp);
1394 struct nfsdirhashhead *ndhp;
1395 struct nfsdircache *ndp = NULL;
1396 struct nfsdircache *newndp = NULL;
1397 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1398 int hashent, gen, overwrite;
1399
1400 /*
1401 * XXX refuse entries for offset 0. amd(8) erroneously sets
1402 * cookie 0 for the '.' entry, making this necessary. This
1403 * isn't so bad, as 0 is a special case anyway.
1404 */
1405 if (off == 0)
1406 /* XXXUNCONST */
1407 return (struct nfsdircache *)__UNCONST(&dzero);
1408
1409 if (!np->n_dircache)
1410 /*
1411 * XXX would like to do this in nfs_nget but vtype
1412 * isn't known at that time.
1413 */
1414 nfs_initdircache(vp);
1415
1416 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1417 nfs_initdirxlatecookie(vp);
1418
1419 retry:
1420 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1421
1422 NFSDC_LOCK(np);
1423 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1424 /*
1425 * Overwriting an old entry. Check if it's the same.
1426 * If so, just return. If not, remove the old entry.
1427 */
1428 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1429 goto done;
1430 nfs_unlinkdircache(np, ndp);
1431 nfs_putdircache_unlocked(np, ndp);
1432 ndp = NULL;
1433 }
1434
1435 ndhp = &np->n_dircache[hashent];
1436
1437 if (!ndp) {
1438 if (newndp == NULL) {
1439 NFSDC_UNLOCK(np);
1440 newndp = malloc(sizeof(*ndp), M_NFSDIROFF, M_WAITOK);
1441 newndp->dc_refcnt = 1;
1442 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1443 goto retry;
1444 }
1445 ndp = newndp;
1446 newndp = NULL;
1447 overwrite = 0;
1448 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1449 /*
1450 * We're allocating a new entry, so bump the
1451 * generation number.
1452 */
1453 KASSERT(np->n_dirgens);
1454 gen = ++np->n_dirgens[hashent];
1455 if (gen == 0) {
1456 np->n_dirgens[hashent]++;
1457 gen++;
1458 }
1459 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1460 }
1461 } else
1462 overwrite = 1;
1463
1464 ndp->dc_cookie = off;
1465 ndp->dc_blkcookie = blkoff;
1466 ndp->dc_entry = en;
1467 ndp->dc_flags = 0;
1468
1469 if (overwrite)
1470 goto done;
1471
1472 /*
1473 * If the maximum directory cookie cache size has been reached
1474 * for this node, take one off the front. The idea is that
1475 * directories are typically read front-to-back once, so that
1476 * the oldest entries can be thrown away without much performance
1477 * loss.
1478 */
1479 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1480 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1481 } else
1482 np->n_dircachesize++;
1483
1484 KASSERT(ndp->dc_refcnt == 1);
1485 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1486 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1487 ndp->dc_refcnt++;
1488 done:
1489 KASSERT(ndp->dc_refcnt > 0);
1490 NFSDC_UNLOCK(np);
1491 if (newndp)
1492 nfs_putdircache(np, newndp);
1493 return ndp;
1494 }
1495
1496 void
1497 nfs_invaldircache(vp, flags)
1498 struct vnode *vp;
1499 int flags;
1500 {
1501 struct nfsnode *np = VTONFS(vp);
1502 struct nfsdircache *ndp = NULL;
1503 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1504 const boolean_t forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1505
1506 #ifdef DIAGNOSTIC
1507 if (vp->v_type != VDIR)
1508 panic("nfs: invaldircache: not dir");
1509 #endif
1510
1511 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1512 np->n_flag &= ~NEOFVALID;
1513
1514 if (!np->n_dircache)
1515 return;
1516
1517 NFSDC_LOCK(np);
1518 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1519 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1520 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1521 nfs_unlinkdircache(np, ndp);
1522 }
1523 np->n_dircachesize = 0;
1524 if (forcefree && np->n_dirgens) {
1525 FREE(np->n_dirgens, M_NFSDIROFF);
1526 np->n_dirgens = NULL;
1527 }
1528 } else {
1529 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1530 ndp->dc_flags |= NFSDC_INVALID;
1531 }
1532
1533 NFSDC_UNLOCK(np);
1534 }
1535
1536 /*
1537 * Called once before VFS init to initialize shared and
1538 * server-specific data structures.
1539 */
1540 static int
1541 nfs_init0(void)
1542 {
1543 nfsrtt.pos = 0;
1544 rpc_vers = txdr_unsigned(RPC_VER2);
1545 rpc_call = txdr_unsigned(RPC_CALL);
1546 rpc_reply = txdr_unsigned(RPC_REPLY);
1547 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1548 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1549 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1550 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1551 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1552 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1553 nfs_prog = txdr_unsigned(NFS_PROG);
1554 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1555 nfs_true = txdr_unsigned(TRUE);
1556 nfs_false = txdr_unsigned(FALSE);
1557 nfs_xdrneg1 = txdr_unsigned(-1);
1558 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1559 if (nfs_ticks < 1)
1560 nfs_ticks = 1;
1561 #ifdef NFSSERVER
1562 nfsrv_init(0); /* Init server data structures */
1563 nfsrv_initcache(); /* Init the server request cache */
1564 pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
1565 0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr);
1566 #endif /* NFSSERVER */
1567
1568 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1569 /*
1570 * Initialize the nqnfs data structures.
1571 */
1572 if (nqnfsstarttime == 0) {
1573 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1574 + nqsrv_clockskew + nqsrv_writeslack;
1575 NQLOADNOVRAM(nqnfsstarttime);
1576 CIRCLEQ_INIT(&nqtimerhead);
1577 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1578 M_WAITOK, &nqfhhash);
1579 }
1580 #endif
1581
1582 exithook_establish(nfs_exit, NULL);
1583
1584 /*
1585 * Initialize reply list and start timer
1586 */
1587 TAILQ_INIT(&nfs_reqq);
1588 nfs_timer(NULL);
1589 MOWNER_ATTACH(&nfs_mowner);
1590
1591 #ifdef NFS
1592 /* Initialize the kqueue structures */
1593 nfs_kqinit();
1594 /* Initialize the iod structures */
1595 nfs_iodinit();
1596 #endif
1597 return 0;
1598 }
1599
1600 void
1601 nfs_init(void)
1602 {
1603 static ONCE_DECL(nfs_init_once);
1604
1605 RUN_ONCE(&nfs_init_once, nfs_init0);
1606 }
1607
1608 #ifdef NFS
1609 /*
1610 * Called once at VFS init to initialize client-specific data structures.
