nfs_subs.c revision 1.176 1 /* $NetBSD: nfs_subs.c,v 1.176 2006/10/20 18:58:12 reinoud Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.176 2006/10/20 18:58:12 reinoud Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 #include <sys/once.h>
101 #include <sys/kauth.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include <nfs/rpcv2.h>
106 #include <nfs/nfsproto.h>
107 #include <nfs/nfsnode.h>
108 #include <nfs/nfs.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/nqnfs.h>
113 #include <nfs/nfsrtt.h>
114 #include <nfs/nfs_var.h>
115
116 #include <miscfs/specfs/specdev.h>
117
118 #include <netinet/in.h>
119 #ifdef ISO
120 #include <netiso/iso.h>
121 #endif
122
123 /*
124 * Data items converted to xdr at startup, since they are constant
125 * This is kinda hokey, but may save a little time doing byte swaps
126 */
127 u_int32_t nfs_xdrneg1;
128 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
129 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
130 rpc_auth_kerb;
131 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
132
133 /* And other global data */
134 const nfstype nfsv2_type[9] =
135 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
136 const nfstype nfsv3_type[9] =
137 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
138 const enum vtype nv2tov_type[8] =
139 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
140 const enum vtype nv3tov_type[8] =
141 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
142 int nfs_ticks;
143 int nfs_commitsize;
144
145 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
146
147 /* NFS client/server stats. */
148 struct nfsstats nfsstats;
149
150 /*
151 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
152 */
153 const int nfsv3_procid[NFS_NPROCS] = {
154 NFSPROC_NULL,
155 NFSPROC_GETATTR,
156 NFSPROC_SETATTR,
157 NFSPROC_NOOP,
158 NFSPROC_LOOKUP,
159 NFSPROC_READLINK,
160 NFSPROC_READ,
161 NFSPROC_NOOP,
162 NFSPROC_WRITE,
163 NFSPROC_CREATE,
164 NFSPROC_REMOVE,
165 NFSPROC_RENAME,
166 NFSPROC_LINK,
167 NFSPROC_SYMLINK,
168 NFSPROC_MKDIR,
169 NFSPROC_RMDIR,
170 NFSPROC_READDIR,
171 NFSPROC_FSSTAT,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP,
177 NFSPROC_NOOP,
178 NFSPROC_NOOP,
179 NFSPROC_NOOP
180 };
181
182 /*
183 * and the reverse mapping from generic to Version 2 procedure numbers
184 */
185 const int nfsv2_procid[NFS_NPROCS] = {
186 NFSV2PROC_NULL,
187 NFSV2PROC_GETATTR,
188 NFSV2PROC_SETATTR,
189 NFSV2PROC_LOOKUP,
190 NFSV2PROC_NOOP,
191 NFSV2PROC_READLINK,
192 NFSV2PROC_READ,
193 NFSV2PROC_WRITE,
194 NFSV2PROC_CREATE,
195 NFSV2PROC_MKDIR,
196 NFSV2PROC_SYMLINK,
197 NFSV2PROC_CREATE,
198 NFSV2PROC_REMOVE,
199 NFSV2PROC_RMDIR,
200 NFSV2PROC_RENAME,
201 NFSV2PROC_LINK,
202 NFSV2PROC_READDIR,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_STATFS,
205 NFSV2PROC_NOOP,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 NFSV2PROC_NOOP,
209 NFSV2PROC_NOOP,
210 NFSV2PROC_NOOP,
211 NFSV2PROC_NOOP,
212 };
213
214 /*
215 * Maps errno values to nfs error numbers.
216 * Use NFSERR_IO as the catch all for ones not specifically defined in
217 * RFC 1094.
218 */
219 static const u_char nfsrv_v2errmap[ELAST] = {
220 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
224 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
231 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
232 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
233 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
234 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
235 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
236 NFSERR_IO, NFSERR_IO,
237 };
238
239 /*
240 * Maps errno values to nfs error numbers.
241 * Although it is not obvious whether or not NFS clients really care if
242 * a returned error value is in the specified list for the procedure, the
243 * safest thing to do is filter them appropriately. For Version 2, the
244 * X/Open XNFS document is the only specification that defines error values
245 * for each RPC (The RFC simply lists all possible error values for all RPCs),
246 * so I have decided to not do this for Version 2.
247 * The first entry is the default error return and the rest are the valid
248 * errors for that RPC in increasing numeric order.
249 */
250 static const short nfsv3err_null[] = {
251 0,
252 0,
253 };
254
255 static const short nfsv3err_getattr[] = {
256 NFSERR_IO,
257 NFSERR_IO,
258 NFSERR_STALE,
259 NFSERR_BADHANDLE,
260 NFSERR_SERVERFAULT,
261 0,
262 };
263
264 static const short nfsv3err_setattr[] = {
265 NFSERR_IO,
266 NFSERR_PERM,
267 NFSERR_IO,
268 NFSERR_ACCES,
269 NFSERR_INVAL,
270 NFSERR_NOSPC,
271 NFSERR_ROFS,
272 NFSERR_DQUOT,
273 NFSERR_STALE,
274 NFSERR_BADHANDLE,
275 NFSERR_NOT_SYNC,
276 NFSERR_SERVERFAULT,
277 0,
278 };
279
280 static const short nfsv3err_lookup[] = {
281 NFSERR_IO,
282 NFSERR_NOENT,
283 NFSERR_IO,
284 NFSERR_ACCES,
285 NFSERR_NOTDIR,
286 NFSERR_NAMETOL,
287 NFSERR_STALE,
288 NFSERR_BADHANDLE,
289 NFSERR_SERVERFAULT,
290 0,
291 };
292
293 static const short nfsv3err_access[] = {
294 NFSERR_IO,
295 NFSERR_IO,
296 NFSERR_STALE,
297 NFSERR_BADHANDLE,
298 NFSERR_SERVERFAULT,
299 0,
300 };
301
302 static const short nfsv3err_readlink[] = {
303 NFSERR_IO,
304 NFSERR_IO,
305 NFSERR_ACCES,
306 NFSERR_INVAL,
307 NFSERR_STALE,
308 NFSERR_BADHANDLE,
309 NFSERR_NOTSUPP,
310 NFSERR_SERVERFAULT,
311 0,
312 };
313
314 static const short nfsv3err_read[] = {
315 NFSERR_IO,
316 NFSERR_IO,
317 NFSERR_NXIO,
318 NFSERR_ACCES,
319 NFSERR_INVAL,
320 NFSERR_STALE,
321 NFSERR_BADHANDLE,
322 NFSERR_SERVERFAULT,
323 NFSERR_JUKEBOX,
324 0,
325 };
326
327 static const short nfsv3err_write[] = {
328 NFSERR_IO,
329 NFSERR_IO,
330 NFSERR_ACCES,
331 NFSERR_INVAL,
332 NFSERR_FBIG,
333 NFSERR_NOSPC,
334 NFSERR_ROFS,
335 NFSERR_DQUOT,
336 NFSERR_STALE,
337 NFSERR_BADHANDLE,
338 NFSERR_SERVERFAULT,
339 NFSERR_JUKEBOX,
340 0,
341 };
342
343 static const short nfsv3err_create[] = {
344 NFSERR_IO,
345 NFSERR_IO,
346 NFSERR_ACCES,
347 NFSERR_EXIST,
348 NFSERR_NOTDIR,
349 NFSERR_NOSPC,
350 NFSERR_ROFS,
351 NFSERR_NAMETOL,
352 NFSERR_DQUOT,
353 NFSERR_STALE,
354 NFSERR_BADHANDLE,
355 NFSERR_NOTSUPP,
356 NFSERR_SERVERFAULT,
357 0,
358 };
359
360 static const short nfsv3err_mkdir[] = {
361 NFSERR_IO,
362 NFSERR_IO,
363 NFSERR_ACCES,
364 NFSERR_EXIST,
365 NFSERR_NOTDIR,
366 NFSERR_NOSPC,
367 NFSERR_ROFS,
368 NFSERR_NAMETOL,
369 NFSERR_DQUOT,
370 NFSERR_STALE,
371 NFSERR_BADHANDLE,
372 NFSERR_NOTSUPP,
373 NFSERR_SERVERFAULT,
374 0,
375 };
376
377 static const short nfsv3err_symlink[] = {
378 NFSERR_IO,
379 NFSERR_IO,
380 NFSERR_ACCES,
381 NFSERR_EXIST,
382 NFSERR_NOTDIR,
383 NFSERR_NOSPC,
384 NFSERR_ROFS,
385 NFSERR_NAMETOL,
386 NFSERR_DQUOT,
387 NFSERR_STALE,
388 NFSERR_BADHANDLE,
389 NFSERR_NOTSUPP,
390 NFSERR_SERVERFAULT,
391 0,
392 };
393
394 static const short nfsv3err_mknod[] = {
395 NFSERR_IO,
396 NFSERR_IO,
397 NFSERR_ACCES,
398 NFSERR_EXIST,
399 NFSERR_NOTDIR,
400 NFSERR_NOSPC,
401 NFSERR_ROFS,
402 NFSERR_NAMETOL,
403 NFSERR_DQUOT,
404 NFSERR_STALE,
405 NFSERR_BADHANDLE,
406 NFSERR_NOTSUPP,
407 NFSERR_SERVERFAULT,
408 NFSERR_BADTYPE,
409 0,
410 };
411
412 static const short nfsv3err_remove[] = {
413 NFSERR_IO,
414 NFSERR_NOENT,
415 NFSERR_IO,
416 NFSERR_ACCES,
417 NFSERR_NOTDIR,
418 NFSERR_ROFS,
419 NFSERR_NAMETOL,
420 NFSERR_STALE,
421 NFSERR_BADHANDLE,
422 NFSERR_SERVERFAULT,
423 0,
424 };
425
426 static const short nfsv3err_rmdir[] = {
427 NFSERR_IO,
428 NFSERR_NOENT,
429 NFSERR_IO,
430 NFSERR_ACCES,
431 NFSERR_EXIST,
432 NFSERR_NOTDIR,
433 NFSERR_INVAL,
434 NFSERR_ROFS,
435 NFSERR_NAMETOL,
436 NFSERR_NOTEMPTY,
437 NFSERR_STALE,
438 NFSERR_BADHANDLE,
439 NFSERR_NOTSUPP,
440 NFSERR_SERVERFAULT,
441 0,
442 };
443
444 static const short nfsv3err_rename[] = {
445 NFSERR_IO,
446 NFSERR_NOENT,
447 NFSERR_IO,
448 NFSERR_ACCES,
449 NFSERR_EXIST,
450 NFSERR_XDEV,
451 NFSERR_NOTDIR,
452 NFSERR_ISDIR,
453 NFSERR_INVAL,
454 NFSERR_NOSPC,
455 NFSERR_ROFS,
456 NFSERR_MLINK,
457 NFSERR_NAMETOL,
458 NFSERR_NOTEMPTY,
459 NFSERR_DQUOT,
460 NFSERR_STALE,
461 NFSERR_BADHANDLE,
462 NFSERR_NOTSUPP,
463 NFSERR_SERVERFAULT,
464 0,
465 };
466
467 static const short nfsv3err_link[] = {
468 NFSERR_IO,
469 NFSERR_IO,
470 NFSERR_ACCES,
471 NFSERR_EXIST,
472 NFSERR_XDEV,
473 NFSERR_NOTDIR,
474 NFSERR_INVAL,
475 NFSERR_NOSPC,
476 NFSERR_ROFS,
477 NFSERR_MLINK,
478 NFSERR_NAMETOL,
479 NFSERR_DQUOT,
480 NFSERR_STALE,
481 NFSERR_BADHANDLE,
482 NFSERR_NOTSUPP,
483 NFSERR_SERVERFAULT,
484 0,
485 };
486
487 static const short nfsv3err_readdir[] = {
488 NFSERR_IO,
489 NFSERR_IO,
490 NFSERR_ACCES,
491 NFSERR_NOTDIR,
492 NFSERR_STALE,
493 NFSERR_BADHANDLE,
494 NFSERR_BAD_COOKIE,
495 NFSERR_TOOSMALL,
496 NFSERR_SERVERFAULT,
