nfs_subs.c revision 1.184.2.5 1 /* $NetBSD: nfs_subs.c,v 1.184.2.5 2007/07/15 13:28:06 ad Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.184.2.5 2007/07/15 13:28:06 ad Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 #include <sys/once.h>
101 #include <sys/kauth.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include <nfs/rpcv2.h>
106 #include <nfs/nfsproto.h>
107 #include <nfs/nfsnode.h>
108 #include <nfs/nfs.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114
115 #include <miscfs/specfs/specdev.h>
116
117 #include <netinet/in.h>
118 #ifdef ISO
119 #include <netiso/iso.h>
120 #endif
121
122 /*
123 * Data items converted to xdr at startup, since they are constant
124 * This is kinda hokey, but may save a little time doing byte swaps
125 */
126 u_int32_t nfs_xdrneg1;
127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
128 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
129 rpc_auth_kerb;
130 u_int32_t nfs_prog, nfs_true, nfs_false;
131
132 /* And other global data */
133 const nfstype nfsv2_type[9] =
134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142 int nfs_commitsize;
143
144 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
145
146 /* NFS client/server stats. */
147 struct nfsstats nfsstats;
148
149 /*
150 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
151 */
152 const int nfsv3_procid[NFS_NPROCS] = {
153 NFSPROC_NULL,
154 NFSPROC_GETATTR,
155 NFSPROC_SETATTR,
156 NFSPROC_NOOP,
157 NFSPROC_LOOKUP,
158 NFSPROC_READLINK,
159 NFSPROC_READ,
160 NFSPROC_NOOP,
161 NFSPROC_WRITE,
162 NFSPROC_CREATE,
163 NFSPROC_REMOVE,
164 NFSPROC_RENAME,
165 NFSPROC_LINK,
166 NFSPROC_SYMLINK,
167 NFSPROC_MKDIR,
168 NFSPROC_RMDIR,
169 NFSPROC_READDIR,
170 NFSPROC_FSSTAT,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP
176 };
177
178 /*
179 * and the reverse mapping from generic to Version 2 procedure numbers
180 */
181 const int nfsv2_procid[NFS_NPROCS] = {
182 NFSV2PROC_NULL,
183 NFSV2PROC_GETATTR,
184 NFSV2PROC_SETATTR,
185 NFSV2PROC_LOOKUP,
186 NFSV2PROC_NOOP,
187 NFSV2PROC_READLINK,
188 NFSV2PROC_READ,
189 NFSV2PROC_WRITE,
190 NFSV2PROC_CREATE,
191 NFSV2PROC_MKDIR,
192 NFSV2PROC_SYMLINK,
193 NFSV2PROC_CREATE,
194 NFSV2PROC_REMOVE,
195 NFSV2PROC_RMDIR,
196 NFSV2PROC_RENAME,
197 NFSV2PROC_LINK,
198 NFSV2PROC_READDIR,
199 NFSV2PROC_NOOP,
200 NFSV2PROC_STATFS,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 };
206
207 /*
208 * Maps errno values to nfs error numbers.
209 * Use NFSERR_IO as the catch all for ones not specifically defined in
210 * RFC 1094.
211 */
212 static const u_char nfsrv_v2errmap[ELAST] = {
213 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
214 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
215 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
216 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
217 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
226 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO,
230 };
231
232 /*
233 * Maps errno values to nfs error numbers.
234 * Although it is not obvious whether or not NFS clients really care if
235 * a returned error value is in the specified list for the procedure, the
236 * safest thing to do is filter them appropriately. For Version 2, the
237 * X/Open XNFS document is the only specification that defines error values
238 * for each RPC (The RFC simply lists all possible error values for all RPCs),
239 * so I have decided to not do this for Version 2.
240 * The first entry is the default error return and the rest are the valid
241 * errors for that RPC in increasing numeric order.
242 */
243 static const short nfsv3err_null[] = {
244 0,
245 0,
246 };
247
248 static const short nfsv3err_getattr[] = {
249 NFSERR_IO,
250 NFSERR_IO,
251 NFSERR_STALE,
252 NFSERR_BADHANDLE,
253 NFSERR_SERVERFAULT,
254 0,
255 };
256
257 static const short nfsv3err_setattr[] = {
258 NFSERR_IO,
259 NFSERR_PERM,
260 NFSERR_IO,
261 NFSERR_ACCES,
262 NFSERR_INVAL,
263 NFSERR_NOSPC,
264 NFSERR_ROFS,
265 NFSERR_DQUOT,
266 NFSERR_STALE,
267 NFSERR_BADHANDLE,
268 NFSERR_NOT_SYNC,
269 NFSERR_SERVERFAULT,
270 0,
271 };
272
273 static const short nfsv3err_lookup[] = {
274 NFSERR_IO,
275 NFSERR_NOENT,
276 NFSERR_IO,
277 NFSERR_ACCES,
278 NFSERR_NOTDIR,
279 NFSERR_NAMETOL,
280 NFSERR_STALE,
281 NFSERR_BADHANDLE,
282 NFSERR_SERVERFAULT,
283 0,
284 };
285