1611 */
1612 void
1613 nfs_vfs_init()
1614 {
1615 /* Initialize NFS server / client shared data. */
1616 nfs_init();
1617
1618 nfs_nhinit(); /* Init the nfsnode table */
1619 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1620 }
1621
1622 void
1623 nfs_vfs_reinit()
1624 {
1625 nfs_nhreinit();
1626 }
1627
1628 void
1629 nfs_vfs_done()
1630 {
1631 nfs_nhdone();
1632 }
1633
1634 /*
1635 * Attribute cache routines.
1636 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1637 * that are on the mbuf list
1638 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1639 * error otherwise
1640 */
1641
1642 /*
1643 * Load the attribute cache (that lives in the nfsnode entry) with
1644 * the values on the mbuf list and
1645 * Iff vap not NULL
1646 * copy the attributes to *vaper
1647 */
1648 int
1649 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1650 struct vnode **vpp;
1651 struct mbuf **mdp;
1652 caddr_t *dposp;
1653 struct vattr *vaper;
1654 int flags;
1655 {
1656 int32_t t1;
1657 caddr_t cp2;
1658 int error = 0;
1659 struct mbuf *md;
1660 int v3 = NFS_ISV3(*vpp);
1661
1662 md = *mdp;
1663 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1664 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1665 if (error)
1666 return (error);
1667 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1668 }
1669
1670 int
1671 nfs_loadattrcache(vpp, fp, vaper, flags)
1672 struct vnode **vpp;
1673 struct nfs_fattr *fp;
1674 struct vattr *vaper;
1675 int flags;
1676 {
1677 struct vnode *vp = *vpp;
1678 struct vattr *vap;
1679 int v3 = NFS_ISV3(vp);
1680 enum vtype vtyp;
1681 u_short vmode;
1682 struct timespec mtime;
1683 struct timespec ctime;
1684 struct vnode *nvp;
1685 int32_t rdev;
1686 struct nfsnode *np;
1687 extern int (**spec_nfsv2nodeop_p) __P((void *));
1688 uid_t uid;
1689 gid_t gid;
1690
1691 if (v3) {
1692 vtyp = nfsv3tov_type(fp->fa_type);
1693 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1694 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1695 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1696 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1697 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1698 } else {
1699 vtyp = nfsv2tov_type(fp->fa_type);
1700 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1701 if (vtyp == VNON || vtyp == VREG)
1702 vtyp = IFTOVT(vmode);
1703 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1704 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1705 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1706 fp->fa2_ctime.nfsv2_sec);
1707 ctime.tv_nsec = 0;
1708
1709 /*
1710 * Really ugly NFSv2 kludge.
1711 */
1712 if (vtyp == VCHR && rdev == 0xffffffff)
1713 vtyp = VFIFO;
1714 }
1715
1716 vmode &= ALLPERMS;
1717
1718 /*
1719 * If v_type == VNON it is a new node, so fill in the v_type,
1720 * n_mtime fields. Check to see if it represents a special
1721 * device, and if so, check for a possible alias. Once the
1722 * correct vnode has been obtained, fill in the rest of the
1723 * information.
1724 */
1725 np = VTONFS(vp);
1726 if (vp->v_type == VNON) {
1727 vp->v_type = vtyp;
1728 if (vp->v_type == VFIFO) {
1729 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1730 vp->v_op = fifo_nfsv2nodeop_p;
1731 } else if (vp->v_type == VREG) {
1732 lockinit(&np->n_commitlock, PINOD, "nfsclock", 0, 0);
1733 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1734 vp->v_op = spec_nfsv2nodeop_p;
1735 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1736 if (nvp) {
1737 /*
1738 * Discard unneeded vnode, but save its nfsnode.
1739 * Since the nfsnode does not have a lock, its
1740 * vnode lock has to be carried over.
1741 */
1742 /*
1743 * XXX is the old node sure to be locked here?
1744 */
1745 KASSERT(lockstatus(&vp->v_lock) ==
1746 LK_EXCLUSIVE);
1747 nvp->v_data = vp->v_data;
1748 vp->v_data = NULL;
1749 VOP_UNLOCK(vp, 0);
1750 vp->v_op = spec_vnodeop_p;
1751 vrele(vp);
1752 vgone(vp);
1753 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1754 &nvp->v_interlock);
1755 /*
1756 * Reinitialize aliased node.
1757 */
1758 np->n_vnode = nvp;
1759 *vpp = vp = nvp;
1760 }
1761 }
1762 np->n_mtime = mtime;
1763 }
1764 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1765 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1766 vap = np->n_vattr;
1767
1768 /*
1769 * Invalidate access cache if uid, gid, mode or ctime changed.
1770 */
1771 if (np->n_accstamp != -1 &&
1772 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1773 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1774 np->n_accstamp = -1;
1775
1776 vap->va_type = vtyp;
1777 vap->va_mode = vmode;
1778 vap->va_rdev = (dev_t)rdev;
1779 vap->va_mtime = mtime;
1780 vap->va_ctime = ctime;
1781 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1782 switch (vtyp) {
1783 case VDIR:
1784 vap->va_blocksize = NFS_DIRFRAGSIZ;
1785 break;
1786 case VBLK:
1787 vap->va_blocksize = BLKDEV_IOSIZE;
1788 break;
1789 case VCHR:
1790 vap->va_blocksize = MAXBSIZE;
1791 break;
1792 default:
1793 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1794 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1795 break;
1796 }
1797 if (v3) {
1798 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1799 vap->va_uid = uid;
1800 vap->va_gid = gid;
1801 vap->va_size = fxdr_hyper(&fp->fa3_size);
1802 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1803 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1804 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1805 vap->va_flags = 0;
1806 vap->va_filerev = 0;
1807 } else {
1808 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1809 vap->va_uid = uid;
1810 vap->va_gid = gid;
1811 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1812 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1813 * NFS_FABLKSIZE;
1814 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1815 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1816 vap->va_flags = 0;
1817 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1818 vap->va_filerev = 0;
1819 }
1820 if (vap->va_size != np->n_size) {
1821 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1822 vap->va_size = np->n_size;
1823 } else {
1824 np->n_size = vap->va_size;
1825 if (vap->va_type == VREG) {
1826 /*
1827 * we can't free pages if NAC_NOTRUNC because
1828 * the pages can be owned by ourselves.