497 0,
498 };
499
500 static const short nfsv3err_readdirplus[] = {
501 NFSERR_IO,
502 NFSERR_IO,
503 NFSERR_ACCES,
504 NFSERR_NOTDIR,
505 NFSERR_STALE,
506 NFSERR_BADHANDLE,
507 NFSERR_BAD_COOKIE,
508 NFSERR_NOTSUPP,
509 NFSERR_TOOSMALL,
510 NFSERR_SERVERFAULT,
511 0,
512 };
513
514 static const short nfsv3err_fsstat[] = {
515 NFSERR_IO,
516 NFSERR_IO,
517 NFSERR_STALE,
518 NFSERR_BADHANDLE,
519 NFSERR_SERVERFAULT,
520 0,
521 };
522
523 static const short nfsv3err_fsinfo[] = {
524 NFSERR_STALE,
525 NFSERR_STALE,
526 NFSERR_BADHANDLE,
527 NFSERR_SERVERFAULT,
528 0,
529 };
530
531 static const short nfsv3err_pathconf[] = {
532 NFSERR_STALE,
533 NFSERR_STALE,
534 NFSERR_BADHANDLE,
535 NFSERR_SERVERFAULT,
536 0,
537 };
538
539 static const short nfsv3err_commit[] = {
540 NFSERR_IO,
541 NFSERR_IO,
542 NFSERR_STALE,
543 NFSERR_BADHANDLE,
544 NFSERR_SERVERFAULT,
545 0,
546 };
547
548 static const short * const nfsrv_v3errmap[] = {
549 nfsv3err_null,
550 nfsv3err_getattr,
551 nfsv3err_setattr,
552 nfsv3err_lookup,
553 nfsv3err_access,
554 nfsv3err_readlink,
555 nfsv3err_read,
556 nfsv3err_write,
557 nfsv3err_create,
558 nfsv3err_mkdir,
559 nfsv3err_symlink,
560 nfsv3err_mknod,
561 nfsv3err_remove,
562 nfsv3err_rmdir,
563 nfsv3err_rename,
564 nfsv3err_link,
565 nfsv3err_readdir,
566 nfsv3err_readdirplus,
567 nfsv3err_fsstat,
568 nfsv3err_fsinfo,
569 nfsv3err_pathconf,
570 nfsv3err_commit,
571 };
572
573 extern struct nfsrtt nfsrtt;
574 extern time_t nqnfsstarttime;
575 extern int nqsrv_clockskew;
576 extern int nqsrv_writeslack;
577 extern int nqsrv_maxlease;
578 extern const int nqnfs_piggy[NFS_NPROCS];
579 extern struct nfsnodehashhead *nfsnodehashtbl;
580 extern u_long nfsnodehash;
581
582 u_long nfsdirhashmask;
583
584 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
585
586 /*
587 * Create the header for an rpc request packet
588 * The hsiz is the size of the rest of the nfs request header.
589 * (just used to decide if a cluster is a good idea)
590 */
591 struct mbuf *
592 nfsm_reqh(
593 struct nfsnode *np __unused,
594 u_long procid __unused,
595 int hsiz,
596 caddr_t *bposp
597 )
598 {
599 struct mbuf *mb;
600 caddr_t bpos;
601 #ifndef NFS_V2_ONLY
602 struct nfsmount *nmp;
603 u_int32_t *tl;
604 int nqflag;
605 #endif
606
607 mb = m_get(M_WAIT, MT_DATA);
608 MCLAIM(mb, &nfs_mowner);
609 if (hsiz >= MINCLSIZE)
610 m_clget(mb, M_WAIT);
611 mb->m_len = 0;
612 bpos = mtod(mb, caddr_t);
613
614 #ifndef NFS_V2_ONLY
615 /*
616 * For NQNFS, add lease request.
617 */
618 if (np) {
619 nmp = VFSTONFS(np->n_vnode->v_mount);
620 if (nmp->nm_flag & NFSMNT_NQNFS) {
621 nqflag = NQNFS_NEEDLEASE(np, procid);
622 if (nqflag) {
623 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
624 *tl++ = txdr_unsigned(nqflag);
625 *tl = txdr_unsigned(nmp->nm_leaseterm);
626 } else {
627 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
628 *tl = 0;
629 }
630 }
631 }
632 #endif
633 /* Finally, return values */
634 *bposp = bpos;
635 return (mb);
636 }
637
638 /*
639 * Build the RPC header and fill in the authorization info.
640 * The authorization string argument is only used when the credentials
641 * come from outside of the kernel.
642 * Returns the head of the mbuf list.
643 */
644 struct mbuf *
645 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
646 verf_str, mrest, mrest_len, mbp, xidp)
647 kauth_cred_t cr;
648 int nmflag;
649 int procid;
650 int auth_type;
651 int auth_len;
652 char *auth_str;
653 int verf_len;
654 char *verf_str;
655 struct mbuf *mrest;
656 int mrest_len;
657 struct mbuf **mbp;
658 u_int32_t *xidp;
659 {
660 struct mbuf *mb;
661 u_int32_t *tl;
662 caddr_t bpos;
663 int i;
664 struct mbuf *mreq;
665 int siz, grpsiz, authsiz;
666
667 authsiz = nfsm_rndup(auth_len);
668 mb = m_gethdr(M_WAIT, MT_DATA);
669 MCLAIM(mb, &nfs_mowner);
670 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
671 m_clget(mb, M_WAIT);
672 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
673 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
674 } else {
675 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
676 }
677 mb->m_len = 0;
678 mreq = mb;
679 bpos = mtod(mb, caddr_t);
680
681 /*
682 * First the RPC header.
683 */
684 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
685
686 *tl++ = *xidp = nfs_getxid();
687 *tl++ = rpc_call;
688 *tl++ = rpc_vers;
689 if (nmflag & NFSMNT_NQNFS) {
690 *tl++ = txdr_unsigned(NQNFS_PROG);
691 *tl++ = txdr_unsigned(NQNFS_VER3);
692 } else {
693 *tl++ = txdr_unsigned(NFS_PROG);
694 if (nmflag & NFSMNT_NFSV3)
695 *tl++ = txdr_unsigned(NFS_VER3);
696 else
697 *tl++ = txdr_unsigned(NFS_VER2);
698 }
699 if (nmflag & NFSMNT_NFSV3)
700 *tl++ = txdr_unsigned(procid);
701 else
702 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
703
704 /*
705 * And then the authorization cred.
706 */
707 *tl++ = txdr_unsigned(auth_type);
708 *tl = txdr_unsigned(authsiz);
709 switch (auth_type) {
710 case RPCAUTH_UNIX:
711 nfsm_build(tl, u_int32_t *, auth_len);
712 *tl++ = 0; /* stamp ?? */
713 *tl++ = 0; /* NULL hostname */
714 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
715 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
716 grpsiz = (auth_len >> 2) - 5;
717 *tl++ = txdr_unsigned(grpsiz);
718 for (i = 0; i < grpsiz; i++)
719 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
720 break;
721 case RPCAUTH_KERB4:
722 siz = auth_len;
723 while (siz > 0) {
724 if (M_TRAILINGSPACE(mb) == 0) {
725 struct mbuf *mb2;
726 mb2 = m_get(M_WAIT, MT_DATA);
727 MCLAIM(mb2, &nfs_mowner);
728 if (siz >= MINCLSIZE)
729 m_clget(mb2, M_WAIT);
730 mb->m_next = mb2;
731 mb = mb2;
732 mb->m_len = 0;
733 bpos = mtod(mb, caddr_t);
734 }
735 i = min(siz, M_TRAILINGSPACE(mb));
736 memcpy(bpos, auth_str, i);
737 mb->m_len += i;
738 auth_str += i;
739 bpos += i;
740 siz -= i;
741 }
742 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
743 for (i = 0; i < siz; i++)
744 *bpos++ = '\0';
745 mb->m_len += siz;
746 }
747 break;
748 };
749
750 /*
751 * And the verifier...
752 */
753 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
754 if (verf_str) {
755 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
756 *tl = txdr_unsigned(verf_len);
757 siz = verf_len;
758 while (siz > 0) {
759 if (M_TRAILINGSPACE(mb) == 0) {
760 struct mbuf *mb2;
761 mb2 = m_get(M_WAIT, MT_DATA);
762 MCLAIM(mb2, &nfs_mowner);
763 if (siz >= MINCLSIZE)
764 m_clget(mb2, M_WAIT);
765 mb->m_next = mb2;
766 mb = mb2;
767 mb->m_len = 0;
768 bpos = mtod(mb, caddr_t);
769 }
770 i = min(siz, M_TRAILINGSPACE(mb));
771 memcpy(bpos, verf_str, i);
772 mb->m_len += i;
773 verf_str += i;
774 bpos += i;
775 siz -= i;
776 }
777 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
778 for (i = 0; i < siz; i++)
779 *bpos++ = '\0';
780 mb->m_len += siz;
781 }
782 } else {
783 *tl++ = txdr_unsigned(RPCAUTH_NULL);
784 *tl = 0;
785 }
786 mb->m_next = mrest;
787 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
788 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
789 *mbp = mb;
790 return (mreq);
791 }
792
793 /*
794 * copies mbuf chain to the uio scatter/gather list
795 */
796 int
797 nfsm_mbuftouio(mrep, uiop, siz, dpos)
798 struct mbuf **mrep;
799 struct uio *uiop;
800 int siz;
801 caddr_t *dpos;
802 {
803 char *mbufcp, *uiocp;
804 int xfer, left, len;
805 struct mbuf *mp;
806 long uiosiz, rem;
807 int error = 0;
808
809 mp = *mrep;
810 mbufcp = *dpos;
811 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
812 rem = nfsm_rndup(siz)-siz;
813 while (siz > 0) {
814 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
815 return (EFBIG);
816 left = uiop->uio_iov->iov_len;
817 uiocp = uiop->uio_iov->iov_base;
818 if (left > siz)
819 left = siz;
820 uiosiz = left;
821 while (left > 0) {
822 while (len == 0) {
823 mp = mp->m_next;
824 if (mp == NULL)
825 return (EBADRPC);
826 mbufcp = mtod(mp, caddr_t);
827 len = mp->m_len;
828 }
829 xfer = (left > len) ? len : left;
830 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
831 uiocp, xfer);
832 if (error) {
833 return error;
834 }
835 left -= xfer;
836 len -= xfer;
837 mbufcp += xfer;
838 uiocp += xfer;
839 uiop->uio_offset += xfer;
840 uiop->uio_resid -= xfer;
841 }
842 if (uiop->uio_iov->iov_len <= siz) {
843 uiop->uio_iovcnt--;
844 uiop->uio_iov++;
845 } else {
846 uiop->uio_iov->iov_base =
847 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
848 uiop->uio_iov->iov_len -= uiosiz;
849 }
850 siz -= uiosiz;
851 }
852 *dpos = mbufcp;
853 *mrep = mp;
854 if (rem > 0) {
855 if (len < rem)
856 error = nfs_adv(mrep, dpos, rem, len);
857 else
858 *dpos += rem;
859 }
860 return (error);
861 }
862
863 /*
864 * copies a uio scatter/gather list to an mbuf chain.
