nfs_subs.c revision 1.177 1 /* $NetBSD: nfs_subs.c,v 1.177 2006/11/09 09:53:57 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.177 2006/11/09 09:53:57 yamt Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 #include <sys/once.h>
101 #include <sys/kauth.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include <nfs/rpcv2.h>
106 #include <nfs/nfsproto.h>
107 #include <nfs/nfsnode.h>
108 #include <nfs/nfs.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/nqnfs.h>
113 #include <nfs/nfsrtt.h>
114 #include <nfs/nfs_var.h>
115
116 #include <miscfs/specfs/specdev.h>
117
118 #include <netinet/in.h>
119 #ifdef ISO
120 #include <netiso/iso.h>
121 #endif
122
123 /*
124 * Data items converted to xdr at startup, since they are constant
125 * This is kinda hokey, but may save a little time doing byte swaps
126 */
127 u_int32_t nfs_xdrneg1;
128 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
129 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
130 rpc_auth_kerb;
131 u_int32_t nfs_prog, nqnfs_prog, nfs_true, nfs_false;
132
133 /* And other global data */
134 const nfstype nfsv2_type[9] =
135 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
136 const nfstype nfsv3_type[9] =
137 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
138 const enum vtype nv2tov_type[8] =
139 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
140 const enum vtype nv3tov_type[8] =
141 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
142 int nfs_ticks;
143 int nfs_commitsize;
144
145 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
146
147 /* NFS client/server stats. */
148 struct nfsstats nfsstats;
149
150 /*
151 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
152 */
153 const int nfsv3_procid[NFS_NPROCS] = {
154 NFSPROC_NULL,
155 NFSPROC_GETATTR,
156 NFSPROC_SETATTR,
157 NFSPROC_NOOP,
158 NFSPROC_LOOKUP,
159 NFSPROC_READLINK,
160 NFSPROC_READ,
161 NFSPROC_NOOP,
162 NFSPROC_WRITE,
163 NFSPROC_CREATE,
164 NFSPROC_REMOVE,
165 NFSPROC_RENAME,
166 NFSPROC_LINK,
167 NFSPROC_SYMLINK,
168 NFSPROC_MKDIR,
169 NFSPROC_RMDIR,
170 NFSPROC_READDIR,
171 NFSPROC_FSSTAT,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP,
177 NFSPROC_NOOP,
178 NFSPROC_NOOP,
179 NFSPROC_NOOP
180 };
181
182 /*
183 * and the reverse mapping from generic to Version 2 procedure numbers
184 */
185 const int nfsv2_procid[NFS_NPROCS] = {
186 NFSV2PROC_NULL,
187 NFSV2PROC_GETATTR,
188 NFSV2PROC_SETATTR,
189 NFSV2PROC_LOOKUP,
190 NFSV2PROC_NOOP,
191 NFSV2PROC_READLINK,
192 NFSV2PROC_READ,
193 NFSV2PROC_WRITE,
194 NFSV2PROC_CREATE,
195 NFSV2PROC_MKDIR,
196 NFSV2PROC_SYMLINK,
197 NFSV2PROC_CREATE,
198 NFSV2PROC_REMOVE,
199 NFSV2PROC_RMDIR,
200 NFSV2PROC_RENAME,
201 NFSV2PROC_LINK,
202 NFSV2PROC_READDIR,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_STATFS,
205 NFSV2PROC_NOOP,
206 NFSV2PROC_NOOP,
207 NFSV2PROC_NOOP,
208 NFSV2PROC_NOOP,
209 NFSV2PROC_NOOP,
210 NFSV2PROC_NOOP,
211 NFSV2PROC_NOOP,
212 };
213
214 /*
215 * Maps errno values to nfs error numbers.
216 * Use NFSERR_IO as the catch all for ones not specifically defined in
217 * RFC 1094.
218 */
219 static const u_char nfsrv_v2errmap[ELAST] = {
220 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
224 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
226 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
231 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
232 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
233 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
234 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
235 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
236 NFSERR_IO, NFSERR_IO,
237 };
238
239 /*
240 * Maps errno values to nfs error numbers.
241 * Although it is not obvious whether or not NFS clients really care if
242 * a returned error value is in the specified list for the procedure, the
243 * safest thing to do is filter them appropriately. For Version 2, the
244 * X/Open XNFS document is the only specification that defines error values
245 * for each RPC (The RFC simply lists all possible error values for all RPCs),
246 * so I have decided to not do this for Version 2.
247 * The first entry is the default error return and the rest are the valid
248 * errors for that RPC in increasing numeric order.
249 */
250 static const short nfsv3err_null[] = {
251 0,
252 0,
253 };
254
255 static const short nfsv3err_getattr[] = {
256 NFSERR_IO,
257 NFSERR_IO,
258 NFSERR_STALE,
259 NFSERR_BADHANDLE,
260 NFSERR_SERVERFAULT,
261 0,
262 };
263
264 static const short nfsv3err_setattr[] = {
265 NFSERR_IO,
266 NFSERR_PERM,
267 NFSERR_IO,
268 NFSERR_ACCES,
269 NFSERR_INVAL,
270 NFSERR_NOSPC,
271 NFSERR_ROFS,
272 NFSERR_DQUOT,
273 NFSERR_STALE,
274 NFSERR_BADHANDLE,
275 NFSERR_NOT_SYNC,
276 NFSERR_SERVERFAULT,
277 0,
278 };
279
280 static const short nfsv3err_lookup[] = {
281 NFSERR_IO,
282 NFSERR_NOENT,
283 NFSERR_IO,
284 NFSERR_ACCES,
285 NFSERR_NOTDIR,
286 NFSERR_NAMETOL,
287 NFSERR_STALE,
288 NFSERR_BADHANDLE,
289 NFSERR_SERVERFAULT,
290 0,
291 };
292
293 static const short nfsv3err_access[] = {
294 NFSERR_IO,
295 NFSERR_IO,
296 NFSERR_STALE,
297 NFSERR_BADHANDLE,
298 NFSERR_SERVERFAULT,
299 0,
300 };
301
302 static const short nfsv3err_readlink[] = {
303 NFSERR_IO,
304 NFSERR_IO,
305 NFSERR_ACCES,
306 NFSERR_INVAL,
307 NFSERR_STALE,
308 NFSERR_BADHANDLE,
309 NFSERR_NOTSUPP,
310 NFSERR_SERVERFAULT,
311 0,
312 };
313
314 static const short nfsv3err_read[] = {
315 NFSERR_IO,
316 NFSERR_IO,
317 NFSERR_NXIO,
318 NFSERR_ACCES,
319 NFSERR_INVAL,
320 NFSERR_STALE,
321 NFSERR_BADHANDLE,
322 NFSERR_SERVERFAULT,
323 NFSERR_JUKEBOX,
324 0,
325 };
326
327 static const short nfsv3err_write[] = {
328 NFSERR_IO,
329 NFSERR_IO,
330 NFSERR_ACCES,
331 NFSERR_INVAL,
332 NFSERR_FBIG,
333 NFSERR_NOSPC,
334 NFSERR_ROFS,
335 NFSERR_DQUOT,
336 NFSERR_STALE,
337 NFSERR_BADHANDLE,
338 NFSERR_SERVERFAULT,
339 NFSERR_JUKEBOX,
340 0,
341 };
342
343 static const short nfsv3err_create[] = {
344 NFSERR_IO,
345 NFSERR_IO,
346 NFSERR_ACCES,
347 NFSERR_EXIST,
348 NFSERR_NOTDIR,
349 NFSERR_NOSPC,
350 NFSERR_ROFS,
351 NFSERR_NAMETOL,
352 NFSERR_DQUOT,
353 NFSERR_STALE,
354 NFSERR_BADHANDLE,
355 NFSERR_NOTSUPP,
356 NFSERR_SERVERFAULT,
357 0,
358 };
359
360 static const short nfsv3err_mkdir[] = {
361 NFSERR_IO,
362 NFSERR_IO,
363 NFSERR_ACCES,
364 NFSERR_EXIST,
365 NFSERR_NOTDIR,
366 NFSERR_NOSPC,
367 NFSERR_ROFS,
368 NFSERR_NAMETOL,
369 NFSERR_DQUOT,
370 NFSERR_STALE,
371 NFSERR_BADHANDLE,
372 NFSERR_NOTSUPP,
373 NFSERR_SERVERFAULT,
374 0,
375 };
376
377 static const short nfsv3err_symlink[] = {
378 NFSERR_IO,
379 NFSERR_IO,
380 NFSERR_ACCES,
381 NFSERR_EXIST,
382 NFSERR_NOTDIR,
383 NFSERR_NOSPC,
384 NFSERR_ROFS,
385 NFSERR_NAMETOL,
386 NFSERR_DQUOT,
387 NFSERR_STALE,
388 NFSERR_BADHANDLE,
389 NFSERR_NOTSUPP,
390 NFSERR_SERVERFAULT,
391 0,
392 };
393
394 static const short nfsv3err_mknod[] = {
395 NFSERR_IO,
396 NFSERR_IO,
397 NFSERR_ACCES,
398 NFSERR_EXIST,
399 NFSERR_NOTDIR,
400 NFSERR_NOSPC,
401 NFSERR_ROFS,
402 NFSERR_NAMETOL,
403 NFSERR_DQUOT,
404 NFSERR_STALE,
405 NFSERR_BADHANDLE,
406 NFSERR_NOTSUPP,
407 NFSERR_SERVERFAULT,
408 NFSERR_BADTYPE,
409 0,
410 };
411
412 static const short nfsv3err_remove[] = {
413 NFSERR_IO,
414 NFSERR_NOENT,
415 NFSERR_IO,
416 NFSERR_ACCES,
417 NFSERR_NOTDIR,
418 NFSERR_ROFS,
419 NFSERR_NAMETOL,
420 NFSERR_STALE,
421 NFSERR_BADHANDLE,
422 NFSERR_SERVERFAULT,
423 0,
424 };
425
426 static const short nfsv3err_rmdir[] = {
427 NFSERR_IO,
428 NFSERR_NOENT,
429 NFSERR_IO,
430 NFSERR_ACCES,
431 NFSERR_EXIST,
432 NFSERR_NOTDIR,
433 NFSERR_INVAL,
434 NFSERR_ROFS,
435 NFSERR_NAMETOL,
436 NFSERR_NOTEMPTY,
437 NFSERR_STALE,
438 NFSERR_BADHANDLE,
439 NFSERR_NOTSUPP,
440 NFSERR_SERVERFAULT,
441 0,
442 };
443
444 static const short nfsv3err_rename[] = {
445 NFSERR_IO,
446 NFSERR_NOENT,
447 NFSERR_IO,
448 NFSERR_ACCES,
449 NFSERR_EXIST,
450 NFSERR_XDEV,
451 NFSERR_NOTDIR,
452 NFSERR_ISDIR,
453 NFSERR_INVAL,
454 NFSERR_NOSPC,
455 NFSERR_ROFS,
456 NFSERR_MLINK,
457 NFSERR_NAMETOL,
458 NFSERR_NOTEMPTY,
459 NFSERR_DQUOT,
460 NFSERR_STALE,
461 NFSERR_BADHANDLE,
462 NFSERR_NOTSUPP,
463 NFSERR_SERVERFAULT,
464 0,
465 };
466
467 static const short nfsv3err_link[] = {
468 NFSERR_IO,
469 NFSERR_IO,
470 NFSERR_ACCES,
471 NFSERR_EXIST,
472 NFSERR_XDEV,
473 NFSERR_NOTDIR,
474 NFSERR_INVAL,
475 NFSERR_NOSPC,
476 NFSERR_ROFS,
477 NFSERR_MLINK,
478 NFSERR_NAMETOL,
479 NFSERR_DQUOT,
480 NFSERR_STALE,
481 NFSERR_BADHANDLE,
482 NFSERR_NOTSUPP,
483 NFSERR_SERVERFAULT,
484 0,
485 };
486
487 static const short nfsv3err_readdir[] = {
488 NFSERR_IO,
489 NFSERR_IO,
490 NFSERR_ACCES,
491 NFSERR_NOTDIR,
492 NFSERR_STALE,
493 NFSERR_BADHANDLE,