1829 */
1830 if (flags & NAC_NOTRUNC) {
1831 np->n_flag |= NTRUNCDELAYED;
1832 } else {
1833 simple_lock(&vp->v_interlock);
1834 (void)VOP_PUTPAGES(vp, 0,
1835 0, PGO_SYNCIO | PGO_CLEANIT |
1836 PGO_FREE | PGO_ALLPAGES);
1837 uvm_vnp_setsize(vp, np->n_size);
1838 }
1839 }
1840 }
1841 }
1842 np->n_attrstamp = mono_time.tv_sec;
1843 if (vaper != NULL) {
1844 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1845 if (np->n_flag & NCHG) {
1846 if (np->n_flag & NACC)
1847 vaper->va_atime = np->n_atim;
1848 if (np->n_flag & NUPD)
1849 vaper->va_mtime = np->n_mtim;
1850 }
1851 }
1852 return (0);
1853 }
1854
1855 /*
1856 * Check the time stamp
1857 * If the cache is valid, copy contents to *vap and return 0
1858 * otherwise return an error
1859 */
1860 int
1861 nfs_getattrcache(vp, vaper)
1862 struct vnode *vp;
1863 struct vattr *vaper;
1864 {
1865 struct nfsnode *np = VTONFS(vp);
1866 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1867 struct vattr *vap;
1868
1869 if (np->n_attrstamp == 0 ||
1870 (mono_time.tv_sec - np->n_attrstamp) >= NFS_ATTRTIMEO(nmp, np)) {
1871 nfsstats.attrcache_misses++;
1872 return (ENOENT);
1873 }
1874 nfsstats.attrcache_hits++;
1875 vap = np->n_vattr;
1876 if (vap->va_size != np->n_size) {
1877 if (vap->va_type == VREG) {
1878 if (np->n_flag & NMODIFIED) {
1879 if (vap->va_size < np->n_size)
1880 vap->va_size = np->n_size;
1881 else
1882 np->n_size = vap->va_size;
1883 } else
1884 np->n_size = vap->va_size;
1885 uvm_vnp_setsize(vp, np->n_size);
1886 } else
1887 np->n_size = vap->va_size;
1888 }
1889 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1890 if (np->n_flag & NCHG) {
1891 if (np->n_flag & NACC)
1892 vaper->va_atime = np->n_atim;
1893 if (np->n_flag & NUPD)
1894 vaper->va_mtime = np->n_mtim;
1895 }
1896 return (0);
1897 }
1898
1899 void
1900 nfs_delayedtruncate(vp)
1901 struct vnode *vp;
1902 {
1903 struct nfsnode *np = VTONFS(vp);
1904
1905 if (np->n_flag & NTRUNCDELAYED) {
1906 np->n_flag &= ~NTRUNCDELAYED;
1907 simple_lock(&vp->v_interlock);
1908 (void)VOP_PUTPAGES(vp, 0,
1909 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1910 uvm_vnp_setsize(vp, np->n_size);
1911 }
1912 }
1913
1914 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1915 #define NFS_WCCKLUDGE(nmp, now) \
1916 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1917 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1918
1919 /*
1920 * nfs_check_wccdata: check inaccurate wcc_data
1921 *
1922 * => return non-zero if we shouldn't trust the wcc_data.
1923 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1924 */
1925
1926 int
1927 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1928 struct timespec *mtime, boolean_t docheck)
1929 {
1930 int error = 0;
1931
1932 #if !defined(NFS_V2_ONLY)
1933
1934 if (docheck) {
1935 struct vnode *vp = NFSTOV(np);
1936 struct nfsmount *nmp;
1937 long now = mono_time.tv_sec;
1938 #if defined(DEBUG)
1939 const char *reason = NULL; /* XXX: gcc */
1940 #endif
1941
1942 if (timespeccmp(&np->n_vattr->va_mtime, mtime, <=)) {
1943 #if defined(DEBUG)
1944 reason = "mtime";
1945 #endif
1946 error = EINVAL;
1947 }
1948
1949 if (vp->v_type == VDIR &&
1950 timespeccmp(&np->n_vattr->va_ctime, ctime, <=)) {
1951 #if defined(DEBUG)
1952 reason = "ctime";
1953 #endif
1954 error = EINVAL;
1955 }
1956
1957 nmp = VFSTONFS(vp->v_mount);
1958 if (error) {
1959
1960 /*
1961 * despite of the fact that we've updated the file,
1962 * timestamps of the file were not updated as we
1963 * expected.
1964 * it means that the server has incompatible
1965 * semantics of timestamps or (more likely)
1966 * the server time is not precise enough to
1967 * track each modifications.
1968 * in that case, we disable wcc processing.
1969 *
1970 * yes, strictly speaking, we should disable all
1971 * caching. it's a compromise.
1972 */
1973
1974 simple_lock(&nmp->nm_slock);
1975 #if defined(DEBUG)
1976 if (!NFS_WCCKLUDGE(nmp, now)) {
1977 printf("%s: inaccurate wcc data (%s) detected,"
1978 " disabling wcc\n",
1979 vp->v_mount->mnt_stat.f_mntfromname,
1980 reason);
1981 }
1982 #endif
1983 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1984 nmp->nm_wcckludgetime = now;
1985 simple_unlock(&nmp->nm_slock);
1986 } else if (NFS_WCCKLUDGE(nmp, now)) {
1987 error = EPERM; /* XXX */
1988 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1989 simple_lock(&nmp->nm_slock);
1990 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1991 #if defined(DEBUG)
1992 printf("%s: re-enabling wcc\n",
1993 vp->v_mount->mnt_stat.f_mntfromname);
1994 #endif
1995 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1996 }
1997 simple_unlock(&nmp->nm_slock);
1998 }
1999 }
2000
2001 #endif /* !defined(NFS_V2_ONLY) */
2002
2003 return error;
2004 }
2005
2006 /*
2007 * Heuristic to see if the server XDR encodes directory cookies or not.
