nfs_subs.c revision 1.184.2.1 1 /* $NetBSD: nfs_subs.c,v 1.184.2.1 2007/03/13 17:51:13 ad Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.184.2.1 2007/03/13 17:51:13 ad Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 #include <sys/once.h>
101 #include <sys/kauth.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include <nfs/rpcv2.h>
106 #include <nfs/nfsproto.h>
107 #include <nfs/nfsnode.h>
108 #include <nfs/nfs.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114
115 #include <miscfs/specfs/specdev.h>
116
117 #include <netinet/in.h>
118 #ifdef ISO
119 #include <netiso/iso.h>
120 #endif
121
122 /*
123 * Data items converted to xdr at startup, since they are constant
124 * This is kinda hokey, but may save a little time doing byte swaps
125 */
126 u_int32_t nfs_xdrneg1;
127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
128 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
129 rpc_auth_kerb;
130 u_int32_t nfs_prog, nfs_true, nfs_false;
131
132 /* And other global data */
133 const nfstype nfsv2_type[9] =
134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142 int nfs_commitsize;
143
144 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
145
146 /* NFS client/server stats. */
147 struct nfsstats nfsstats;
148
149 /*
150 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
151 */
152 const int nfsv3_procid[NFS_NPROCS] = {
153 NFSPROC_NULL,
154 NFSPROC_GETATTR,
155 NFSPROC_SETATTR,
156 NFSPROC_NOOP,
157 NFSPROC_LOOKUP,
158 NFSPROC_READLINK,
159 NFSPROC_READ,
160 NFSPROC_NOOP,
161 NFSPROC_WRITE,
162 NFSPROC_CREATE,
163 NFSPROC_REMOVE,
164 NFSPROC_RENAME,
165 NFSPROC_LINK,
166 NFSPROC_SYMLINK,
167 NFSPROC_MKDIR,
168 NFSPROC_RMDIR,
169 NFSPROC_READDIR,
170 NFSPROC_FSSTAT,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP
176 };
177
178 /*
179 * and the reverse mapping from generic to Version 2 procedure numbers
180 */
181 const int nfsv2_procid[NFS_NPROCS] = {
182 NFSV2PROC_NULL,
183 NFSV2PROC_GETATTR,
184 NFSV2PROC_SETATTR,
185 NFSV2PROC_LOOKUP,
186 NFSV2PROC_NOOP,
187 NFSV2PROC_READLINK,
188 NFSV2PROC_READ,
189 NFSV2PROC_WRITE,
190 NFSV2PROC_CREATE,
191 NFSV2PROC_MKDIR,
192 NFSV2PROC_SYMLINK,
193 NFSV2PROC_CREATE,
194 NFSV2PROC_REMOVE,
195 NFSV2PROC_RMDIR,
196 NFSV2PROC_RENAME,
197 NFSV2PROC_LINK,
198 NFSV2PROC_READDIR,
199 NFSV2PROC_NOOP,
200 NFSV2PROC_STATFS,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 };
206
207 /*
208 * Maps errno values to nfs error numbers.
209 * Use NFSERR_IO as the catch all for ones not specifically defined in
210 * RFC 1094.
211 */
212 static const u_char nfsrv_v2errmap[ELAST] = {
213 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
214 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
215 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
216 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
217 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
226 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO,
230 };
231
232 /*
233 * Maps errno values to nfs error numbers.
234 * Although it is not obvious whether or not NFS clients really care if
235 * a returned error value is in the specified list for the procedure, the
236 * safest thing to do is filter them appropriately. For Version 2, the
237 * X/Open XNFS document is the only specification that defines error values
238 * for each RPC (The RFC simply lists all possible error values for all RPCs),
239 * so I have decided to not do this for Version 2.
240 * The first entry is the default error return and the rest are the valid
241 * errors for that RPC in increasing numeric order.
242 */
243 static const short nfsv3err_null[] = {
244 0,
245 0,
246 };
247
248 static const short nfsv3err_getattr[] = {
249 NFSERR_IO,
250 NFSERR_IO,
251 NFSERR_STALE,
252 NFSERR_BADHANDLE,
253 NFSERR_SERVERFAULT,
254 0,
255 };
256
257 static const short nfsv3err_setattr[] = {
258 NFSERR_IO,
259 NFSERR_PERM,
260 NFSERR_IO,
261 NFSERR_ACCES,
262 NFSERR_INVAL,
263 NFSERR_NOSPC,
264 NFSERR_ROFS,
265 NFSERR_DQUOT,
266 NFSERR_STALE,
267 NFSERR_BADHANDLE,
268 NFSERR_NOT_SYNC,
269 NFSERR_SERVERFAULT,
270 0,
271 };
272
273 static const short nfsv3err_lookup[] = {
274 NFSERR_IO,
275 NFSERR_NOENT,
276 NFSERR_IO,
277 NFSERR_ACCES,
278 NFSERR_NOTDIR,
279 NFSERR_NAMETOL,
280 NFSERR_STALE,
281 NFSERR_BADHANDLE,
282 NFSERR_SERVERFAULT,
283 0,
284 };
285
286 static const short nfsv3err_access[] = {
287 NFSERR_IO,
288 NFSERR_IO,
289 NFSERR_STALE,
290 NFSERR_BADHANDLE,
291 NFSERR_SERVERFAULT,
292 0,
293 };
294
295 static const short nfsv3err_readlink[] = {
296 NFSERR_IO,
297 NFSERR_IO,
298 NFSERR_ACCES,
299 NFSERR_INVAL,
300 NFSERR_STALE,
301 NFSERR_BADHANDLE,
302 NFSERR_NOTSUPP,
303 NFSERR_SERVERFAULT,
304 0,
305 };
306
307 static const short nfsv3err_read[] = {
308 NFSERR_IO,
309 NFSERR_IO,
310 NFSERR_NXIO,
311 NFSERR_ACCES,
312 NFSERR_INVAL,
313 NFSERR_STALE,
314 NFSERR_BADHANDLE,
315 NFSERR_SERVERFAULT,
316 NFSERR_JUKEBOX,
317 0,
318 };
319
320 static const short nfsv3err_write[] = {
321 NFSERR_IO,
322 NFSERR_IO,
323 NFSERR_ACCES,
324 NFSERR_INVAL,
325 NFSERR_FBIG,
326 NFSERR_NOSPC,
327 NFSERR_ROFS,
328 NFSERR_DQUOT,
329 NFSERR_STALE,
330 NFSERR_BADHANDLE,
331 NFSERR_SERVERFAULT,
332 NFSERR_JUKEBOX,
333 0,
334 };
335
336 static const short nfsv3err_create[] = {
337 NFSERR_IO,
338 NFSERR_IO,
339 NFSERR_ACCES,
340 NFSERR_EXIST,
341 NFSERR_NOTDIR,
342 NFSERR_NOSPC,
343 NFSERR_ROFS,
344 NFSERR_NAMETOL,
345 NFSERR_DQUOT,
346 NFSERR_STALE,
347 NFSERR_BADHANDLE,
348 NFSERR_NOTSUPP,
349 NFSERR_SERVERFAULT,
350 0,
351 };
352
353 static const short nfsv3err_mkdir[] = {
354 NFSERR_IO,
355 NFSERR_IO,
356 NFSERR_ACCES,
357 NFSERR_EXIST,
358 NFSERR_NOTDIR,
359 NFSERR_NOSPC,
360 NFSERR_ROFS,
361 NFSERR_NAMETOL,
362 NFSERR_DQUOT,
363 NFSERR_STALE,
364 NFSERR_BADHANDLE,
365 NFSERR_NOTSUPP,
366 NFSERR_SERVERFAULT,
367 0,
368 };
369
370 static const short nfsv3err_symlink[] = {
371 NFSERR_IO,
372 NFSERR_IO,
373 NFSERR_ACCES,
374 NFSERR_EXIST,
375 NFSERR_NOTDIR,
376 NFSERR_NOSPC,
377 NFSERR_ROFS,
378 NFSERR_NAMETOL,
379 NFSERR_DQUOT,
380 NFSERR_STALE,
381 NFSERR_BADHANDLE,
382 NFSERR_NOTSUPP,
383 NFSERR_SERVERFAULT,
384 0,
385 };
386
387 static const short nfsv3err_mknod[] = {
388 NFSERR_IO,
389 NFSERR_IO,
390 NFSERR_ACCES,
391 NFSERR_EXIST,
392 NFSERR_NOTDIR,
393 NFSERR_NOSPC,
394 NFSERR_ROFS,
395 NFSERR_NAMETOL,
396 NFSERR_DQUOT,
397 NFSERR_STALE,
398 NFSERR_BADHANDLE,
399 NFSERR_NOTSUPP,
400 NFSERR_SERVERFAULT,
401 NFSERR_BADTYPE,
402 0,
403 };
404
405 static const short nfsv3err_remove[] = {
406 NFSERR_IO,
407 NFSERR_NOENT,
408 NFSERR_IO,
409 NFSERR_ACCES,
410 NFSERR_NOTDIR,
411 NFSERR_ROFS,
412 NFSERR_NAMETOL,
413 NFSERR_STALE,
414 NFSERR_BADHANDLE,
415 NFSERR_SERVERFAULT,
416 0,
417 };
418
419 static const short nfsv3err_rmdir[] = {
420 NFSERR_IO,
421 NFSERR_NOENT,
422 NFSERR_IO,
423 NFSERR_ACCES,
424 NFSERR_EXIST,
425 NFSERR_NOTDIR,
426 NFSERR_INVAL,
427 NFSERR_ROFS,
428 NFSERR_NAMETOL,
429 NFSERR_NOTEMPTY,
430 NFSERR_STALE,
431 NFSERR_BADHANDLE,
432 NFSERR_NOTSUPP,
433 NFSERR_SERVERFAULT,
434 0,
435 };
436
437 static const short nfsv3err_rename[] = {
438 NFSERR_IO,
439 NFSERR_NOENT,
440 NFSERR_IO,
441 NFSERR_ACCES,
442 NFSERR_EXIST,
443 NFSERR_XDEV,
444 NFSERR_NOTDIR,
445 NFSERR_ISDIR,
446 NFSERR_INVAL,
447 NFSERR_NOSPC,
448 NFSERR_ROFS,
449 NFSERR_MLINK,
450 NFSERR_NAMETOL,
451 NFSERR_NOTEMPTY,
452 NFSERR_DQUOT,
453 NFSERR_STALE,
454 NFSERR_BADHANDLE,
455 NFSERR_NOTSUPP,
456 NFSERR_SERVERFAULT,
457 0,
458 };
459
460 static const short nfsv3err_link[] = {
461 NFSERR_IO,
462 NFSERR_IO,
463 NFSERR_ACCES,
464 NFSERR_EXIST,
465 NFSERR_XDEV,
466 NFSERR_NOTDIR,
467 NFSERR_INVAL,
468 NFSERR_NOSPC,
469 NFSERR_ROFS,
470 NFSERR_MLINK,
471 NFSERR_NAMETOL,
472 NFSERR_DQUOT,
473 NFSERR_STALE,
474 NFSERR_BADHANDLE,
475 NFSERR_NOTSUPP,
476 NFSERR_SERVERFAULT,
477 0,
478 };
479
480 static const short nfsv3err_readdir[] = {
481 NFSERR_IO,
482 NFSERR_IO,
483 NFSERR_ACCES,
484 NFSERR_NOTDIR,
485 NFSERR_STALE,
486 NFSERR_BADHANDLE,
487 NFSERR_BAD_COOKIE,
488 NFSERR_TOOSMALL,
489 NFSERR_SERVERFAULT,
490 0,
491 };
492
493 static const short nfsv3err_readdirplus[] = {
494 NFSERR_IO,
495 NFSERR_IO,
496 NFSERR_ACCES,
497 NFSERR_NOTDIR,
498 NFSERR_STALE,
499 NFSERR_BADHANDLE,
500 NFSERR_BAD_COOKIE,
501 NFSERR_NOTSUPP,
502 NFSERR_TOOSMALL,
503 NFSERR_SERVERFAULT,
504 0,
505 };
506
507 static const short nfsv3err_fsstat[] = {
508 NFSERR_IO,
509 NFSERR_IO,
510 NFSERR_STALE,
511 NFSERR_BADHANDLE,
512 NFSERR_SERVERFAULT,
513 0,
514 };
515
516 static const short nfsv3err_fsinfo[] = {
517 NFSERR_STALE,
518 NFSERR_STALE,
519 NFSERR_BADHANDLE,
520 NFSERR_SERVERFAULT,
521 0,
522 };
523
524 static const short nfsv3err_pathconf[] = {
525 NFSERR_STALE,
526 NFSERR_STALE,
527 NFSERR_BADHANDLE,
528 NFSERR_SERVERFAULT,
529 0,
530 };
531
532 static const short nfsv3err_commit[] = {
533 NFSERR_IO,
534 NFSERR_IO,
535 NFSERR_STALE,
536 NFSERR_BADHANDLE,
537 NFSERR_SERVERFAULT,
538 0,
539 };
540
541 static const short * const nfsrv_v3errmap[] = {
542 nfsv3err_null,
543 nfsv3err_getattr,
544 nfsv3err_setattr,
545 nfsv3err_lookup,
546 nfsv3err_access,
547 nfsv3err_readlink,
548 nfsv3err_read,
549 nfsv3err_write,
550 nfsv3err_create,
551 nfsv3err_mkdir,
552 nfsv3err_symlink,
553 nfsv3err_mknod,
554 nfsv3err_remove,
555 nfsv3err_rmdir,
556 nfsv3err_rename,
557 nfsv3err_link,
558 nfsv3err_readdir,
559 nfsv3err_readdirplus,
560 nfsv3err_fsstat,
561 nfsv3err_fsinfo,
562 nfsv3err_pathconf,
563 nfsv3err_commit,
564 };
565
566 extern struct nfsrtt nfsrtt;
567 extern struct nfsnodehashhead *nfsnodehashtbl;
568 extern u_long nfsnodehash;
569
570 u_long nfsdirhashmask;
571
572 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
573
574 /*
575 * Create the header for an rpc request packet
576 * The hsiz is the size of the rest of the nfs request header.