494 NFSERR_BAD_COOKIE,
495 NFSERR_TOOSMALL,
496 NFSERR_SERVERFAULT,
497 0,
498 };
499
500 static const short nfsv3err_readdirplus[] = {
501 NFSERR_IO,
502 NFSERR_IO,
503 NFSERR_ACCES,
504 NFSERR_NOTDIR,
505 NFSERR_STALE,
506 NFSERR_BADHANDLE,
507 NFSERR_BAD_COOKIE,
508 NFSERR_NOTSUPP,
509 NFSERR_TOOSMALL,
510 NFSERR_SERVERFAULT,
511 0,
512 };
513
514 static const short nfsv3err_fsstat[] = {
515 NFSERR_IO,
516 NFSERR_IO,
517 NFSERR_STALE,
518 NFSERR_BADHANDLE,
519 NFSERR_SERVERFAULT,
520 0,
521 };
522
523 static const short nfsv3err_fsinfo[] = {
524 NFSERR_STALE,
525 NFSERR_STALE,
526 NFSERR_BADHANDLE,
527 NFSERR_SERVERFAULT,
528 0,
529 };
530
531 static const short nfsv3err_pathconf[] = {
532 NFSERR_STALE,
533 NFSERR_STALE,
534 NFSERR_BADHANDLE,
535 NFSERR_SERVERFAULT,
536 0,
537 };
538
539 static const short nfsv3err_commit[] = {
540 NFSERR_IO,
541 NFSERR_IO,
542 NFSERR_STALE,
543 NFSERR_BADHANDLE,
544 NFSERR_SERVERFAULT,
545 0,
546 };
547
548 static const short * const nfsrv_v3errmap[] = {
549 nfsv3err_null,
550 nfsv3err_getattr,
551 nfsv3err_setattr,
552 nfsv3err_lookup,
553 nfsv3err_access,
554 nfsv3err_readlink,
555 nfsv3err_read,
556 nfsv3err_write,
557 nfsv3err_create,
558 nfsv3err_mkdir,
559 nfsv3err_symlink,
560 nfsv3err_mknod,
561 nfsv3err_remove,
562 nfsv3err_rmdir,
563 nfsv3err_rename,
564 nfsv3err_link,
565 nfsv3err_readdir,
566 nfsv3err_readdirplus,
567 nfsv3err_fsstat,
568 nfsv3err_fsinfo,
569 nfsv3err_pathconf,
570 nfsv3err_commit,
571 };
572
573 extern struct nfsrtt nfsrtt;
574 extern time_t nqnfsstarttime;
575 extern int nqsrv_clockskew;
576 extern int nqsrv_writeslack;
577 extern int nqsrv_maxlease;
578 extern const int nqnfs_piggy[NFS_NPROCS];
579 extern struct nfsnodehashhead *nfsnodehashtbl;
580 extern u_long nfsnodehash;
581
582 u_long nfsdirhashmask;
583
584 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
585
586 /*
587 * Create the header for an rpc request packet
588 * The hsiz is the size of the rest of the nfs request header.
589 * (just used to decide if a cluster is a good idea)
590 */
591 struct mbuf *
592 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, caddr_t *bposp)
593 {
594 struct mbuf *mb;
595 caddr_t bpos;
596 #ifndef NFS_V2_ONLY
597 struct nfsmount *nmp;
598 u_int32_t *tl;
599 int nqflag;
600 #endif
601
602 mb = m_get(M_WAIT, MT_DATA);
603 MCLAIM(mb, &nfs_mowner);
604 if (hsiz >= MINCLSIZE)
605 m_clget(mb, M_WAIT);
606 mb->m_len = 0;
607 bpos = mtod(mb, caddr_t);
608
609 #ifndef NFS_V2_ONLY
610 /*
611 * For NQNFS, add lease request.
612 */
613 if (np) {
614 nmp = VFSTONFS(np->n_vnode->v_mount);
615 if (nmp->nm_flag & NFSMNT_NQNFS) {
616 nqflag = NQNFS_NEEDLEASE(np, procid);
617 if (nqflag) {
618 nfsm_build(tl, u_int32_t *, 2*NFSX_UNSIGNED);
619 *tl++ = txdr_unsigned(nqflag);
620 *tl = txdr_unsigned(nmp->nm_leaseterm);
621 } else {
622 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
623 *tl = 0;
624 }
625 }
626 }
627 #endif
628 /* Finally, return values */
629 *bposp = bpos;
630 return (mb);
631 }
632
633 /*
634 * Build the RPC header and fill in the authorization info.
635 * The authorization string argument is only used when the credentials
636 * come from outside of the kernel.
637 * Returns the head of the mbuf list.
638 */
639 struct mbuf *
640 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
641 verf_str, mrest, mrest_len, mbp, xidp)
642 kauth_cred_t cr;
643 int nmflag;
644 int procid;
645 int auth_type;
646 int auth_len;
647 char *auth_str;
648 int verf_len;
649 char *verf_str;
650 struct mbuf *mrest;
651 int mrest_len;
652 struct mbuf **mbp;
653 u_int32_t *xidp;
654 {
655 struct mbuf *mb;
656 u_int32_t *tl;
657 caddr_t bpos;
658 int i;
659 struct mbuf *mreq;
660 int siz, grpsiz, authsiz;
661
662 authsiz = nfsm_rndup(auth_len);
663 mb = m_gethdr(M_WAIT, MT_DATA);
664 MCLAIM(mb, &nfs_mowner);
665 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
666 m_clget(mb, M_WAIT);
667 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
668 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
669 } else {
670 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
671 }
672 mb->m_len = 0;
673 mreq = mb;
674 bpos = mtod(mb, caddr_t);
675
676 /*
677 * First the RPC header.
678 */
679 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
680
681 *tl++ = *xidp = nfs_getxid();
682 *tl++ = rpc_call;
683 *tl++ = rpc_vers;
684 if (nmflag & NFSMNT_NQNFS) {
685 *tl++ = txdr_unsigned(NQNFS_PROG);
686 *tl++ = txdr_unsigned(NQNFS_VER3);
687 } else {
688 *tl++ = txdr_unsigned(NFS_PROG);
689 if (nmflag & NFSMNT_NFSV3)
690 *tl++ = txdr_unsigned(NFS_VER3);
691 else
692 *tl++ = txdr_unsigned(NFS_VER2);
693 }
694 if (nmflag & NFSMNT_NFSV3)
695 *tl++ = txdr_unsigned(procid);
696 else
697 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
698
699 /*
700 * And then the authorization cred.
701 */
702 *tl++ = txdr_unsigned(auth_type);
703 *tl = txdr_unsigned(authsiz);
704 switch (auth_type) {
705 case RPCAUTH_UNIX:
706 nfsm_build(tl, u_int32_t *, auth_len);
707 *tl++ = 0; /* stamp ?? */
708 *tl++ = 0; /* NULL hostname */
709 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
710 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
711 grpsiz = (auth_len >> 2) - 5;
712 *tl++ = txdr_unsigned(grpsiz);
713 for (i = 0; i < grpsiz; i++)
714 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
715 break;
716 case RPCAUTH_KERB4:
717 siz = auth_len;
718 while (siz > 0) {
719 if (M_TRAILINGSPACE(mb) == 0) {
720 struct mbuf *mb2;
721 mb2 = m_get(M_WAIT, MT_DATA);
722 MCLAIM(mb2, &nfs_mowner);
723 if (siz >= MINCLSIZE)
724 m_clget(mb2, M_WAIT);
725 mb->m_next = mb2;
726 mb = mb2;
727 mb->m_len = 0;
728 bpos = mtod(mb, caddr_t);
729 }
730 i = min(siz, M_TRAILINGSPACE(mb));
731 memcpy(bpos, auth_str, i);
732 mb->m_len += i;
733 auth_str += i;
734 bpos += i;
735 siz -= i;
736 }
737 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
738 for (i = 0; i < siz; i++)
739 *bpos++ = '\0';
740 mb->m_len += siz;
741 }
742 break;
743 };
744
745 /*
746 * And the verifier...
747 */
748 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
749 if (verf_str) {
750 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
751 *tl = txdr_unsigned(verf_len);
752 siz = verf_len;
753 while (siz > 0) {
754 if (M_TRAILINGSPACE(mb) == 0) {
755 struct mbuf *mb2;
756 mb2 = m_get(M_WAIT, MT_DATA);
757 MCLAIM(mb2, &nfs_mowner);
758 if (siz >= MINCLSIZE)
759 m_clget(mb2, M_WAIT);
760 mb->m_next = mb2;
761 mb = mb2;
762 mb->m_len = 0;
763 bpos = mtod(mb, caddr_t);
764 }
765 i = min(siz, M_TRAILINGSPACE(mb));
766 memcpy(bpos, verf_str, i);
767 mb->m_len += i;
768 verf_str += i;
769 bpos += i;
770 siz -= i;
771 }
772 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
773 for (i = 0; i < siz; i++)
774 *bpos++ = '\0';
775 mb->m_len += siz;
776 }
777 } else {
778 *tl++ = txdr_unsigned(RPCAUTH_NULL);
779 *tl = 0;
780 }
781 mb->m_next = mrest;
782 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
783 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
784 *mbp = mb;
785 return (mreq);
786 }
787
788 /*
789 * copies mbuf chain to the uio scatter/gather list
790 */
791 int
792 nfsm_mbuftouio(mrep, uiop, siz, dpos)
793 struct mbuf **mrep;
794 struct uio *uiop;
795 int siz;
796 caddr_t *dpos;
797 {
798 char *mbufcp, *uiocp;
799 int xfer, left, len;
800 struct mbuf *mp;
801 long uiosiz, rem;
802 int error = 0;
803
804 mp = *mrep;
805 mbufcp = *dpos;
806 len = mtod(mp, caddr_t)+mp->m_len-mbufcp;
807 rem = nfsm_rndup(siz)-siz;
808 while (siz > 0) {
809 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
810 return (EFBIG);
811 left = uiop->uio_iov->iov_len;
812 uiocp = uiop->uio_iov->iov_base;
813 if (left > siz)
814 left = siz;
815 uiosiz = left;
816 while (left > 0) {
817 while (len == 0) {
818 mp = mp->m_next;
819 if (mp == NULL)
820 return (EBADRPC);
821 mbufcp = mtod(mp, caddr_t);
822 len = mp->m_len;
823 }
824 xfer = (left > len) ? len : left;
825 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
826 uiocp, xfer);
827 if (error) {
828 return error;
829 }
830 left -= xfer;
831 len -= xfer;
832 mbufcp += xfer;
833 uiocp += xfer;
834 uiop->uio_offset += xfer;
835 uiop->uio_resid -= xfer;
836 }
837 if (uiop->uio_iov->iov_len <= siz) {
838 uiop->uio_iovcnt--;
839 uiop->uio_iov++;
840 } else {
841 uiop->uio_iov->iov_base =
842 (caddr_t)uiop->uio_iov->iov_base + uiosiz;
843 uiop->uio_iov->iov_len -= uiosiz;
844 }
845 siz -= uiosiz;
846 }
847 *dpos = mbufcp;
848 *mrep = mp;
849 if (rem > 0) {
850 if (len < rem)
851 error = nfs_adv(mrep, dpos, rem, len);
852 else
853 *dpos += rem;
854 }
855 return (error);
856 }
857
858 /*
859 * copies a uio scatter/gather list to an mbuf chain.