2008 * it is not supposed to, but a lot of servers may do this. Also, since
2009 * most/all servers will implement V2 as well, it is expected that they
2010 * may return just 32 bits worth of cookie information, so we need to
2011 * find out in which 32 bits this information is available. We do this
2012 * to avoid trouble with emulated binaries that can't handle 64 bit
2013 * directory offsets.
2014 */
2015
2016 void
2017 nfs_cookieheuristic(vp, flagp, l, cred)
2018 struct vnode *vp;
2019 int *flagp;
2020 struct lwp *l;
2021 struct ucred *cred;
2022 {
2023 struct uio auio;
2024 struct iovec aiov;
2025 caddr_t tbuf, cp;
2026 struct dirent *dp;
2027 off_t *cookies = NULL, *cop;
2028 int error, eof, nc, len;
2029
2030 MALLOC(tbuf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
2031
2032 aiov.iov_base = tbuf;
2033 aiov.iov_len = NFS_DIRFRAGSIZ;
2034 auio.uio_iov = &aiov;
2035 auio.uio_iovcnt = 1;
2036 auio.uio_rw = UIO_READ;
2037 auio.uio_resid = NFS_DIRFRAGSIZ;
2038 auio.uio_offset = 0;
2039 UIO_SETUP_SYSSPACE(&auio);
2040
2041 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
2042
2043 len = NFS_DIRFRAGSIZ - auio.uio_resid;
2044 if (error || len == 0) {
2045 FREE(tbuf, M_TEMP);
2046 if (cookies)
2047 free(cookies, M_TEMP);
2048 return;
2049 }
2050
2051 /*
2052 * Find the first valid entry and look at its offset cookie.
2053 */
2054
2055 cp = tbuf;
2056 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2057 dp = (struct dirent *)cp;
2058 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2059 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2060 *flagp |= NFSMNT_SWAPCOOKIE;
2061 nfs_invaldircache(vp, 0);
2062 nfs_vinvalbuf(vp, 0, cred, l, 1);
2063 }
2064 break;
2065 }
2066 cop++;
2067 cp += dp->d_reclen;
2068 }
2069
2070 FREE(tbuf, M_TEMP);
2071 free(cookies, M_TEMP);
2072 }
2073 #endif /* NFS */
2074
2075 #ifdef NFSSERVER
2076 /*
2077 * Set up nameidata for a lookup() call and do it.
2078 *
2079 * If pubflag is set, this call is done for a lookup operation on the
2080 * public filehandle. In that case we allow crossing mountpoints and
2081 * absolute pathnames. However, the caller is expected to check that
2082 * the lookup result is within the public fs, and deny access if
2083 * it is not.
2084 */
2085 int
2086 nfs_namei(ndp, fhp, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2087 struct nameidata *ndp;
2088 fhandle_t *fhp;
2089 uint32_t len;
2090 struct nfssvc_sock *slp;
2091 struct mbuf *nam;
2092 struct mbuf **mdp;
2093 caddr_t *dposp;
2094 struct vnode **retdirp;
2095 struct lwp *l;
2096 int kerbflag, pubflag;
2097 {
2098 int i, rem;
2099 struct mbuf *md;
2100 char *fromcp, *tocp, *cp;
2101 struct iovec aiov;
2102 struct uio auio;
2103 struct vnode *dp;
2104 int error, rdonly, linklen;
2105 struct componentname *cnp = &ndp->ni_cnd;
2106
2107 *retdirp = (struct vnode *)0;
2108
2109 if ((len + 1) > MAXPATHLEN)
2110 return (ENAMETOOLONG);
2111 if (len == 0)
2112 return (EACCES);
2113 cnp->cn_pnbuf = PNBUF_GET();
2114
2115 /*
2116 * Copy the name from the mbuf list to ndp->ni_pnbuf
2117 * and set the various ndp fields appropriately.
2118 */
2119 fromcp = *dposp;
2120 tocp = cnp->cn_pnbuf;
2121 md = *mdp;
2122 rem = mtod(md, caddr_t) + md->m_len - fromcp;
2123 for (i = 0; i < len; i++) {
2124 while (rem == 0) {
2125 md = md->m_next;
2126 if (md == NULL) {
2127 error = EBADRPC;
2128 goto out;
2129 }
2130 fromcp = mtod(md, caddr_t);
2131 rem = md->m_len;
2132 }
2133 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2134 error = EACCES;
2135 goto out;
2136 }
2137 *tocp++ = *fromcp++;
2138 rem--;
2139 }
2140 *tocp = '\0';
2141 *mdp = md;
2142 *dposp = fromcp;
2143 len = nfsm_rndup(len)-len;
2144 if (len > 0) {
2145 if (rem >= len)
2146 *dposp += len;
2147 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2148 goto out;
2149 }
2150
2151 /*
2152 * Extract and set starting directory.
2153 */
2154 error = nfsrv_fhtovp(fhp, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
2155 nam, &rdonly, kerbflag, pubflag);
2156 if (error)
2157 goto out;
2158 if (dp->v_type != VDIR) {
2159 vrele(dp);
2160 error = ENOTDIR;
2161 goto out;
2162 }
2163
2164 if (rdonly)
2165 cnp->cn_flags |= RDONLY;
2166
2167 *retdirp = dp;
2168
2169 if (pubflag) {
2170 /*
2171 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2172 * and the 'native path' indicator.
2173 */
2174 cp = PNBUF_GET();
2175 fromcp = cnp->cn_pnbuf;
2176 tocp = cp;
2177 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2178 switch ((unsigned char)*fromcp) {
2179 case WEBNFS_NATIVE_CHAR:
2180 /*
2181 * 'Native' path for us is the same
2182 * as a path according to the NFS spec,
2183 * just skip the escape char.