577 * (just used to decide if a cluster is a good idea)
578 */
579 struct mbuf *
580 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
581 {
582 struct mbuf *mb;
583 char *bpos;
584
585 mb = m_get(M_WAIT, MT_DATA);
586 MCLAIM(mb, &nfs_mowner);
587 if (hsiz >= MINCLSIZE)
588 m_clget(mb, M_WAIT);
589 mb->m_len = 0;
590 bpos = mtod(mb, void *);
591
592 /* Finally, return values */
593 *bposp = bpos;
594 return (mb);
595 }
596
597 /*
598 * Build the RPC header and fill in the authorization info.
599 * The authorization string argument is only used when the credentials
600 * come from outside of the kernel.
601 * Returns the head of the mbuf list.
602 */
603 struct mbuf *
604 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
605 verf_str, mrest, mrest_len, mbp, xidp)
606 kauth_cred_t cr;
607 int nmflag;
608 int procid;
609 int auth_type;
610 int auth_len;
611 char *auth_str;
612 int verf_len;
613 char *verf_str;
614 struct mbuf *mrest;
615 int mrest_len;
616 struct mbuf **mbp;
617 u_int32_t *xidp;
618 {
619 struct mbuf *mb;
620 u_int32_t *tl;
621 char *bpos;
622 int i;
623 struct mbuf *mreq;
624 int siz, grpsiz, authsiz;
625
626 authsiz = nfsm_rndup(auth_len);
627 mb = m_gethdr(M_WAIT, MT_DATA);
628 MCLAIM(mb, &nfs_mowner);
629 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
630 m_clget(mb, M_WAIT);
631 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
632 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
633 } else {
634 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
635 }
636 mb->m_len = 0;
637 mreq = mb;
638 bpos = mtod(mb, void *);
639
640 /*
641 * First the RPC header.
642 */
643 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
644
645 *tl++ = *xidp = nfs_getxid();
646 *tl++ = rpc_call;
647 *tl++ = rpc_vers;
648 *tl++ = txdr_unsigned(NFS_PROG);
649 if (nmflag & NFSMNT_NFSV3)
650 *tl++ = txdr_unsigned(NFS_VER3);
651 else
652 *tl++ = txdr_unsigned(NFS_VER2);
653 if (nmflag & NFSMNT_NFSV3)
654 *tl++ = txdr_unsigned(procid);
655 else
656 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
657
658 /*
659 * And then the authorization cred.
660 */
661 *tl++ = txdr_unsigned(auth_type);
662 *tl = txdr_unsigned(authsiz);
663 switch (auth_type) {
664 case RPCAUTH_UNIX:
665 nfsm_build(tl, u_int32_t *, auth_len);
666 *tl++ = 0; /* stamp ?? */
667 *tl++ = 0; /* NULL hostname */
668 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
669 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
670 grpsiz = (auth_len >> 2) - 5;
671 *tl++ = txdr_unsigned(grpsiz);
672 for (i = 0; i < grpsiz; i++)
673 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
674 break;
675 case RPCAUTH_KERB4:
676 siz = auth_len;
677 while (siz > 0) {
678 if (M_TRAILINGSPACE(mb) == 0) {
679 struct mbuf *mb2;
680 mb2 = m_get(M_WAIT, MT_DATA);
681 MCLAIM(mb2, &nfs_mowner);
682 if (siz >= MINCLSIZE)
683 m_clget(mb2, M_WAIT);
684 mb->m_next = mb2;
685 mb = mb2;
686 mb->m_len = 0;
687 bpos = mtod(mb, void *);
688 }
689 i = min(siz, M_TRAILINGSPACE(mb));
690 memcpy(bpos, auth_str, i);
691 mb->m_len += i;
692 auth_str += i;
693 bpos += i;
694 siz -= i;
695 }
696 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
697 for (i = 0; i < siz; i++)
698 *bpos++ = '\0';
699 mb->m_len += siz;
700 }
701 break;
702 };
703
704 /*
705 * And the verifier...
706 */
707 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
708 if (verf_str) {
709 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
710 *tl = txdr_unsigned(verf_len);
711 siz = verf_len;
712 while (siz > 0) {
713 if (M_TRAILINGSPACE(mb) == 0) {
714 struct mbuf *mb2;
715 mb2 = m_get(M_WAIT, MT_DATA);
716 MCLAIM(mb2, &nfs_mowner);
717 if (siz >= MINCLSIZE)
718 m_clget(mb2, M_WAIT);
719 mb->m_next = mb2;
720 mb = mb2;
721 mb->m_len = 0;
722 bpos = mtod(mb, void *);
723 }
724 i = min(siz, M_TRAILINGSPACE(mb));
725 memcpy(bpos, verf_str, i);
726 mb->m_len += i;
727 verf_str += i;
728 bpos += i;
729 siz -= i;
730 }
731 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
732 for (i = 0; i < siz; i++)
733 *bpos++ = '\0';
734 mb->m_len += siz;
735 }
736 } else {
737 *tl++ = txdr_unsigned(RPCAUTH_NULL);
738 *tl = 0;
739 }
740 mb->m_next = mrest;
741 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
742 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
743 *mbp = mb;
744 return (mreq);
745 }
746
747 /*
748 * copies mbuf chain to the uio scatter/gather list
749 */
750 int
751 nfsm_mbuftouio(mrep, uiop, siz, dpos)
752 struct mbuf **mrep;
753 struct uio *uiop;
754 int siz;
755 char **dpos;
756 {
757 char *mbufcp, *uiocp;
758 int xfer, left, len;
759 struct mbuf *mp;
760 long uiosiz, rem;
761 int error = 0;
762
763 mp = *mrep;
764 mbufcp = *dpos;
765 len = mtod(mp, char *) + mp->m_len - mbufcp;
766 rem = nfsm_rndup(siz)-siz;
767 while (siz > 0) {
768 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
769 return (EFBIG);
770 left = uiop->uio_iov->iov_len;
771 uiocp = uiop->uio_iov->iov_base;
772 if (left > siz)
773 left = siz;
774 uiosiz = left;
775 while (left > 0) {
776 while (len == 0) {
777 mp = mp->m_next;
778 if (mp == NULL)
779 return (EBADRPC);
780 mbufcp = mtod(mp, void *);
781 len = mp->m_len;
782 }
783 xfer = (left > len) ? len : left;
784 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
785 uiocp, xfer);
786 if (error) {
787 return error;
788 }
789 left -= xfer;
790 len -= xfer;
791 mbufcp += xfer;
792 uiocp += xfer;
793 uiop->uio_offset += xfer;
794 uiop->uio_resid -= xfer;
795 }
796 if (uiop->uio_iov->iov_len <= siz) {
797 uiop->uio_iovcnt--;
798 uiop->uio_iov++;
799 } else {
800 uiop->uio_iov->iov_base =
801 (char *)uiop->uio_iov->iov_base + uiosiz;
802 uiop->uio_iov->iov_len -= uiosiz;
803 }
804 siz -= uiosiz;
805 }
806 *dpos = mbufcp;
807 *mrep = mp;
808 if (rem > 0) {
809 if (len < rem)
810 error = nfs_adv(mrep, dpos, rem, len);
811 else
812 *dpos += rem;
813 }
814 return (error);
815 }
816
817 /*
818 * copies a uio scatter/gather list to an mbuf chain.