286 static const short nfsv3err_access[] = {
287 NFSERR_IO,
288 NFSERR_IO,
289 NFSERR_STALE,
290 NFSERR_BADHANDLE,
291 NFSERR_SERVERFAULT,
292 0,
293 };
294
295 static const short nfsv3err_readlink[] = {
296 NFSERR_IO,
297 NFSERR_IO,
298 NFSERR_ACCES,
299 NFSERR_INVAL,
300 NFSERR_STALE,
301 NFSERR_BADHANDLE,
302 NFSERR_NOTSUPP,
303 NFSERR_SERVERFAULT,
304 0,
305 };
306
307 static const short nfsv3err_read[] = {
308 NFSERR_IO,
309 NFSERR_IO,
310 NFSERR_NXIO,
311 NFSERR_ACCES,
312 NFSERR_INVAL,
313 NFSERR_STALE,
314 NFSERR_BADHANDLE,
315 NFSERR_SERVERFAULT,
316 NFSERR_JUKEBOX,
317 0,
318 };
319
320 static const short nfsv3err_write[] = {
321 NFSERR_IO,
322 NFSERR_IO,
323 NFSERR_ACCES,
324 NFSERR_INVAL,
325 NFSERR_FBIG,
326 NFSERR_NOSPC,
327 NFSERR_ROFS,
328 NFSERR_DQUOT,
329 NFSERR_STALE,
330 NFSERR_BADHANDLE,
331 NFSERR_SERVERFAULT,
332 NFSERR_JUKEBOX,
333 0,
334 };
335
336 static const short nfsv3err_create[] = {
337 NFSERR_IO,
338 NFSERR_IO,
339 NFSERR_ACCES,
340 NFSERR_EXIST,
341 NFSERR_NOTDIR,
342 NFSERR_NOSPC,
343 NFSERR_ROFS,
344 NFSERR_NAMETOL,
345 NFSERR_DQUOT,
346 NFSERR_STALE,
347 NFSERR_BADHANDLE,
348 NFSERR_NOTSUPP,
349 NFSERR_SERVERFAULT,
350 0,
351 };
352
353 static const short nfsv3err_mkdir[] = {
354 NFSERR_IO,
355 NFSERR_IO,
356 NFSERR_ACCES,
357 NFSERR_EXIST,
358 NFSERR_NOTDIR,
359 NFSERR_NOSPC,
360 NFSERR_ROFS,
361 NFSERR_NAMETOL,
362 NFSERR_DQUOT,
363 NFSERR_STALE,
364 NFSERR_BADHANDLE,
365 NFSERR_NOTSUPP,
366 NFSERR_SERVERFAULT,
367 0,
368 };
369
370 static const short nfsv3err_symlink[] = {
371 NFSERR_IO,
372 NFSERR_IO,
373 NFSERR_ACCES,
374 NFSERR_EXIST,
375 NFSERR_NOTDIR,
376 NFSERR_NOSPC,
377 NFSERR_ROFS,
378 NFSERR_NAMETOL,
379 NFSERR_DQUOT,
380 NFSERR_STALE,
381 NFSERR_BADHANDLE,
382 NFSERR_NOTSUPP,
383 NFSERR_SERVERFAULT,
384 0,
385 };
386
387 static const short nfsv3err_mknod[] = {
388 NFSERR_IO,
389 NFSERR_IO,
390 NFSERR_ACCES,
391 NFSERR_EXIST,
392 NFSERR_NOTDIR,
393 NFSERR_NOSPC,
394 NFSERR_ROFS,
395 NFSERR_NAMETOL,
396 NFSERR_DQUOT,
397 NFSERR_STALE,
398 NFSERR_BADHANDLE,
399 NFSERR_NOTSUPP,
400 NFSERR_SERVERFAULT,
401 NFSERR_BADTYPE,
402 0,
403 };
404
405 static const short nfsv3err_remove[] = {
406 NFSERR_IO,
407 NFSERR_NOENT,
408 NFSERR_IO,
409 NFSERR_ACCES,
410 NFSERR_NOTDIR,
411 NFSERR_ROFS,
412 NFSERR_NAMETOL,
413 NFSERR_STALE,
414 NFSERR_BADHANDLE,
415 NFSERR_SERVERFAULT,
416 0,
417 };
418
419 static const short nfsv3err_rmdir[] = {
420 NFSERR_IO,
421 NFSERR_NOENT,
422 NFSERR_IO,
423 NFSERR_ACCES,
424 NFSERR_EXIST,
425 NFSERR_NOTDIR,
426 NFSERR_INVAL,
427 NFSERR_ROFS,
428 NFSERR_NAMETOL,
429 NFSERR_NOTEMPTY,
430 NFSERR_STALE,
431 NFSERR_BADHANDLE,
432 NFSERR_NOTSUPP,
433 NFSERR_SERVERFAULT,
434 0,
435 };
436
437 static const short nfsv3err_rename[] = {
438 NFSERR_IO,
439 NFSERR_NOENT,
440 NFSERR_IO,
441 NFSERR_ACCES,
442 NFSERR_EXIST,
443 NFSERR_XDEV,
444 NFSERR_NOTDIR,
445 NFSERR_ISDIR,
446 NFSERR_INVAL,
447 NFSERR_NOSPC,
448 NFSERR_ROFS,
449 NFSERR_MLINK,
450 NFSERR_NAMETOL,
451 NFSERR_NOTEMPTY,
452 NFSERR_DQUOT,
453 NFSERR_STALE,
454 NFSERR_BADHANDLE,
455 NFSERR_NOTSUPP,
456 NFSERR_SERVERFAULT,
457 0,
458 };
459
460 static const short nfsv3err_link[] = {
461 NFSERR_IO,
462 NFSERR_IO,
463 NFSERR_ACCES,
464 NFSERR_EXIST,
465 NFSERR_XDEV,
466 NFSERR_NOTDIR,
467 NFSERR_INVAL,
468 NFSERR_NOSPC,
469 NFSERR_ROFS,
470 NFSERR_MLINK,
471 NFSERR_NAMETOL,
472 NFSERR_DQUOT,
473 NFSERR_STALE,
474 NFSERR_BADHANDLE,
475 NFSERR_NOTSUPP,
476 NFSERR_SERVERFAULT,
477 0,
478 };
479
480 static const short nfsv3err_readdir[] = {
481 NFSERR_IO,
482 NFSERR_IO,
483 NFSERR_ACCES,
484 NFSERR_NOTDIR,
485 NFSERR_STALE,
486 NFSERR_BADHANDLE,
487 NFSERR_BAD_COOKIE,
488 NFSERR_TOOSMALL,
489 NFSERR_SERVERFAULT,
490 0,
491 };
492
493 static const short nfsv3err_readdirplus[] = {
494 NFSERR_IO,
495 NFSERR_IO,
496 NFSERR_ACCES,
497 NFSERR_NOTDIR,
498 NFSERR_STALE,
499 NFSERR_BADHANDLE,
500 NFSERR_BAD_COOKIE,
501 NFSERR_NOTSUPP,
502 NFSERR_TOOSMALL,
503 NFSERR_SERVERFAULT,
504 0,
505 };
506
507 static const short nfsv3err_fsstat[] = {
508 NFSERR_IO,
509 NFSERR_IO,
510 NFSERR_STALE,
511 NFSERR_BADHANDLE,
512 NFSERR_SERVERFAULT,
513 0,
514 };
515
516 static const short nfsv3err_fsinfo[] = {
517 NFSERR_STALE,
518 NFSERR_STALE,
519 NFSERR_BADHANDLE,
520 NFSERR_SERVERFAULT,
521 0,
522 };
523
524 static const short nfsv3err_pathconf[] = {
525 NFSERR_STALE,
526 NFSERR_STALE,
527 NFSERR_BADHANDLE,