860 * NOTE: can ony handle iovcnt == 1
861 */
862 int
863 nfsm_uiotombuf(uiop, mq, siz, bpos)
864 struct uio *uiop;
865 struct mbuf **mq;
866 int siz;
867 caddr_t *bpos;
868 {
869 char *uiocp;
870 struct mbuf *mp, *mp2;
871 int xfer, left, mlen;
872 int uiosiz, clflg, rem;
873 char *cp;
874 int error;
875
876 #ifdef DIAGNOSTIC
877 if (uiop->uio_iovcnt != 1)
878 panic("nfsm_uiotombuf: iovcnt != 1");
879 #endif
880
881 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
882 clflg = 1;
883 else
884 clflg = 0;
885 rem = nfsm_rndup(siz)-siz;
886 mp = mp2 = *mq;
887 while (siz > 0) {
888 left = uiop->uio_iov->iov_len;
889 uiocp = uiop->uio_iov->iov_base;
890 if (left > siz)
891 left = siz;
892 uiosiz = left;
893 while (left > 0) {
894 mlen = M_TRAILINGSPACE(mp);
895 if (mlen == 0) {
896 mp = m_get(M_WAIT, MT_DATA);
897 MCLAIM(mp, &nfs_mowner);
898 if (clflg)
899 m_clget(mp, M_WAIT);
900 mp->m_len = 0;
901 mp2->m_next = mp;
902 mp2 = mp;
903 mlen = M_TRAILINGSPACE(mp);
904 }
905 xfer = (left > mlen) ? mlen : left;
906 cp = mtod(mp, caddr_t) + mp->m_len;
907 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
908 xfer);
909 if (error) {
910 /* XXX */
911 }
912 mp->m_len += xfer;
913 left -= xfer;
914 uiocp += xfer;
915 uiop->uio_offset += xfer;
916 uiop->uio_resid -= xfer;
917 }
918 uiop->uio_iov->iov_base = (caddr_t)uiop->uio_iov->iov_base +
919 uiosiz;
920 uiop->uio_iov->iov_len -= uiosiz;
921 siz -= uiosiz;
922 }
923 if (rem > 0) {
924 if (rem > M_TRAILINGSPACE(mp)) {
925 mp = m_get(M_WAIT, MT_DATA);
926 MCLAIM(mp, &nfs_mowner);
927 mp->m_len = 0;
928 mp2->m_next = mp;
929 }
930 cp = mtod(mp, caddr_t) + mp->m_len;
931 for (left = 0; left < rem; left++)
932 *cp++ = '\0';
933 mp->m_len += rem;
934 *bpos = cp;
935 } else
936 *bpos = mtod(mp, caddr_t)+mp->m_len;
937 *mq = mp;
938 return (0);
939 }
940
941 /*
942 * Get at least "siz" bytes of correctly aligned data.
943 * When called the mbuf pointers are not necessarily correct,
944 * dsosp points to what ought to be in m_data and left contains
945 * what ought to be in m_len.
946 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
947 * cases. (The macros use the vars. dpos and dpos2)
948 */
949 int
950 nfsm_disct(mdp, dposp, siz, left, cp2)
951 struct mbuf **mdp;
952 caddr_t *dposp;
953 int siz;
954 int left;
955 caddr_t *cp2;
956 {
957 struct mbuf *m1, *m2;
958 struct mbuf *havebuf = NULL;
959 caddr_t src = *dposp;
960 caddr_t dst;
961 int len;
962
963 #ifdef DEBUG
964 if (left < 0)
965 panic("nfsm_disct: left < 0");
966 #endif
967 m1 = *mdp;
968 /*
969 * Skip through the mbuf chain looking for an mbuf with
970 * some data. If the first mbuf found has enough data
971 * and it is correctly aligned return it.
972 */
973 while (left == 0) {
974 havebuf = m1;
975 *mdp = m1 = m1->m_next;
976 if (m1 == NULL)
977 return (EBADRPC);
978 src = mtod(m1, caddr_t);
979 left = m1->m_len;
980 /*
981 * If we start a new mbuf and it is big enough
982 * and correctly aligned just return it, don't
983 * do any pull up.
984 */
985 if (left >= siz && nfsm_aligned(src)) {
986 *cp2 = src;
987 *dposp = src + siz;
988 return (0);
989 }
990 }
991 if (m1->m_flags & M_EXT) {
992 if (havebuf) {
993 /* If the first mbuf with data has external data
994 * and there is a previous empty mbuf use it
995 * to move the data into.
996 */
997 m2 = m1;
998 *mdp = m1 = havebuf;
999 if (m1->m_flags & M_EXT) {
1000 MEXTREMOVE(m1);
1001 }
1002 } else {
1003 /*
1004 * If the first mbuf has a external data
1005 * and there is no previous empty mbuf
1006 * allocate a new mbuf and move the external
1007 * data to the new mbuf. Also make the first
1008 * mbuf look empty.
1009 */
1010 m2 = m_get(M_WAIT, MT_DATA);
1011 m2->m_ext = m1->m_ext;
1012 m2->m_data = src;
1013 m2->m_len = left;
1014 MCLADDREFERENCE(m1, m2);
1015 MEXTREMOVE(m1);
1016 m2->m_next = m1->m_next;
1017 m1->m_next = m2;
1018 }
1019 m1->m_len = 0;
1020 if (m1->m_flags & M_PKTHDR)
1021 dst = m1->m_pktdat;
1022 else
1023 dst = m1->m_dat;
1024 m1->m_data = dst;
1025 } else {
1026 /*
1027 * If the first mbuf has no external data
1028 * move the data to the front of the mbuf.
1029 */
1030 if (m1->m_flags & M_PKTHDR)
1031 dst = m1->m_pktdat;
1032 else
1033 dst = m1->m_dat;
1034 m1->m_data = dst;
1035 if (dst != src)
1036 memmove(dst, src, left);
1037 dst += left;
1038 m1->m_len = left;
1039 m2 = m1->m_next;
1040 }
1041 *cp2 = m1->m_data;
1042 *dposp = mtod(m1, caddr_t) + siz;
1043 /*
1044 * Loop through mbufs pulling data up into first mbuf until
1045 * the first mbuf is full or there is no more data to
1046 * pullup.
1047 */
1048 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1049 if ((len = min(len, m2->m_len)) != 0)
1050 memcpy(dst, m2->m_data, len);
1051 m1->m_len += len;
1052 dst += len;
1053 m2->m_data += len;
1054 m2->m_len -= len;
1055 m2 = m2->m_next;
1056 }
1057 if (m1->m_len < siz)
1058 return (EBADRPC);
1059 return (0);
1060 }
1061
1062 /*
1063 * Advance the position in the mbuf chain.
1064 */
1065 int
1066 nfs_adv(mdp, dposp, offs, left)
1067 struct mbuf **mdp;
1068 caddr_t *dposp;
1069 int offs;
1070 int left;
1071 {
1072 struct mbuf *m;
1073 int s;
1074
1075 m = *mdp;
1076 s = left;
1077 while (s < offs) {
1078 offs -= s;
1079 m = m->m_next;
1080 if (m == NULL)
1081 return (EBADRPC);
1082 s = m->m_len;
1083 }
1084 *mdp = m;
1085 *dposp = mtod(m, caddr_t)+offs;
1086 return (0);
1087 }
1088
1089 /*
1090 * Copy a string into mbufs for the hard cases...
1091 */
1092 int
1093 nfsm_strtmbuf(mb, bpos, cp, siz)
1094 struct mbuf **mb;
1095 char **bpos;
1096 const char *cp;
1097 long siz;
1098 {
1099 struct mbuf *m1 = NULL, *m2;
1100 long left, xfer, len, tlen;
1101 u_int32_t *tl;
1102 int putsize;
1103
1104 putsize = 1;
1105 m2 = *mb;
1106 left = M_TRAILINGSPACE(m2);
1107 if (left > 0) {
1108 tl = ((u_int32_t *)(*bpos));
1109 *tl++ = txdr_unsigned(siz);
1110 putsize = 0;
1111 left -= NFSX_UNSIGNED;
1112 m2->m_len += NFSX_UNSIGNED;
1113 if (left > 0) {
1114 memcpy((caddr_t) tl, cp, left);
1115 siz -= left;
1116 cp += left;
1117 m2->m_len += left;
1118 left = 0;
1119 }
1120 }
1121 /* Loop around adding mbufs */
1122 while (siz > 0) {
1123 m1 = m_get(M_WAIT, MT_DATA);
1124 MCLAIM(m1, &nfs_mowner);
1125 if (siz > MLEN)
1126 m_clget(m1, M_WAIT);
1127 m1->m_len = NFSMSIZ(m1);
1128 m2->m_next = m1;
1129 m2 = m1;
1130 tl = mtod(m1, u_int32_t *);
1131 tlen = 0;
1132 if (putsize) {
1133 *tl++ = txdr_unsigned(siz);
1134 m1->m_len -= NFSX_UNSIGNED;
1135 tlen = NFSX_UNSIGNED;
1136 putsize = 0;
1137 }
1138 if (siz < m1->m_len) {
1139 len = nfsm_rndup(siz);
1140 xfer = siz;
1141 if (xfer < len)
1142 *(tl+(xfer>>2)) = 0;
1143 } else {
1144 xfer = len = m1->m_len;
1145 }
1146 memcpy((caddr_t) tl, cp, xfer);
1147 m1->m_len = len+tlen;
1148 siz -= xfer;
1149 cp += xfer;
1150 }
1151 *mb = m1;
1152 *bpos = mtod(m1, caddr_t)+m1->m_len;
1153 return (0);
1154 }
1155
1156 /*
1157 * Directory caching routines. They work as follows:
1158 * - a cache is maintained per VDIR nfsnode.
1159 * - for each offset cookie that is exported to userspace, and can
1160 * thus be thrown back at us as an offset to VOP_READDIR, store
1161 * information in the cache.
1162 * - cached are:
1163 * - cookie itself
1164 * - blocknumber (essentially just a search key in the buffer cache)
1165 * - entry number in block.
1166 * - offset cookie of block in which this entry is stored
1167 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1168 * - entries are looked up in a hash table
1169 * - also maintained is an LRU list of entries, used to determine
1170 * which ones to delete if the cache grows too large.