819 * NOTE: can ony handle iovcnt == 1
820 */
821 int
822 nfsm_uiotombuf(uiop, mq, siz, bpos)
823 struct uio *uiop;
824 struct mbuf **mq;
825 int siz;
826 char **bpos;
827 {
828 char *uiocp;
829 struct mbuf *mp, *mp2;
830 int xfer, left, mlen;
831 int uiosiz, clflg, rem;
832 char *cp;
833 int error;
834
835 #ifdef DIAGNOSTIC
836 if (uiop->uio_iovcnt != 1)
837 panic("nfsm_uiotombuf: iovcnt != 1");
838 #endif
839
840 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
841 clflg = 1;
842 else
843 clflg = 0;
844 rem = nfsm_rndup(siz)-siz;
845 mp = mp2 = *mq;
846 while (siz > 0) {
847 left = uiop->uio_iov->iov_len;
848 uiocp = uiop->uio_iov->iov_base;
849 if (left > siz)
850 left = siz;
851 uiosiz = left;
852 while (left > 0) {
853 mlen = M_TRAILINGSPACE(mp);
854 if (mlen == 0) {
855 mp = m_get(M_WAIT, MT_DATA);
856 MCLAIM(mp, &nfs_mowner);
857 if (clflg)
858 m_clget(mp, M_WAIT);
859 mp->m_len = 0;
860 mp2->m_next = mp;
861 mp2 = mp;
862 mlen = M_TRAILINGSPACE(mp);
863 }
864 xfer = (left > mlen) ? mlen : left;
865 cp = mtod(mp, char *) + mp->m_len;
866 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
867 xfer);
868 if (error) {
869 /* XXX */
870 }
871 mp->m_len += xfer;
872 left -= xfer;
873 uiocp += xfer;
874 uiop->uio_offset += xfer;
875 uiop->uio_resid -= xfer;
876 }
877 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
878 uiosiz;
879 uiop->uio_iov->iov_len -= uiosiz;
880 siz -= uiosiz;
881 }
882 if (rem > 0) {
883 if (rem > M_TRAILINGSPACE(mp)) {
884 mp = m_get(M_WAIT, MT_DATA);
885 MCLAIM(mp, &nfs_mowner);
886 mp->m_len = 0;
887 mp2->m_next = mp;
888 }
889 cp = mtod(mp, char *) + mp->m_len;
890 for (left = 0; left < rem; left++)
891 *cp++ = '\0';
892 mp->m_len += rem;
893 *bpos = cp;
894 } else
895 *bpos = mtod(mp, char *) + mp->m_len;
896 *mq = mp;
897 return (0);
898 }
899
900 /*
901 * Get at least "siz" bytes of correctly aligned data.
902 * When called the mbuf pointers are not necessarily correct,
903 * dsosp points to what ought to be in m_data and left contains
904 * what ought to be in m_len.
905 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
906 * cases. (The macros use the vars. dpos and dpos2)
907 */
908 int
909 nfsm_disct(mdp, dposp, siz, left, cp2)
910 struct mbuf **mdp;
911 char **dposp;
912 int siz;
913 int left;
914 char **cp2;
915 {
916 struct mbuf *m1, *m2;
917 struct mbuf *havebuf = NULL;
918 char *src = *dposp;
919 char *dst;
920 int len;
921
922 #ifdef DEBUG
923 if (left < 0)
924 panic("nfsm_disct: left < 0");
925 #endif
926 m1 = *mdp;
927 /*
928 * Skip through the mbuf chain looking for an mbuf with
929 * some data. If the first mbuf found has enough data
930 * and it is correctly aligned return it.
931 */
932 while (left == 0) {
933 havebuf = m1;
934 *mdp = m1 = m1->m_next;
935 if (m1 == NULL)
936 return (EBADRPC);
937 src = mtod(m1, void *);
938 left = m1->m_len;
939 /*
940 * If we start a new mbuf and it is big enough
941 * and correctly aligned just return it, don't
942 * do any pull up.
943 */
944 if (left >= siz && nfsm_aligned(src)) {
945 *cp2 = src;
946 *dposp = src + siz;
947 return (0);
948 }
949 }
950 if (m1->m_flags & M_EXT) {
951 if (havebuf) {
952 /* If the first mbuf with data has external data
953 * and there is a previous empty mbuf use it
954 * to move the data into.
955 */
956 m2 = m1;
957 *mdp = m1 = havebuf;
958 if (m1->m_flags & M_EXT) {
959 MEXTREMOVE(m1);
960 }
961 } else {
962 /*
963 * If the first mbuf has a external data
964 * and there is no previous empty mbuf
965 * allocate a new mbuf and move the external
966 * data to the new mbuf. Also make the first
967 * mbuf look empty.
968 */
969 m2 = m_get(M_WAIT, MT_DATA);
970 m2->m_ext = m1->m_ext;
971 m2->m_data = src;
972 m2->m_len = left;
973 MCLADDREFERENCE(m1, m2);
974 MEXTREMOVE(m1);
975 m2->m_next = m1->m_next;
976 m1->m_next = m2;
977 }
978 m1->m_len = 0;
979 if (m1->m_flags & M_PKTHDR)
980 dst = m1->m_pktdat;
981 else
982 dst = m1->m_dat;
983 m1->m_data = dst;
984 } else {
985 /*
986 * If the first mbuf has no external data
987 * move the data to the front of the mbuf.
988 */
989 if (m1->m_flags & M_PKTHDR)
990 dst = m1->m_pktdat;
991 else
992 dst = m1->m_dat;
993 m1->m_data = dst;
994 if (dst != src)
995 memmove(dst, src, left);
996 dst += left;
997 m1->m_len = left;
998 m2 = m1->m_next;
999 }
1000 *cp2 = m1->m_data;
1001 *dposp = mtod(m1, char *) + siz;
1002 /*
1003 * Loop through mbufs pulling data up into first mbuf until
1004 * the first mbuf is full or there is no more data to
1005 * pullup.
1006 */
1007 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1008 if ((len = min(len, m2->m_len)) != 0)
1009 memcpy(dst, m2->m_data, len);
1010 m1->m_len += len;
1011 dst += len;
1012 m2->m_data += len;
1013 m2->m_len -= len;
1014 m2 = m2->m_next;
1015 }
1016 if (m1->m_len < siz)
1017 return (EBADRPC);
1018 return (0);
1019 }
1020
1021 /*
1022 * Advance the position in the mbuf chain.
1023 */
1024 int
1025 nfs_adv(mdp, dposp, offs, left)
1026 struct mbuf **mdp;
1027 char **dposp;
1028 int offs;
1029 int left;
1030 {
1031 struct mbuf *m;
1032 int s;
1033
1034 m = *mdp;
1035 s = left;
1036 while (s < offs) {
1037 offs -= s;
1038 m = m->m_next;
1039 if (m == NULL)
1040 return (EBADRPC);
1041 s = m->m_len;
1042 }
1043 *mdp = m;
1044 *dposp = mtod(m, char *) + offs;
1045 return (0);
1046 }
1047
1048 /*
1049 * Copy a string into mbufs for the hard cases...
1050 */
1051 int
1052 nfsm_strtmbuf(mb, bpos, cp, siz)
1053 struct mbuf **mb;
1054 char **bpos;
1055 const char *cp;
1056 long siz;
1057 {
1058 struct mbuf *m1 = NULL, *m2;
1059 long left, xfer, len, tlen;
1060 u_int32_t *tl;
1061 int putsize;
1062
1063 putsize = 1;
1064 m2 = *mb;
1065 left = M_TRAILINGSPACE(m2);
1066 if (left > 0) {
1067 tl = ((u_int32_t *)(*bpos));
1068 *tl++ = txdr_unsigned(siz);
1069 putsize = 0;
1070 left -= NFSX_UNSIGNED;
1071 m2->m_len += NFSX_UNSIGNED;
1072 if (left > 0) {
1073 memcpy((void *) tl, cp, left);
1074 siz -= left;
1075 cp += left;
1076 m2->m_len += left;
1077 left = 0;
1078 }
1079 }
1080 /* Loop around adding mbufs */
1081 while (siz > 0) {
1082 m1 = m_get(M_WAIT, MT_DATA);
1083 MCLAIM(m1, &nfs_mowner);
1084 if (siz > MLEN)
1085 m_clget(m1, M_WAIT);
1086 m1->m_len = NFSMSIZ(m1);
1087 m2->m_next = m1;
1088 m2 = m1;
1089 tl = mtod(m1, u_int32_t *);
1090 tlen = 0;
1091 if (putsize) {
1092 *tl++ = txdr_unsigned(siz);
1093 m1->m_len -= NFSX_UNSIGNED;
1094 tlen = NFSX_UNSIGNED;
1095 putsize = 0;
1096 }
1097 if (siz < m1->m_len) {
1098 len = nfsm_rndup(siz);
1099 xfer = siz;
1100 if (xfer < len)
1101 *(tl+(xfer>>2)) = 0;
1102 } else {
1103 xfer = len = m1->m_len;
1104 }
1105 memcpy((void *) tl, cp, xfer);
1106 m1->m_len = len+tlen;
1107 siz -= xfer;
1108 cp += xfer;
1109 }
1110 *mb = m1;
1111 *bpos = mtod(m1, char *) + m1->m_len;
1112 return (0);
1113 }
1114
1115 /*
1116 * Directory caching routines. They work as follows:
1117 * - a cache is maintained per VDIR nfsnode.
1118 * - for each offset cookie that is exported to userspace, and can
1119 * thus be thrown back at us as an offset to VOP_READDIR, store
1120 * information in the cache.
1121 * - cached are:
1122 * - cookie itself
1123 * - blocknumber (essentially just a search key in the buffer cache)
1124 * - entry number in block.
1125 * - offset cookie of block in which this entry is stored
1126 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1127 * - entries are looked up in a hash table
1128 * - also maintained is an LRU list of entries, used to determine
1129 * which ones to delete if the cache grows too large.
1130 * - if 32 <-> 64 translation mode is requested for a filesystem,
1131 * the cache also functions as a translation table
1132 * - in the translation case, invalidating the cache does not mean
1133 * flushing it, but just marking entries as invalid, except for
1134 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1135 * still be able to use the cache as a translation table.
1136 * - 32 bit cookies are uniquely created by combining the hash table
1137 * entry value, and one generation count per hash table entry,
1138 * incremented each time an entry is appended to the chain.
1139 * - the cache is invalidated each time a direcory is modified
1140 * - sanity checks are also done; if an entry in a block turns
1141 * out not to have a matching cookie, the cache is invalidated
1142 * and a new block starting from the wanted offset is fetched from
1143 * the server.
1144 * - directory entries as read from the server are extended to contain
1145 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1146 * the cache and exporting them to userspace through the cookie
1147 * argument to VOP_READDIR.