865 * NOTE: can ony handle iovcnt == 1
866 */
867 int
868 nfsm_uiotombuf(uiop, mq, siz, bpos)
869 struct uio *uiop;
870 struct mbuf **mq;
871 int siz;
872 caddr_t *bpos;
873 {
874 char *uiocp;
875 struct mbuf *mp, *mp2;
876 int xfer, left, mlen;
877 int uiosiz, clflg, rem;
878 char *cp;
879 int error;
880
881 #ifdef DIAGNOSTIC
882 if (uiop->uio_iovcnt != 1)
883 panic("nfsm_uiotombuf: iovcnt != 1");
884 #endif
885
886 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
887 clflg = 1;
888 else
889 clflg = 0;
890 rem = nfsm_rndup(siz)-siz;
891 mp = mp2 = *mq;
892 while (siz > 0) {
893 left = uiop->uio_iov->iov_len;
894 uiocp = uiop->uio_iov->iov_base;
895 if (left > siz)
896 left = siz;
897 uiosiz = left;
898 while (left > 0) {
899 mlen = M_TRAILINGSPACE(mp);
900 if (mlen == 0) {
901 mp = m_get(M_WAIT, MT_DATA);
902 MCLAIM(mp, &nfs_mowner);
903 if (clflg)
904 m_clget(mp, M_WAIT);
905 mp->m_len = 0;
906 mp2->m_next = mp;
907 mp2 = mp;
908 mlen = M_TRAILINGSPACE(mp);
909 }
910 xfer = (left > mlen) ? mlen : left;
911 cp = mtod(mp, caddr_t) + mp->m_len;
912 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
913 xfer);
914 if (error) {
915 /* XXX */
916 }
917 mp->m_len += xfer;
918 left -= xfer;
919 uiocp += xfer;
920 uiop->uio_offset += xfer;
921 uiop->uio_resid -= xfer;
922 }
923 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
924 uiosiz;
925 uiop->uio_iov->iov_len -= uiosiz;
926 siz -= uiosiz;
927 }
928 if (rem > 0) {
929 if (rem > M_TRAILINGSPACE(mp)) {
930 mp = m_get(M_WAIT, MT_DATA);
931 MCLAIM(mp, &nfs_mowner);
932 mp->m_len = 0;
933 mp2->m_next = mp;
934 }
935 cp = mtod(mp, caddr_t) + mp->m_len;
936 for (left = 0; left < rem; left++)
937 *cp++ = '\0';
938 mp->m_len += rem;
939 *bpos = cp;
940 } else
941 *bpos = mtod(mp, caddr_t)+mp->m_len;
942 *mq = mp;
943 return (0);
944 }
945
946 /*
947 * Get at least "siz" bytes of correctly aligned data.
948 * When called the mbuf pointers are not necessarily correct,
949 * dsosp points to what ought to be in m_data and left contains
950 * what ought to be in m_len.
951 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
952 * cases. (The macros use the vars. dpos and dpos2)
953 */
954 int
955 nfsm_disct(mdp, dposp, siz, left, cp2)
956 struct mbuf **mdp;
957 caddr_t *dposp;
958 int siz;
959 int left;
960 caddr_t *cp2;
961 {
962 struct mbuf *m1, *m2;
963 struct mbuf *havebuf = NULL;
964 caddr_t src = *dposp;
965 caddr_t dst;
966 int len;
967
968 #ifdef DEBUG
969 if (left < 0)
970 panic("nfsm_disct: left < 0");
971 #endif
972 m1 = *mdp;
973 /*
974 * Skip through the mbuf chain looking for an mbuf with
975 * some data. If the first mbuf found has enough data
976 * and it is correctly aligned return it.
977 */
978 while (left == 0) {
979 havebuf = m1;
980 *mdp = m1 = m1->m_next;
981 if (m1 == NULL)
982 return (EBADRPC);
983 src = mtod(m1, caddr_t);
984 left = m1->m_len;
985 /*
986 * If we start a new mbuf and it is big enough
987 * and correctly aligned just return it, don't
988 * do any pull up.
989 */
990 if (left >= siz && nfsm_aligned(src)) {
991 *cp2 = src;
992 *dposp = src + siz;
993 return (0);
994 }
995 }
996 if (m1->m_flags & M_EXT) {
997 if (havebuf) {
998 /* If the first mbuf with data has external data
999 * and there is a previous empty mbuf use it
1000 * to move the data into.
1001 */
1002 m2 = m1;
1003 *mdp = m1 = havebuf;
1004 if (m1->m_flags & M_EXT) {
1005 MEXTREMOVE(m1);
1006 }
1007 } else {
1008 /*
1009 * If the first mbuf has a external data
1010 * and there is no previous empty mbuf
1011 * allocate a new mbuf and move the external
1012 * data to the new mbuf. Also make the first
1013 * mbuf look empty.
1014 */
1015 m2 = m_get(M_WAIT, MT_DATA);
1016 m2->m_ext = m1->m_ext;
1017 m2->m_data = src;
1018 m2->m_len = left;
1019 MCLADDREFERENCE(m1, m2);
1020 MEXTREMOVE(m1);
1021 m2->m_next = m1->m_next;
1022 m1->m_next = m2;
1023 }
1024 m1->m_len = 0;
1025 if (m1->m_flags & M_PKTHDR)
1026 dst = m1->m_pktdat;
1027 else
1028 dst = m1->m_dat;
1029 m1->m_data = dst;
1030 } else {
1031 /*
1032 * If the first mbuf has no external data
1033 * move the data to the front of the mbuf.
1034 */
1035 if (m1->m_flags & M_PKTHDR)
1036 dst = m1->m_pktdat;
1037 else
1038 dst = m1->m_dat;
1039 m1->m_data = dst;
1040 if (dst != src)
1041 memmove(dst, src, left);
1042 dst += left;
1043 m1->m_len = left;
1044 m2 = m1->m_next;
1045 }
1046 *cp2 = m1->m_data;
1047 *dposp = mtod(m1, caddr_t) + siz;
1048 /*
1049 * Loop through mbufs pulling data up into first mbuf until
1050 * the first mbuf is full or there is no more data to
1051 * pullup.
1052 */
1053 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1054 if ((len = min(len, m2->m_len)) != 0)
1055 memcpy(dst, m2->m_data, len);
1056 m1->m_len += len;
1057 dst += len;
1058 m2->m_data += len;
1059 m2->m_len -= len;
1060 m2 = m2->m_next;
1061 }
1062 if (m1->m_len < siz)
1063 return (EBADRPC);
1064 return (0);
1065 }
1066
1067 /*
1068 * Advance the position in the mbuf chain.
1069 */
1070 int
1071 nfs_adv(mdp, dposp, offs, left)
1072 struct mbuf **mdp;
1073 caddr_t *dposp;
1074 int offs;
1075 int left;
1076 {
1077 struct mbuf *m;
1078 int s;
1079
1080 m = *mdp;
1081 s = left;
1082 while (s < offs) {
1083 offs -= s;
1084 m = m->m_next;
1085 if (m == NULL)
1086 return (EBADRPC);
1087 s = m->m_len;
1088 }
1089 *mdp = m;
1090 *dposp = mtod(m, caddr_t)+offs;
1091 return (0);
1092 }
1093
1094 /*
1095 * Copy a string into mbufs for the hard cases...
1096 */
1097 int
1098 nfsm_strtmbuf(mb, bpos, cp, siz)
1099 struct mbuf **mb;
1100 char **bpos;
1101 const char *cp;
1102 long siz;
1103 {
1104 struct mbuf *m1 = NULL, *m2;
1105 long left, xfer, len, tlen;
1106 u_int32_t *tl;
1107 int putsize;
1108
1109 putsize = 1;
1110 m2 = *mb;
1111 left = M_TRAILINGSPACE(m2);
1112 if (left > 0) {
1113 tl = ((u_int32_t *)(*bpos));
1114 *tl++ = txdr_unsigned(siz);
1115 putsize = 0;
1116 left -= NFSX_UNSIGNED;
1117 m2->m_len += NFSX_UNSIGNED;
1118 if (left > 0) {
1119 memcpy((caddr_t) tl, cp, left);
1120 siz -= left;
1121 cp += left;
1122 m2->m_len += left;
1123 left = 0;
1124 }
1125 }
1126 /* Loop around adding mbufs */
1127 while (siz > 0) {
1128 m1 = m_get(M_WAIT, MT_DATA);
1129 MCLAIM(m1, &nfs_mowner);
1130 if (siz > MLEN)
1131 m_clget(m1, M_WAIT);
1132 m1->m_len = NFSMSIZ(m1);
1133 m2->m_next = m1;
1134 m2 = m1;
1135 tl = mtod(m1, u_int32_t *);
1136 tlen = 0;
1137 if (putsize) {
1138 *tl++ = txdr_unsigned(siz);
1139 m1->m_len -= NFSX_UNSIGNED;
1140 tlen = NFSX_UNSIGNED;
1141 putsize = 0;
1142 }
1143 if (siz < m1->m_len) {
1144 len = nfsm_rndup(siz);
1145 xfer = siz;
1146 if (xfer < len)
1147 *(tl+(xfer>>2)) = 0;
1148 } else {
1149 xfer = len = m1->m_len;
1150 }
1151 memcpy((caddr_t) tl, cp, xfer);
1152 m1->m_len = len+tlen;
1153 siz -= xfer;
1154 cp += xfer;
1155 }
1156 *mb = m1;
1157 *bpos = mtod(m1, caddr_t)+m1->m_len;
1158 return (0);
1159 }
1160
1161 /*
1162 * Directory caching routines. They work as follows:
1163 * - a cache is maintained per VDIR nfsnode.
1164 * - for each offset cookie that is exported to userspace, and can
1165 * thus be thrown back at us as an offset to VOP_READDIR, store
1166 * information in the cache.
1167 * - cached are:
1168 * - cookie itself
1169 * - blocknumber (essentially just a search key in the buffer cache)
1170 * - entry number in block.
1171 * - offset cookie of block in which this entry is stored
1172 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1173 * - entries are looked up in a hash table
1174 * - also maintained is an LRU list of entries, used to determine
1175 * which ones to delete if the cache grows too large.