1171 * - if 32 <-> 64 translation mode is requested for a filesystem,
1172 * the cache also functions as a translation table
1173 * - in the translation case, invalidating the cache does not mean
1174 * flushing it, but just marking entries as invalid, except for
1175 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1176 * still be able to use the cache as a translation table.
1177 * - 32 bit cookies are uniquely created by combining the hash table
1178 * entry value, and one generation count per hash table entry,
1179 * incremented each time an entry is appended to the chain.
1180 * - the cache is invalidated each time a direcory is modified
1181 * - sanity checks are also done; if an entry in a block turns
1182 * out not to have a matching cookie, the cache is invalidated
1183 * and a new block starting from the wanted offset is fetched from
1184 * the server.
1185 * - directory entries as read from the server are extended to contain
1186 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1187 * the cache and exporting them to userspace through the cookie
1188 * argument to VOP_READDIR.
1189 */
1190
1191 u_long
1192 nfs_dirhash(off)
1193 off_t off;
1194 {
1195 int i;
1196 char *cp = (char *)&off;
1197 u_long sum = 0L;
1198
1199 for (i = 0 ; i < sizeof (off); i++)
1200 sum += *cp++;
1201
1202 return sum;
1203 }
1204
1205 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1206 #define NFSDC_LOCK(np) simple_lock(_NFSDC_MTX(np))
1207 #define NFSDC_UNLOCK(np) simple_unlock(_NFSDC_MTX(np))
1208 #define NFSDC_ASSERT_LOCKED(np) LOCK_ASSERT(simple_lock_held(_NFSDC_MTX(np)))
1209
1210 void
1211 nfs_initdircache(vp)
1212 struct vnode *vp;
1213 {
1214 struct nfsnode *np = VTONFS(vp);
1215 struct nfsdirhashhead *dircache;
1216
1217 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1218 M_WAITOK, &nfsdirhashmask);
1219
1220 NFSDC_LOCK(np);
1221 if (np->n_dircache == NULL) {
1222 np->n_dircachesize = 0;
1223 np->n_dircache = dircache;
1224 dircache = NULL;
1225 TAILQ_INIT(&np->n_dirchain);
1226 }
1227 NFSDC_UNLOCK(np);
1228 if (dircache)
1229 hashdone(dircache, M_NFSDIROFF);
1230 }
1231
1232 void
1233 nfs_initdirxlatecookie(vp)
1234 struct vnode *vp;
1235 {
1236 struct nfsnode *np = VTONFS(vp);
1237 unsigned *dirgens;
1238
1239 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1240
1241 dirgens = malloc(NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1242 M_WAITOK|M_ZERO);
1243 NFSDC_LOCK(np);
1244 if (np->n_dirgens == NULL) {
1245 np->n_dirgens = dirgens;
1246 dirgens = NULL;
1247 }
1248 NFSDC_UNLOCK(np);
1249 if (dirgens)
1250 free(dirgens, M_NFSDIROFF);
1251 }
1252
1253 static const struct nfsdircache dzero;
1254
1255 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1256 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1257 struct nfsdircache *));
1258
1259 static void
1260 nfs_unlinkdircache(np, ndp)
1261 struct nfsnode *np;
1262 struct nfsdircache *ndp;
1263 {
1264
1265 NFSDC_ASSERT_LOCKED(np);
1266 KASSERT(ndp != &dzero);
1267
1268 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1269 return;
1270
1271 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1272 LIST_REMOVE(ndp, dc_hash);
1273 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1274
1275 nfs_putdircache_unlocked(np, ndp);
1276 }
1277
1278 void
1279 nfs_putdircache(np, ndp)
1280 struct nfsnode *np;
1281 struct nfsdircache *ndp;
1282 {
1283 int ref;
1284
1285 if (ndp == &dzero)
1286 return;
1287
1288 KASSERT(ndp->dc_refcnt > 0);
1289 NFSDC_LOCK(np);
1290 ref = --ndp->dc_refcnt;
1291 NFSDC_UNLOCK(np);
1292
1293 if (ref == 0)
1294 free(ndp, M_NFSDIROFF);
1295 }
1296
1297 static void
1298 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1299 {
1300 int ref;
1301
1302 NFSDC_ASSERT_LOCKED(np);
1303
1304 if (ndp == &dzero)
1305 return;
1306
1307 KASSERT(ndp->dc_refcnt > 0);
1308 ref = --ndp->dc_refcnt;
1309 if (ref == 0)
1310 free(ndp, M_NFSDIROFF);
1311 }
1312
1313 struct nfsdircache *
1314 nfs_searchdircache(vp, off, do32, hashent)
1315 struct vnode *vp;
1316 off_t off;
1317 int do32;
1318 int *hashent;
1319 {
1320 struct nfsdirhashhead *ndhp;
1321 struct nfsdircache *ndp = NULL;
1322 struct nfsnode *np = VTONFS(vp);
1323 unsigned ent;
1324
1325 /*
1326 * Zero is always a valid cookie.
1327 */
1328 if (off == 0)
1329 /* XXXUNCONST */
1330 return (struct nfsdircache *)__UNCONST(&dzero);
1331
1332 if (!np->n_dircache)
1333 return NULL;
1334
1335 /*
1336 * We use a 32bit cookie as search key, directly reconstruct
1337 * the hashentry. Else use the hashfunction.
1338 */
1339 if (do32) {
1340 ent = (u_int32_t)off >> 24;
1341 if (ent >= NFS_DIRHASHSIZ)
1342 return NULL;
1343 ndhp = &np->n_dircache[ent];
1344 } else {
1345 ndhp = NFSDIRHASH(np, off);
1346 }
1347
1348 if (hashent)
1349 *hashent = (int)(ndhp - np->n_dircache);
1350
1351 NFSDC_LOCK(np);
1352 if (do32) {
1353 LIST_FOREACH(ndp, ndhp, dc_hash) {
1354 if (ndp->dc_cookie32 == (u_int32_t)off) {
1355 /*
1356 * An invalidated entry will become the
1357 * start of a new block fetched from
1358 * the server.
1359 */
1360 if (ndp->dc_flags & NFSDC_INVALID) {
1361 ndp->dc_blkcookie = ndp->dc_cookie;
1362 ndp->dc_entry = 0;
1363 ndp->dc_flags &= ~NFSDC_INVALID;
1364 }
1365 break;
1366 }
1367 }
1368 } else {
1369 LIST_FOREACH(ndp, ndhp, dc_hash) {
1370 if (ndp->dc_cookie == off)
1371 break;
1372 }
1373 }
1374 if (ndp != NULL)
1375 ndp->dc_refcnt++;
1376 NFSDC_UNLOCK(np);
1377 return ndp;
1378 }
1379
1380
1381 struct nfsdircache *
1382 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1383 daddr_t blkno)
1384 {
1385 struct nfsnode *np = VTONFS(vp);
1386 struct nfsdirhashhead *ndhp;
1387 struct nfsdircache *ndp = NULL;
1388 struct nfsdircache *newndp = NULL;
1389 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1390 int hashent = 0, gen, overwrite; /* XXX: GCC */
1391
1392 /*
1393 * XXX refuse entries for offset 0. amd(8) erroneously sets
1394 * cookie 0 for the '.' entry, making this necessary. This
1395 * isn't so bad, as 0 is a special case anyway.
1396 */
1397 if (off == 0)
1398 /* XXXUNCONST */
1399 return (struct nfsdircache *)__UNCONST(&dzero);
1400
1401 if (!np->n_dircache)
1402 /*
1403 * XXX would like to do this in nfs_nget but vtype
1404 * isn't known at that time.
1405 */
1406 nfs_initdircache(vp);
1407
1408 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1409 nfs_initdirxlatecookie(vp);
1410
1411 retry:
1412 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1413
1414 NFSDC_LOCK(np);
1415 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1416 /*
1417 * Overwriting an old entry. Check if it's the same.
1418 * If so, just return. If not, remove the old entry.
1419 */
1420 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1421 goto done;
1422 nfs_unlinkdircache(np, ndp);
1423 nfs_putdircache_unlocked(np, ndp);
1424 ndp = NULL;
1425 }
1426
1427 ndhp = &np->n_dircache[hashent];
1428
1429 if (!ndp) {
1430 if (newndp == NULL) {
1431 NFSDC_UNLOCK(np);
1432 newndp = malloc(sizeof(*ndp), M_NFSDIROFF, M_WAITOK);
1433 newndp->dc_refcnt = 1;
1434 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1435 goto retry;
1436 }
1437 ndp = newndp;
1438 newndp = NULL;
1439 overwrite = 0;
1440 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1441 /*
1442 * We're allocating a new entry, so bump the
1443 * generation number.
1444 */
1445 KASSERT(np->n_dirgens);
1446 gen = ++np->n_dirgens[hashent];
1447 if (gen == 0) {
1448 np->n_dirgens[hashent]++;
1449 gen++;
1450 }
1451 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1452 }
1453 } else
1454 overwrite = 1;
1455
1456 ndp->dc_cookie = off;
1457 ndp->dc_blkcookie = blkoff;
1458 ndp->dc_entry = en;
1459 ndp->dc_flags = 0;
1460
1461 if (overwrite)
1462 goto done;
1463
1464 /*
1465 * If the maximum directory cookie cache size has been reached
1466 * for this node, take one off the front. The idea is that
1467 * directories are typically read front-to-back once, so that
1468 * the oldest entries can be thrown away without much performance
1469 * loss.
1470 */
1471 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1472 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1473 } else
1474 np->n_dircachesize++;
1475
1476 KASSERT(ndp->dc_refcnt == 1);
1477 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1478 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1479 ndp->dc_refcnt++;
1480 done:
1481 KASSERT(ndp->dc_refcnt > 0);
1482 NFSDC_UNLOCK(np);
1483 if (newndp)
1484 nfs_putdircache(np, newndp);
1485 return ndp;
1486 }
1487
1488 void
1489 nfs_invaldircache(vp, flags)
1490 struct vnode *vp;
1491 int flags;
1492 {
1493 struct nfsnode *np = VTONFS(vp);
1494 struct nfsdircache *ndp = NULL;
1495 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1496 const boolean_t forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1497
1498 #ifdef DIAGNOSTIC
1499 if (vp->v_type != VDIR)
1500 panic("nfs: invaldircache: not dir");
1501 #endif
1502
1503 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1504 np->n_flag &= ~NEOFVALID;
1505
1506 if (!np->n_dircache)
1507 return;
1508
1509 NFSDC_LOCK(np);
1510 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1511 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1512 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1513 nfs_unlinkdircache(np, ndp);
1514 }
1515 np->n_dircachesize = 0;
1516 if (forcefree && np->n_dirgens) {
1517 FREE(np->n_dirgens, M_NFSDIROFF);
1518 np->n_dirgens = NULL;
1519 }
1520 } else {
1521 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1522 ndp->dc_flags |= NFSDC_INVALID;
1523 }
1524
1525 NFSDC_UNLOCK(np);
1526 }
1527
1528 /*
1529 * Called once before VFS init to initialize shared and
1530 * server-specific data structures.