1148 */
1149
1150 u_long
1151 nfs_dirhash(off)
1152 off_t off;
1153 {
1154 int i;
1155 char *cp = (char *)&off;
1156 u_long sum = 0L;
1157
1158 for (i = 0 ; i < sizeof (off); i++)
1159 sum += *cp++;
1160
1161 return sum;
1162 }
1163
1164 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1165 #define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np))
1166 #define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np))
1167 #define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
1168
1169 void
1170 nfs_initdircache(vp)
1171 struct vnode *vp;
1172 {
1173 struct nfsnode *np = VTONFS(vp);
1174 struct nfsdirhashhead *dircache;
1175
1176 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1177 M_WAITOK, &nfsdirhashmask);
1178
1179 NFSDC_LOCK(np);
1180 if (np->n_dircache == NULL) {
1181 np->n_dircachesize = 0;
1182 np->n_dircache = dircache;
1183 dircache = NULL;
1184 TAILQ_INIT(&np->n_dirchain);
1185 }
1186 NFSDC_UNLOCK(np);
1187 if (dircache)
1188 hashdone(dircache, M_NFSDIROFF);
1189 }
1190
1191 void
1192 nfs_initdirxlatecookie(vp)
1193 struct vnode *vp;
1194 {
1195 struct nfsnode *np = VTONFS(vp);
1196 unsigned *dirgens;
1197
1198 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1199
1200 dirgens = malloc(NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1201 M_WAITOK|M_ZERO);
1202 NFSDC_LOCK(np);
1203 if (np->n_dirgens == NULL) {
1204 np->n_dirgens = dirgens;
1205 dirgens = NULL;
1206 }
1207 NFSDC_UNLOCK(np);
1208 if (dirgens)
1209 free(dirgens, M_NFSDIROFF);
1210 }
1211
1212 static const struct nfsdircache dzero;
1213
1214 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1215 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1216 struct nfsdircache *));
1217
1218 static void
1219 nfs_unlinkdircache(np, ndp)
1220 struct nfsnode *np;
1221 struct nfsdircache *ndp;
1222 {
1223
1224 NFSDC_ASSERT_LOCKED(np);
1225 KASSERT(ndp != &dzero);
1226
1227 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1228 return;
1229
1230 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1231 LIST_REMOVE(ndp, dc_hash);
1232 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1233
1234 nfs_putdircache_unlocked(np, ndp);
1235 }
1236
1237 void
1238 nfs_putdircache(np, ndp)
1239 struct nfsnode *np;
1240 struct nfsdircache *ndp;
1241 {
1242 int ref;
1243
1244 if (ndp == &dzero)
1245 return;
1246
1247 KASSERT(ndp->dc_refcnt > 0);
1248 NFSDC_LOCK(np);
1249 ref = --ndp->dc_refcnt;
1250 NFSDC_UNLOCK(np);
1251
1252 if (ref == 0)
1253 free(ndp, M_NFSDIROFF);
1254 }
1255
1256 static void
1257 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1258 {
1259 int ref;
1260
1261 NFSDC_ASSERT_LOCKED(np);
1262
1263 if (ndp == &dzero)
1264 return;
1265
1266 KASSERT(ndp->dc_refcnt > 0);
1267 ref = --ndp->dc_refcnt;
1268 if (ref == 0)
1269 free(ndp, M_NFSDIROFF);
1270 }
1271
1272 struct nfsdircache *
1273 nfs_searchdircache(vp, off, do32, hashent)
1274 struct vnode *vp;
1275 off_t off;
1276 int do32;
1277 int *hashent;
1278 {
1279 struct nfsdirhashhead *ndhp;
1280 struct nfsdircache *ndp = NULL;
1281 struct nfsnode *np = VTONFS(vp);
1282 unsigned ent;
1283
1284 /*
1285 * Zero is always a valid cookie.
1286 */
1287 if (off == 0)
1288 /* XXXUNCONST */
1289 return (struct nfsdircache *)__UNCONST(&dzero);
1290
1291 if (!np->n_dircache)
1292 return NULL;
1293
1294 /*
1295 * We use a 32bit cookie as search key, directly reconstruct
1296 * the hashentry. Else use the hashfunction.
1297 */
1298 if (do32) {
1299 ent = (u_int32_t)off >> 24;
1300 if (ent >= NFS_DIRHASHSIZ)
1301 return NULL;
1302 ndhp = &np->n_dircache[ent];
1303 } else {
1304 ndhp = NFSDIRHASH(np, off);
1305 }
1306
1307 if (hashent)
1308 *hashent = (int)(ndhp - np->n_dircache);
1309
1310 NFSDC_LOCK(np);
1311 if (do32) {
1312 LIST_FOREACH(ndp, ndhp, dc_hash) {
1313 if (ndp->dc_cookie32 == (u_int32_t)off) {
1314 /*
1315 * An invalidated entry will become the
1316 * start of a new block fetched from
1317 * the server.
1318 */
1319 if (ndp->dc_flags & NFSDC_INVALID) {
1320 ndp->dc_blkcookie = ndp->dc_cookie;
1321 ndp->dc_entry = 0;
1322 ndp->dc_flags &= ~NFSDC_INVALID;
1323 }
1324 break;
1325 }
1326 }
1327 } else {
1328 LIST_FOREACH(ndp, ndhp, dc_hash) {
1329 if (ndp->dc_cookie == off)
1330 break;
1331 }
1332 }
1333 if (ndp != NULL)
1334 ndp->dc_refcnt++;
1335 NFSDC_UNLOCK(np);
1336 return ndp;
1337 }
1338
1339
1340 struct nfsdircache *
1341 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1342 daddr_t blkno)
1343 {
1344 struct nfsnode *np = VTONFS(vp);
1345 struct nfsdirhashhead *ndhp;
1346 struct nfsdircache *ndp = NULL;
1347 struct nfsdircache *newndp = NULL;
1348 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1349 int hashent = 0, gen, overwrite; /* XXX: GCC */
1350
1351 /*
1352 * XXX refuse entries for offset 0. amd(8) erroneously sets
1353 * cookie 0 for the '.' entry, making this necessary. This
1354 * isn't so bad, as 0 is a special case anyway.
1355 */
1356 if (off == 0)
1357 /* XXXUNCONST */
1358 return (struct nfsdircache *)__UNCONST(&dzero);
1359
1360 if (!np->n_dircache)
1361 /*
1362 * XXX would like to do this in nfs_nget but vtype
1363 * isn't known at that time.
1364 */
1365 nfs_initdircache(vp);
1366
1367 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1368 nfs_initdirxlatecookie(vp);
1369
1370 retry:
1371 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1372
1373 NFSDC_LOCK(np);
1374 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1375 /*
1376 * Overwriting an old entry. Check if it's the same.
1377 * If so, just return. If not, remove the old entry.
1378 */
1379 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1380 goto done;
1381 nfs_unlinkdircache(np, ndp);
1382 nfs_putdircache_unlocked(np, ndp);
1383 ndp = NULL;
1384 }
1385
1386 ndhp = &np->n_dircache[hashent];
1387
1388 if (!ndp) {
1389 if (newndp == NULL) {
1390 NFSDC_UNLOCK(np);
1391 newndp = malloc(sizeof(*ndp), M_NFSDIROFF, M_WAITOK);
1392 newndp->dc_refcnt = 1;
1393 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1394 goto retry;
1395 }
1396 ndp = newndp;
1397 newndp = NULL;
1398 overwrite = 0;
1399 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1400 /*
1401 * We're allocating a new entry, so bump the
1402 * generation number.
1403 */
1404 KASSERT(np->n_dirgens);
1405 gen = ++np->n_dirgens[hashent];
1406 if (gen == 0) {
1407 np->n_dirgens[hashent]++;
1408 gen++;
1409 }
1410 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1411 }
1412 } else
1413 overwrite = 1;
1414
1415 ndp->dc_cookie = off;
1416 ndp->dc_blkcookie = blkoff;
1417 ndp->dc_entry = en;
1418 ndp->dc_flags = 0;
1419
1420 if (overwrite)
1421 goto done;
1422
1423 /*
1424 * If the maximum directory cookie cache size has been reached
1425 * for this node, take one off the front. The idea is that
1426 * directories are typically read front-to-back once, so that
1427 * the oldest entries can be thrown away without much performance
1428 * loss.
1429 */
1430 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1431 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1432 } else
1433 np->n_dircachesize++;
1434
1435 KASSERT(ndp->dc_refcnt == 1);
1436 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1437 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1438 ndp->dc_refcnt++;
1439 done:
1440 KASSERT(ndp->dc_refcnt > 0);
1441 NFSDC_UNLOCK(np);
1442 if (newndp)
1443 nfs_putdircache(np, newndp);
1444 return ndp;
1445 }
1446
1447 void
1448 nfs_invaldircache(vp, flags)
1449 struct vnode *vp;
1450 int flags;
1451 {
1452 struct nfsnode *np = VTONFS(vp);
1453 struct nfsdircache *ndp = NULL;
1454 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1455 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1456
1457 #ifdef DIAGNOSTIC
1458 if (vp->v_type != VDIR)
1459 panic("nfs: invaldircache: not dir");
1460 #endif
1461
1462 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1463 np->n_flag &= ~NEOFVALID;
1464
1465 if (!np->n_dircache)
1466 return;
1467
1468 NFSDC_LOCK(np);
1469 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1470 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1471 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1472 nfs_unlinkdircache(np, ndp);
1473 }
1474 np->n_dircachesize = 0;
1475 if (forcefree && np->n_dirgens) {
1476 FREE(np->n_dirgens, M_NFSDIROFF);
1477 np->n_dirgens = NULL;
1478 }
1479 } else {
1480 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1481 ndp->dc_flags |= NFSDC_INVALID;
1482 }
1483
1484 NFSDC_UNLOCK(np);
1485 }
1486
1487 /*
1488 * Called once before VFS init to initialize shared and
1489 * server-specific data structures.
1490 */
1491 static int
1492 nfs_init0(void)
1493 {
1494 extern krwlock_t netexport_lock; /* XXX */
1495
1496 rw_init(&netexport_lock);
1497
1498 nfsrtt.pos = 0;
1499 rpc_vers = txdr_unsigned(RPC_VER2);
1500 rpc_call = txdr_unsigned(RPC_CALL);
1501 rpc_reply = txdr_unsigned(RPC_REPLY);
1502 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1503 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1504 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1505 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1506 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1507 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1508 nfs_prog = txdr_unsigned(NFS_PROG);
1509 nfs_true = txdr_unsigned(true);
1510 nfs_false = txdr_unsigned(false);
1511 nfs_xdrneg1 = txdr_unsigned(-1);
1512 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1513 if (nfs_ticks < 1)
1514 nfs_ticks = 1;
1515 #ifdef NFSSERVER
1516 nfsrv_init(0); /* Init server data structures */
1517 nfsrv_initcache(); /* Init the server request cache */
1518 #endif /* NFSSERVER */
1519
1520 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
1521 nfsdreq_init();
1522 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
1523
1524 exithook_establish(nfs_exit, NULL);
1525
1526 /*
1527 * Initialize reply list and start timer
1528 */
1529 TAILQ_INIT(&nfs_reqq);
1530 nfs_timer(NULL);
1531 MOWNER_ATTACH(&nfs_mowner);
1532
1533 #ifdef NFS
1534 /* Initialize the kqueue structures */
1535 nfs_kqinit();
1536 /* Initialize the iod structures */
1537 nfs_iodinit();
1538 #endif
1539 return 0;
1540 }
1541
1542 void
1543 nfs_init(void)
1544 {
1545 static ONCE_DECL(nfs_init_once);
1546
1547 RUN_ONCE(&nfs_init_once, nfs_init0);
1548 }
1549
1550 #ifdef NFS
1551 /*
1552 * Called once at VFS init to initialize client-specific data structures.