2184 */
2185 fromcp++;
2186 break;
2187 /*
2188 * More may be added in the future, range 0x80-0xff
2189 */
2190 default:
2191 error = EIO;
2192 PNBUF_PUT(cp);
2193 goto out;
2194 }
2195 }
2196 /*
2197 * Translate the '%' escapes, URL-style.
2198 */
2199 while (*fromcp != '\0') {
2200 if (*fromcp == WEBNFS_ESC_CHAR) {
2201 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2202 fromcp++;
2203 *tocp++ = HEXSTRTOI(fromcp);
2204 fromcp += 2;
2205 continue;
2206 } else {
2207 error = ENOENT;
2208 PNBUF_PUT(cp);
2209 goto out;
2210 }
2211 } else
2212 *tocp++ = *fromcp++;
2213 }
2214 *tocp = '\0';
2215 PNBUF_PUT(cnp->cn_pnbuf);
2216 cnp->cn_pnbuf = cp;
2217 }
2218
2219 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2220 ndp->ni_segflg = UIO_SYSSPACE;
2221 ndp->ni_rootdir = rootvnode;
2222
2223 if (pubflag) {
2224 ndp->ni_loopcnt = 0;
2225 if (cnp->cn_pnbuf[0] == '/')
2226 dp = rootvnode;
2227 } else {
2228 cnp->cn_flags |= NOCROSSMOUNT;
2229 }
2230
2231 cnp->cn_lwp = l;
2232 VREF(dp);
2233
2234 for (;;) {
2235 cnp->cn_nameptr = cnp->cn_pnbuf;
2236 ndp->ni_startdir = dp;
2237 /*
2238 * And call lookup() to do the real work
2239 */
2240 error = lookup(ndp);
2241 if (error) {
2242 PNBUF_PUT(cnp->cn_pnbuf);
2243 return (error);
2244 }
2245 /*
2246 * Check for encountering a symbolic link
2247 */
2248 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2249 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2250 cnp->cn_flags |= HASBUF;
2251 else
2252 PNBUF_PUT(cnp->cn_pnbuf);
2253 return (0);
2254 } else {
2255 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
2256 VOP_UNLOCK(ndp->ni_dvp, 0);
2257 if (!pubflag) {
2258 error = EINVAL;
2259 break;
2260 }
2261
2262 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2263 error = ELOOP;
2264 break;
2265 }
2266 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2267 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2268 cnp->cn_lwp);
2269 if (error != 0)
2270 break;
2271 }
2272 if (ndp->ni_pathlen > 1)
2273 cp = PNBUF_GET();
2274 else
2275 cp = cnp->cn_pnbuf;
2276 aiov.iov_base = cp;
2277 aiov.iov_len = MAXPATHLEN;
2278 auio.uio_iov = &aiov;
2279 auio.uio_iovcnt = 1;
2280 auio.uio_offset = 0;
2281 auio.uio_rw = UIO_READ;
2282 auio.uio_resid = MAXPATHLEN;
2283 UIO_SETUP_SYSSPACE(&auio);
2284 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2285 if (error) {
2286 badlink:
2287 if (ndp->ni_pathlen > 1)
2288 PNBUF_PUT(cp);
2289 break;
2290 }
2291 linklen = MAXPATHLEN - auio.uio_resid;
2292 if (linklen == 0) {
2293 error = ENOENT;
2294 goto badlink;
2295 }
2296 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2297 error = ENAMETOOLONG;
2298 goto badlink;
2299 }
2300 if (ndp->ni_pathlen > 1) {
2301 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2302 PNBUF_PUT(cnp->cn_pnbuf);
2303 cnp->cn_pnbuf = cp;
2304 } else
2305 cnp->cn_pnbuf[linklen] = '\0';
2306 ndp->ni_pathlen += linklen;
2307 vput(ndp->ni_vp);
2308 dp = ndp->ni_dvp;
2309 /*
2310 * Check if root directory should replace current directory.
2311 */
2312 if (cnp->cn_pnbuf[0] == '/') {
2313 vrele(dp);
2314 dp = ndp->ni_rootdir;
2315 VREF(dp);
2316 }
2317 }
2318 }
2319 vrele(ndp->ni_dvp);
2320 vput(ndp->ni_vp);
2321 ndp->ni_vp = NULL;
2322 out:
2323 PNBUF_PUT(cnp->cn_pnbuf);
2324 return (error);
2325 }
2326 #endif /* NFSSERVER */
2327
2328 /*
2329 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2330 * boundary and only trims off the back end
2331 *
2332 * 1. trim off 'len' bytes as m_adj(mp, -len).
2333 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2334 */
2335 void
2336 nfs_zeropad(mp, len, nul)
2337 struct mbuf *mp;
2338 int len;
2339 int nul;
2340 {
2341 struct mbuf *m;
2342 int count;
2343
2344 /*
2345 * Trim from tail. Scan the mbuf chain,
2346 * calculating its length and finding the last mbuf.
2347 * If the adjustment only affects this mbuf, then just
2348 * adjust and return. Otherwise, rescan and truncate
2349 * after the remaining size.
2350 */
2351 count = 0;
2352 m = mp;
2353 for (;;) {
2354 count += m->m_len;
2355 if (m->m_next == NULL)
2356 break;
2357 m = m->m_next;
2358 }
2359
2360 KDASSERT(count >= len);
2361
2362 if (m->m_len >= len) {
2363 m->m_len -= len;
2364 } else {
2365 count -= len;
2366 /*
2367 * Correct length for chain is "count".
2368 * Find the mbuf with last data, adjust its length,
2369 * and toss data from remaining mbufs on chain.
2370 */
2371 for (m = mp; m; m = m->m_next) {
2372 if (m->m_len >= count) {
2373 m->m_len = count;
2374 break;
2375 }
2376 count -= m->m_len;
2377 }
2378 KASSERT(m && m->m_next);
2379 m_freem(m->m_next);
2380 m->m_next = NULL;
2381 }
2382
2383 KDASSERT(m->m_next == NULL);
2384
2385 /*
2386 * zero-padding.