1531 */
1532 static int
1533 nfs_init0(void)
1534 {
1535 nfsrtt.pos = 0;
1536 rpc_vers = txdr_unsigned(RPC_VER2);
1537 rpc_call = txdr_unsigned(RPC_CALL);
1538 rpc_reply = txdr_unsigned(RPC_REPLY);
1539 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1540 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1541 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1542 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1543 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1544 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1545 nfs_prog = txdr_unsigned(NFS_PROG);
1546 nqnfs_prog = txdr_unsigned(NQNFS_PROG);
1547 nfs_true = txdr_unsigned(TRUE);
1548 nfs_false = txdr_unsigned(FALSE);
1549 nfs_xdrneg1 = txdr_unsigned(-1);
1550 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1551 if (nfs_ticks < 1)
1552 nfs_ticks = 1;
1553 #ifdef NFSSERVER
1554 nfsrv_init(0); /* Init server data structures */
1555 nfsrv_initcache(); /* Init the server request cache */
1556 #endif /* NFSSERVER */
1557
1558 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
1559 nfsdreq_init();
1560 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
1561
1562 #if defined(NFSSERVER) || !defined(NFS_V2_ONLY)
1563 /*
1564 * Initialize the nqnfs data structures.
1565 */
1566 if (nqnfsstarttime == 0) {
1567 nqnfsstarttime = boottime.tv_sec + nqsrv_maxlease
1568 + nqsrv_clockskew + nqsrv_writeslack;
1569 NQLOADNOVRAM(nqnfsstarttime);
1570 CIRCLEQ_INIT(&nqtimerhead);
1571 nqfhhashtbl = hashinit(NQLCHSZ, HASH_LIST, M_NQLEASE,
1572 M_WAITOK, &nqfhhash);
1573 }
1574 #endif
1575
1576 exithook_establish(nfs_exit, NULL);
1577
1578 /*
1579 * Initialize reply list and start timer
1580 */
1581 TAILQ_INIT(&nfs_reqq);
1582 nfs_timer(NULL);
1583 MOWNER_ATTACH(&nfs_mowner);
1584
1585 #ifdef NFS
1586 /* Initialize the kqueue structures */
1587 nfs_kqinit();
1588 /* Initialize the iod structures */
1589 nfs_iodinit();
1590 #endif
1591 return 0;
1592 }
1593
1594 void
1595 nfs_init(void)
1596 {
1597 static ONCE_DECL(nfs_init_once);
1598
1599 RUN_ONCE(&nfs_init_once, nfs_init0);
1600 }
1601
1602 #ifdef NFS
1603 /*
1604 * Called once at VFS init to initialize client-specific data structures.
1605 */
1606 void
1607 nfs_vfs_init()
1608 {
1609 /* Initialize NFS server / client shared data. */
1610 nfs_init();
1611
1612 nfs_nhinit(); /* Init the nfsnode table */
1613 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1614 }
1615
1616 void
1617 nfs_vfs_reinit()
1618 {
1619 nfs_nhreinit();
1620 }
1621
1622 void
1623 nfs_vfs_done()
1624 {
1625 nfs_nhdone();
1626 }
1627
1628 /*
1629 * Attribute cache routines.
1630 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1631 * that are on the mbuf list
1632 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1633 * error otherwise
1634 */
1635
1636 /*
1637 * Load the attribute cache (that lives in the nfsnode entry) with
1638 * the values on the mbuf list and
1639 * Iff vap not NULL
1640 * copy the attributes to *vaper
1641 */
1642 int
1643 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1644 struct vnode **vpp;
1645 struct mbuf **mdp;
1646 caddr_t *dposp;
1647 struct vattr *vaper;
1648 int flags;
1649 {
1650 int32_t t1;
1651 caddr_t cp2;
1652 int error = 0;
1653 struct mbuf *md;
1654 int v3 = NFS_ISV3(*vpp);
1655
1656 md = *mdp;
1657 t1 = (mtod(md, caddr_t) + md->m_len) - *dposp;
1658 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1659 if (error)
1660 return (error);
1661 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1662 }
1663
1664 int
1665 nfs_loadattrcache(vpp, fp, vaper, flags)
1666 struct vnode **vpp;
1667 struct nfs_fattr *fp;
1668 struct vattr *vaper;
1669 int flags;
1670 {
1671 struct vnode *vp = *vpp;
1672 struct vattr *vap;
1673 int v3 = NFS_ISV3(vp);
1674 enum vtype vtyp;
1675 u_short vmode;
1676 struct timespec mtime;
1677 struct timespec ctime;
1678 struct vnode *nvp;
1679 int32_t rdev;
1680 struct nfsnode *np;
1681 extern int (**spec_nfsv2nodeop_p) __P((void *));
1682 uid_t uid;
1683 gid_t gid;
1684
1685 if (v3) {
1686 vtyp = nfsv3tov_type(fp->fa_type);
1687 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1688 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1689 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1690 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1691 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1692 } else {
1693 vtyp = nfsv2tov_type(fp->fa_type);
1694 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1695 if (vtyp == VNON || vtyp == VREG)
1696 vtyp = IFTOVT(vmode);
1697 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1698 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1699 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1700 fp->fa2_ctime.nfsv2_sec);
1701 ctime.tv_nsec = 0;
1702
1703 /*
1704 * Really ugly NFSv2 kludge.
1705 */
1706 if (vtyp == VCHR && rdev == 0xffffffff)
1707 vtyp = VFIFO;
1708 }
1709
1710 vmode &= ALLPERMS;
1711
1712 /*
1713 * If v_type == VNON it is a new node, so fill in the v_type,
1714 * n_mtime fields. Check to see if it represents a special
1715 * device, and if so, check for a possible alias. Once the
1716 * correct vnode has been obtained, fill in the rest of the
1717 * information.
1718 */
1719 np = VTONFS(vp);
1720 if (vp->v_type == VNON) {
1721 vp->v_type = vtyp;
1722 if (vp->v_type == VFIFO) {
1723 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1724 vp->v_op = fifo_nfsv2nodeop_p;
1725 } else if (vp->v_type == VREG) {
1726 lockinit(&np->n_commitlock, PINOD, "nfsclock", 0, 0);
1727 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1728 vp->v_op = spec_nfsv2nodeop_p;
1729 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1730 if (nvp) {
1731 /*
1732 * Discard unneeded vnode, but save its nfsnode.
1733 * Since the nfsnode does not have a lock, its
1734 * vnode lock has to be carried over.
1735 */
1736 /*
1737 * XXX is the old node sure to be locked here?
1738 */
1739 KASSERT(lockstatus(&vp->v_lock) ==
1740 LK_EXCLUSIVE);
1741 nvp->v_data = vp->v_data;
1742 vp->v_data = NULL;
1743 VOP_UNLOCK(vp, 0);
1744 vp->v_op = spec_vnodeop_p;
1745 vrele(vp);
1746 vgone(vp);
1747 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1748 &nvp->v_interlock);
1749 /*
1750 * Reinitialize aliased node.
1751 */
1752 np->n_vnode = nvp;
1753 *vpp = vp = nvp;
1754 }
1755 }
1756 np->n_mtime = mtime;
1757 }
1758 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1759 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1760 vap = np->n_vattr;
1761
1762 /*
1763 * Invalidate access cache if uid, gid, mode or ctime changed.
1764 */
1765 if (np->n_accstamp != -1 &&
1766 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1767 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1768 np->n_accstamp = -1;
1769
1770 vap->va_type = vtyp;
1771 vap->va_mode = vmode;
1772 vap->va_rdev = (dev_t)rdev;
1773 vap->va_mtime = mtime;
1774 vap->va_ctime = ctime;
1775 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1776 switch (vtyp) {
1777 case VDIR:
1778 vap->va_blocksize = NFS_DIRFRAGSIZ;
1779 break;
1780 case VBLK:
1781 vap->va_blocksize = BLKDEV_IOSIZE;
1782 break;
1783 case VCHR:
1784 vap->va_blocksize = MAXBSIZE;
1785 break;
1786 default:
1787 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1788 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1789 break;
1790 }
1791 if (v3) {
1792 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1793 vap->va_uid = uid;
1794 vap->va_gid = gid;
1795 vap->va_size = fxdr_hyper(&fp->fa3_size);
1796 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1797 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1798 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1799 vap->va_flags = 0;
1800 vap->va_filerev = 0;
1801 } else {
1802 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1803 vap->va_uid = uid;
1804 vap->va_gid = gid;
1805 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1806 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1807 * NFS_FABLKSIZE;
1808 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1809 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1810 vap->va_flags = 0;
1811 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1812 vap->va_filerev = 0;
1813 }
1814 if (vap->va_size != np->n_size) {
1815 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1816 vap->va_size = np->n_size;
1817 } else {
1818 np->n_size = vap->va_size;
1819 if (vap->va_type == VREG) {
1820 /*
1821 * we can't free pages if NAC_NOTRUNC because
1822 * the pages can be owned by ourselves.
1823 */
1824 if (flags & NAC_NOTRUNC) {
1825 np->n_flag |= NTRUNCDELAYED;
1826 } else {
1827 genfs_node_wrlock(vp);
1828 simple_lock(&vp->v_interlock);
1829 (void)VOP_PUTPAGES(vp, 0,
1830 0, PGO_SYNCIO | PGO_CLEANIT |
1831 PGO_FREE | PGO_ALLPAGES);
1832 uvm_vnp_setsize(vp, np->n_size);
1833 genfs_node_unlock(vp);
1834 }
1835 }
1836 }
1837 }
1838 np->n_attrstamp = time_second;
1839 if (vaper != NULL) {
1840 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(*vap));
1841 if (np->n_flag & NCHG) {
1842 if (np->n_flag & NACC)
1843 vaper->va_atime = np->n_atim;
1844 if (np->n_flag & NUPD)
1845 vaper->va_mtime = np->n_mtim;
1846 }
1847 }
1848 return (0);
1849 }
1850
1851 /*
1852 * Check the time stamp
1853 * If the cache is valid, copy contents to *vap and return 0
1854 * otherwise return an error
1855 */
1856 int
1857 nfs_getattrcache(vp, vaper)
1858 struct vnode *vp;
1859 struct vattr *vaper;
1860 {
1861 struct nfsnode *np = VTONFS(vp);
1862 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1863 struct vattr *vap;
1864
1865 if (np->n_attrstamp == 0 ||
1866 (time_second - np->n_attrstamp) >= NFS_ATTRTIMEO(nmp, np)) {
1867 nfsstats.attrcache_misses++;
1868 return (ENOENT);
1869 }
1870 nfsstats.attrcache_hits++;
1871 vap = np->n_vattr;
1872 if (vap->va_size != np->n_size) {
1873 if (vap->va_type == VREG) {
1874 if (np->n_flag & NMODIFIED) {
1875 if (vap->va_size < np->n_size)
1876 vap->va_size = np->n_size;
1877 else
1878 np->n_size = vap->va_size;
1879 } else
1880 np->n_size = vap->va_size;
1881 genfs_node_wrlock(vp);
1882 uvm_vnp_setsize(vp, np->n_size);
1883 genfs_node_unlock(vp);
1884 } else
1885 np->n_size = vap->va_size;
1886 }
1887 memcpy((caddr_t)vaper, (caddr_t)vap, sizeof(struct vattr));
1888 if (np->n_flag & NCHG) {
1889 if (np->n_flag & NACC)
1890 vaper->va_atime = np->n_atim;
1891 if (np->n_flag & NUPD)
1892 vaper->va_mtime = np->n_mtim;
1893 }
1894 return (0);
1895 }
1896
1897 void
1898 nfs_delayedtruncate(vp)
1899 struct vnode *vp;
1900 {
1901 struct nfsnode *np = VTONFS(vp);
1902
1903 if (np->n_flag & NTRUNCDELAYED) {
1904 np->n_flag &= ~NTRUNCDELAYED;
1905 genfs_node_wrlock(vp);
1906 simple_lock(&vp->v_interlock);
1907 (void)VOP_PUTPAGES(vp, 0,
1908 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1909 uvm_vnp_setsize(vp, np->n_size);
1910 genfs_node_unlock(vp);
1911 }
1912 }
1913
1914 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1915 #define NFS_WCCKLUDGE(nmp, now) \
1916 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1917 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1918
1919 /*
1920 * nfs_check_wccdata: check inaccurate wcc_data
1921 *
1922 * => return non-zero if we shouldn't trust the wcc_data.