528 NFSERR_SERVERFAULT,
529 0,
530 };
531
532 static const short nfsv3err_commit[] = {
533 NFSERR_IO,
534 NFSERR_IO,
535 NFSERR_STALE,
536 NFSERR_BADHANDLE,
537 NFSERR_SERVERFAULT,
538 0,
539 };
540
541 static const short * const nfsrv_v3errmap[] = {
542 nfsv3err_null,
543 nfsv3err_getattr,
544 nfsv3err_setattr,
545 nfsv3err_lookup,
546 nfsv3err_access,
547 nfsv3err_readlink,
548 nfsv3err_read,
549 nfsv3err_write,
550 nfsv3err_create,
551 nfsv3err_mkdir,
552 nfsv3err_symlink,
553 nfsv3err_mknod,
554 nfsv3err_remove,
555 nfsv3err_rmdir,
556 nfsv3err_rename,
557 nfsv3err_link,
558 nfsv3err_readdir,
559 nfsv3err_readdirplus,
560 nfsv3err_fsstat,
561 nfsv3err_fsinfo,
562 nfsv3err_pathconf,
563 nfsv3err_commit,
564 };
565
566 extern struct nfsrtt nfsrtt;
567 extern struct nfsnodehashhead *nfsnodehashtbl;
568 extern u_long nfsnodehash;
569
570 u_long nfsdirhashmask;
571
572 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
573
574 /*
575 * Create the header for an rpc request packet
576 * The hsiz is the size of the rest of the nfs request header.
577 * (just used to decide if a cluster is a good idea)
578 */
579 struct mbuf *
580 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
581 {
582 struct mbuf *mb;
583 char *bpos;
584
585 mb = m_get(M_WAIT, MT_DATA);
586 MCLAIM(mb, &nfs_mowner);
587 if (hsiz >= MINCLSIZE)
588 m_clget(mb, M_WAIT);
589 mb->m_len = 0;
590 bpos = mtod(mb, void *);
591
592 /* Finally, return values */
593 *bposp = bpos;
594 return (mb);
595 }
596
597 /*
598 * Build the RPC header and fill in the authorization info.
599 * The authorization string argument is only used when the credentials
600 * come from outside of the kernel.
601 * Returns the head of the mbuf list.
602 */
603 struct mbuf *
604 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
605 verf_str, mrest, mrest_len, mbp, xidp)
606 kauth_cred_t cr;
607 int nmflag;
608 int procid;
609 int auth_type;
610 int auth_len;
611 char *auth_str;
612 int verf_len;
613 char *verf_str;
614 struct mbuf *mrest;
615 int mrest_len;
616 struct mbuf **mbp;
617 u_int32_t *xidp;
618 {
619 struct mbuf *mb;
620 u_int32_t *tl;
621 char *bpos;
622 int i;
623 struct mbuf *mreq;
624 int siz, grpsiz, authsiz;
625
626 authsiz = nfsm_rndup(auth_len);
627 mb = m_gethdr(M_WAIT, MT_DATA);
628 MCLAIM(mb, &nfs_mowner);
629 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
630 m_clget(mb, M_WAIT);
631 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
632 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
633 } else {
634 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
635 }
636 mb->m_len = 0;
637 mreq = mb;
638 bpos = mtod(mb, void *);
639
640 /*
641 * First the RPC header.
642 */
643 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
644
645 *tl++ = *xidp = nfs_getxid();
646 *tl++ = rpc_call;
647 *tl++ = rpc_vers;
648 *tl++ = txdr_unsigned(NFS_PROG);
649 if (nmflag & NFSMNT_NFSV3)
650 *tl++ = txdr_unsigned(NFS_VER3);
651 else
652 *tl++ = txdr_unsigned(NFS_VER2);
653 if (nmflag & NFSMNT_NFSV3)
654 *tl++ = txdr_unsigned(procid);
655 else
656 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
657
658 /*
659 * And then the authorization cred.
660 */
661 *tl++ = txdr_unsigned(auth_type);
662 *tl = txdr_unsigned(authsiz);
663 switch (auth_type) {
664 case RPCAUTH_UNIX:
665 nfsm_build(tl, u_int32_t *, auth_len);
666 *tl++ = 0; /* stamp ?? */
667 *tl++ = 0; /* NULL hostname */
668 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
669 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
670 grpsiz = (auth_len >> 2) - 5;
671 *tl++ = txdr_unsigned(grpsiz);
672 for (i = 0; i < grpsiz; i++)
673 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
674 break;
675 case RPCAUTH_KERB4:
676 siz = auth_len;
677 while (siz > 0) {
678 if (M_TRAILINGSPACE(mb) == 0) {
679 struct mbuf *mb2;
680 mb2 = m_get(M_WAIT, MT_DATA);
681 MCLAIM(mb2, &nfs_mowner);
682 if (siz >= MINCLSIZE)
683 m_clget(mb2, M_WAIT);
684 mb->m_next = mb2;
685 mb = mb2;
686 mb->m_len = 0;
687 bpos = mtod(mb, void *);
688 }
689 i = min(siz, M_TRAILINGSPACE(mb));
690 memcpy(bpos, auth_str, i);
691 mb->m_len += i;
692 auth_str += i;
693 bpos += i;
694 siz -= i;
695 }
696 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
697 for (i = 0; i < siz; i++)
698 *bpos++ = '\0';
699 mb->m_len += siz;
700 }
701 break;
702 };
703
704 /*
705 * And the verifier...