1553 */
1554 void
1555 nfs_vfs_init()
1556 {
1557 /* Initialize NFS server / client shared data. */
1558 nfs_init();
1559
1560 nfs_nhinit(); /* Init the nfsnode table */
1561 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1562 }
1563
1564 void
1565 nfs_vfs_reinit()
1566 {
1567 nfs_nhreinit();
1568 }
1569
1570 void
1571 nfs_vfs_done()
1572 {
1573 nfs_nhdone();
1574 }
1575
1576 /*
1577 * Attribute cache routines.
1578 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1579 * that are on the mbuf list
1580 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1581 * error otherwise
1582 */
1583
1584 /*
1585 * Load the attribute cache (that lives in the nfsnode entry) with
1586 * the values on the mbuf list and
1587 * Iff vap not NULL
1588 * copy the attributes to *vaper
1589 */
1590 int
1591 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1592 struct vnode **vpp;
1593 struct mbuf **mdp;
1594 char **dposp;
1595 struct vattr *vaper;
1596 int flags;
1597 {
1598 int32_t t1;
1599 char *cp2;
1600 int error = 0;
1601 struct mbuf *md;
1602 int v3 = NFS_ISV3(*vpp);
1603
1604 md = *mdp;
1605 t1 = (mtod(md, char *) + md->m_len) - *dposp;
1606 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1607 if (error)
1608 return (error);
1609 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1610 }
1611
1612 int
1613 nfs_loadattrcache(vpp, fp, vaper, flags)
1614 struct vnode **vpp;
1615 struct nfs_fattr *fp;
1616 struct vattr *vaper;
1617 int flags;
1618 {
1619 struct vnode *vp = *vpp;
1620 struct vattr *vap;
1621 int v3 = NFS_ISV3(vp);
1622 enum vtype vtyp;
1623 u_short vmode;
1624 struct timespec mtime;
1625 struct timespec ctime;
1626 struct vnode *nvp;
1627 int32_t rdev;
1628 struct nfsnode *np;
1629 extern int (**spec_nfsv2nodeop_p) __P((void *));
1630 uid_t uid;
1631 gid_t gid;
1632
1633 if (v3) {
1634 vtyp = nfsv3tov_type(fp->fa_type);
1635 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1636 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1637 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1638 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1639 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1640 } else {
1641 vtyp = nfsv2tov_type(fp->fa_type);
1642 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1643 if (vtyp == VNON || vtyp == VREG)
1644 vtyp = IFTOVT(vmode);
1645 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1646 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1647 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1648 fp->fa2_ctime.nfsv2_sec);
1649 ctime.tv_nsec = 0;
1650
1651 /*
1652 * Really ugly NFSv2 kludge.
1653 */
1654 if (vtyp == VCHR && rdev == 0xffffffff)
1655 vtyp = VFIFO;
1656 }
1657
1658 vmode &= ALLPERMS;
1659
1660 /*
1661 * If v_type == VNON it is a new node, so fill in the v_type,
1662 * n_mtime fields. Check to see if it represents a special
1663 * device, and if so, check for a possible alias. Once the
1664 * correct vnode has been obtained, fill in the rest of the
1665 * information.
1666 */
1667 np = VTONFS(vp);
1668 if (vp->v_type == VNON) {
1669 vp->v_type = vtyp;
1670 if (vp->v_type == VFIFO) {
1671 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1672 vp->v_op = fifo_nfsv2nodeop_p;
1673 } else if (vp->v_type == VREG) {
1674 mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
1675 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1676 vp->v_op = spec_nfsv2nodeop_p;
1677 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1678 if (nvp) {
1679 /*
1680 * Discard unneeded vnode, but save its nfsnode.
1681 * Since the nfsnode does not have a lock, its
1682 * vnode lock has to be carried over.
1683 */
1684 /*
1685 * XXX is the old node sure to be locked here?
1686 */
1687 KASSERT(lockstatus(&vp->v_lock) ==
1688 LK_EXCLUSIVE);
1689 nvp->v_data = vp->v_data;
1690 vp->v_data = NULL;
1691 VOP_UNLOCK(vp, 0);
1692 vp->v_op = spec_vnodeop_p;
1693 vrele(vp);
1694 vgone(vp);
1695 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1696 &nvp->v_interlock);
1697 /*
1698 * Reinitialize aliased node.
1699 */
1700 np->n_vnode = nvp;
1701 *vpp = vp = nvp;
1702 }
1703 }
1704 np->n_mtime = mtime;
1705 }
1706 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1707 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1708 vap = np->n_vattr;
1709
1710 /*
1711 * Invalidate access cache if uid, gid, mode or ctime changed.
1712 */
1713 if (np->n_accstamp != -1 &&
1714 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1715 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1716 np->n_accstamp = -1;
1717
1718 vap->va_type = vtyp;
1719 vap->va_mode = vmode;
1720 vap->va_rdev = (dev_t)rdev;
1721 vap->va_mtime = mtime;
1722 vap->va_ctime = ctime;
1723 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1724 switch (vtyp) {
1725 case VDIR:
1726 vap->va_blocksize = NFS_DIRFRAGSIZ;
1727 break;
1728 case VBLK:
1729 vap->va_blocksize = BLKDEV_IOSIZE;
1730 break;
1731 case VCHR:
1732 vap->va_blocksize = MAXBSIZE;
1733 break;
1734 default:
1735 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1736 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1737 break;
1738 }
1739 if (v3) {
1740 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1741 vap->va_uid = uid;
1742 vap->va_gid = gid;
1743 vap->va_size = fxdr_hyper(&fp->fa3_size);
1744 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1745 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1746 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1747 vap->va_flags = 0;
1748 vap->va_filerev = 0;
1749 } else {
1750 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1751 vap->va_uid = uid;
1752 vap->va_gid = gid;
1753 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1754 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1755 * NFS_FABLKSIZE;
1756 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1757 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1758 vap->va_flags = 0;
1759 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1760 vap->va_filerev = 0;
1761 }
1762 if (vap->va_size != np->n_size) {
1763 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1764 vap->va_size = np->n_size;
1765 } else {
1766 np->n_size = vap->va_size;
1767 if (vap->va_type == VREG) {
1768 /*
1769 * we can't free pages if NAC_NOTRUNC because
1770 * the pages can be owned by ourselves.
1771 */
1772 if (flags & NAC_NOTRUNC) {
1773 np->n_flag |= NTRUNCDELAYED;
1774 } else {
1775 genfs_node_wrlock(vp);
1776 mutex_enter(&vp->v_interlock);
1777 (void)VOP_PUTPAGES(vp, 0,
1778 0, PGO_SYNCIO | PGO_CLEANIT |
1779 PGO_FREE | PGO_ALLPAGES);
1780 uvm_vnp_setsize(vp, np->n_size);
1781 genfs_node_unlock(vp);
1782 }
1783 }
1784 }
1785 }
1786 np->n_attrstamp = time_second;
1787 if (vaper != NULL) {
1788 memcpy((void *)vaper, (void *)vap, sizeof(*vap));
1789 if (np->n_flag & NCHG) {
1790 if (np->n_flag & NACC)
1791 vaper->va_atime = np->n_atim;
1792 if (np->n_flag & NUPD)
1793 vaper->va_mtime = np->n_mtim;
1794 }
1795 }
1796 return (0);
1797 }
1798
1799 /*
1800 * Check the time stamp
1801 * If the cache is valid, copy contents to *vap and return 0
1802 * otherwise return an error
1803 */
1804 int
1805 nfs_getattrcache(vp, vaper)
1806 struct vnode *vp;
1807 struct vattr *vaper;
1808 {
1809 struct nfsnode *np = VTONFS(vp);
1810 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1811 struct vattr *vap;
1812
1813 if (np->n_attrstamp == 0 ||
1814 (time_second - np->n_attrstamp) >= NFS_ATTRTIMEO(nmp, np)) {
1815 nfsstats.attrcache_misses++;
1816 return (ENOENT);
1817 }
1818 nfsstats.attrcache_hits++;
1819 vap = np->n_vattr;
1820 if (vap->va_size != np->n_size) {
1821 if (vap->va_type == VREG) {
1822 if (np->n_flag & NMODIFIED) {
1823 if (vap->va_size < np->n_size)
1824 vap->va_size = np->n_size;
1825 else
1826 np->n_size = vap->va_size;
1827 } else
1828 np->n_size = vap->va_size;
1829 genfs_node_wrlock(vp);
1830 uvm_vnp_setsize(vp, np->n_size);
1831 genfs_node_unlock(vp);
1832 } else
1833 np->n_size = vap->va_size;
1834 }
1835 memcpy((void *)vaper, (void *)vap, sizeof(struct vattr));
1836 if (np->n_flag & NCHG) {
1837 if (np->n_flag & NACC)
1838 vaper->va_atime = np->n_atim;
1839 if (np->n_flag & NUPD)
1840 vaper->va_mtime = np->n_mtim;
1841 }
1842 return (0);
1843 }
1844
1845 void
1846 nfs_delayedtruncate(vp)
1847 struct vnode *vp;
1848 {
1849 struct nfsnode *np = VTONFS(vp);
1850
1851 if (np->n_flag & NTRUNCDELAYED) {
1852 np->n_flag &= ~NTRUNCDELAYED;
1853 genfs_node_wrlock(vp);
1854 mutex_enter(&vp->v_interlock);
1855 (void)VOP_PUTPAGES(vp, 0,
1856 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1857 uvm_vnp_setsize(vp, np->n_size);
1858 genfs_node_unlock(vp);
1859 }
1860 }
1861
1862 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1863 #define NFS_WCCKLUDGE(nmp, now) \
1864 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1865 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1866
1867 /*
1868 * nfs_check_wccdata: check inaccurate wcc_data
1869 *
1870 * => return non-zero if we shouldn't trust the wcc_data.
1871 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1872 */
1873
1874 int
1875 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1876 struct timespec *mtime, bool docheck)
1877 {
1878 int error = 0;
1879
1880 #if !defined(NFS_V2_ONLY)
1881
1882 if (docheck) {
1883 struct vnode *vp = NFSTOV(np);
1884 struct nfsmount *nmp;
1885 long now = time_second;
1886 const struct timespec *omtime = &np->n_vattr->va_mtime;
1887 const struct timespec *octime = &np->n_vattr->va_ctime;
1888 #if defined(DEBUG)
1889 const char *reason = NULL; /* XXX: gcc */
1890 #endif
1891
1892 if (timespeccmp(omtime, mtime, <=)) {
1893 #if defined(DEBUG)
1894 reason = "mtime";
1895 #endif
1896 error = EINVAL;
1897 }
1898
1899 if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
1900 #if defined(DEBUG)
1901 reason = "ctime";
1902 #endif
1903 error = EINVAL;
1904 }
1905
1906 nmp = VFSTONFS(vp->v_mount);
1907 if (error) {
1908
1909 /*
1910 * despite of the fact that we've updated the file,
1911 * timestamps of the file were not updated as we
1912 * expected.