2387 */
2388 if (nul > 0) {
2389 char *cp;
2390 int i;
2391
2392 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2393 struct mbuf *n;
2394
2395 KDASSERT(MLEN >= nul);
2396 n = m_get(M_WAIT, MT_DATA);
2397 MCLAIM(n, &nfs_mowner);
2398 n->m_len = nul;
2399 n->m_next = NULL;
2400 m->m_next = n;
2401 cp = mtod(n, caddr_t);
2402 } else {
2403 cp = mtod(m, caddr_t) + m->m_len;
2404 m->m_len += nul;
2405 }
2406 for (i = 0; i < nul; i++)
2407 *cp++ = '\0';
2408 }
2409 return;
2410 }
2411
2412 /*
2413 * Make these functions instead of macros, so that the kernel text size
2414 * doesn't get too big...
2415 */
2416 void
2417 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2418 struct nfsrv_descript *nfsd;
2419 int before_ret;
2420 struct vattr *before_vap;
2421 int after_ret;
2422 struct vattr *after_vap;
2423 struct mbuf **mbp;
2424 char **bposp;
2425 {
2426 struct mbuf *mb = *mbp;
2427 char *bpos = *bposp;
2428 u_int32_t *tl;
2429
2430 if (before_ret) {
2431 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2432 *tl = nfs_false;
2433 } else {
2434 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2435 *tl++ = nfs_true;
2436 txdr_hyper(before_vap->va_size, tl);
2437 tl += 2;
2438 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2439 tl += 2;
2440 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2441 }
2442 *bposp = bpos;
2443 *mbp = mb;
2444 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2445 }
2446
2447 void
2448 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2449 struct nfsrv_descript *nfsd;
2450 int after_ret;
2451 struct vattr *after_vap;
2452 struct mbuf **mbp;
2453 char **bposp;
2454 {
2455 struct mbuf *mb = *mbp;
2456 char *bpos = *bposp;
2457 u_int32_t *tl;
2458 struct nfs_fattr *fp;
2459
2460 if (after_ret) {
2461 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2462 *tl = nfs_false;
2463 } else {
2464 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2465 *tl++ = nfs_true;
2466 fp = (struct nfs_fattr *)tl;
2467 nfsm_srvfattr(nfsd, after_vap, fp);
2468 }
2469 *mbp = mb;
2470 *bposp = bpos;
2471 }
2472
2473 void
2474 nfsm_srvfattr(nfsd, vap, fp)
2475 struct nfsrv_descript *nfsd;
2476 struct vattr *vap;
2477 struct nfs_fattr *fp;
2478 {
2479
2480 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2481 fp->fa_uid = txdr_unsigned(vap->va_uid);
2482 fp->fa_gid = txdr_unsigned(vap->va_gid);
2483 if (nfsd->nd_flag & ND_NFSV3) {
2484 fp->fa_type = vtonfsv3_type(vap->va_type);
2485 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2486 txdr_hyper(vap->va_size, &fp->fa3_size);
2487 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2488 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2489 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2490 fp->fa3_fsid.nfsuquad[0] = 0;
2491 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2492 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2493 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2494 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2495 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2496 } else {
2497 fp->fa_type = vtonfsv2_type(vap->va_type);
2498 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2499 fp->fa2_size = txdr_unsigned(vap->va_size);
2500 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2501 if (vap->va_type == VFIFO)
2502 fp->fa2_rdev = 0xffffffff;
2503 else
2504 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2505 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2506 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2507 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2508 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2509 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2510 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2511 }
2512 }
2513
2514 #ifdef NFSSERVER
2515 /*
2516 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2517 * - look up fsid in mount list (if not found ret error)
2518 * - get vp and export rights by calling VFS_FHTOVP()
2519 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2520 * - if not lockflag unlock it with VOP_UNLOCK()
2521 */
2522 int
2523 nfsrv_fhtovp(fhp, lockflag, vpp, cred, slp, nam, rdonlyp, kerbflag, pubflag)
2524 fhandle_t *fhp;
2525 int lockflag;
2526 struct vnode **vpp;
2527 struct ucred *cred;
2528 struct nfssvc_sock *slp;
2529 struct mbuf *nam;
2530 int *rdonlyp;
2531 int kerbflag;
2532 {
2533 struct mount *mp;
2534 int i;
2535 struct ucred *credanon;
2536 int error, exflags;
2537 struct sockaddr_in *saddr;
2538
2539 *vpp = (struct vnode *)0;
2540
2541 if (nfs_ispublicfh(fhp)) {
2542 if (!pubflag || !nfs_pub.np_valid)
2543 return (ESTALE);
2544 fhp = &nfs_pub.np_handle;
2545 }
2546
2547 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2548 if (error) {
2549 return error;
2550 }
2551
2552 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2553 if (error)
2554 return (error);
2555
2556 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2557 saddr = mtod(nam, struct sockaddr_in *);
2558 if ((saddr->sin_family == AF_INET) &&
2559 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2560 vput(*vpp);
2561 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2562 }
2563 #ifdef INET6
2564 if ((saddr->sin_family == AF_INET6) &&
2565 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2566 vput(*vpp);
2567 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2568 }
2569 #endif
2570 }
2571 /*
2572 * Check/setup credentials.
2573 */
2574 if (exflags & MNT_EXKERB) {
2575 if (!kerbflag) {
2576 vput(*vpp);
2577 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2578 }
2579 } else if (kerbflag) {
2580 vput(*vpp);
2581 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2582 } else if (cred->cr_uid == 0 || (exflags & MNT_EXPORTANON)) {
2583 cred->cr_uid = credanon->cr_uid;
2584 cred->cr_gid = credanon->cr_gid;
2585 for (i = 0; i < credanon->cr_ngroups && i < NGROUPS; i++)
2586 cred->cr_groups[i] = credanon->cr_groups[i];
2587 cred->cr_ngroups = i;
2588 }
2589 if (exflags & MNT_EXRDONLY)
2590 *rdonlyp = 1;
2591 else
2592 *rdonlyp = 0;
2593 if (!lockflag)
2594 VOP_UNLOCK(*vpp, 0);
2595 return (0);
2596 }
2597
2598 /*
2599 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2600 * means a length of 0, for v2 it means all zeroes. nfsm_srvmtofh has
2601 * transformed this to all zeroes in both cases, so check for it.