1176 * - if 32 <-> 64 translation mode is requested for a filesystem,
1177 * the cache also functions as a translation table
1178 * - in the translation case, invalidating the cache does not mean
1179 * flushing it, but just marking entries as invalid, except for
1180 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1181 * still be able to use the cache as a translation table.
1182 * - 32 bit cookies are uniquely created by combining the hash table
1183 * entry value, and one generation count per hash table entry,
1184 * incremented each time an entry is appended to the chain.
1185 * - the cache is invalidated each time a direcory is modified
1186 * - sanity checks are also done; if an entry in a block turns
1187 * out not to have a matching cookie, the cache is invalidated
1188 * and a new block starting from the wanted offset is fetched from
1189 * the server.
1190 * - directory entries as read from the server are extended to contain
1191 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1192 * the cache and exporting them to userspace through the cookie
1193 * argument to VOP_READDIR.
1194 */
1195
1196 u_long
1197 nfs_dirhash(off)
1198 off_t off;
1199 {
1200 int i;
1201 char *cp = (char *)&off;
1202 u_long sum = 0L;
1203
1204 for (i = 0 ; i < sizeof (off); i++)
1205 sum += *cp++;
1206
1207 return sum;
1208 }
1209
1210 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1211 #define NFSDC_LOCK(np) simple_lock(_NFSDC_MTX(np))
1212 #define NFSDC_UNLOCK(np) simple_unlock(_NFSDC_MTX(np))
1213 #define NFSDC_ASSERT_LOCKED(np) LOCK_ASSERT(simple_lock_held(_NFSDC_MTX(np)))
1214
1215 void
1216 nfs_initdircache(vp)
1217 struct vnode *vp;
1218 {
1219 struct nfsnode *np = VTONFS(vp);
1220 struct nfsdirhashhead *dircache;
1221
1222 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1223 M_WAITOK, &nfsdirhashmask);
1224
1225 NFSDC_LOCK(np);
1226 if (np->n_dircache == NULL) {
1227 np->n_dircachesize = 0;
1228 np->n_dircache = dircache;
1229 dircache = NULL;
1230 TAILQ_INIT(&np->n_dirchain);
1231 }
1232 NFSDC_UNLOCK(np);
1233 if (dircache)
1234 hashdone(dircache, M_NFSDIROFF);
1235 }
1236
1237 void
1238 nfs_initdirxlatecookie(vp)
1239 struct vnode *vp;
1240 {
1241 struct nfsnode *np = VTONFS(vp);
1242 unsigned *dirgens;
1243
1244 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1245
1246 dirgens = malloc(NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1247 M_WAITOK|M_ZERO);
1248 NFSDC_LOCK(np);
1249 if (np->n_dirgens == NULL) {
1250 np->n_dirgens = dirgens;
1251 dirgens = NULL;
1252 }
1253 NFSDC_UNLOCK(np);
1254 if (dirgens)
1255 free(dirgens, M_NFSDIROFF);
1256 }
1257
1258 static const struct nfsdircache dzero;
1259
1260 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1261 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1262 struct nfsdircache *));
1263
1264 static void
1265 nfs_unlinkdircache(np, ndp)
1266 struct nfsnode *np;
1267 struct nfsdircache *ndp;
1268 {
1269
1270 NFSDC_ASSERT_LOCKED(np);
1271 KASSERT(ndp != &dzero);
1272
1273 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1274 return;
1275
1276 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1277 LIST_REMOVE(ndp, dc_hash);
1278 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1279
1280 nfs_putdircache_unlocked(np, ndp);
1281 }
1282
1283 void
1284 nfs_putdircache(np, ndp)
1285 struct nfsnode *np;
1286 struct nfsdircache *ndp;
1287 {
1288 int ref;
1289
1290 if (ndp == &dzero)
1291 return;
1292
1293 KASSERT(ndp->dc_refcnt > 0);
1294 NFSDC_LOCK(np);
1295 ref = --ndp->dc_refcnt;
1296 NFSDC_UNLOCK(np);
1297
1298 if (ref == 0)
1299 free(ndp, M_NFSDIROFF);
1300 }
1301
1302 static void
1303 nfs_putdircache_unlocked(struct nfsnode *np __unused, struct nfsdircache *ndp)
1304 {
1305 int ref;
1306
1307 NFSDC_ASSERT_LOCKED(np);
1308
1309 if (ndp == &dzero)
1310 return;
1311
1312 KASSERT(ndp->dc_refcnt > 0);
1313 ref = --ndp->dc_refcnt;
1314 if (ref == 0)
1315 free(ndp, M_NFSDIROFF);
1316 }
1317
1318 struct nfsdircache *
1319 nfs_searchdircache(vp, off, do32, hashent)
1320 struct vnode *vp;
1321 off_t off;
1322 int do32;
1323 int *hashent;
1324 {
1325 struct nfsdirhashhead *ndhp;
1326 struct nfsdircache *ndp = NULL;
1327 struct nfsnode *np = VTONFS(vp);
1328 unsigned ent;
1329
1330 /*
1331 * Zero is always a valid cookie.
1332 */
1333 if (off == 0)
1334 /* XXXUNCONST */
1335 return (struct nfsdircache *)__UNCONST(&dzero);
1336
1337 if (!np->n_dircache)
1338 return NULL;
1339
1340 /*
1341 * We use a 32bit cookie as search key, directly reconstruct
1342 * the hashentry. Else use the hashfunction.
1343 */
1344 if (do32) {
1345 ent = (u_int32_t)off >> 24;
1346 if (ent >= NFS_DIRHASHSIZ)
1347 return NULL;
1348 ndhp = &np->n_dircache[ent];
1349 } else {
1350 ndhp = NFSDIRHASH(np, off);
1351 }
1352
1353 if (hashent)
1354 *hashent = (int)(ndhp - np->n_dircache);
1355
1356 NFSDC_LOCK(np);
1357 if (do32) {
1358 LIST_FOREACH(ndp, ndhp, dc_hash) {
1359 if (ndp->dc_cookie32 == (u_int32_t)off) {
1360 /*
1361 * An invalidated entry will become the
1362 * start of a new block fetched from
1363 * the server.
1364 */
1365 if (ndp->dc_flags & NFSDC_INVALID) {
1366 ndp->dc_blkcookie = ndp->dc_cookie;
1367 ndp->dc_entry = 0;
1368 ndp->dc_flags &= ~NFSDC_INVALID;
1369 }
1370 break;
1371 }
1372 }
1373 } else {
1374 LIST_FOREACH(ndp, ndhp, dc_hash) {
1375 if (ndp->dc_cookie == off)
1376 break;
1377 }
1378 }
1379 if (ndp != NULL)
1380 ndp->dc_refcnt++;
1381 NFSDC_UNLOCK(np);
1382 return ndp;
1383 }
1384
1385
1386 struct nfsdircache *
1387 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1388 daddr_t blkno __unused)
1389 {
1390 struct nfsnode *np = VTONFS(vp);
1391 struct nfsdirhashhead *ndhp;
1392 struct nfsdircache *ndp = NULL;
1393 struct nfsdircache *newndp = NULL;
1394 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1395 int hashent = 0, gen, overwrite; /* XXX: GCC */
1396
1397 /*
1398 * XXX refuse entries for offset 0. amd(8) erroneously sets
1399 * cookie 0 for the '.' entry, making this necessary. This
1400 * isn't so bad, as 0 is a special case anyway.
1401 */
1402 if (off == 0)
1403 /* XXXUNCONST */
1404 return (struct nfsdircache *)__UNCONST(&dzero);
1405
1406 if (!np->n_dircache)
1407 /*
1408 * XXX would like to do this in nfs_nget but vtype
1409 * isn't known at that time.
1410 */
1411 nfs_initdircache(vp);
1412
1413 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1414 nfs_initdirxlatecookie(vp);
1415
1416 retry:
1417 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1418
1419 NFSDC_LOCK(np);
1420 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1421 /*
1422 * Overwriting an old entry. Check if it's the same.
1423 * If so, just return. If not, remove the old entry.
1424 */
1425 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1426 goto done;
1427 nfs_unlinkdircache(np, ndp);
1428 nfs_putdircache_unlocked(np, ndp);
1429 ndp = NULL;
1430 }
1431
1432 ndhp = &np->n_dircache[hashent];
1433
1434 if (!ndp) {
1435 if (newndp == NULL) {
1436 NFSDC_UNLOCK(np);
1437 newndp = malloc(sizeof(*ndp), M_NFSDIROFF, M_WAITOK);
1438 newndp->dc_refcnt = 1;
1439 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1440 goto retry;
1441 }
1442 ndp = newndp;
1443 newndp = NULL;
1444 overwrite = 0;
1445 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1446 /*
1447 * We're allocating a new entry, so bump the
1448 * generation number.
1449 */
1450 KASSERT(np->n_dirgens);
1451 gen = ++np->n_dirgens[hashent];
1452 if (gen == 0) {
1453 np->n_dirgens[hashent]++;
1454 gen++;
1455 }
1456 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1457 }
1458 } else
1459 overwrite = 1;
1460
1461 ndp->dc_cookie = off;
1462 ndp->dc_blkcookie = blkoff;
1463 ndp->dc_entry = en;
1464 ndp->dc_flags = 0;
1465
1466 if (overwrite)
1467 goto done;
1468
1469 /*
1470 * If the maximum directory cookie cache size has been reached
1471 * for this node, take one off the front. The idea is that
1472 * directories are typically read front-to-back once, so that
1473 * the oldest entries can be thrown away without much performance
1474 * loss.
1475 */
1476 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1477 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1478 } else
1479 np->n_dircachesize++;
1480
1481 KASSERT(ndp->dc_refcnt == 1);
1482 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1483 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1484 ndp->dc_refcnt++;
1485 done:
1486 KASSERT(ndp->dc_refcnt > 0);
1487 NFSDC_UNLOCK(np);
1488 if (newndp)
1489 nfs_putdircache(np, newndp);
1490 return ndp;
1491 }
1492
1493 void
1494 nfs_invaldircache(vp, flags)
1495 struct vnode *vp;
1496 int flags;
1497 {
1498 struct nfsnode *np = VTONFS(vp);
1499 struct nfsdircache *ndp = NULL;
1500 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1501 const boolean_t forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1502
1503 #ifdef DIAGNOSTIC
1504 if (vp->v_type != VDIR)
1505 panic("nfs: invaldircache: not dir");
1506 #endif
1507
1508 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1509 np->n_flag &= ~NEOFVALID;
1510
1511 if (!np->n_dircache)
1512 return;
1513
1514 NFSDC_LOCK(np);
1515 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1516 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1517 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1518 nfs_unlinkdircache(np, ndp);
1519 }
1520 np->n_dircachesize = 0;
1521 if (forcefree && np->n_dirgens) {
1522 FREE(np->n_dirgens, M_NFSDIROFF);
1523 np->n_dirgens = NULL;
1524 }
1525 } else {
1526 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1527 ndp->dc_flags |= NFSDC_INVALID;
1528 }
1529
1530 NFSDC_UNLOCK(np);
1531 }
1532
1533 /*
1534 * Called once before VFS init to initialize shared and
1535 * server-specific data structures.