1913 * it means that the server has incompatible
1914 * semantics of timestamps or (more likely)
1915 * the server time is not precise enough to
1916 * track each modifications.
1917 * in that case, we disable wcc processing.
1918 *
1919 * yes, strictly speaking, we should disable all
1920 * caching. it's a compromise.
1921 */
1922
1923 mutex_enter(&nmp->nm_lock);
1924 #if defined(DEBUG)
1925 if (!NFS_WCCKLUDGE(nmp, now)) {
1926 printf("%s: inaccurate wcc data (%s) detected,"
1927 " disabling wcc"
1928 " (ctime %u.%09u %u.%09u,"
1929 " mtime %u.%09u %u.%09u)\n",
1930 vp->v_mount->mnt_stat.f_mntfromname,
1931 reason,
1932 (unsigned int)octime->tv_sec,
1933 (unsigned int)octime->tv_nsec,
1934 (unsigned int)ctime->tv_sec,
1935 (unsigned int)ctime->tv_nsec,
1936 (unsigned int)omtime->tv_sec,
1937 (unsigned int)omtime->tv_nsec,
1938 (unsigned int)mtime->tv_sec,
1939 (unsigned int)mtime->tv_nsec);
1940 }
1941 #endif
1942 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1943 nmp->nm_wcckludgetime = now;
1944 mutex_exit(&nmp->nm_lock);
1945 } else if (NFS_WCCKLUDGE(nmp, now)) {
1946 error = EPERM; /* XXX */
1947 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1948 mutex_enter(&nmp->nm_lock);
1949 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1950 #if defined(DEBUG)
1951 printf("%s: re-enabling wcc\n",
1952 vp->v_mount->mnt_stat.f_mntfromname);
1953 #endif
1954 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1955 }
1956 mutex_exit(&nmp->nm_lock);
1957 }
1958 }
1959
1960 #endif /* !defined(NFS_V2_ONLY) */
1961
1962 return error;
1963 }
1964
1965 /*
1966 * Heuristic to see if the server XDR encodes directory cookies or not.
1967 * it is not supposed to, but a lot of servers may do this. Also, since
1968 * most/all servers will implement V2 as well, it is expected that they
1969 * may return just 32 bits worth of cookie information, so we need to
1970 * find out in which 32 bits this information is available. We do this
1971 * to avoid trouble with emulated binaries that can't handle 64 bit
1972 * directory offsets.
1973 */
1974
1975 void
1976 nfs_cookieheuristic(vp, flagp, l, cred)
1977 struct vnode *vp;
1978 int *flagp;
1979 struct lwp *l;
1980 kauth_cred_t cred;
1981 {
1982 struct uio auio;
1983 struct iovec aiov;
1984 char *tbuf, *cp;
1985 struct dirent *dp;
1986 off_t *cookies = NULL, *cop;
1987 int error, eof, nc, len;
1988
1989 MALLOC(tbuf, void *, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1990
1991 aiov.iov_base = tbuf;
1992 aiov.iov_len = NFS_DIRFRAGSIZ;
1993 auio.uio_iov = &aiov;
1994 auio.uio_iovcnt = 1;
1995 auio.uio_rw = UIO_READ;
1996 auio.uio_resid = NFS_DIRFRAGSIZ;
1997 auio.uio_offset = 0;
1998 UIO_SETUP_SYSSPACE(&auio);
1999
2000 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
2001
2002 len = NFS_DIRFRAGSIZ - auio.uio_resid;
2003 if (error || len == 0) {
2004 FREE(tbuf, M_TEMP);
2005 if (cookies)
2006 free(cookies, M_TEMP);
2007 return;
2008 }
2009
2010 /*
2011 * Find the first valid entry and look at its offset cookie.
2012 */
2013
2014 cp = tbuf;
2015 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2016 dp = (struct dirent *)cp;
2017 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2018 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2019 *flagp |= NFSMNT_SWAPCOOKIE;
2020 nfs_invaldircache(vp, 0);
2021 nfs_vinvalbuf(vp, 0, cred, l, 1);
2022 }
2023 break;
2024 }
2025 cop++;
2026 cp += dp->d_reclen;
2027 }
2028
2029 FREE(tbuf, M_TEMP);
2030 free(cookies, M_TEMP);
2031 }
2032 #endif /* NFS */
2033
2034 #ifdef NFSSERVER
2035 /*
2036 * Set up nameidata for a lookup() call and do it.
2037 *
2038 * If pubflag is set, this call is done for a lookup operation on the
2039 * public filehandle. In that case we allow crossing mountpoints and
2040 * absolute pathnames. However, the caller is expected to check that
2041 * the lookup result is within the public fs, and deny access if
2042 * it is not.
2043 */
2044 int
2045 nfs_namei(ndp, nsfh, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2046 struct nameidata *ndp;
2047 nfsrvfh_t *nsfh;
2048 uint32_t len;
2049 struct nfssvc_sock *slp;
2050 struct mbuf *nam;
2051 struct mbuf **mdp;
2052 char **dposp;
2053 struct vnode **retdirp;
2054 struct lwp *l;
2055 int kerbflag, pubflag;
2056 {
2057 int i, rem;
2058 struct mbuf *md;
2059 char *fromcp, *tocp, *cp;
2060 struct iovec aiov;
2061 struct uio auio;
2062 struct vnode *dp;
2063 int error, rdonly, linklen;
2064 struct componentname *cnp = &ndp->ni_cnd;
2065
2066 *retdirp = NULL;
2067
2068 if ((len + 1) > MAXPATHLEN)
2069 return (ENAMETOOLONG);
2070 if (len == 0)
2071 return (EACCES);
2072 cnp->cn_pnbuf = PNBUF_GET();
2073
2074 /*
2075 * Copy the name from the mbuf list to ndp->ni_pnbuf
2076 * and set the various ndp fields appropriately.
2077 */
2078 fromcp = *dposp;
2079 tocp = cnp->cn_pnbuf;
2080 md = *mdp;
2081 rem = mtod(md, char *) + md->m_len - fromcp;
2082 for (i = 0; i < len; i++) {
2083 while (rem == 0) {
2084 md = md->m_next;
2085 if (md == NULL) {
2086 error = EBADRPC;
2087 goto out;
2088 }
2089 fromcp = mtod(md, void *);
2090 rem = md->m_len;
2091 }
2092 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2093 error = EACCES;
2094 goto out;
2095 }
2096 *tocp++ = *fromcp++;
2097 rem--;
2098 }
2099 *tocp = '\0';
2100 *mdp = md;
2101 *dposp = fromcp;
2102 len = nfsm_rndup(len)-len;
2103 if (len > 0) {
2104 if (rem >= len)
2105 *dposp += len;
2106 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2107 goto out;
2108 }
2109
2110 /*
2111 * Extract and set starting directory.
2112 */
2113 error = nfsrv_fhtovp(nsfh, false, &dp, ndp->ni_cnd.cn_cred, slp,
2114 nam, &rdonly, kerbflag, pubflag);
2115 if (error)
2116 goto out;
2117 if (dp->v_type != VDIR) {
2118 vrele(dp);
2119 error = ENOTDIR;
2120 goto out;
2121 }
2122
2123 if (rdonly)
2124 cnp->cn_flags |= RDONLY;
2125
2126 *retdirp = dp;
2127
2128 if (pubflag) {
2129 /*
2130 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2131 * and the 'native path' indicator.
2132 */
2133 cp = PNBUF_GET();
2134 fromcp = cnp->cn_pnbuf;
2135 tocp = cp;
2136 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2137 switch ((unsigned char)*fromcp) {
2138 case WEBNFS_NATIVE_CHAR:
2139 /*
2140 * 'Native' path for us is the same
2141 * as a path according to the NFS spec,
2142 * just skip the escape char.
2143 */
2144 fromcp++;
2145 break;
2146 /*
2147 * More may be added in the future, range 0x80-0xff
2148 */
2149 default:
2150 error = EIO;
2151 vrele(dp);
2152 PNBUF_PUT(cp);
2153 goto out;
2154 }
2155 }
2156 /*
2157 * Translate the '%' escapes, URL-style.
2158 */
2159 while (*fromcp != '\0') {
2160 if (*fromcp == WEBNFS_ESC_CHAR) {
2161 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2162 fromcp++;
2163 *tocp++ = HEXSTRTOI(fromcp);
2164 fromcp += 2;
2165 continue;
2166 } else {
2167 error = ENOENT;
2168 vrele(dp);
2169 PNBUF_PUT(cp);
2170 goto out;
2171 }
2172 } else
2173 *tocp++ = *fromcp++;
2174 }
2175 *tocp = '\0';
2176 PNBUF_PUT(cnp->cn_pnbuf);
2177 cnp->cn_pnbuf = cp;
2178 }
2179
2180 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2181 ndp->ni_segflg = UIO_SYSSPACE;
2182 ndp->ni_rootdir = rootvnode;
2183
2184 if (pubflag) {
2185 ndp->ni_loopcnt = 0;
2186 if (cnp->cn_pnbuf[0] == '/')
2187 dp = rootvnode;
2188 } else {
2189 cnp->cn_flags |= NOCROSSMOUNT;
2190 }
2191
2192 cnp->cn_lwp = l;
2193 VREF(dp);
2194 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2195
2196 for (;;) {
2197 cnp->cn_nameptr = cnp->cn_pnbuf;
2198 ndp->ni_startdir = dp;
2199
2200 /*
2201 * And call lookup() to do the real work
2202 */
2203 error = lookup(ndp);
2204 if (error) {
2205 if (ndp->ni_dvp) {
2206 vput(ndp->ni_dvp);
2207 }
2208 PNBUF_PUT(cnp->cn_pnbuf);
2209 return (error);
2210 }
2211
2212 /*
2213 * Check for encountering a symbolic link
2214 */
2215 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2216 if ((cnp->cn_flags & LOCKPARENT) == 0 && ndp->ni_dvp) {
2217 if (ndp->ni_dvp == ndp->ni_vp) {
2218 vrele(ndp->ni_dvp);
2219 } else {
2220 vput(ndp->ni_dvp);
2221 }
2222 }
2223 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2224 cnp->cn_flags |= HASBUF;
2225 else
2226 PNBUF_PUT(cnp->cn_pnbuf);
2227 return (0);
2228 } else {
2229 if (!pubflag) {
2230 error = EINVAL;
2231 break;
2232 }
2233 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2234 error = ELOOP;
2235 break;
2236 }
2237 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2238 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2239 cnp->cn_lwp);
2240 if (error != 0)
2241 break;
2242 }
2243 if (ndp->ni_pathlen > 1)
2244 cp = PNBUF_GET();
2245 else
2246 cp = cnp->cn_pnbuf;
2247 aiov.iov_base = cp;
2248 aiov.iov_len = MAXPATHLEN;
2249 auio.uio_iov = &aiov;
2250 auio.uio_iovcnt = 1;
2251 auio.uio_offset = 0;
2252 auio.uio_rw = UIO_READ;
2253 auio.uio_resid = MAXPATHLEN;
2254 UIO_SETUP_SYSSPACE(&auio);
2255 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2256 if (error) {
2257 badlink:
2258 if (ndp->ni_pathlen > 1)
2259 PNBUF_PUT(cp);
2260 break;
2261 }
2262 linklen = MAXPATHLEN - auio.uio_resid;
2263 if (linklen == 0) {
2264 error = ENOENT;
2265 goto badlink;
2266 }
2267 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2268 error = ENAMETOOLONG;
2269 goto badlink;
2270 }
2271 if (ndp->ni_pathlen > 1) {
2272 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2273 PNBUF_PUT(cnp->cn_pnbuf);
2274 cnp->cn_pnbuf = cp;
2275 } else
2276 cnp->cn_pnbuf[linklen] = '\0';
2277 ndp->ni_pathlen += linklen;
2278 vput(ndp->ni_vp);
2279 dp = ndp->ni_dvp;
2280
2281 /*
2282 * Check if root directory should replace current directory.