2602 */
2603 int
2604 nfs_ispublicfh(fhp)
2605 fhandle_t *fhp;
2606 {
2607 char *cp = (char *)fhp;
2608 int i;
2609
2610 for (i = 0; i < NFSX_V3FH; i++)
2611 if (*cp++ != 0)
2612 return (FALSE);
2613 return (TRUE);
2614 }
2615 #endif /* NFSSERVER */
2616
2617 /*
2618 * This function compares two net addresses by family and returns TRUE
2619 * if they are the same host.
2620 * If there is any doubt, return FALSE.
2621 * The AF_INET family is handled as a special case so that address mbufs
2622 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2623 */
2624 int
2625 netaddr_match(family, haddr, nam)
2626 int family;
2627 union nethostaddr *haddr;
2628 struct mbuf *nam;
2629 {
2630 struct sockaddr_in *inetaddr;
2631
2632 switch (family) {
2633 case AF_INET:
2634 inetaddr = mtod(nam, struct sockaddr_in *);
2635 if (inetaddr->sin_family == AF_INET &&
2636 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2637 return (1);
2638 break;
2639 #ifdef INET6
2640 case AF_INET6:
2641 {
2642 struct sockaddr_in6 *sin6_1, *sin6_2;
2643
2644 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2645 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2646 if (sin6_1->sin6_family == AF_INET6 &&
2647 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2648 return 1;
2649 }
2650 #endif
2651 #ifdef ISO
2652 case AF_ISO:
2653 {
2654 struct sockaddr_iso *isoaddr1, *isoaddr2;
2655
2656 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2657 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2658 if (isoaddr1->siso_family == AF_ISO &&
2659 isoaddr1->siso_nlen > 0 &&
2660 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2661 SAME_ISOADDR(isoaddr1, isoaddr2))
2662 return (1);
2663 break;
2664 }
2665 #endif /* ISO */
2666 default:
2667 break;
2668 };
2669 return (0);
2670 }
2671
2672 /*
2673 * The write verifier has changed (probably due to a server reboot), so all
2674 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2675 * as dirty or are being written out just now, all this takes is clearing
2676 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2677 * the mount point.
2678 */
2679 void
2680 nfs_clearcommit(mp)
2681 struct mount *mp;
2682 {
2683 struct vnode *vp;
2684 struct nfsnode *np;
2685 struct vm_page *pg;
2686 struct nfsmount *nmp = VFSTONFS(mp);
2687
2688 lockmgr(&nmp->nm_writeverflock, LK_EXCLUSIVE, NULL);
2689
2690 LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2691 KASSERT(vp->v_mount == mp);
2692 if (vp->v_type != VREG)
2693 continue;
2694 np = VTONFS(vp);
2695 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2696 np->n_pushedhi = 0;
2697 np->n_commitflags &=
2698 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2699 simple_lock(&vp->v_uobj.vmobjlock);
2700 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2701 pg->flags &= ~PG_NEEDCOMMIT;
2702 }
2703 simple_unlock(&vp->v_uobj.vmobjlock);
2704 }
2705 simple_lock(&nmp->nm_slock);
2706 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2707 simple_unlock(&nmp->nm_slock);
2708 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
2709 }
2710
2711 void
2712 nfs_merge_commit_ranges(vp)
2713 struct vnode *vp;
2714 {
2715 struct nfsnode *np = VTONFS(vp);
2716
2717 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2718
2719 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2720 np->n_pushedlo = np->n_pushlo;
2721 np->n_pushedhi = np->n_pushhi;
2722 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2723 } else {
2724 if (np->n_pushlo < np->n_pushedlo)
2725 np->n_pushedlo = np->n_pushlo;
2726 if (np->n_pushhi > np->n_pushedhi)
2727 np->n_pushedhi = np->n_pushhi;
2728 }
2729
2730 np->n_pushlo = np->n_pushhi = 0;
2731 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2732
2733 #ifdef NFS_DEBUG_COMMIT
2734 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2735 (unsigned)np->n_pushedhi);
2736 #endif
2737 }
2738
2739 int
2740 nfs_in_committed_range(vp, off, len)
2741 struct vnode *vp;
2742 off_t off, len;
2743 {
2744 struct nfsnode *np = VTONFS(vp);
2745 off_t lo, hi;
2746
2747 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2748 return 0;
2749 lo = off;
2750 hi = lo + len;
2751
2752 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2753 }
2754
2755 int
2756 nfs_in_tobecommitted_range(vp, off, len)
2757 struct vnode *vp;
2758 off_t off, len;
2759 {
2760 struct nfsnode *np = VTONFS(vp);
2761 off_t lo, hi;
2762
2763 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2764 return 0;
2765 lo = off;
2766 hi = lo + len;
2767
2768 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2769 }
2770
2771 void
2772 nfs_add_committed_range(vp, off, len)
2773 struct vnode *vp;
2774 off_t off, len;
2775 {
2776 struct nfsnode *np = VTONFS(vp);
2777 off_t lo, hi;
2778
2779 lo = off;
2780 hi = lo + len;
2781
2782 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2783 np->n_pushedlo = lo;
2784 np->n_pushedhi = hi;
2785 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2786 } else {
2787 if (hi > np->n_pushedhi)
2788 np->n_pushedhi = hi;
2789 if (lo < np->n_pushedlo)
2790 np->n_pushedlo = lo;
2791 }
2792 #ifdef NFS_DEBUG_COMMIT
2793 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2794 (unsigned)np->n_pushedhi);
2795 #endif
2796 }
2797
2798 void
2799 nfs_del_committed_range(vp, off, len)
2800 struct vnode *vp;
2801 off_t off, len;
2802 {
2803 struct nfsnode *np = VTONFS(vp);
2804 off_t lo, hi;
2805
2806 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2807 return;
2808
2809 lo = off;
2810 hi = lo + len;
2811
2812 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2813 return;
2814 if (lo <= np->n_pushedlo)
2815 np->n_pushedlo = hi;
2816 else if (hi >= np->n_pushedhi)
2817 np->n_pushedhi = lo;
2818 else {
2819 /*
2820 * XXX There's only one range. If the deleted range
2821 * is in the middle, pick the largest of the
2822 * contiguous ranges that it leaves.