706 */
707 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
708 if (verf_str) {
709 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
710 *tl = txdr_unsigned(verf_len);
711 siz = verf_len;
712 while (siz > 0) {
713 if (M_TRAILINGSPACE(mb) == 0) {
714 struct mbuf *mb2;
715 mb2 = m_get(M_WAIT, MT_DATA);
716 MCLAIM(mb2, &nfs_mowner);
717 if (siz >= MINCLSIZE)
718 m_clget(mb2, M_WAIT);
719 mb->m_next = mb2;
720 mb = mb2;
721 mb->m_len = 0;
722 bpos = mtod(mb, void *);
723 }
724 i = min(siz, M_TRAILINGSPACE(mb));
725 memcpy(bpos, verf_str, i);
726 mb->m_len += i;
727 verf_str += i;
728 bpos += i;
729 siz -= i;
730 }
731 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
732 for (i = 0; i < siz; i++)
733 *bpos++ = '\0';
734 mb->m_len += siz;
735 }
736 } else {
737 *tl++ = txdr_unsigned(RPCAUTH_NULL);
738 *tl = 0;
739 }
740 mb->m_next = mrest;
741 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
742 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
743 *mbp = mb;
744 return (mreq);
745 }
746
747 /*
748 * copies mbuf chain to the uio scatter/gather list
749 */
750 int
751 nfsm_mbuftouio(mrep, uiop, siz, dpos)
752 struct mbuf **mrep;
753 struct uio *uiop;
754 int siz;
755 char **dpos;
756 {
757 char *mbufcp, *uiocp;
758 int xfer, left, len;
759 struct mbuf *mp;
760 long uiosiz, rem;
761 int error = 0;
762
763 mp = *mrep;
764 mbufcp = *dpos;
765 len = mtod(mp, char *) + mp->m_len - mbufcp;
766 rem = nfsm_rndup(siz)-siz;
767 while (siz > 0) {
768 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
769 return (EFBIG);
770 left = uiop->uio_iov->iov_len;
771 uiocp = uiop->uio_iov->iov_base;
772 if (left > siz)
773 left = siz;
774 uiosiz = left;
775 while (left > 0) {
776 while (len == 0) {
777 mp = mp->m_next;
778 if (mp == NULL)
779 return (EBADRPC);
780 mbufcp = mtod(mp, void *);
781 len = mp->m_len;
782 }
783 xfer = (left > len) ? len : left;
784 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
785 uiocp, xfer);
786 if (error) {
787 return error;
788 }
789 left -= xfer;
790 len -= xfer;
791 mbufcp += xfer;
792 uiocp += xfer;
793 uiop->uio_offset += xfer;
794 uiop->uio_resid -= xfer;
795 }
796 if (uiop->uio_iov->iov_len <= siz) {
797 uiop->uio_iovcnt--;
798 uiop->uio_iov++;
799 } else {
800 uiop->uio_iov->iov_base =
801 (char *)uiop->uio_iov->iov_base + uiosiz;
802 uiop->uio_iov->iov_len -= uiosiz;
803 }
804 siz -= uiosiz;
805 }
806 *dpos = mbufcp;
807 *mrep = mp;
808 if (rem > 0) {
809 if (len < rem)
810 error = nfs_adv(mrep, dpos, rem, len);
811 else
812 *dpos += rem;
813 }
814 return (error);
815 }
816
817 /*
818 * copies a uio scatter/gather list to an mbuf chain.
819 * NOTE: can ony handle iovcnt == 1
820 */
821 int
822 nfsm_uiotombuf(uiop, mq, siz, bpos)
823 struct uio *uiop;
824 struct mbuf **mq;
825 int siz;
826 char **bpos;
827 {
828 char *uiocp;
829 struct mbuf *mp, *mp2;
830 int xfer, left, mlen;
831 int uiosiz, clflg, rem;
832 char *cp;
833 int error;
834
835 #ifdef DIAGNOSTIC
836 if (uiop->uio_iovcnt != 1)
837 panic("nfsm_uiotombuf: iovcnt != 1");
838 #endif
839
840 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
841 clflg = 1;
842 else
843 clflg = 0;
844 rem = nfsm_rndup(siz)-siz;
845 mp = mp2 = *mq;
846 while (siz > 0) {
847 left = uiop->uio_iov->iov_len;
848 uiocp = uiop->uio_iov->iov_base;
849 if (left > siz)
850 left = siz;
851 uiosiz = left;
852 while (left > 0) {
853 mlen = M_TRAILINGSPACE(mp);
854 if (mlen == 0) {
855 mp = m_get(M_WAIT, MT_DATA);
856 MCLAIM(mp, &nfs_mowner);
857 if (clflg)
858 m_clget(mp, M_WAIT);
859 mp->m_len = 0;
860 mp2->m_next = mp;
861 mp2 = mp;
862 mlen = M_TRAILINGSPACE(mp);
863 }
864 xfer = (left > mlen) ? mlen : left;
865 cp = mtod(mp, char *) + mp->m_len;
866 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
867 xfer);
868 if (error) {
869 /* XXX */
870 }
871 mp->m_len += xfer;
872 left -= xfer;
873 uiocp += xfer;
874 uiop->uio_offset += xfer;
875 uiop->uio_resid -= xfer;
876 }
877 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
878 uiosiz;
879 uiop->uio_iov->iov_len -= uiosiz;
880 siz -= uiosiz;
881 }
882 if (rem > 0) {
883 if (rem > M_TRAILINGSPACE(mp)) {
884 mp = m_get(M_WAIT, MT_DATA);
885 MCLAIM(mp, &nfs_mowner);
886 mp->m_len = 0;
887 mp2->m_next = mp;
888 }
889 cp = mtod(mp, char *) + mp->m_len;
890 for (left = 0; left < rem; left++)
891 *cp++ = '\0';
892 mp->m_len += rem;
893 *bpos = cp;
894 } else
895 *bpos = mtod(mp, char *) + mp->m_len;
896 *mq = mp;
897 return (0);
898 }
899
900 /*
901 * Get at least "siz" bytes of correctly aligned data.