2283 */
2284 if (cnp->cn_pnbuf[0] == '/') {
2285 vput(dp);
2286 dp = ndp->ni_rootdir;
2287 VREF(dp);
2288 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2289 }
2290 }
2291 }
2292 vput(ndp->ni_dvp);
2293 vput(ndp->ni_vp);
2294 ndp->ni_vp = NULL;
2295 out:
2296 PNBUF_PUT(cnp->cn_pnbuf);
2297 return (error);
2298 }
2299 #endif /* NFSSERVER */
2300
2301 /*
2302 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2303 * boundary and only trims off the back end
2304 *
2305 * 1. trim off 'len' bytes as m_adj(mp, -len).
2306 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2307 */
2308 void
2309 nfs_zeropad(mp, len, nul)
2310 struct mbuf *mp;
2311 int len;
2312 int nul;
2313 {
2314 struct mbuf *m;
2315 int count;
2316
2317 /*
2318 * Trim from tail. Scan the mbuf chain,
2319 * calculating its length and finding the last mbuf.
2320 * If the adjustment only affects this mbuf, then just
2321 * adjust and return. Otherwise, rescan and truncate
2322 * after the remaining size.
2323 */
2324 count = 0;
2325 m = mp;
2326 for (;;) {
2327 count += m->m_len;
2328 if (m->m_next == NULL)
2329 break;
2330 m = m->m_next;
2331 }
2332
2333 KDASSERT(count >= len);
2334
2335 if (m->m_len >= len) {
2336 m->m_len -= len;
2337 } else {
2338 count -= len;
2339 /*
2340 * Correct length for chain is "count".
2341 * Find the mbuf with last data, adjust its length,
2342 * and toss data from remaining mbufs on chain.
2343 */
2344 for (m = mp; m; m = m->m_next) {
2345 if (m->m_len >= count) {
2346 m->m_len = count;
2347 break;
2348 }
2349 count -= m->m_len;
2350 }
2351 KASSERT(m && m->m_next);
2352 m_freem(m->m_next);
2353 m->m_next = NULL;
2354 }
2355
2356 KDASSERT(m->m_next == NULL);
2357
2358 /*
2359 * zero-padding.
2360 */
2361 if (nul > 0) {
2362 char *cp;
2363 int i;
2364
2365 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2366 struct mbuf *n;
2367
2368 KDASSERT(MLEN >= nul);
2369 n = m_get(M_WAIT, MT_DATA);
2370 MCLAIM(n, &nfs_mowner);
2371 n->m_len = nul;
2372 n->m_next = NULL;
2373 m->m_next = n;
2374 cp = mtod(n, void *);
2375 } else {
2376 cp = mtod(m, char *) + m->m_len;
2377 m->m_len += nul;
2378 }
2379 for (i = 0; i < nul; i++)
2380 *cp++ = '\0';
2381 }
2382 return;
2383 }
2384
2385 /*
2386 * Make these functions instead of macros, so that the kernel text size
2387 * doesn't get too big...
2388 */
2389 void
2390 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2391 struct nfsrv_descript *nfsd;
2392 int before_ret;
2393 struct vattr *before_vap;
2394 int after_ret;
2395 struct vattr *after_vap;
2396 struct mbuf **mbp;
2397 char **bposp;
2398 {
2399 struct mbuf *mb = *mbp;
2400 char *bpos = *bposp;
2401 u_int32_t *tl;
2402
2403 if (before_ret) {
2404 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2405 *tl = nfs_false;
2406 } else {
2407 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2408 *tl++ = nfs_true;
2409 txdr_hyper(before_vap->va_size, tl);
2410 tl += 2;
2411 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2412 tl += 2;
2413 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2414 }
2415 *bposp = bpos;
2416 *mbp = mb;
2417 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2418 }
2419
2420 void
2421 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2422 struct nfsrv_descript *nfsd;
2423 int after_ret;
2424 struct vattr *after_vap;
2425 struct mbuf **mbp;
2426 char **bposp;
2427 {
2428 struct mbuf *mb = *mbp;
2429 char *bpos = *bposp;
2430 u_int32_t *tl;
2431 struct nfs_fattr *fp;
2432
2433 if (after_ret) {
2434 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2435 *tl = nfs_false;
2436 } else {
2437 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2438 *tl++ = nfs_true;
2439 fp = (struct nfs_fattr *)tl;
2440 nfsm_srvfattr(nfsd, after_vap, fp);
2441 }
2442 *mbp = mb;
2443 *bposp = bpos;
2444 }
2445
2446 void
2447 nfsm_srvfattr(nfsd, vap, fp)
2448 struct nfsrv_descript *nfsd;
2449 struct vattr *vap;
2450 struct nfs_fattr *fp;
2451 {
2452
2453 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2454 fp->fa_uid = txdr_unsigned(vap->va_uid);
2455 fp->fa_gid = txdr_unsigned(vap->va_gid);
2456 if (nfsd->nd_flag & ND_NFSV3) {
2457 fp->fa_type = vtonfsv3_type(vap->va_type);
2458 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2459 txdr_hyper(vap->va_size, &fp->fa3_size);
2460 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2461 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2462 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2463 fp->fa3_fsid.nfsuquad[0] = 0;
2464 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2465 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2466 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2467 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2468 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2469 } else {
2470 fp->fa_type = vtonfsv2_type(vap->va_type);
2471 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2472 fp->fa2_size = txdr_unsigned(vap->va_size);
2473 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2474 if (vap->va_type == VFIFO)
2475 fp->fa2_rdev = 0xffffffff;
2476 else
2477 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2478 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2479 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2480 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2481 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2482 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2483 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2484 }
2485 }
2486
2487 #ifdef NFSSERVER
2488 /*
2489 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2490 * - look up fsid in mount list (if not found ret error)
2491 * - get vp and export rights by calling VFS_FHTOVP()
2492 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2493 * - if not lockflag unlock it with VOP_UNLOCK()
2494 */
2495 int
2496 nfsrv_fhtovp(nfsrvfh_t *nsfh, int lockflag, struct vnode **vpp,
2497 kauth_cred_t cred, struct nfssvc_sock *slp, struct mbuf *nam, int *rdonlyp,
2498 int kerbflag, int pubflag)
2499 {
2500 struct mount *mp;
2501 kauth_cred_t credanon;
2502 int error, exflags;
2503 struct sockaddr_in *saddr;
2504 fhandle_t *fhp;
2505
2506 fhp = NFSRVFH_FHANDLE(nsfh);
2507 *vpp = (struct vnode *)0;
2508
2509 if (nfs_ispublicfh(nsfh)) {
2510 if (!pubflag || !nfs_pub.np_valid)
2511 return (ESTALE);
2512 fhp = nfs_pub.np_handle;
2513 }
2514
2515 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2516 if (error) {
2517 return error;
2518 }
2519
2520 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2521 if (error)
2522 return (error);
2523
2524 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2525 saddr = mtod(nam, struct sockaddr_in *);
2526 if ((saddr->sin_family == AF_INET) &&
2527 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2528 vput(*vpp);
2529 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2530 }
2531 #ifdef INET6
2532 if ((saddr->sin_family == AF_INET6) &&
2533 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2534 vput(*vpp);
2535 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2536 }
2537 #endif
2538 }
2539 /*
2540 * Check/setup credentials.
2541 */
2542 if (exflags & MNT_EXKERB) {
2543 if (!kerbflag) {
2544 vput(*vpp);
2545 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2546 }
2547 } else if (kerbflag) {
2548 vput(*vpp);
2549 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2550 } else if (kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER,
2551 NULL) == 0 || (exflags & MNT_EXPORTANON)) {
2552 kauth_cred_clone(credanon, cred);
2553 }
2554 if (exflags & MNT_EXRDONLY)
2555 *rdonlyp = 1;
2556 else
2557 *rdonlyp = 0;
2558 if (!lockflag)
2559 VOP_UNLOCK(*vpp, 0);
2560 return (0);
2561 }
2562
2563 /*
2564 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2565 * means a length of 0, for v2 it means all zeroes.
2566 */
2567 int
2568 nfs_ispublicfh(const nfsrvfh_t *nsfh)
2569 {
2570 const char *cp = (const void *)(NFSRVFH_DATA(nsfh));
2571 int i;
2572
2573 if (NFSRVFH_SIZE(nsfh) == 0) {
2574 return true;
2575 }
2576 if (NFSRVFH_SIZE(nsfh) != NFSX_V2FH) {
2577 return false;
2578 }
2579 for (i = 0; i < NFSX_V2FH; i++)
2580 if (*cp++ != 0)
2581 return false;
2582 return true;
2583 }
2584 #endif /* NFSSERVER */
2585
2586 /*
2587 * This function compares two net addresses by family and returns true
2588 * if they are the same host.
2589 * If there is any doubt, return false.