2823 */
2824 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2825 np->n_pushedhi = lo;
2826 else
2827 np->n_pushedlo = hi;
2828 }
2829 #ifdef NFS_DEBUG_COMMIT
2830 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2831 (unsigned)np->n_pushedhi);
2832 #endif
2833 }
2834
2835 void
2836 nfs_add_tobecommitted_range(vp, off, len)
2837 struct vnode *vp;
2838 off_t off, len;
2839 {
2840 struct nfsnode *np = VTONFS(vp);
2841 off_t lo, hi;
2842
2843 lo = off;
2844 hi = lo + len;
2845
2846 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2847 np->n_pushlo = lo;
2848 np->n_pushhi = hi;
2849 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2850 } else {
2851 if (lo < np->n_pushlo)
2852 np->n_pushlo = lo;
2853 if (hi > np->n_pushhi)
2854 np->n_pushhi = hi;
2855 }
2856 #ifdef NFS_DEBUG_COMMIT
2857 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2858 (unsigned)np->n_pushhi);
2859 #endif
2860 }
2861
2862 void
2863 nfs_del_tobecommitted_range(vp, off, len)
2864 struct vnode *vp;
2865 off_t off, len;
2866 {
2867 struct nfsnode *np = VTONFS(vp);
2868 off_t lo, hi;
2869
2870 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2871 return;
2872
2873 lo = off;
2874 hi = lo + len;
2875
2876 if (lo > np->n_pushhi || hi < np->n_pushlo)
2877 return;
2878
2879 if (lo <= np->n_pushlo)
2880 np->n_pushlo = hi;
2881 else if (hi >= np->n_pushhi)
2882 np->n_pushhi = lo;
2883 else {
2884 /*
2885 * XXX There's only one range. If the deleted range
2886 * is in the middle, pick the largest of the
2887 * contiguous ranges that it leaves.
2888 */
2889 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2890 np->n_pushhi = lo;
2891 else
2892 np->n_pushlo = hi;
2893 }
2894 #ifdef NFS_DEBUG_COMMIT
2895 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2896 (unsigned)np->n_pushhi);
2897 #endif
2898 }
2899
2900 /*
2901 * Map errnos to NFS error numbers. For Version 3 also filter out error
2902 * numbers not specified for the associated procedure.
2903 */
2904 int
2905 nfsrv_errmap(nd, err)
2906 struct nfsrv_descript *nd;
2907 int err;
2908 {
2909 const short *defaulterrp, *errp;
2910
2911 if (nd->nd_flag & ND_NFSV3) {
2912 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2913 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2914 while (*++errp) {
2915 if (*errp == err)
2916 return (err);
2917 else if (*errp > err)
2918 break;
2919 }
2920 return ((int)*defaulterrp);
2921 } else
2922 return (err & 0xffff);
2923 }
2924 if (err <= ELAST)
2925 return ((int)nfsrv_v2errmap[err - 1]);
2926 return (NFSERR_IO);
2927 }
2928
2929 /*
2930 * Sort the group list in increasing numerical order.
2931 * (Insertion sort by Chris Torek, who was grossed out by the bubble sort
2932 * that used to be here.)
2933 */
2934 void
2935 nfsrvw_sort(list, num)
2936 gid_t *list;
2937 int num;
2938 {
2939 int i, j;
2940 gid_t v;
2941
2942 /* Insertion sort. */
2943 for (i = 1; i < num; i++) {
2944 v = list[i];
2945 /* find correct slot for value v, moving others up */
2946 for (j = i; --j >= 0 && v < list[j];)
2947 list[j + 1] = list[j];
2948 list[j + 1] = v;
2949 }
2950 }
2951
2952 /*
2953 * copy credentials making sure that the result can be compared with memcmp().
2954 */
2955 void
2956 nfsrv_setcred(incred, outcred)
2957 struct ucred *incred, *outcred;
2958 {
2959 int i;
2960
2961 memset((caddr_t)outcred, 0, sizeof (struct ucred));
2962 outcred->cr_ref = 1;
2963 outcred->cr_uid = incred->cr_uid;
2964 outcred->cr_gid = incred->cr_gid;
2965 outcred->cr_ngroups = incred->cr_ngroups;
2966 for (i = 0; i < incred->cr_ngroups; i++)
2967 outcred->cr_groups[i] = incred->cr_groups[i];
2968 nfsrvw_sort(outcred->cr_groups, outcred->cr_ngroups);
2969 }
2970
2971 u_int32_t
2972 nfs_getxid()
2973 {
2974 static u_int32_t base;
2975 static u_int32_t nfs_xid = 0;
2976 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2977 u_int32_t newxid;
2978
2979 simple_lock(&nfs_xidlock);
2980 /*
2981 * derive initial xid from system time
2982 * XXX time is invalid if root not yet mounted
2983 */
2984 if (__predict_false(!base && (rootvp))) {
2985 struct timeval tv;
2986
2987 microtime(&tv);
2988 base = tv.tv_sec << 12;
2989 nfs_xid = base;
2990 }
2991
2992 /*
2993 * Skip zero xid if it should ever happen.
2994 */
2995 if (__predict_false(++nfs_xid == 0))
2996 nfs_xid++;
2997 newxid = nfs_xid;
2998 simple_unlock(&nfs_xidlock);
2999
3000 return txdr_unsigned(newxid);
3001 }
3002
3003 /*
3004 * assign a new xid for existing request.
3005 * used for NFSERR_JUKEBOX handling.
3006 */
3007 void
3008 nfs_renewxid(struct nfsreq *req)
3009 {
3010 u_int32_t xid;
3011 int off;
3012
3013 xid = nfs_getxid();
3014 if (req->r_nmp->nm_sotype == SOCK_STREAM)
3015 off = sizeof(u_int32_t); /* RPC record mark */
3016 else
3017 off = 0;
3018
3019 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
3020 req->r_xid = xid;
3021 }
3022