902 * When called the mbuf pointers are not necessarily correct,
903 * dsosp points to what ought to be in m_data and left contains
904 * what ought to be in m_len.
905 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
906 * cases. (The macros use the vars. dpos and dpos2)
907 */
908 int
909 nfsm_disct(mdp, dposp, siz, left, cp2)
910 struct mbuf **mdp;
911 char **dposp;
912 int siz;
913 int left;
914 char **cp2;
915 {
916 struct mbuf *m1, *m2;
917 struct mbuf *havebuf = NULL;
918 char *src = *dposp;
919 char *dst;
920 int len;
921
922 #ifdef DEBUG
923 if (left < 0)
924 panic("nfsm_disct: left < 0");
925 #endif
926 m1 = *mdp;
927 /*
928 * Skip through the mbuf chain looking for an mbuf with
929 * some data. If the first mbuf found has enough data
930 * and it is correctly aligned return it.
931 */
932 while (left == 0) {
933 havebuf = m1;
934 *mdp = m1 = m1->m_next;
935 if (m1 == NULL)
936 return (EBADRPC);
937 src = mtod(m1, void *);
938 left = m1->m_len;
939 /*
940 * If we start a new mbuf and it is big enough
941 * and correctly aligned just return it, don't
942 * do any pull up.
943 */
944 if (left >= siz && nfsm_aligned(src)) {
945 *cp2 = src;
946 *dposp = src + siz;
947 return (0);
948 }
949 }
950 if (m1->m_flags & M_EXT) {
951 if (havebuf) {
952 /* If the first mbuf with data has external data
953 * and there is a previous empty mbuf use it
954 * to move the data into.
955 */
956 m2 = m1;
957 *mdp = m1 = havebuf;
958 if (m1->m_flags & M_EXT) {
959 MEXTREMOVE(m1);
960 }
961 } else {
962 /*
963 * If the first mbuf has a external data
964 * and there is no previous empty mbuf
965 * allocate a new mbuf and move the external
966 * data to the new mbuf. Also make the first
967 * mbuf look empty.
968 */
969 m2 = m_get(M_WAIT, MT_DATA);
970 m2->m_ext = m1->m_ext;
971 m2->m_data = src;
972 m2->m_len = left;
973 MCLADDREFERENCE(m1, m2);
974 MEXTREMOVE(m1);
975 m2->m_next = m1->m_next;
976 m1->m_next = m2;
977 }
978 m1->m_len = 0;
979 if (m1->m_flags & M_PKTHDR)
980 dst = m1->m_pktdat;
981 else
982 dst = m1->m_dat;
983 m1->m_data = dst;
984 } else {
985 /*
986 * If the first mbuf has no external data
987 * move the data to the front of the mbuf.
988 */
989 if (m1->m_flags & M_PKTHDR)
990 dst = m1->m_pktdat;
991 else
992 dst = m1->m_dat;
993 m1->m_data = dst;
994 if (dst != src)
995 memmove(dst, src, left);
996 dst += left;
997 m1->m_len = left;
998 m2 = m1->m_next;
999 }
1000 *cp2 = m1->m_data;
1001 *dposp = mtod(m1, char *) + siz;
1002 /*
1003 * Loop through mbufs pulling data up into first mbuf until
1004 * the first mbuf is full or there is no more data to
1005 * pullup.
1006 */
1007 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1008 if ((len = min(len, m2->m_len)) != 0)
1009 memcpy(dst, m2->m_data, len);
1010 m1->m_len += len;
1011 dst += len;
1012 m2->m_data += len;
1013 m2->m_len -= len;
1014 m2 = m2->m_next;
1015 }
1016 if (m1->m_len < siz)
1017 return (EBADRPC);
1018 return (0);
1019 }
1020
1021 /*
1022 * Advance the position in the mbuf chain.
1023 */
1024 int
1025 nfs_adv(mdp, dposp, offs, left)
1026 struct mbuf **mdp;
1027 char **dposp;
1028 int offs;
1029 int left;
1030 {
1031 struct mbuf *m;
1032 int s;
1033
1034 m = *mdp;
1035 s = left;
1036 while (s < offs) {
1037 offs -= s;
1038 m = m->m_next;
1039 if (m == NULL)
1040 return (EBADRPC);
1041 s = m->m_len;
1042 }
1043 *mdp = m;
1044 *dposp = mtod(m, char *) + offs;
1045 return (0);
1046 }
1047
1048 /*
1049 * Copy a string into mbufs for the hard cases...
1050 */
1051 int
1052 nfsm_strtmbuf(mb, bpos, cp, siz)
1053 struct mbuf **mb;
1054 char **bpos;
1055 const char *cp;
1056 long siz;
1057 {
1058 struct mbuf *m1 = NULL, *m2;
1059 long left, xfer, len, tlen;
1060 u_int32_t *tl;
1061 int putsize;
1062
1063 putsize = 1;
1064 m2 = *mb;
1065 left = M_TRAILINGSPACE(m2);
1066 if (left > 0) {
1067 tl = ((u_int32_t *)(*bpos));
1068 *tl++ = txdr_unsigned(siz);
1069 putsize = 0;
1070 left -= NFSX_UNSIGNED;
1071 m2->m_len += NFSX_UNSIGNED;
1072 if (left > 0) {
1073 memcpy((void *) tl, cp, left);
1074 siz -= left;
1075 cp += left;
1076 m2->m_len += left;
1077 left = 0;
1078 }
1079 }
1080 /* Loop around adding mbufs */
1081 while (siz > 0) {
1082 m1 = m_get(M_WAIT, MT_DATA);
1083 MCLAIM(m1, &nfs_mowner);
1084 if (siz > MLEN)
1085 m_clget(m1, M_WAIT);
1086 m1->m_len = NFSMSIZ(m1);
1087 m2->m_next = m1;
1088 m2 = m1;
1089 tl = mtod(m1, u_int32_t *);
1090 tlen = 0;
1091 if (putsize) {
1092 *tl++ = txdr_unsigned(siz);
1093 m1->m_len -= NFSX_UNSIGNED;
1094 tlen = NFSX_UNSIGNED;
1095 putsize = 0;
1096 }
1097 if (siz < m1->m_len) {
1098 len = nfsm_rndup(siz);
1099 xfer = siz;
1100 if (xfer < len)
1101 *(tl+(xfer>>2)) = 0;
1102 } else {
1103 xfer = len = m1->m_len;
1104 }
1105 memcpy((void *) tl, cp, xfer);
1106 m1->m_len = len+tlen;
1107 siz -= xfer;
1108 cp += xfer;
1109 }
1110 *mb = m1;
1111 *bpos = mtod(m1, char *) + m1->m_len;
1112 return (0);
1113 }
1114
1115 /*
1116 * Directory caching routines. They work as follows:
1117 * - a cache is maintained per VDIR nfsnode.