1923 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1924 */
1925
1926 int
1927 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1928 struct timespec *mtime, boolean_t docheck)
1929 {
1930 int error = 0;
1931
1932 #if !defined(NFS_V2_ONLY)
1933
1934 if (docheck) {
1935 struct vnode *vp = NFSTOV(np);
1936 struct nfsmount *nmp;
1937 long now = time_second;
1938 #if defined(DEBUG)
1939 const char *reason = NULL; /* XXX: gcc */
1940 #endif
1941
1942 if (timespeccmp(&np->n_vattr->va_mtime, mtime, <=)) {
1943 #if defined(DEBUG)
1944 reason = "mtime";
1945 #endif
1946 error = EINVAL;
1947 }
1948
1949 if (vp->v_type == VDIR &&
1950 timespeccmp(&np->n_vattr->va_ctime, ctime, <=)) {
1951 #if defined(DEBUG)
1952 reason = "ctime";
1953 #endif
1954 error = EINVAL;
1955 }
1956
1957 nmp = VFSTONFS(vp->v_mount);
1958 if (error) {
1959
1960 /*
1961 * despite of the fact that we've updated the file,
1962 * timestamps of the file were not updated as we
1963 * expected.
1964 * it means that the server has incompatible
1965 * semantics of timestamps or (more likely)
1966 * the server time is not precise enough to
1967 * track each modifications.
1968 * in that case, we disable wcc processing.
1969 *
1970 * yes, strictly speaking, we should disable all
1971 * caching. it's a compromise.
1972 */
1973
1974 simple_lock(&nmp->nm_slock);
1975 #if defined(DEBUG)
1976 if (!NFS_WCCKLUDGE(nmp, now)) {
1977 printf("%s: inaccurate wcc data (%s) detected,"
1978 " disabling wcc\n",
1979 vp->v_mount->mnt_stat.f_mntfromname,
1980 reason);
1981 }
1982 #endif
1983 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1984 nmp->nm_wcckludgetime = now;
1985 simple_unlock(&nmp->nm_slock);
1986 } else if (NFS_WCCKLUDGE(nmp, now)) {
1987 error = EPERM; /* XXX */
1988 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1989 simple_lock(&nmp->nm_slock);
1990 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1991 #if defined(DEBUG)
1992 printf("%s: re-enabling wcc\n",
1993 vp->v_mount->mnt_stat.f_mntfromname);
1994 #endif
1995 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1996 }
1997 simple_unlock(&nmp->nm_slock);
1998 }
1999 }
2000
2001 #endif /* !defined(NFS_V2_ONLY) */
2002
2003 return error;
2004 }
2005
2006 /*
2007 * Heuristic to see if the server XDR encodes directory cookies or not.
2008 * it is not supposed to, but a lot of servers may do this. Also, since
2009 * most/all servers will implement V2 as well, it is expected that they
2010 * may return just 32 bits worth of cookie information, so we need to
2011 * find out in which 32 bits this information is available. We do this
2012 * to avoid trouble with emulated binaries that can't handle 64 bit
2013 * directory offsets.
2014 */
2015
2016 void
2017 nfs_cookieheuristic(vp, flagp, l, cred)
2018 struct vnode *vp;
2019 int *flagp;
2020 struct lwp *l;
2021 kauth_cred_t cred;
2022 {
2023 struct uio auio;
2024 struct iovec aiov;
2025 caddr_t tbuf, cp;
2026 struct dirent *dp;
2027 off_t *cookies = NULL, *cop;
2028 int error, eof, nc, len;
2029
2030 MALLOC(tbuf, caddr_t, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
2031
2032 aiov.iov_base = tbuf;
2033 aiov.iov_len = NFS_DIRFRAGSIZ;
2034 auio.uio_iov = &aiov;
2035 auio.uio_iovcnt = 1;
2036 auio.uio_rw = UIO_READ;
2037 auio.uio_resid = NFS_DIRFRAGSIZ;
2038 auio.uio_offset = 0;
2039 UIO_SETUP_SYSSPACE(&auio);
2040
2041 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
2042
2043 len = NFS_DIRFRAGSIZ - auio.uio_resid;
2044 if (error || len == 0) {
2045 FREE(tbuf, M_TEMP);
2046 if (cookies)
2047 free(cookies, M_TEMP);
2048 return;
2049 }
2050
2051 /*
2052 * Find the first valid entry and look at its offset cookie.
2053 */
2054
2055 cp = tbuf;
2056 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2057 dp = (struct dirent *)cp;
2058 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2059 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2060 *flagp |= NFSMNT_SWAPCOOKIE;
2061 nfs_invaldircache(vp, 0);
2062 nfs_vinvalbuf(vp, 0, cred, l, 1);
2063 }
2064 break;
2065 }
2066 cop++;
2067 cp += dp->d_reclen;
2068 }
2069
2070 FREE(tbuf, M_TEMP);
2071 free(cookies, M_TEMP);
2072 }
2073 #endif /* NFS */
2074
2075 #ifdef NFSSERVER
2076 /*
2077 * Set up nameidata for a lookup() call and do it.
2078 *
2079 * If pubflag is set, this call is done for a lookup operation on the
2080 * public filehandle. In that case we allow crossing mountpoints and
2081 * absolute pathnames. However, the caller is expected to check that
2082 * the lookup result is within the public fs, and deny access if
2083 * it is not.
2084 */
2085 int
2086 nfs_namei(ndp, nsfh, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2087 struct nameidata *ndp;
2088 nfsrvfh_t *nsfh;
2089 uint32_t len;
2090 struct nfssvc_sock *slp;
2091 struct mbuf *nam;
2092 struct mbuf **mdp;
2093 caddr_t *dposp;
2094 struct vnode **retdirp;
2095 struct lwp *l;
2096 int kerbflag, pubflag;
2097 {
2098 int i, rem;
2099 struct mbuf *md;
2100 char *fromcp, *tocp, *cp;
2101 struct iovec aiov;
2102 struct uio auio;
2103 struct vnode *dp;
2104 int error, rdonly, linklen;
2105 struct componentname *cnp = &ndp->ni_cnd;
2106
2107 *retdirp = (struct vnode *)0;
2108
2109 if ((len + 1) > MAXPATHLEN)
2110 return (ENAMETOOLONG);
2111 if (len == 0)
2112 return (EACCES);
2113 cnp->cn_pnbuf = PNBUF_GET();
2114
2115 /*
2116 * Copy the name from the mbuf list to ndp->ni_pnbuf
2117 * and set the various ndp fields appropriately.
2118 */
2119 fromcp = *dposp;
2120 tocp = cnp->cn_pnbuf;
2121 md = *mdp;
2122 rem = mtod(md, caddr_t) + md->m_len - fromcp;
2123 for (i = 0; i < len; i++) {
2124 while (rem == 0) {
2125 md = md->m_next;
2126 if (md == NULL) {
2127 error = EBADRPC;
2128 goto out;
2129 }
2130 fromcp = mtod(md, caddr_t);
2131 rem = md->m_len;
2132 }
2133 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2134 error = EACCES;
2135 goto out;
2136 }
2137 *tocp++ = *fromcp++;
2138 rem--;
2139 }
2140 *tocp = '\0';
2141 *mdp = md;
2142 *dposp = fromcp;
2143 len = nfsm_rndup(len)-len;
2144 if (len > 0) {
2145 if (rem >= len)
2146 *dposp += len;
2147 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2148 goto out;
2149 }
2150
2151 /*
2152 * Extract and set starting directory.
2153 */
2154 error = nfsrv_fhtovp(nsfh, FALSE, &dp, ndp->ni_cnd.cn_cred, slp,
2155 nam, &rdonly, kerbflag, pubflag);
2156 if (error)
2157 goto out;
2158 if (dp->v_type != VDIR) {
2159 vrele(dp);
2160 error = ENOTDIR;
2161 goto out;
2162 }
2163
2164 if (rdonly)
2165 cnp->cn_flags |= RDONLY;
2166
2167 *retdirp = dp;
2168
2169 if (pubflag) {
2170 /*
2171 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2172 * and the 'native path' indicator.
2173 */
2174 cp = PNBUF_GET();
2175 fromcp = cnp->cn_pnbuf;
2176 tocp = cp;
2177 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2178 switch ((unsigned char)*fromcp) {
2179 case WEBNFS_NATIVE_CHAR:
2180 /*
2181 * 'Native' path for us is the same
2182 * as a path according to the NFS spec,
2183 * just skip the escape char.
2184 */
2185 fromcp++;
2186 break;
2187 /*
2188 * More may be added in the future, range 0x80-0xff
2189 */
2190 default:
2191 error = EIO;
2192 PNBUF_PUT(cp);
2193 goto out;
2194 }
2195 }
2196 /*
2197 * Translate the '%' escapes, URL-style.