1536 */
1537 static int
1538 nfs_init0(void)
1539 {
1540 nfsrtt.pos = 0;
1541 rpc_vers = txdr_unsigned(RPC_VER2);
1542 rpc_call = txdr_unsigned(RPC_CALL);
1543 rpc_reply = txdr_unsigned(RPC_REPLY);
1544 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1545 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1546 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1547 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1548 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1549 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1550 nfs_prog = txdr_unsigned(NFS_PROG);
1551 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1552 nfs_true = txdr_unsigned(TRUE);
1553 nfs_false = txdr_unsigned(FALSE);
1554 nfs_xdrneg1 = txdr_unsigned(-1);
1555 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1556 if (nfs_ticks < 1)
1557 nfs_ticks = 1;
1558 #ifdef NFSSERVER
1559 nfsrv_init(0); /* Init server data structures */
1560 nfsrv_initcache(); /* Init the server request cache */
1561 #endif /* NFSSERVER */
1562
1563 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
1564 nfsdreq_init();
1565 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
1566
1567 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1568 /*
1569 * Initialize the nqnfs data structures.
1570 */
1571 if (nqnfsstarttime == 0) {
1572 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1573 + nqsrv_clockskew + nqsrv_writeslack;
1574 NQLOADNOVRAM(nqnfsstarttime);
1575 CIRCLEQ_INIT(&nqtimerhead);
1576 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1577 M_WAITOK, &nqfhhash);
1578 }
1579 #endif
1580
1581 exithook_establish(nfs_exit, NULL);
1582
1583 /*
1584 * Initialize reply list and start timer
1585 */
1586 TAILQ_INIT(&nfs_reqq);
1587 nfs_timer(NULL);
1588 MOWNER_ATTACH(&nfs_mowner);
1589
1590 #ifdef NFS
1591 /* Initialize the kqueue structures */
1592 nfs_kqinit();
1593 /* Initialize the iod structures */
1594 nfs_iodinit();
1595 #endif
1596 return 0;
1597 }
1598
1599 void
1600 nfs_init(void)
1601 {
1602 static ONCE_DECL(nfs_init_once);
1603
1604 RUN_ONCE(&nfs_init_once, nfs_init0);
1605 }
1606
1607 #ifdef NFS
1608 /*
1609 * Called once at VFS init to initialize client-specific data structures.
1610 */
1611 void
1612 nfs_vfs_init()
1613 {
1614 /* Initialize NFS server / client shared data. */
1615 nfs_init();
1616
1617 nfs_nhinit(); /* Init the nfsnode table */
1618 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1619 }
1620
1621 void
1622 nfs_vfs_reinit()
1623 {
1624 nfs_nhreinit();
1625 }
1626
1627 void
1628 nfs_vfs_done()
1629 {
1630 nfs_nhdone();
1631 }
1632
1633 /*
1634 * Attribute cache routines.
1635 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1636 * that are on the mbuf list
1637 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1638 * error otherwise
1639 */
1640
1641 /*
1642 * Load the attribute cache (that lives in the nfsnode entry) with
1643 * the values on the mbuf list and
1644 * Iff vap not NULL
1645 * copy the attributes to *vaper
1646 */
1647 int
1648 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1649 struct vnode **vpp;
1650 struct mbuf **mdp;
1651 caddr_t *dposp;
1652 struct vattr *vaper;
1653 int flags;
1654 {
1655 int32_t t1;
1656 caddr_t cp2;
1657 int error = 0;
1658 struct mbuf *md;
1659 int v3 = NFS_ISV3(*vpp);
1660
1661 md = *mdp;
1662 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1663 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1664 if (error)
1665 return (error);
1666 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1667 }
1668
1669 int
1670 nfs_loadattrcache(vpp, fp, vaper, flags)
1671 struct vnode **vpp;
1672 struct nfs_fattr *fp;
1673 struct vattr *vaper;
1674 int flags;
1675 {
1676 struct vnode *vp = *vpp;
1677 struct vattr *vap;
1678 int v3 = NFS_ISV3(vp);
1679 enum vtype vtyp;
1680 u_short vmode;
1681 struct timespec mtime;
1682 struct timespec ctime;
1683 struct vnode *nvp;
1684 int32_t rdev;
1685 struct nfsnode *np;
1686 extern int (**spec_nfsv2nodeop_p) __P((void *));
1687 uid_t uid;
1688 gid_t gid;
1689
1690 if (v3) {
1691 vtyp = nfsv3tov_type(fp->fa_type);
1692 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1693 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1694 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1695 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1696 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1697 } else {
1698 vtyp = nfsv2tov_type(fp->fa_type);
1699 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1700 if (vtyp == VNON || vtyp == VREG)
1701 vtyp = IFTOVT(vmode);
1702 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1703 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1704 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1705 fp->fa2_ctime.nfsv2_sec);
1706 ctime.tv_nsec = 0;
1707
1708 /*
1709 * Really ugly NFSv2 kludge.
1710 */
1711 if (vtyp == VCHR && rdev == 0xffffffff)
1712 vtyp = VFIFO;
1713 }
1714
1715 vmode &= ALLPERMS;
1716
1717 /*
1718 * If v_type == VNON it is a new node, so fill in the v_type,
1719 * n_mtime fields. Check to see if it represents a special
1720 * device, and if so, check for a possible alias. Once the
1721 * correct vnode has been obtained, fill in the rest of the
1722 * information.
1723 */
1724 np = VTONFS(vp);
1725 if (vp->v_type == VNON) {
1726 vp->v_type = vtyp;
1727 if (vp->v_type == VFIFO) {
1728 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1729 vp->v_op = fifo_nfsv2nodeop_p;
1730 } else if (vp->v_type == VREG) {
1731 lockinit(&np->n_commitlock, PINOD, "nfsclock", 0, 0);
1732 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1733 vp->v_op = spec_nfsv2nodeop_p;
1734 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1735 if (nvp) {
1736 /*
1737 * Discard unneeded vnode, but save its nfsnode.
1738 * Since the nfsnode does not have a lock, its
1739 * vnode lock has to be carried over.
1740 */
1741 /*
1742 * XXX is the old node sure to be locked here?
1743 */
1744 KASSERT(lockstatus(&vp->v_lock) ==
1745 LK_EXCLUSIVE);
1746 nvp->v_data = vp->v_data;
1747 vp->v_data = NULL;
1748 VOP_UNLOCK(vp, 0);
1749 vp->v_op = spec_vnodeop_p;
1750 vrele(vp);
1751 vgone(vp);
1752 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1753 &nvp->v_interlock);
1754 /*
1755 * Reinitialize aliased node.
1756 */
1757 np->n_vnode = nvp;
1758 *vpp = vp = nvp;
1759 }
1760 }
1761 np->n_mtime = mtime;
1762 }
1763 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1764 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1765 vap = np->n_vattr;
1766
1767 /*
1768 * Invalidate access cache if uid, gid, mode or ctime changed.
1769 */
1770 if (np->n_accstamp != -1 &&
1771 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1772 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1773 np->n_accstamp = -1;
1774
1775 vap->va_type = vtyp;
1776 vap->va_mode = vmode;
1777 vap->va_rdev = (dev_t)rdev;
1778 vap->va_mtime = mtime;
1779 vap->va_ctime = ctime;
1780 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1781 switch (vtyp) {
1782 case VDIR:
1783 vap->va_blocksize = NFS_DIRFRAGSIZ;
1784 break;
1785 case VBLK:
1786 vap->va_blocksize = BLKDEV_IOSIZE;
1787 break;
1788 case VCHR:
1789 vap->va_blocksize = MAXBSIZE;
1790 break;
1791 default:
1792 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1793 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1794 break;
1795 }
1796 if (v3) {
1797 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1798 vap->va_uid = uid;
1799 vap->va_gid = gid;
1800 vap->va_size = fxdr_hyper(&fp->fa3_size);
1801 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1802 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1803 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1804 vap->va_flags = 0;
1805 vap->va_filerev = 0;
1806 } else {
1807 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1808 vap->va_uid = uid;
1809 vap->va_gid = gid;
1810 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1811 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1812 * NFS_FABLKSIZE;
1813 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1814 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1815 vap->va_flags = 0;
1816 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1817 vap->va_filerev = 0;
1818 }
1819 if (vap->va_size != np->n_size) {
1820 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1821 vap->va_size = np->n_size;
1822 } else {
1823 np->n_size = vap->va_size;
1824 if (vap->va_type == VREG) {
1825 /*
1826 * we can't free pages if NAC_NOTRUNC because
1827 * the pages can be owned by ourselves.
1828 */
1829 if (flags & NAC_NOTRUNC) {
1830 np->n_flag |= NTRUNCDELAYED;
1831 } else {
1832 genfs_node_wrlock(vp);
1833 simple_lock(&vp->v_interlock);
1834 (void)VOP_PUTPAGES(vp, 0,
1835 0, PGO_SYNCIO | PGO_CLEANIT |
1836 PGO_FREE | PGO_ALLPAGES);
1837 uvm_vnp_setsize(vp, np->n_size);
1838 genfs_node_unlock(vp);
1839 }
1840 }
1841 }
1842 }
1843 np->n_attrstamp = time_second;
1844 if (vaper != NULL) {
1845 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1846 if (np->n_flag & NCHG) {
1847 if (np->n_flag & NACC)
1848 vaper->va_atime = np->n_atim;
1849 if (np->n_flag & NUPD)
1850 vaper->va_mtime = np->n_mtim;
1851 }
1852 }
1853 return (0);
1854 }
1855
1856 /*
1857 * Check the time stamp
1858 * If the cache is valid, copy contents to *vap and return 0
1859 * otherwise return an error
1860 */
1861 int
1862 nfs_getattrcache(vp, vaper)
1863 struct vnode *vp;
1864 struct vattr *vaper;
1865 {
1866 struct nfsnode *np = VTONFS(vp);
1867 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1868 struct vattr *vap;
1869
1870 if (np->n_attrstamp == 0 ||
1871 (time_second - np->n_attrstamp) >= NFS_ATTRTIMEO(nmp, np)) {
1872 nfsstats.attrcache_misses++;
1873 return (ENOENT);
1874 }
1875 nfsstats.attrcache_hits++;
1876 vap = np->n_vattr;
1877 if (vap->va_size != np->n_size) {
1878 if (vap->va_type == VREG) {
1879 if (np->n_flag & NMODIFIED) {
1880 if (vap->va_size < np->n_size)
1881 vap->va_size = np->n_size;
1882 else
1883 np->n_size = vap->va_size;
1884 } else
1885 np->n_size = vap->va_size;
1886 genfs_node_wrlock(vp);
1887 uvm_vnp_setsize(vp, np->n_size);
1888 genfs_node_unlock(vp);
1889 } else
1890 np->n_size = vap->va_size;
1891 }
1892 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1893 if (np->n_flag & NCHG) {
1894 if (np->n_flag & NACC)
1895 vaper->va_atime = np->n_atim;
1896 if (np->n_flag & NUPD)
1897 vaper->va_mtime = np->n_mtim;
1898 }
1899 return (0);
1900 }
1901
1902 void
1903 nfs_delayedtruncate(vp)
1904 struct vnode *vp;
1905 {
1906 struct nfsnode *np = VTONFS(vp);
1907
1908 if (np->n_flag & NTRUNCDELAYED) {
1909 np->n_flag &= ~NTRUNCDELAYED;
1910 genfs_node_wrlock(vp);
1911 simple_lock(&vp->v_interlock);
1912 (void)VOP_PUTPAGES(vp, 0,
1913 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1914 uvm_vnp_setsize(vp, np->n_size);
1915 genfs_node_unlock(vp);
1916 }
1917 }
1918
1919 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1920 #define NFS_WCCKLUDGE(nmp, now) \
1921 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1922 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1923
1924 /*
1925 * nfs_check_wccdata: check inaccurate wcc_data
1926 *
1927 * => return non-zero if we shouldn't trust the wcc_data.