1118 * - for each offset cookie that is exported to userspace, and can
1119 * thus be thrown back at us as an offset to VOP_READDIR, store
1120 * information in the cache.
1121 * - cached are:
1122 * - cookie itself
1123 * - blocknumber (essentially just a search key in the buffer cache)
1124 * - entry number in block.
1125 * - offset cookie of block in which this entry is stored
1126 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1127 * - entries are looked up in a hash table
1128 * - also maintained is an LRU list of entries, used to determine
1129 * which ones to delete if the cache grows too large.
1130 * - if 32 <-> 64 translation mode is requested for a filesystem,
1131 * the cache also functions as a translation table
1132 * - in the translation case, invalidating the cache does not mean
1133 * flushing it, but just marking entries as invalid, except for
1134 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1135 * still be able to use the cache as a translation table.
1136 * - 32 bit cookies are uniquely created by combining the hash table
1137 * entry value, and one generation count per hash table entry,
1138 * incremented each time an entry is appended to the chain.
1139 * - the cache is invalidated each time a direcory is modified
1140 * - sanity checks are also done; if an entry in a block turns
1141 * out not to have a matching cookie, the cache is invalidated
1142 * and a new block starting from the wanted offset is fetched from
1143 * the server.
1144 * - directory entries as read from the server are extended to contain
1145 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1146 * the cache and exporting them to userspace through the cookie
1147 * argument to VOP_READDIR.
1148 */
1149
1150 u_long
1151 nfs_dirhash(off)
1152 off_t off;
1153 {
1154 int i;
1155 char *cp = (char *)&off;
1156 u_long sum = 0L;
1157
1158 for (i = 0 ; i < sizeof (off); i++)
1159 sum += *cp++;
1160
1161 return sum;
1162 }
1163
1164 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1165 #define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np))
1166 #define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np))
1167 #define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
1168
1169 void
1170 nfs_initdircache(vp)
1171 struct vnode *vp;
1172 {
1173 struct nfsnode *np = VTONFS(vp);
1174 struct nfsdirhashhead *dircache;
1175
1176 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1177 M_WAITOK, &nfsdirhashmask);
1178
1179 NFSDC_LOCK(np);
1180 if (np->n_dircache == NULL) {
1181 np->n_dircachesize = 0;
1182 np->n_dircache = dircache;
1183 dircache = NULL;
1184 TAILQ_INIT(&np->n_dirchain);
1185 }
1186 NFSDC_UNLOCK(np);
1187 if (dircache)
1188 hashdone(dircache, M_NFSDIROFF);
1189 }
1190
1191 void
1192 nfs_initdirxlatecookie(vp)
1193 struct vnode *vp;
1194 {
1195 struct nfsnode *np = VTONFS(vp);
1196 unsigned *dirgens;
1197
1198 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1199
1200 dirgens = malloc(NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1201 M_WAITOK|M_ZERO);
1202 NFSDC_LOCK(np);
1203 if (np->n_dirgens == NULL) {
1204 np->n_dirgens = dirgens;
1205 dirgens = NULL;
1206 }
1207 NFSDC_UNLOCK(np);
1208 if (dirgens)
1209 free(dirgens, M_NFSDIROFF);
1210 }
1211
1212 static const struct nfsdircache dzero;
1213
1214 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1215 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1216 struct nfsdircache *));
1217
1218 static void
1219 nfs_unlinkdircache(np, ndp)
1220 struct nfsnode *np;
1221 struct nfsdircache *ndp;
1222 {
1223
1224 NFSDC_ASSERT_LOCKED(np);
1225 KASSERT(ndp != &dzero);
1226
1227 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1228 return;
1229
1230 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1231 LIST_REMOVE(ndp, dc_hash);
1232 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1233
1234 nfs_putdircache_unlocked(np, ndp);
1235 }
1236
1237 void
1238 nfs_putdircache(np, ndp)
1239 struct nfsnode *np;
1240 struct nfsdircache *ndp;
1241 {
1242 int ref;
1243
1244 if (ndp == &dzero)
1245 return;
1246
1247 KASSERT(ndp->dc_refcnt > 0);
1248 NFSDC_LOCK(np);
1249 ref = --ndp->dc_refcnt;
1250 NFSDC_UNLOCK(np);
1251
1252 if (ref == 0)
1253 free(ndp, M_NFSDIROFF);
1254 }
1255
1256 static void
1257 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1258 {
1259 int ref;
1260
1261 NFSDC_ASSERT_LOCKED(np);
1262
1263 if (ndp == &dzero)
1264 return;
1265
1266 KASSERT(ndp->dc_refcnt > 0);
1267 ref = --ndp->dc_refcnt;
1268 if (ref == 0)
1269 free(ndp, M_NFSDIROFF);
1270 }
1271
1272 struct nfsdircache *
1273 nfs_searchdircache(vp, off, do32, hashent)
1274 struct vnode *vp;
1275 off_t off;
1276 int do32;
1277 int *hashent;
1278 {
1279 struct nfsdirhashhead *ndhp;
1280 struct nfsdircache *ndp = NULL;
1281 struct nfsnode *np = VTONFS(vp);
1282 unsigned ent;
1283
1284 /*
1285 * Zero is always a valid cookie.