2198 */
2199 while (*fromcp != '\0') {
2200 if (*fromcp == WEBNFS_ESC_CHAR) {
2201 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2202 fromcp++;
2203 *tocp++ = HEXSTRTOI(fromcp);
2204 fromcp += 2;
2205 continue;
2206 } else {
2207 error = ENOENT;
2208 PNBUF_PUT(cp);
2209 goto out;
2210 }
2211 } else
2212 *tocp++ = *fromcp++;
2213 }
2214 *tocp = '\0';
2215 PNBUF_PUT(cnp->cn_pnbuf);
2216 cnp->cn_pnbuf = cp;
2217 }
2218
2219 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2220 ndp->ni_segflg = UIO_SYSSPACE;
2221 ndp->ni_rootdir = rootvnode;
2222
2223 if (pubflag) {
2224 ndp->ni_loopcnt = 0;
2225 if (cnp->cn_pnbuf[0] == '/')
2226 dp = rootvnode;
2227 } else {
2228 cnp->cn_flags |= NOCROSSMOUNT;
2229 }
2230
2231 cnp->cn_lwp = l;
2232 VREF(dp);
2233
2234 for (;;) {
2235 cnp->cn_nameptr = cnp->cn_pnbuf;
2236 ndp->ni_startdir = dp;
2237 /*
2238 * And call lookup() to do the real work
2239 */
2240 error = lookup(ndp);
2241 if (error) {
2242 PNBUF_PUT(cnp->cn_pnbuf);
2243 return (error);
2244 }
2245 /*
2246 * Check for encountering a symbolic link
2247 */
2248 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2249 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2250 cnp->cn_flags |= HASBUF;
2251 else
2252 PNBUF_PUT(cnp->cn_pnbuf);
2253 return (0);
2254 } else {
2255 if ((cnp->cn_flags & LOCKPARENT) && (cnp->cn_flags & ISLASTCN))
2256 VOP_UNLOCK(ndp->ni_dvp, 0);
2257 if (!pubflag) {
2258 error = EINVAL;
2259 break;
2260 }
2261
2262 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2263 error = ELOOP;
2264 break;
2265 }
2266 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2267 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2268 cnp->cn_lwp);
2269 if (error != 0)
2270 break;
2271 }
2272 if (ndp->ni_pathlen > 1)
2273 cp = PNBUF_GET();
2274 else
2275 cp = cnp->cn_pnbuf;
2276 aiov.iov_base = cp;
2277 aiov.iov_len = MAXPATHLEN;
2278 auio.uio_iov = &aiov;
2279 auio.uio_iovcnt = 1;
2280 auio.uio_offset = 0;
2281 auio.uio_rw = UIO_READ;
2282 auio.uio_resid = MAXPATHLEN;
2283 UIO_SETUP_SYSSPACE(&auio);
2284 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2285 if (error) {
2286 badlink:
2287 if (ndp->ni_pathlen > 1)
2288 PNBUF_PUT(cp);
2289 break;
2290 }
2291 linklen = MAXPATHLEN - auio.uio_resid;
2292 if (linklen == 0) {
2293 error = ENOENT;
2294 goto badlink;
2295 }
2296 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2297 error = ENAMETOOLONG;
2298 goto badlink;
2299 }
2300 if (ndp->ni_pathlen > 1) {
2301 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2302 PNBUF_PUT(cnp->cn_pnbuf);
2303 cnp->cn_pnbuf = cp;
2304 } else
2305 cnp->cn_pnbuf[linklen] = '\0';
2306 ndp->ni_pathlen += linklen;
2307 vput(ndp->ni_vp);
2308 dp = ndp->ni_dvp;
2309 /*
2310 * Check if root directory should replace current directory.
2311 */
2312 if (cnp->cn_pnbuf[0] == '/') {
2313 vrele(dp);
2314 dp = ndp->ni_rootdir;
2315 VREF(dp);
2316 }
2317 }
2318 }
2319 vrele(ndp->ni_dvp);
2320 vput(ndp->ni_vp);
2321 ndp->ni_vp = NULL;
2322 out:
2323 PNBUF_PUT(cnp->cn_pnbuf);
2324 return (error);
2325 }
2326 #endif /* NFSSERVER */
2327
2328 /*
2329 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2330 * boundary and only trims off the back end
2331 *
2332 * 1. trim off 'len' bytes as m_adj(mp, -len).
2333 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2334 */
2335 void
2336 nfs_zeropad(mp, len, nul)
2337 struct mbuf *mp;
2338 int len;
2339 int nul;
2340 {
2341 struct mbuf *m;
2342 int count;
2343
2344 /*
2345 * Trim from tail. Scan the mbuf chain,
2346 * calculating its length and finding the last mbuf.
2347 * If the adjustment only affects this mbuf, then just
2348 * adjust and return. Otherwise, rescan and truncate
2349 * after the remaining size.
2350 */
2351 count = 0;
2352 m = mp;
2353 for (;;) {
2354 count += m->m_len;
2355 if (m->m_next == NULL)
2356 break;
2357 m = m->m_next;
2358 }
2359
2360 KDASSERT(count >= len);
2361
2362 if (m->m_len >= len) {
2363 m->m_len -= len;
2364 } else {
2365 count -= len;
2366 /*
2367 * Correct length for chain is "count".
2368 * Find the mbuf with last data, adjust its length,
2369 * and toss data from remaining mbufs on chain.
2370 */
2371 for (m = mp; m; m = m->m_next) {
2372 if (m->m_len >= count) {
2373 m->m_len = count;
2374 break;
2375 }
2376 count -= m->m_len;
2377 }
2378 KASSERT(m && m->m_next);
2379 m_freem(m->m_next);
2380 m->m_next = NULL;
2381 }
2382
2383 KDASSERT(m->m_next == NULL);
2384
2385 /*
2386 * zero-padding.
2387 */
2388 if (nul > 0) {
2389 char *cp;
2390 int i;
2391
2392 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2393 struct mbuf *n;
2394
2395 KDASSERT(MLEN >= nul);
2396 n = m_get(M_WAIT, MT_DATA);
2397 MCLAIM(n, &nfs_mowner);
2398 n->m_len = nul;
2399 n->m_next = NULL;
2400 m->m_next = n;
2401 cp = mtod(n, caddr_t);
2402 } else {
2403 cp = mtod(m, caddr_t) + m->m_len;
2404 m->m_len += nul;
2405 }
2406 for (i = 0; i < nul; i++)
2407 *cp++ = '\0';
2408 }
2409 return;
2410 }
2411
2412 /*
2413 * Make these functions instead of macros, so that the kernel text size
2414 * doesn't get too big...
2415 */
2416 void
2417 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2418 struct nfsrv_descript *nfsd;
2419 int before_ret;
2420 struct vattr *before_vap;
2421 int after_ret;
2422 struct vattr *after_vap;
2423 struct mbuf **mbp;
2424 char **bposp;
2425 {
2426 struct mbuf *mb = *mbp;
2427 char *bpos = *bposp;
2428 u_int32_t *tl;
2429
2430 if (before_ret) {
2431 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2432 *tl = nfs_false;
2433 } else {
2434 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2435 *tl++ = nfs_true;
2436 txdr_hyper(before_vap->va_size, tl);
2437 tl += 2;
2438 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2439 tl += 2;
2440 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2441 }
2442 *bposp = bpos;
2443 *mbp = mb;
2444 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2445 }
2446
2447 void
2448 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2449 struct nfsrv_descript *nfsd;
2450 int after_ret;
2451 struct vattr *after_vap;
2452 struct mbuf **mbp;
2453 char **bposp;
2454 {
2455 struct mbuf *mb = *mbp;
2456 char *bpos = *bposp;
2457 u_int32_t *tl;
2458 struct nfs_fattr *fp;
2459
2460 if (after_ret) {
2461 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2462 *tl = nfs_false;
2463 } else {
2464 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2465 *tl++ = nfs_true;
2466 fp = (struct nfs_fattr *)tl;
2467 nfsm_srvfattr(nfsd, after_vap, fp);
2468 }
2469 *mbp = mb;
2470 *bposp = bpos;
2471 }
2472
2473 void
2474 nfsm_srvfattr(nfsd, vap, fp)
2475 struct nfsrv_descript *nfsd;
2476 struct vattr *vap;
2477 struct nfs_fattr *fp;
2478 {
2479
2480 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2481 fp->fa_uid = txdr_unsigned(vap->va_uid);
2482 fp->fa_gid = txdr_unsigned(vap->va_gid);
2483 if (nfsd->nd_flag & ND_NFSV3) {
2484 fp->fa_type = vtonfsv3_type(vap->va_type);
2485 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2486 txdr_hyper(vap->va_size, &fp->fa3_size);
2487 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2488 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2489 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2490 fp->fa3_fsid.nfsuquad[0] = 0;
2491 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2492 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2493 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2494 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2495 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2496 } else {
2497 fp->fa_type = vtonfsv2_type(vap->va_type);
2498 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2499 fp->fa2_size = txdr_unsigned(vap->va_size);
2500 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2501 if (vap->va_type == VFIFO)
2502 fp->fa2_rdev = 0xffffffff;
2503 else
2504 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2505 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2506 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2507 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2508 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2509 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2510 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2511 }
2512 }
2513
2514 #ifdef NFSSERVER
2515 /*
2516 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2517 * - look up fsid in mount list (if not found ret error)
2518 * - get vp and export rights by calling VFS_FHTOVP()
2519 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2520 * - if not lockflag unlock it with VOP_UNLOCK()
2521 */
2522 int
2523 nfsrv_fhtovp(nfsrvfh_t *nsfh, int lockflag, struct vnode **vpp,
2524 kauth_cred_t cred, struct nfssvc_sock *slp, struct mbuf *nam, int *rdonlyp,
2525 int kerbflag, int pubflag)
2526 {
2527 struct mount *mp;
2528 kauth_cred_t credanon;
2529 int error, exflags;
2530 struct sockaddr_in *saddr;
2531 fhandle_t *fhp;
2532
2533 fhp = NFSRVFH_FHANDLE(nsfh);
2534 *vpp = (struct vnode *)0;
2535
2536 if (nfs_ispublicfh(nsfh)) {
2537 if (!pubflag || !nfs_pub.np_valid)
2538 return (ESTALE);
2539 fhp = nfs_pub.np_handle;
2540 }
2541
2542 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2543 if (error) {
2544 return error;
2545 }
2546
2547 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2548 if (error)
2549 return (error);
2550
2551 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2552 saddr = mtod(nam, struct sockaddr_in *);
2553 if ((saddr->sin_family == AF_INET) &&
2554 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2555 vput(*vpp);
2556 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2557 }
2558 #ifdef INET6
2559 if ((saddr->sin_family == AF_INET6) &&
2560 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2561 vput(*vpp);
2562 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2563 }
2564 #endif
2565 }
2566 /*
2567 * Check/setup credentials.
2568 */
2569 if (exflags & MNT_EXKERB) {
2570 if (!kerbflag) {
2571 vput(*vpp);
2572 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2573 }
2574 } else if (kerbflag) {
2575 vput(*vpp);
2576 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2577 } else if (kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER,
2578 NULL) == 0 || (exflags & MNT_EXPORTANON)) {
2579 kauth_cred_clone(credanon, cred);
2580 }
2581 if (exflags & MNT_EXRDONLY)
2582 *rdonlyp = 1;
2583 else
2584 *rdonlyp = 0;
2585 if (!lockflag)
2586 VOP_UNLOCK(*vpp, 0);
2587 return (0);
2588 }
2589
2590 /*
2591 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2592 * means a length of 0, for v2 it means all zeroes.
2593 */
2594 int
2595 nfs_ispublicfh(const nfsrvfh_t *nsfh)
2596 {
2597 const char *cp = (const void *)(NFSRVFH_DATA(nsfh));
2598 int i;
2599
2600 if (NFSRVFH_SIZE(nsfh) == 0) {
2601 return TRUE;
2602 }
2603 if (NFSRVFH_SIZE(nsfh) != NFSX_V2FH) {
2604 return FALSE;
2605 }
2606 for (i = 0; i < NFSX_V2FH; i++)
2607 if (*cp++ != 0)
2608 return FALSE;
2609 return TRUE;
2610 }
2611 #endif /* NFSSERVER */
2612
2613 /*
2614 * This function compares two net addresses by family and returns TRUE
2615 * if they are the same host.
2616 * If there is any doubt, return FALSE.