1928 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1929 */
1930
1931 int
1932 nfs_check_wccdata(
1933 struct nfsnode *np __unused,
1934 const struct timespec *ctime __unused,
1935 struct timespec *mtime __unused,
1936 boolean_t docheck __unused
1937 )
1938 {
1939 int error = 0;
1940
1941 #if !defined(NFS_V2_ONLY)
1942
1943 if (docheck) {
1944 struct vnode *vp = NFSTOV(np);
1945 struct nfsmount *nmp;
1946 long now = time_second;
1947 #if defined(DEBUG)
1948 const char *reason = NULL; /* XXX: gcc */
1949 #endif
1950
1951 if (timespeccmp(&np->n_vattr->va_mtime, mtime, <=)) {
1952 #if defined(DEBUG)
1953 reason = "mtime";
1954 #endif
1955 error = EINVAL;
1956 }
1957
1958 if (vp->v_type == VDIR &&
1959 timespeccmp(&np->n_vattr->va_ctime, ctime, <=)) {
1960 #if defined(DEBUG)
1961 reason = "ctime";
1962 #endif
1963 error = EINVAL;
1964 }
1965
1966 nmp = VFSTONFS(vp->v_mount);
1967 if (error) {
1968
1969 /*
1970 * despite of the fact that we've updated the file,
1971 * timestamps of the file were not updated as we
1972 * expected.
1973 * it means that the server has incompatible
1974 * semantics of timestamps or (more likely)
1975 * the server time is not precise enough to
1976 * track each modifications.
1977 * in that case, we disable wcc processing.
1978 *
1979 * yes, strictly speaking, we should disable all
1980 * caching. it's a compromise.
1981 */
1982
1983 simple_lock(&nmp->nm_slock);
1984 #if defined(DEBUG)
1985 if (!NFS_WCCKLUDGE(nmp, now)) {
1986 printf("%s: inaccurate wcc data (%s) detected,"
1987 " disabling wcc\n",
1988 vp->v_mount->mnt_stat.f_mntfromname,
1989 reason);
1990 }
1991 #endif
1992 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1993 nmp->nm_wcckludgetime = now;
1994 simple_unlock(&nmp->nm_slock);
1995 } else if (NFS_WCCKLUDGE(nmp, now)) {
1996 error = EPERM; /* XXX */
1997 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1998 simple_lock(&nmp->nm_slock);
1999 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
2000 #if defined(DEBUG)
2001 printf("%s: re-enabling wcc\n",
2002 vp->v_mount->mnt_stat.f_mntfromname);
2003 #endif
2004 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
2005 }
2006 simple_unlock(&nmp->nm_slock);
2007 }
2008 }
2009
2010 #endif /* !defined(NFS_V2_ONLY) */
2011
2012 return error;
2013 }
2014
2015 /*
2016 * Heuristic to see if the server XDR encodes directory cookies or not.
2017 * it is not supposed to, but a lot of servers may do this. Also, since
2018 * most/all servers will implement V2 as well, it is expected that they
2019 * may return just 32 bits worth of cookie information, so we need to
2020 * find out in which 32 bits this information is available. We do this
2021 * to avoid trouble with emulated binaries that can't handle 64 bit
2022 * directory offsets.
2023 */
2024
2025 void
2026 nfs_cookieheuristic(vp, flagp, l, cred)
2027 struct vnode *vp;
2028 int *flagp;
2029 struct lwp *l;
2030 kauth_cred_t cred;
2031 {
2032 struct uio auio;
2033 struct iovec aiov;
2034 caddr_t tbuf, cp;
2035 struct dirent *dp;
2036 off_t *cookies = NULL, *cop;
2037 int error, eof, nc, len;
2038
2039 MALLOC(tbuf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
2040
2041 aiov.iov_base = tbuf;
2042 aiov.iov_len = NFS_DIRFRAGSIZ;
2043 auio.uio_iov = &aiov;
2044 auio.uio_iovcnt = 1;
2045 auio.uio_rw = UIO_READ;
2046 auio.uio_resid = NFS_DIRFRAGSIZ;
2047 auio.uio_offset = 0;
2048 UIO_SETUP_SYSSPACE(&auio);
2049
2050 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
2051
2052 len = NFS_DIRFRAGSIZ - auio.uio_resid;
2053 if (error || len == 0) {
2054 FREE(tbuf, M_TEMP);
2055 if (cookies)
2056 free(cookies, M_TEMP);
2057 return;
2058 }
2059
2060 /*
2061 * Find the first valid entry and look at its offset cookie.
2062 */
2063
2064 cp = tbuf;
2065 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2066 dp = (struct dirent *)cp;
2067 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2068 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2069 *flagp |= NFSMNT_SWAPCOOKIE;
2070 nfs_invaldircache(vp, 0);
2071 nfs_vinvalbuf(vp, 0, cred, l, 1);
2072 }
2073 break;
2074 }
2075 cop++;
2076 cp += dp->d_reclen;
2077 }
2078
2079 FREE(tbuf, M_TEMP);
2080 free(cookies, M_TEMP);
2081 }
2082 #endif /* NFS */
2083
2084 #ifdef NFSSERVER
2085 /*
2086 * Set up nameidata for a lookup() call and do it.
2087 *
2088 * If pubflag is set, this call is done for a lookup operation on the
2089 * public filehandle. In that case we allow crossing mountpoints and
2090 * absolute pathnames. However, the caller is expected to check that
2091 * the lookup result is within the public fs, and deny access if
2092 * it is not.
2093 */
2094 int
2095 nfs_namei(ndp, nsfh, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2096 struct nameidata *ndp;
2097 nfsrvfh_t *nsfh;
2098 uint32_t len;
2099 struct nfssvc_sock *slp;
2100 struct mbuf *nam;
2101 struct mbuf **mdp;
2102 caddr_t *dposp;
2103 struct vnode **retdirp;
2104 struct lwp *l;
2105 int kerbflag, pubflag;
2106 {
2107 int i, rem;
2108 struct mbuf *md;
2109 char *fromcp, *tocp, *cp;
2110 struct iovec aiov;
2111 struct uio auio;
2112 struct vnode *dp;
2113 int error, rdonly, linklen;
2114 struct componentname *cnp = &ndp->ni_cnd;
2115
2116 *retdirp = (struct vnode *)0;
2117
2118 if ((len + 1) > MAXPATHLEN)
2119 return (ENAMETOOLONG);
2120 if (len == 0)
2121 return (EACCES);
2122 cnp->cn_pnbuf = PNBUF_GET();
2123
2124 /*
2125 * Copy the name from the mbuf list to ndp->ni_pnbuf
2126 * and set the various ndp fields appropriately.
2127 */
2128 fromcp = *dposp;
2129 tocp = cnp->cn_pnbuf;
2130 md = *mdp;
2131 rem = mtod(md, caddr_t) + md->m_len - fromcp;
2132 for (i = 0; i < len; i++) {
2133 while (rem == 0) {
2134 md = md->m_next;
2135 if (md == NULL) {
2136 error = EBADRPC;
2137 goto out;
2138 }
2139 fromcp = mtod(md, caddr_t);
2140 rem = md->m_len;
2141 }
2142 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2143 error = EACCES;
2144 goto out;
2145 }
2146 *tocp++ = *fromcp++;
2147 rem--;
2148 }
2149 *tocp = '\0';
2150 *mdp = md;
2151 *dposp = fromcp;
2152 len = nfsm_rndup(len)-len;
2153 if (len > 0) {
2154 if (rem >= len)
2155 *dposp += len;
2156 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2157 goto out;
2158 }
2159
2160 /*
2161 * Extract and set starting directory.
2162 */
2163 error = nfsrv_fhtovp(nsfh, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
2164 nam, &rdonly, kerbflag, pubflag);
2165 if (error)
2166 goto out;
2167 if (dp->v_type != VDIR) {
2168 vrele(dp);
2169 error = ENOTDIR;
2170 goto out;
2171 }
2172
2173 if (rdonly)
2174 cnp->cn_flags |= RDONLY;
2175
2176 *retdirp = dp;
2177
2178 if (pubflag) {
2179 /*
2180 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2181 * and the 'native path' indicator.
2182 */
2183 cp = PNBUF_GET();
2184 fromcp = cnp->cn_pnbuf;
2185 tocp = cp;
2186 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2187 switch ((unsigned char)*fromcp) {
2188 case WEBNFS_NATIVE_CHAR:
2189 /*
2190 * 'Native' path for us is the same
2191 * as a path according to the NFS spec,
2192 * just skip the escape char.
2193 */
2194 fromcp++;
2195 break;
2196 /*
2197 * More may be added in the future, range 0x80-0xff
2198 */
2199 default:
2200 error = EIO;
2201 PNBUF_PUT(cp);
2202 goto out;
2203 }
2204 }
2205 /*
2206 * Translate the '%' escapes, URL-style.