1286 */
1287 if (off == 0)
1288 /* XXXUNCONST */
1289 return (struct nfsdircache *)__UNCONST(&dzero);
1290
1291 if (!np->n_dircache)
1292 return NULL;
1293
1294 /*
1295 * We use a 32bit cookie as search key, directly reconstruct
1296 * the hashentry. Else use the hashfunction.
1297 */
1298 if (do32) {
1299 ent = (u_int32_t)off >> 24;
1300 if (ent >= NFS_DIRHASHSIZ)
1301 return NULL;
1302 ndhp = &np->n_dircache[ent];
1303 } else {
1304 ndhp = NFSDIRHASH(np, off);
1305 }
1306
1307 if (hashent)
1308 *hashent = (int)(ndhp - np->n_dircache);
1309
1310 NFSDC_LOCK(np);
1311 if (do32) {
1312 LIST_FOREACH(ndp, ndhp, dc_hash) {
1313 if (ndp->dc_cookie32 == (u_int32_t)off) {
1314 /*
1315 * An invalidated entry will become the
1316 * start of a new block fetched from
1317 * the server.
1318 */
1319 if (ndp->dc_flags & NFSDC_INVALID) {
1320 ndp->dc_blkcookie = ndp->dc_cookie;
1321 ndp->dc_entry = 0;
1322 ndp->dc_flags &= ~NFSDC_INVALID;
1323 }
1324 break;
1325 }
1326 }
1327 } else {
1328 LIST_FOREACH(ndp, ndhp, dc_hash) {
1329 if (ndp->dc_cookie == off)
1330 break;
1331 }
1332 }
1333 if (ndp != NULL)
1334 ndp->dc_refcnt++;
1335 NFSDC_UNLOCK(np);
1336 return ndp;
1337 }
1338
1339
1340 struct nfsdircache *
1341 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1342 daddr_t blkno)
1343 {
1344 struct nfsnode *np = VTONFS(vp);
1345 struct nfsdirhashhead *ndhp;
1346 struct nfsdircache *ndp = NULL;
1347 struct nfsdircache *newndp = NULL;
1348 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1349 int hashent = 0, gen, overwrite; /* XXX: GCC */
1350
1351 /*
1352 * XXX refuse entries for offset 0. amd(8) erroneously sets
1353 * cookie 0 for the '.' entry, making this necessary. This
1354 * isn't so bad, as 0 is a special case anyway.
1355 */
1356 if (off == 0)
1357 /* XXXUNCONST */
1358 return (struct nfsdircache *)__UNCONST(&dzero);
1359
1360 if (!np->n_dircache)
1361 /*
1362 * XXX would like to do this in nfs_nget but vtype
1363 * isn't known at that time.
1364 */
1365 nfs_initdircache(vp);
1366
1367 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1368 nfs_initdirxlatecookie(vp);
1369
1370 retry:
1371 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1372
1373 NFSDC_LOCK(np);
1374 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1375 /*
1376 * Overwriting an old entry. Check if it's the same.
1377 * If so, just return. If not, remove the old entry.
1378 */
1379 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1380 goto done;
1381 nfs_unlinkdircache(np, ndp);
1382 nfs_putdircache_unlocked(np, ndp);
1383 ndp = NULL;
1384 }
1385
1386 ndhp = &np->n_dircache[hashent];
1387
1388 if (!ndp) {
1389 if (newndp == NULL) {
1390 NFSDC_UNLOCK(np);
1391 newndp = malloc(sizeof(*ndp), M_NFSDIROFF, M_WAITOK);
1392 newndp->dc_refcnt = 1;
1393 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1394 goto retry;
1395 }
1396 ndp = newndp;
1397 newndp = NULL;
1398 overwrite = 0;
1399 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1400 /*
1401 * We're allocating a new entry, so bump the
1402 * generation number.
1403 */
1404 KASSERT(np->n_dirgens);
1405 gen = ++np->n_dirgens[hashent];
1406 if (gen == 0) {
1407 np->n_dirgens[hashent]++;
1408 gen++;
1409 }
1410 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1411 }
1412 } else
1413 overwrite = 1;
1414
1415 ndp->dc_cookie = off;
1416 ndp->dc_blkcookie = blkoff;
1417 ndp->dc_entry = en;
1418 ndp->dc_flags = 0;
1419
1420 if (overwrite)
1421 goto done;
1422
1423 /*
1424 * If the maximum directory cookie cache size has been reached
1425 * for this node, take one off the front. The idea is that
1426 * directories are typically read front-to-back once, so that
1427 * the oldest entries can be thrown away without much performance
1428 * loss.
1429 */
1430 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1431 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1432 } else
1433 np->n_dircachesize++;
1434
1435 KASSERT(ndp->dc_refcnt == 1);
1436 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1437 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1438 ndp->dc_refcnt++;
1439 done:
1440 KASSERT(ndp->dc_refcnt > 0);
1441 NFSDC_UNLOCK(np);
1442 if (newndp)
1443 nfs_putdircache(np, newndp);
1444 return ndp;
1445 }
1446
1447 void
1448 nfs_invaldircache(vp, flags)
1449 struct vnode *vp;
1450 int flags;
1451 {
1452 struct nfsnode *np = VTONFS(vp);
1453 struct nfsdircache *ndp = NULL;
1454 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1455 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1456
1457 #ifdef DIAGNOSTIC
1458 if (vp->v_type != VDIR)
1459 panic("nfs: invaldircache: not dir");
1460 #endif
1461
1462 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1463 np->n_flag &= ~NEOFVALID;
1464
1465 if (!np->n_dircache)
1466 return;
1467
1468 NFSDC_LOCK(np);
1469 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1470 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1471 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1472 nfs_unlinkdircache(np, ndp);
1473 }
1474 np->n_dircachesize = 0;
1475 if (forcefree && np->n_dirgens) {
1476 FREE(np->n_dirgens, M_NFSDIROFF);
1477 np->n_dirgens = NULL;
1478 }
1479 } else {
1480 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1481 ndp->dc_flags |= NFSDC_INVALID;
1482 }
1483
1484 NFSDC_UNLOCK(np);
1485 }
1486
1487 /*
1488 * Called once before VFS init to initialize shared and
1489 * server-specific data structures.