2590 * The AF_INET family is handled as a special case so that address mbufs
2591 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2592 */
2593 int
2594 netaddr_match(family, haddr, nam)
2595 int family;
2596 union nethostaddr *haddr;
2597 struct mbuf *nam;
2598 {
2599 struct sockaddr_in *inetaddr;
2600
2601 switch (family) {
2602 case AF_INET:
2603 inetaddr = mtod(nam, struct sockaddr_in *);
2604 if (inetaddr->sin_family == AF_INET &&
2605 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2606 return (1);
2607 break;
2608 #ifdef INET6
2609 case AF_INET6:
2610 {
2611 struct sockaddr_in6 *sin6_1, *sin6_2;
2612
2613 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2614 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2615 if (sin6_1->sin6_family == AF_INET6 &&
2616 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2617 return 1;
2618 }
2619 #endif
2620 #ifdef ISO
2621 case AF_ISO:
2622 {
2623 struct sockaddr_iso *isoaddr1, *isoaddr2;
2624
2625 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2626 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2627 if (isoaddr1->siso_family == AF_ISO &&
2628 isoaddr1->siso_nlen > 0 &&
2629 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2630 SAME_ISOADDR(isoaddr1, isoaddr2))
2631 return (1);
2632 break;
2633 }
2634 #endif /* ISO */
2635 default:
2636 break;
2637 };
2638 return (0);
2639 }
2640
2641 /*
2642 * The write verifier has changed (probably due to a server reboot), so all
2643 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2644 * as dirty or are being written out just now, all this takes is clearing
2645 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2646 * the mount point.
2647 */
2648 void
2649 nfs_clearcommit(mp)
2650 struct mount *mp;
2651 {
2652 struct vnode *vp;
2653 struct nfsnode *np;
2654 struct vm_page *pg;
2655 struct nfsmount *nmp = VFSTONFS(mp);
2656
2657 rw_enter(&nmp->nm_writeverflock, RW_WRITER);
2658
2659 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2660 KASSERT(vp->v_mount == mp);
2661 if (vp->v_type != VREG)
2662 continue;
2663 np = VTONFS(vp);
2664 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2665 np->n_pushedhi = 0;
2666 np->n_commitflags &=
2667 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2668 mutex_enter(&vp->v_uobj.vmobjlock);
2669 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2670 pg->flags &= ~PG_NEEDCOMMIT;
2671 }
2672 mutex_exit(&vp->v_uobj.vmobjlock);
2673 }
2674 mutex_enter(&nmp->nm_lock);
2675 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2676 mutex_exit(&nmp->nm_lock);
2677 rw_exit(&nmp->nm_writeverflock);
2678 }
2679
2680 void
2681 nfs_merge_commit_ranges(vp)
2682 struct vnode *vp;
2683 {
2684 struct nfsnode *np = VTONFS(vp);
2685
2686 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2687
2688 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2689 np->n_pushedlo = np->n_pushlo;
2690 np->n_pushedhi = np->n_pushhi;
2691 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2692 } else {
2693 if (np->n_pushlo < np->n_pushedlo)
2694 np->n_pushedlo = np->n_pushlo;
2695 if (np->n_pushhi > np->n_pushedhi)
2696 np->n_pushedhi = np->n_pushhi;
2697 }
2698
2699 np->n_pushlo = np->n_pushhi = 0;
2700 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2701
2702 #ifdef NFS_DEBUG_COMMIT
2703 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2704 (unsigned)np->n_pushedhi);
2705 #endif
2706 }
2707
2708 int
2709 nfs_in_committed_range(vp, off, len)
2710 struct vnode *vp;
2711 off_t off, len;
2712 {
2713 struct nfsnode *np = VTONFS(vp);
2714 off_t lo, hi;
2715
2716 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2717 return 0;
2718 lo = off;
2719 hi = lo + len;
2720
2721 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2722 }
2723
2724 int
2725 nfs_in_tobecommitted_range(vp, off, len)
2726 struct vnode *vp;
2727 off_t off, len;
2728 {
2729 struct nfsnode *np = VTONFS(vp);
2730 off_t lo, hi;
2731
2732 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2733 return 0;
2734 lo = off;
2735 hi = lo + len;
2736
2737 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2738 }
2739
2740 void
2741 nfs_add_committed_range(vp, off, len)
2742 struct vnode *vp;
2743 off_t off, len;
2744 {
2745 struct nfsnode *np = VTONFS(vp);
2746 off_t lo, hi;
2747
2748 lo = off;
2749 hi = lo + len;
2750
2751 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2752 np->n_pushedlo = lo;
2753 np->n_pushedhi = hi;
2754 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2755 } else {
2756 if (hi > np->n_pushedhi)
2757 np->n_pushedhi = hi;
2758 if (lo < np->n_pushedlo)
2759 np->n_pushedlo = lo;
2760 }
2761 #ifdef NFS_DEBUG_COMMIT
2762 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2763 (unsigned)np->n_pushedhi);
2764 #endif
2765 }
2766
2767 void
2768 nfs_del_committed_range(vp, off, len)
2769 struct vnode *vp;
2770 off_t off, len;
2771 {
2772 struct nfsnode *np = VTONFS(vp);
2773 off_t lo, hi;
2774
2775 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2776 return;
2777
2778 lo = off;
2779 hi = lo + len;
2780
2781 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2782 return;
2783 if (lo <= np->n_pushedlo)
2784 np->n_pushedlo = hi;
2785 else if (hi >= np->n_pushedhi)
2786 np->n_pushedhi = lo;
2787 else {
2788 /*
2789 * XXX There's only one range. If the deleted range
2790 * is in the middle, pick the largest of the
2791 * contiguous ranges that it leaves.
2792 */
2793 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2794 np->n_pushedhi = lo;
2795 else
2796 np->n_pushedlo = hi;
2797 }
2798 #ifdef NFS_DEBUG_COMMIT
2799 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2800 (unsigned)np->n_pushedhi);
2801 #endif
2802 }
2803
2804 void
2805 nfs_add_tobecommitted_range(vp, off, len)
2806 struct vnode *vp;
2807 off_t off, len;
2808 {
2809 struct nfsnode *np = VTONFS(vp);
2810 off_t lo, hi;
2811
2812 lo = off;
2813 hi = lo + len;
2814
2815 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2816 np->n_pushlo = lo;
2817 np->n_pushhi = hi;
2818 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2819 } else {
2820 if (lo < np->n_pushlo)
2821 np->n_pushlo = lo;
2822 if (hi > np->n_pushhi)
2823 np->n_pushhi = hi;
2824 }
2825 #ifdef NFS_DEBUG_COMMIT
2826 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2827 (unsigned)np->n_pushhi);
2828 #endif
2829 }
2830
2831 void
2832 nfs_del_tobecommitted_range(vp, off, len)
2833 struct vnode *vp;
2834 off_t off, len;
2835 {
2836 struct nfsnode *np = VTONFS(vp);
2837 off_t lo, hi;
2838
2839 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2840 return;
2841
2842 lo = off;
2843 hi = lo + len;
2844
2845 if (lo > np->n_pushhi || hi < np->n_pushlo)
2846 return;
2847
2848 if (lo <= np->n_pushlo)
2849 np->n_pushlo = hi;
2850 else if (hi >= np->n_pushhi)
2851 np->n_pushhi = lo;
2852 else {
2853 /*
2854 * XXX There's only one range. If the deleted range
2855 * is in the middle, pick the largest of the
2856 * contiguous ranges that it leaves.
2857 */
2858 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2859 np->n_pushhi = lo;
2860 else
2861 np->n_pushlo = hi;
2862 }
2863 #ifdef NFS_DEBUG_COMMIT
2864 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2865 (unsigned)np->n_pushhi);
2866 #endif
2867 }
2868
2869 /*
2870 * Map errnos to NFS error numbers. For Version 3 also filter out error
2871 * numbers not specified for the associated procedure.
2872 */
2873 int
2874 nfsrv_errmap(nd, err)
2875 struct nfsrv_descript *nd;
2876 int err;
2877 {
2878 const short *defaulterrp, *errp;
2879
2880 if (nd->nd_flag & ND_NFSV3) {
2881 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2882 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2883 while (*++errp) {
2884 if (*errp == err)
2885 return (err);
2886 else if (*errp > err)
2887 break;
2888 }
2889 return ((int)*defaulterrp);
2890 } else
2891 return (err & 0xffff);
2892 }
2893 if (err <= ELAST)
2894 return ((int)nfsrv_v2errmap[err - 1]);
2895 return (NFSERR_IO);
2896 }
2897
2898 u_int32_t
2899 nfs_getxid()
2900 {
2901 static u_int32_t base;
2902 static u_int32_t nfs_xid = 0;
2903 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2904 u_int32_t newxid;
2905
2906 simple_lock(&nfs_xidlock);
2907 /*
2908 * derive initial xid from system time
2909 * XXX time is invalid if root not yet mounted
2910 */
2911 if (__predict_false(!base && (rootvp))) {
2912 struct timeval tv;
2913
2914 microtime(&tv);
2915 base = tv.tv_sec << 12;
2916 nfs_xid = base;
2917 }
2918
2919 /*
2920 * Skip zero xid if it should ever happen.
2921 */
2922 if (__predict_false(++nfs_xid == 0))
2923 nfs_xid++;
2924 newxid = nfs_xid;
2925 simple_unlock(&nfs_xidlock);
2926
2927 return txdr_unsigned(newxid);
2928 }
2929
2930 /*
2931 * assign a new xid for existing request.
2932 * used for NFSERR_JUKEBOX handling.
2933 */
2934 void
2935 nfs_renewxid(struct nfsreq *req)
2936 {
2937 u_int32_t xid;
2938 int off;
2939
2940 xid = nfs_getxid();
2941 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2942 off = sizeof(u_int32_t); /* RPC record mark */
2943 else
2944 off = 0;
2945
2946 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2947 req->r_xid = xid;
2948 }
2949
2950 #if defined(NFSSERVER)
2951 int
2952 nfsrv_composefh(struct vnode *vp, nfsrvfh_t *nsfh, bool v3)
2953 {
2954 int error;
2955 size_t fhsize;
2956
2957 fhsize = NFSD_MAXFHSIZE;
2958 error = vfs_composefh(vp, (void *)NFSRVFH_DATA(nsfh), &fhsize);
2959 if (NFSX_FHTOOBIG_P(fhsize, v3)) {
2960 error = EOPNOTSUPP;
2961 }
2962 if (error != 0) {
2963 return error;
2964 }
2965 if (!v3 && fhsize < NFSX_V2FH) {
2966 memset((char *)NFSRVFH_DATA(nsfh) + fhsize, 0,
2967 NFSX_V2FH - fhsize);
2968 fhsize = NFSX_V2FH;
2969 }
2970 if ((fhsize % NFSX_UNSIGNED) != 0) {
2971 return EOPNOTSUPP;
2972 }
2973 nsfh->nsfh_size = fhsize;
2974 return 0;
2975 }
2976
2977 int
2978 nfsrv_comparefh(const nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2979 {
2980
2981 if (NFSRVFH_SIZE(fh1) != NFSRVFH_SIZE(fh2)) {
2982 return NFSRVFH_SIZE(fh2) - NFSRVFH_SIZE(fh1);
2983 }
2984 return memcmp(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), NFSRVFH_SIZE(fh1));
2985 }
2986
2987 void
2988 nfsrv_copyfh(nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2989 {
2990 size_t size;
2991
2992 fh1->nsfh_size = size = NFSRVFH_SIZE(fh2);
2993 memcpy(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), size);
2994 }
2995 #endif /* defined(NFSSERVER) */
2996