2617 * The AF_INET family is handled as a special case so that address mbufs
2618 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2619 */
2620 int
2621 netaddr_match(family, haddr, nam)
2622 int family;
2623 union nethostaddr *haddr;
2624 struct mbuf *nam;
2625 {
2626 struct sockaddr_in *inetaddr;
2627
2628 switch (family) {
2629 case AF_INET:
2630 inetaddr = mtod(nam, struct sockaddr_in *);
2631 if (inetaddr->sin_family == AF_INET &&
2632 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2633 return (1);
2634 break;
2635 #ifdef INET6
2636 case AF_INET6:
2637 {
2638 struct sockaddr_in6 *sin6_1, *sin6_2;
2639
2640 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2641 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2642 if (sin6_1->sin6_family == AF_INET6 &&
2643 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2644 return 1;
2645 }
2646 #endif
2647 #ifdef ISO
2648 case AF_ISO:
2649 {
2650 struct sockaddr_iso *isoaddr1, *isoaddr2;
2651
2652 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2653 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2654 if (isoaddr1->siso_family == AF_ISO &&
2655 isoaddr1->siso_nlen > 0 &&
2656 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2657 SAME_ISOADDR(isoaddr1, isoaddr2))
2658 return (1);
2659 break;
2660 }
2661 #endif /* ISO */
2662 default:
2663 break;
2664 };
2665 return (0);
2666 }
2667
2668 /*
2669 * The write verifier has changed (probably due to a server reboot), so all
2670 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2671 * as dirty or are being written out just now, all this takes is clearing
2672 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2673 * the mount point.
2674 */
2675 void
2676 nfs_clearcommit(mp)
2677 struct mount *mp;
2678 {
2679 struct vnode *vp;
2680 struct nfsnode *np;
2681 struct vm_page *pg;
2682 struct nfsmount *nmp = VFSTONFS(mp);
2683
2684 lockmgr(&nmp->nm_writeverflock, LK_EXCLUSIVE, NULL);
2685
2686 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2687 KASSERT(vp->v_mount == mp);
2688 if (vp->v_type != VREG)
2689 continue;
2690 np = VTONFS(vp);
2691 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2692 np->n_pushedhi = 0;
2693 np->n_commitflags &=
2694 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2695 simple_lock(&vp->v_uobj.vmobjlock);
2696 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2697 pg->flags &= ~PG_NEEDCOMMIT;
2698 }
2699 simple_unlock(&vp->v_uobj.vmobjlock);
2700 }
2701 simple_lock(&nmp->nm_slock);
2702 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2703 simple_unlock(&nmp->nm_slock);
2704 lockmgr(&nmp->nm_writeverflock, LK_RELEASE, NULL);
2705 }
2706
2707 void
2708 nfs_merge_commit_ranges(vp)
2709 struct vnode *vp;
2710 {
2711 struct nfsnode *np = VTONFS(vp);
2712
2713 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2714
2715 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2716 np->n_pushedlo = np->n_pushlo;
2717 np->n_pushedhi = np->n_pushhi;
2718 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2719 } else {
2720 if (np->n_pushlo < np->n_pushedlo)
2721 np->n_pushedlo = np->n_pushlo;
2722 if (np->n_pushhi > np->n_pushedhi)
2723 np->n_pushedhi = np->n_pushhi;
2724 }
2725
2726 np->n_pushlo = np->n_pushhi = 0;
2727 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2728
2729 #ifdef NFS_DEBUG_COMMIT
2730 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2731 (unsigned)np->n_pushedhi);
2732 #endif
2733 }
2734
2735 int
2736 nfs_in_committed_range(vp, off, len)
2737 struct vnode *vp;
2738 off_t off, len;
2739 {
2740 struct nfsnode *np = VTONFS(vp);
2741 off_t lo, hi;
2742
2743 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2744 return 0;
2745 lo = off;
2746 hi = lo + len;
2747
2748 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2749 }
2750
2751 int
2752 nfs_in_tobecommitted_range(vp, off, len)
2753 struct vnode *vp;
2754 off_t off, len;
2755 {
2756 struct nfsnode *np = VTONFS(vp);
2757 off_t lo, hi;
2758
2759 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2760 return 0;
2761 lo = off;
2762 hi = lo + len;
2763
2764 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2765 }
2766
2767 void
2768 nfs_add_committed_range(vp, off, len)
2769 struct vnode *vp;
2770 off_t off, len;
2771 {
2772 struct nfsnode *np = VTONFS(vp);
2773 off_t lo, hi;
2774
2775 lo = off;
2776 hi = lo + len;
2777
2778 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2779 np->n_pushedlo = lo;
2780 np->n_pushedhi = hi;
2781 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2782 } else {
2783 if (hi > np->n_pushedhi)
2784 np->n_pushedhi = hi;
2785 if (lo < np->n_pushedlo)
2786 np->n_pushedlo = lo;
2787 }
2788 #ifdef NFS_DEBUG_COMMIT
2789 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2790 (unsigned)np->n_pushedhi);
2791 #endif
2792 }
2793
2794 void
2795 nfs_del_committed_range(vp, off, len)
2796 struct vnode *vp;
2797 off_t off, len;
2798 {
2799 struct nfsnode *np = VTONFS(vp);
2800 off_t lo, hi;
2801
2802 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2803 return;
2804
2805 lo = off;
2806 hi = lo + len;
2807
2808 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2809 return;
2810 if (lo <= np->n_pushedlo)
2811 np->n_pushedlo = hi;
2812 else if (hi >= np->n_pushedhi)
2813 np->n_pushedhi = lo;
2814 else {
2815 /*
2816 * XXX There's only one range. If the deleted range
2817 * is in the middle, pick the largest of the
2818 * contiguous ranges that it leaves.
2819 */
2820 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2821 np->n_pushedhi = lo;
2822 else
2823 np->n_pushedlo = hi;
2824 }
2825 #ifdef NFS_DEBUG_COMMIT
2826 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2827 (unsigned)np->n_pushedhi);
2828 #endif
2829 }
2830
2831 void
2832 nfs_add_tobecommitted_range(vp, off, len)
2833 struct vnode *vp;
2834 off_t off, len;
2835 {
2836 struct nfsnode *np = VTONFS(vp);
2837 off_t lo, hi;
2838
2839 lo = off;
2840 hi = lo + len;
2841
2842 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2843 np->n_pushlo = lo;
2844 np->n_pushhi = hi;
2845 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2846 } else {
2847 if (lo < np->n_pushlo)
2848 np->n_pushlo = lo;
2849 if (hi > np->n_pushhi)
2850 np->n_pushhi = hi;
2851 }
2852 #ifdef NFS_DEBUG_COMMIT
2853 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2854 (unsigned)np->n_pushhi);
2855 #endif
2856 }
2857
2858 void
2859 nfs_del_tobecommitted_range(vp, off, len)
2860 struct vnode *vp;
2861 off_t off, len;
2862 {
2863 struct nfsnode *np = VTONFS(vp);
2864 off_t lo, hi;
2865
2866 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2867 return;
2868
2869 lo = off;
2870 hi = lo + len;
2871
2872 if (lo > np->n_pushhi || hi < np->n_pushlo)
2873 return;
2874
2875 if (lo <= np->n_pushlo)
2876 np->n_pushlo = hi;
2877 else if (hi >= np->n_pushhi)
2878 np->n_pushhi = lo;
2879 else {
2880 /*
2881 * XXX There's only one range. If the deleted range
2882 * is in the middle, pick the largest of the
2883 * contiguous ranges that it leaves.
2884 */
2885 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2886 np->n_pushhi = lo;
2887 else
2888 np->n_pushlo = hi;
2889 }
2890 #ifdef NFS_DEBUG_COMMIT
2891 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2892 (unsigned)np->n_pushhi);
2893 #endif
2894 }
2895
2896 /*
2897 * Map errnos to NFS error numbers. For Version 3 also filter out error
2898 * numbers not specified for the associated procedure.
2899 */
2900 int
2901 nfsrv_errmap(nd, err)
2902 struct nfsrv_descript *nd;
2903 int err;
2904 {
2905 const short *defaulterrp, *errp;
2906
2907 if (nd->nd_flag & ND_NFSV3) {
2908 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2909 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2910 while (*++errp) {
2911 if (*errp == err)
2912 return (err);
2913 else if (*errp > err)
2914 break;
2915 }
2916 return ((int)*defaulterrp);
2917 } else
2918 return (err & 0xffff);
2919 }
2920 if (err <= ELAST)
2921 return ((int)nfsrv_v2errmap[err - 1]);
2922 return (NFSERR_IO);
2923 }
2924
2925 u_int32_t
2926 nfs_getxid()
2927 {
2928 static u_int32_t base;
2929 static u_int32_t nfs_xid = 0;
2930 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2931 u_int32_t newxid;
2932
2933 simple_lock(&nfs_xidlock);
2934 /*
2935 * derive initial xid from system time
2936 * XXX time is invalid if root not yet mounted
2937 */
2938 if (__predict_false(!base && (rootvp))) {
2939 struct timeval tv;
2940
2941 microtime(&tv);
2942 base = tv.tv_sec << 12;
2943 nfs_xid = base;
2944 }
2945
2946 /*
2947 * Skip zero xid if it should ever happen.
2948 */
2949 if (__predict_false(++nfs_xid == 0))
2950 nfs_xid++;
2951 newxid = nfs_xid;
2952 simple_unlock(&nfs_xidlock);
2953
2954 return txdr_unsigned(newxid);
2955 }
2956
2957 /*
2958 * assign a new xid for existing request.
2959 * used for NFSERR_JUKEBOX handling.
2960 */
2961 void
2962 nfs_renewxid(struct nfsreq *req)
2963 {
2964 u_int32_t xid;
2965 int off;
2966
2967 xid = nfs_getxid();
2968 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2969 off = sizeof(u_int32_t); /* RPC record mark */
2970 else
2971 off = 0;
2972
2973 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2974 req->r_xid = xid;
2975 }
2976
2977 #if defined(NFSSERVER)
2978 int
2979 nfsrv_composefh(struct vnode *vp, nfsrvfh_t *nsfh, boolean_t v3)
2980 {
2981 int error;
2982 size_t fhsize;
2983
2984 fhsize = NFSD_MAXFHSIZE;
2985 error = vfs_composefh(vp, (void *)NFSRVFH_DATA(nsfh), &fhsize);
2986 if (NFSX_FHTOOBIG_P(fhsize, v3)) {
2987 error = EOPNOTSUPP;
2988 }
2989 if (error != 0) {
2990 return error;
2991 }
2992 if (!v3 && fhsize < NFSX_V2FH) {
2993 memset((char *)NFSRVFH_DATA(nsfh) + fhsize, 0,
2994 NFSX_V2FH - fhsize);
2995 fhsize = NFSX_V2FH;
2996 }
2997 if ((fhsize % NFSX_UNSIGNED) != 0) {
2998 return EOPNOTSUPP;
2999 }
3000 nsfh->nsfh_size = fhsize;
3001 return 0;
3002 }
3003
3004 int
3005 nfsrv_comparefh(const nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
3006 {
3007
3008 if (NFSRVFH_SIZE(fh1) != NFSRVFH_SIZE(fh2)) {
3009 return NFSRVFH_SIZE(fh2) - NFSRVFH_SIZE(fh1);
3010 }
3011 return memcmp(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), NFSRVFH_SIZE(fh1));
3012 }
3013
3014 void
3015 nfsrv_copyfh(nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
3016 {
3017 size_t size;
3018
3019 fh1->nsfh_size = size = NFSRVFH_SIZE(fh2);
3020 memcpy(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), size);
3021 }
3022 #endif /* defined(NFSSERVER) */
3023