2207 */
2208 while (*fromcp != '\0') {
2209 if (*fromcp == WEBNFS_ESC_CHAR) {
2210 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2211 fromcp++;
2212 *tocp++ = HEXSTRTOI(fromcp);
2213 fromcp += 2;
2214 continue;
2215 } else {
2216 error = ENOENT;
2217 PNBUF_PUT(cp);
2218 goto out;
2219 }
2220 } else
2221 *tocp++ = *fromcp++;
2222 }
2223 *tocp = '\0';
2224 PNBUF_PUT(cnp->cn_pnbuf);
2225 cnp->cn_pnbuf = cp;
2226 }
2227
2228 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2229 ndp->ni_segflg = UIO_SYSSPACE;
2230 ndp->ni_rootdir = rootvnode;
2231
2232 if (pubflag) {
2233 ndp->ni_loopcnt = 0;
2234 if (cnp->cn_pnbuf[0] == '/')
2235 dp = rootvnode;
2236 } else {
2237 cnp->cn_flags |= NOCROSSMOUNT;
2238 }
2239
2240 cnp->cn_lwp = l;
2241 VREF(dp);
2242
2243 for (;;) {
2244 cnp->cn_nameptr = cnp->cn_pnbuf;
2245 ndp->ni_startdir = dp;
2246 /*
2247 * And call lookup() to do the real work
2248 */
2249 error = lookup(ndp);
2250 if (error) {
2251 PNBUF_PUT(cnp->cn_pnbuf);
2252 return (error);
2253 }
2254 /*
2255 * Check for encountering a symbolic link
2256 */
2257 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2258 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2259 cnp->cn_flags |= HASBUF;
2260 else
2261 PNBUF_PUT(cnp->cn_pnbuf);
2262 return (0);
2263 } else {
2264 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
2265 VOP_UNLOCK(ndp->ni_dvp, 0);
2266 if (!pubflag) {
2267 error = EINVAL;
2268 break;
2269 }
2270
2271 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2272 error = ELOOP;
2273 break;
2274 }
2275 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2276 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2277 cnp->cn_lwp);
2278 if (error != 0)
2279 break;
2280 }
2281 if (ndp->ni_pathlen > 1)
2282 cp = PNBUF_GET();
2283 else
2284 cp = cnp->cn_pnbuf;
2285 aiov.iov_base = cp;
2286 aiov.iov_len = MAXPATHLEN;
2287 auio.uio_iov = &aiov;
2288 auio.uio_iovcnt = 1;
2289 auio.uio_offset = 0;
2290 auio.uio_rw = UIO_READ;
2291 auio.uio_resid = MAXPATHLEN;
2292 UIO_SETUP_SYSSPACE(&auio);
2293 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2294 if (error) {
2295 badlink:
2296 if (ndp->ni_pathlen > 1)
2297 PNBUF_PUT(cp);
2298 break;
2299 }
2300 linklen = MAXPATHLEN - auio.uio_resid;
2301 if (linklen == 0) {
2302 error = ENOENT;
2303 goto badlink;
2304 }
2305 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2306 error = ENAMETOOLONG;
2307 goto badlink;
2308 }
2309 if (ndp->ni_pathlen > 1) {
2310 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2311 PNBUF_PUT(cnp->cn_pnbuf);
2312 cnp->cn_pnbuf = cp;
2313 } else
2314 cnp->cn_pnbuf[linklen] = '\0';
2315 ndp->ni_pathlen += linklen;
2316 vput(ndp->ni_vp);
2317 dp = ndp->ni_dvp;
2318 /*
2319 * Check if root directory should replace current directory.
2320 */
2321 if (cnp->cn_pnbuf[0] == '/') {
2322 vrele(dp);
2323 dp = ndp->ni_rootdir;
2324 VREF(dp);
2325 }
2326 }
2327 }
2328 vrele(ndp->ni_dvp);
2329 vput(ndp->ni_vp);
2330 ndp->ni_vp = NULL;
2331 out:
2332 PNBUF_PUT(cnp->cn_pnbuf);
2333 return (error);
2334 }
2335 #endif /* NFSSERVER */
2336
2337 /*
2338 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2339 * boundary and only trims off the back end
2340 *
2341 * 1. trim off 'len' bytes as m_adj(mp, -len).
2342 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2343 */
2344 void
2345 nfs_zeropad(mp, len, nul)
2346 struct mbuf *mp;
2347 int len;
2348 int nul;
2349 {
2350 struct mbuf *m;
2351 int count;
2352
2353 /*
2354 * Trim from tail. Scan the mbuf chain,
2355 * calculating its length and finding the last mbuf.
2356 * If the adjustment only affects this mbuf, then just
2357 * adjust and return. Otherwise, rescan and truncate
2358 * after the remaining size.
2359 */
2360 count = 0;
2361 m = mp;
2362 for (;;) {
2363 count += m->m_len;
2364 if (m->m_next == NULL)
2365 break;
2366 m = m->m_next;
2367 }
2368
2369 KDASSERT(count >= len);
2370
2371 if (m->m_len >= len) {
2372 m->m_len -= len;
2373 } else {
2374 count -= len;
2375 /*
2376 * Correct length for chain is "count".
2377 * Find the mbuf with last data, adjust its length,
2378 * and toss data from remaining mbufs on chain.
2379 */
2380 for (m = mp; m; m = m->m_next) {
2381 if (m->m_len >= count) {
2382 m->m_len = count;
2383 break;
2384 }
2385 count -= m->m_len;
2386 }
2387 KASSERT(m && m->m_next);
2388 m_freem(m->m_next);
2389 m->m_next = NULL;
2390 }
2391
2392 KDASSERT(m->m_next == NULL);
2393
2394 /*
2395 * zero-padding.
2396 */
2397 if (nul > 0) {
2398 char *cp;
2399 int i;
2400
2401 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2402 struct mbuf *n;
2403
2404 KDASSERT(MLEN >= nul);
2405 n = m_get(M_WAIT, MT_DATA);
2406 MCLAIM(n, &nfs_mowner);
2407 n->m_len = nul;
2408 n->m_next = NULL;
2409 m->m_next = n;
2410 cp = mtod(n, caddr_t);
2411 } else {
2412 cp = mtod(m, caddr_t) + m->m_len;
2413 m->m_len += nul;
2414 }
2415 for (i = 0; i < nul; i++)
2416 *cp++ = '\0';
2417 }
2418 return;
2419 }
2420
2421 /*
2422 * Make these functions instead of macros, so that the kernel text size
2423 * doesn't get too big...
2424 */
2425 void
2426 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2427 struct nfsrv_descript *nfsd;
2428 int before_ret;
2429 struct vattr *before_vap;
2430 int after_ret;
2431 struct vattr *after_vap;
2432 struct mbuf **mbp;
2433 char **bposp;
2434 {
2435 struct mbuf *mb = *mbp;
2436 char *bpos = *bposp;
2437 u_int32_t *tl;
2438
2439 if (before_ret) {
2440 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2441 *tl = nfs_false;
2442 } else {
2443 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2444 *tl++ = nfs_true;
2445 txdr_hyper(before_vap->va_size, tl);
2446 tl += 2;
2447 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2448 tl += 2;
2449 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2450 }
2451 *bposp = bpos;
2452 *mbp = mb;
2453 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2454 }
2455
2456 void
2457 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2458 struct nfsrv_descript *nfsd;
2459 int after_ret;
2460 struct vattr *after_vap;
2461 struct mbuf **mbp;
2462 char **bposp;
2463 {
2464 struct mbuf *mb = *mbp;
2465 char *bpos = *bposp;
2466 u_int32_t *tl;
2467 struct nfs_fattr *fp;
2468
2469 if (after_ret) {
2470 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2471 *tl = nfs_false;
2472 } else {
2473 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2474 *tl++ = nfs_true;
2475 fp = (struct nfs_fattr *)tl;
2476 nfsm_srvfattr(nfsd, after_vap, fp);
2477 }
2478 *mbp = mb;
2479 *bposp = bpos;
2480 }
2481
2482 void
2483 nfsm_srvfattr(nfsd, vap, fp)
2484 struct nfsrv_descript *nfsd;
2485 struct vattr *vap;
2486 struct nfs_fattr *fp;
2487 {
2488
2489 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2490 fp->fa_uid = txdr_unsigned(vap->va_uid);
2491 fp->fa_gid = txdr_unsigned(vap->va_gid);
2492 if (nfsd->nd_flag & ND_NFSV3) {
2493 fp->fa_type = vtonfsv3_type(vap->va_type);
2494 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2495 txdr_hyper(vap->va_size, &fp->fa3_size);
2496 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2497 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2498 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2499 fp->fa3_fsid.nfsuquad[0] = 0;
2500 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2501 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2502 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2503 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2504 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2505 } else {
2506 fp->fa_type = vtonfsv2_type(vap->va_type);
2507 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2508 fp->fa2_size = txdr_unsigned(vap->va_size);
2509 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2510 if (vap->va_type == VFIFO)
2511 fp->fa2_rdev = 0xffffffff;
2512 else
2513 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2514 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2515 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2516 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2517 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2518 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2519 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2520 }
2521 }
2522
2523 #ifdef NFSSERVER
2524 /*
2525 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2526 * - look up fsid in mount list (if not found ret error)
2527 * - get vp and export rights by calling VFS_FHTOVP()
2528 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2529 * - if not lockflag unlock it with VOP_UNLOCK()
2530 */
2531 int
2532 nfsrv_fhtovp(
2533 nfsrvfh_t *nsfh,
2534 int lockflag,
2535 struct vnode **vpp,
2536 kauth_cred_t cred,
2537 struct nfssvc_sock *slp __unused,
2538 struct mbuf *nam,
2539 int *rdonlyp,
2540 int kerbflag,
2541 int pubflag
2542 )
2543 {
2544 struct mount *mp;
2545 kauth_cred_t credanon;
2546 int error, exflags;
2547 struct sockaddr_in *saddr;
2548 fhandle_t *fhp;
2549
2550 fhp = NFSRVFH_FHANDLE(nsfh);
2551 *vpp = (struct vnode *)0;
2552
2553 if (nfs_ispublicfh(nsfh)) {
2554 if (!pubflag || !nfs_pub.np_valid)
2555 return (ESTALE);
2556 fhp = nfs_pub.np_handle;
2557 }
2558
2559 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2560 if (error) {
2561 return error;
2562 }
2563
2564 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2565 if (error)
2566 return (error);
2567
2568 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2569 saddr = mtod(nam, struct sockaddr_in *);
2570 if ((saddr->sin_family == AF_INET) &&
2571 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2572 vput(*vpp);
2573 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2574 }
2575 #ifdef INET6
2576 if ((saddr->sin_family == AF_INET6) &&
2577 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2578 vput(*vpp);
2579 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2580 }
2581 #endif
2582 }
2583 /*
2584 * Check/setup credentials.
2585 */
2586 if (exflags & MNT_EXKERB) {
2587 if (!kerbflag) {
2588 vput(*vpp);
2589 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2590 }
2591 } else if (kerbflag) {
2592 vput(*vpp);
2593 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2594 } else if (kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER,
2595 NULL) == 0 || (exflags & MNT_EXPORTANON)) {
2596 kauth_cred_clone(credanon, cred);
2597 }
2598 if (exflags & MNT_EXRDONLY)
2599 *rdonlyp = 1;
2600 else
2601 *rdonlyp = 0;
2602 if (!lockflag)
2603 VOP_UNLOCK(*vpp, 0);
2604 return (0);
2605 }
2606
2607 /*
2608 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2609 * means a length of 0, for v2 it means all zeroes.
2610 */
2611 int
2612 nfs_ispublicfh(const nfsrvfh_t *nsfh)
2613 {
2614 const char *cp = (const void *)(NFSRVFH_DATA(nsfh));
2615 int i;
2616
2617 if (NFSRVFH_SIZE(nsfh) == 0) {
2618 return TRUE;
2619 }
2620 if (NFSRVFH_SIZE(nsfh) != NFSX_V2FH) {
2621 return FALSE;
2622 }
2623 for (i = 0; i < NFSX_V2FH; i++)
2624 if (*cp++ != 0)
2625 return FALSE;
2626 return TRUE;
2627 }
2628 #endif /* NFSSERVER */
2629
2630 /*
2631 * This function compares two net addresses by family and returns TRUE
2632 * if they are the same host.
2633 * If there is any doubt, return FALSE.
2634 * The AF_INET family is handled as a special case so that address mbufs
2635 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2636 */
2637 int
2638 netaddr_match(family, haddr, nam)
2639 int family;
2640 union nethostaddr *haddr;
2641 struct mbuf *nam;
2642 {
2643 struct sockaddr_in *inetaddr;
2644
2645 switch (family) {
2646 case AF_INET:
2647 inetaddr = mtod(nam, struct sockaddr_in *);
2648 if (inetaddr->sin_family == AF_INET &&
2649 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2650 return (1);
2651 break;
2652 #ifdef INET6
2653 case AF_INET6:
2654 {
2655 struct sockaddr_in6 *sin6_1, *sin6_2;
2656
2657 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2658 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2659 if (sin6_1->sin6_family == AF_INET6 &&
2660 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2661 return 1;
2662 }
2663 #endif
2664 #ifdef ISO
2665 case AF_ISO:
2666 {
2667 struct sockaddr_iso *isoaddr1, *isoaddr2;
2668
2669 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2670 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2671 if (isoaddr1->siso_family == AF_ISO &&
2672 isoaddr1->siso_nlen > 0 &&
2673 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2674 SAME_ISOADDR(isoaddr1, isoaddr2))
2675 return (1);
2676 break;
2677 }
2678 #endif /* ISO */
2679 default:
2680 break;
2681 };
2682 return (0);
2683 }
2684
2685 /*
2686 * The write verifier has changed (probably due to a server reboot), so all
2687 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2688 * as dirty or are being written out just now, all this takes is clearing
2689 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2690 * the mount point.
2691 */
2692 void
2693 nfs_clearcommit(mp)
2694 struct mount *mp;
2695 {
2696 struct vnode *vp;
2697 struct nfsnode *np;
2698 struct vm_page *pg;
2699 struct nfsmount *nmp = VFSTONFS(mp);
2700
2701 lockmgr(&nmp->nm_writeverflock, LK_EXCLUSIVE, NULL);
2702
2703 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2704 KASSERT(vp->v_mount == mp);
2705 if (vp->v_type != VREG)
2706 continue;
2707 np = VTONFS(vp);
2708 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2709 np->n_pushedhi = 0;
2710 np->n_commitflags &=
2711 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2712 simple_lock(&vp->v_uobj.vmobjlock);
2713 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2714 pg->flags &= ~PG_NEEDCOMMIT;
2715 }
2716 simple_unlock(&vp->v_uobj.vmobjlock);
2717 }
2718 simple_lock(&nmp->nm_slock);
2719 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2720 simple_unlock(&nmp->nm_slock);
2721 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
2722 }
2723
2724 void
2725 nfs_merge_commit_ranges(vp)
2726 struct vnode *vp;
2727 {
2728 struct nfsnode *np = VTONFS(vp);
2729
2730 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2731
2732 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2733 np->n_pushedlo = np->n_pushlo;
2734 np->n_pushedhi = np->n_pushhi;
2735 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2736 } else {
2737 if (np->n_pushlo < np->n_pushedlo)
2738 np->n_pushedlo = np->n_pushlo;
2739 if (np->n_pushhi > np->n_pushedhi)
2740 np->n_pushedhi = np->n_pushhi;
2741 }
2742
2743 np->n_pushlo = np->n_pushhi = 0;
2744 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2745
2746 #ifdef NFS_DEBUG_COMMIT
2747 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2748 (unsigned)np->n_pushedhi);
2749 #endif
2750 }
2751
2752 int
2753 nfs_in_committed_range(vp, off, len)
2754 struct vnode *vp;
2755 off_t off, len;
2756 {
2757 struct nfsnode *np = VTONFS(vp);
2758 off_t lo, hi;
2759
2760 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2761 return 0;
2762 lo = off;
2763 hi = lo + len;
2764
2765 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2766 }
2767
2768 int
2769 nfs_in_tobecommitted_range(vp, off, len)
2770 struct vnode *vp;
2771 off_t off, len;
2772 {
2773 struct nfsnode *np = VTONFS(vp);
2774 off_t lo, hi;
2775
2776 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2777 return 0;
2778 lo = off;
2779 hi = lo + len;
2780
2781 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2782 }
2783
2784 void
2785 nfs_add_committed_range(vp, off, len)
2786 struct vnode *vp;
2787 off_t off, len;
2788 {
2789 struct nfsnode *np = VTONFS(vp);
2790 off_t lo, hi;
2791
2792 lo = off;
2793 hi = lo + len;
2794
2795 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2796 np->n_pushedlo = lo;
2797 np->n_pushedhi = hi;
2798 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2799 } else {
2800 if (hi > np->n_pushedhi)
2801 np->n_pushedhi = hi;
2802 if (lo < np->n_pushedlo)
2803 np->n_pushedlo = lo;
2804 }
2805 #ifdef NFS_DEBUG_COMMIT
2806 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2807 (unsigned)np->n_pushedhi);
2808 #endif
2809 }
2810
2811 void
2812 nfs_del_committed_range(vp, off, len)
2813 struct vnode *vp;
2814 off_t off, len;
2815 {
2816 struct nfsnode *np = VTONFS(vp);
2817 off_t lo, hi;
2818
2819 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2820 return;
2821
2822 lo = off;
2823 hi = lo + len;
2824
2825 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2826 return;
2827 if (lo <= np->n_pushedlo)
2828 np->n_pushedlo = hi;
2829 else if (hi >= np->n_pushedhi)
2830 np->n_pushedhi = lo;
2831 else {
2832 /*
2833 * XXX There's only one range. If the deleted range
2834 * is in the middle, pick the largest of the
2835 * contiguous ranges that it leaves.
2836 */
2837 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2838 np->n_pushedhi = lo;
2839 else
2840 np->n_pushedlo = hi;
2841 }
2842 #ifdef NFS_DEBUG_COMMIT
2843 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2844 (unsigned)np->n_pushedhi);
2845 #endif
2846 }
2847
2848 void
2849 nfs_add_tobecommitted_range(vp, off, len)
2850 struct vnode *vp;
2851 off_t off, len;
2852 {
2853 struct nfsnode *np = VTONFS(vp);
2854 off_t lo, hi;
2855
2856 lo = off;
2857 hi = lo + len;
2858
2859 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2860 np->n_pushlo = lo;
2861 np->n_pushhi = hi;
2862 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2863 } else {
2864 if (lo < np->n_pushlo)
2865 np->n_pushlo = lo;
2866 if (hi > np->n_pushhi)
2867 np->n_pushhi = hi;
2868 }
2869 #ifdef NFS_DEBUG_COMMIT
2870 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2871 (unsigned)np->n_pushhi);
2872 #endif
2873 }
2874
2875 void
2876 nfs_del_tobecommitted_range(vp, off, len)
2877 struct vnode *vp;
2878 off_t off, len;
2879 {
2880 struct nfsnode *np = VTONFS(vp);
2881 off_t lo, hi;
2882
2883 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2884 return;
2885
2886 lo = off;
2887 hi = lo + len;
2888
2889 if (lo > np->n_pushhi || hi < np->n_pushlo)
2890 return;
2891
2892 if (lo <= np->n_pushlo)
2893 np->n_pushlo = hi;
2894 else if (hi >= np->n_pushhi)
2895 np->n_pushhi = lo;
2896 else {
2897 /*
2898 * XXX There's only one range. If the deleted range
2899 * is in the middle, pick the largest of the
2900 * contiguous ranges that it leaves.
2901 */
2902 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2903 np->n_pushhi = lo;
2904 else
2905 np->n_pushlo = hi;
2906 }
2907 #ifdef NFS_DEBUG_COMMIT
2908 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2909 (unsigned)np->n_pushhi);
2910 #endif
2911 }
2912
2913 /*
2914 * Map errnos to NFS error numbers. For Version 3 also filter out error
2915 * numbers not specified for the associated procedure.
2916 */
2917 int
2918 nfsrv_errmap(nd, err)
2919 struct nfsrv_descript *nd;
2920 int err;
2921 {
2922 const short *defaulterrp, *errp;
2923
2924 if (nd->nd_flag & ND_NFSV3) {
2925 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2926 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2927 while (*++errp) {
2928 if (*errp == err)
2929 return (err);
2930 else if (*errp > err)
2931 break;
2932 }
2933 return ((int)*defaulterrp);
2934 } else
2935 return (err & 0xffff);
2936 }
2937 if (err <= ELAST)
2938 return ((int)nfsrv_v2errmap[err - 1]);
2939 return (NFSERR_IO);
2940 }
2941
2942 u_int32_t
2943 nfs_getxid()
2944 {
2945 static u_int32_t base;
2946 static u_int32_t nfs_xid = 0;
2947 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2948 u_int32_t newxid;
2949
2950 simple_lock(&nfs_xidlock);
2951 /*
2952 * derive initial xid from system time
2953 * XXX time is invalid if root not yet mounted
2954 */
2955 if (__predict_false(!base && (rootvp))) {
2956 struct timeval tv;
2957
2958 microtime(&tv);
2959 base = tv.tv_sec << 12;
2960 nfs_xid = base;
2961 }
2962
2963 /*
2964 * Skip zero xid if it should ever happen.
2965 */
2966 if (__predict_false(++nfs_xid == 0))
2967 nfs_xid++;
2968 newxid = nfs_xid;
2969 simple_unlock(&nfs_xidlock);
2970
2971 return txdr_unsigned(newxid);
2972 }
2973
2974 /*
2975 * assign a new xid for existing request.
2976 * used for NFSERR_JUKEBOX handling.
2977 */
2978 void
2979 nfs_renewxid(struct nfsreq *req)
2980 {
2981 u_int32_t xid;
2982 int off;
2983
2984 xid = nfs_getxid();
2985 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2986 off = sizeof(u_int32_t); /* RPC record mark */
2987 else
2988 off = 0;
2989
2990 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2991 req->r_xid = xid;
2992 }
2993
2994 #if defined(NFSSERVER)
2995 int
2996 nfsrv_composefh(struct vnode *vp, nfsrvfh_t *nsfh, boolean_t v3)
2997 {
2998 int error;
2999 size_t fhsize;
3000
3001 fhsize = NFSD_MAXFHSIZE;
3002 error = vfs_composefh(vp, (void *)NFSRVFH_DATA(nsfh), &fhsize);
3003 if (NFSX_FHTOOBIG_P(fhsize, v3)) {
3004 error = EOPNOTSUPP;
3005 }
3006 if (error != 0) {
3007 return error;
3008 }
3009 if (!v3 && fhsize < NFSX_V2FH) {
3010 memset((char *)NFSRVFH_DATA(nsfh) + fhsize, 0,
3011 NFSX_V2FH - fhsize);
3012 fhsize = NFSX_V2FH;
3013 }
3014 if ((fhsize % NFSX_UNSIGNED) != 0) {
3015 return EOPNOTSUPP;
3016 }
3017 nsfh->nsfh_size = fhsize;
3018 return 0;
3019 }
3020
3021 int
3022 nfsrv_comparefh(const nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
3023 {
3024
3025 if (NFSRVFH_SIZE(fh1) != NFSRVFH_SIZE(fh2)) {
3026 return NFSRVFH_SIZE(fh2) - NFSRVFH_SIZE(fh1);
3027 }
3028 return memcmp(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), NFSRVFH_SIZE(fh1));
3029 }
3030
3031 void
3032 nfsrv_copyfh(nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
3033 {
3034 size_t size;
3035
3036 fh1->nsfh_size = size = NFSRVFH_SIZE(fh2);
3037 memcpy(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), size);
3038 }
3039 #endif /* defined(NFSSERVER) */
3040