1490 */
1491 static int
1492 nfs_init0(void)
1493 {
1494 extern krwlock_t netexport_lock; /* XXX */
1495
1496 rw_init(&netexport_lock);
1497
1498 nfsrtt.pos = 0;
1499 rpc_vers = txdr_unsigned(RPC_VER2);
1500 rpc_call = txdr_unsigned(RPC_CALL);
1501 rpc_reply = txdr_unsigned(RPC_REPLY);
1502 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1503 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1504 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1505 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1506 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1507 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1508 nfs_prog = txdr_unsigned(NFS_PROG);
1509 nfs_true = txdr_unsigned(true);
1510 nfs_false = txdr_unsigned(false);
1511 nfs_xdrneg1 = txdr_unsigned(-1);
1512 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1513 if (nfs_ticks < 1)
1514 nfs_ticks = 1;
1515 #ifdef NFSSERVER
1516 nfsrv_init(0); /* Init server data structures */
1517 nfsrv_initcache(); /* Init the server request cache */
1518 {
1519 extern krwlock_t netexport_lock; /* XXX */
1520 rw_init(&netexport_lock);
1521 }
1522 #endif /* NFSSERVER */
1523
1524 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
1525 nfsdreq_init();
1526 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
1527
1528 /*
1529 * Initialize reply list and start timer
1530 */
1531 TAILQ_INIT(&nfs_reqq);
1532 nfs_timer(nfs_timer);
1533 MOWNER_ATTACH(&nfs_mowner);
1534
1535 #ifdef NFS
1536 /* Initialize the kqueue structures */
1537 nfs_kqinit();
1538 /* Initialize the iod structures */
1539 nfs_iodinit();
1540 #endif
1541 return 0;
1542 }
1543
1544 void
1545 nfs_init(void)
1546 {
1547 static ONCE_DECL(nfs_init_once);
1548
1549 RUN_ONCE(&nfs_init_once, nfs_init0);
1550 }
1551
1552 #ifdef NFS
1553 /*
1554 * Called once at VFS init to initialize client-specific data structures.
1555 */
1556 void
1557 nfs_vfs_init()
1558 {
1559 /* Initialize NFS server / client shared data. */
1560 nfs_init();
1561
1562 nfs_nhinit(); /* Init the nfsnode table */
1563 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1564 }
1565
1566 void
1567 nfs_vfs_reinit()
1568 {
1569 nfs_nhreinit();
1570 }
1571
1572 void
1573 nfs_vfs_done()
1574 {
1575 nfs_nhdone();
1576 }
1577
1578 /*
1579 * Attribute cache routines.
1580 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1581 * that are on the mbuf list
1582 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1583 * error otherwise
1584 */
1585
1586 /*
1587 * Load the attribute cache (that lives in the nfsnode entry) with
1588 * the values on the mbuf list and
1589 * Iff vap not NULL
1590 * copy the attributes to *vaper
1591 */
1592 int
1593 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1594 struct vnode **vpp;
1595 struct mbuf **mdp;
1596 char **dposp;
1597 struct vattr *vaper;
1598 int flags;
1599 {
1600 int32_t t1;
1601 char *cp2;
1602 int error = 0;
1603 struct mbuf *md;
1604 int v3 = NFS_ISV3(*vpp);
1605
1606 md = *mdp;
1607 t1 = (mtod(md, char *) + md->m_len) - *dposp;
1608 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1609 if (error)
1610 return (error);
1611 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1612 }
1613
1614 int
1615 nfs_loadattrcache(vpp, fp, vaper, flags)
1616 struct vnode **vpp;
1617 struct nfs_fattr *fp;
1618 struct vattr *vaper;
1619 int flags;
1620 {
1621 struct vnode *vp = *vpp;
1622 struct vattr *vap;
1623 int v3 = NFS_ISV3(vp);
1624 enum vtype vtyp;
1625 u_short vmode;
1626 struct timespec mtime;
1627 struct timespec ctime;
1628 struct vnode *nvp;
1629 int32_t rdev;
1630 struct nfsnode *np;
1631 extern int (**spec_nfsv2nodeop_p) __P((void *));
1632 uid_t uid;
1633 gid_t gid;
1634
1635 if (v3) {
1636 vtyp = nfsv3tov_type(fp->fa_type);
1637 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1638 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1639 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1640 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1641 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1642 } else {
1643 vtyp = nfsv2tov_type(fp->fa_type);
1644 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1645 if (vtyp == VNON || vtyp == VREG)
1646 vtyp = IFTOVT(vmode);
1647 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1648 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1649 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1650 fp->fa2_ctime.nfsv2_sec);
1651 ctime.tv_nsec = 0;
1652
1653 /*
1654 * Really ugly NFSv2 kludge.
1655 */
1656 if (vtyp == VCHR && rdev == 0xffffffff)
1657 vtyp = VFIFO;
1658 }
1659
1660 vmode &= ALLPERMS;
1661
1662 /*
1663 * If v_type == VNON it is a new node, so fill in the v_type,
1664 * n_mtime fields. Check to see if it represents a special
1665 * device, and if so, check for a possible alias. Once the
1666 * correct vnode has been obtained, fill in the rest of the
1667 * information.
1668 */
1669 np = VTONFS(vp);
1670 if (vp->v_type == VNON) {
1671 vp->v_type = vtyp;
1672 if (vp->v_type == VFIFO) {
1673 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1674 vp->v_op = fifo_nfsv2nodeop_p;
1675 } else if (vp->v_type == VREG) {
1676 mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
1677 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1678 vp->v_op = spec_nfsv2nodeop_p;
1679 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1680 if (nvp) {
1681 /*
1682 * Discard unneeded vnode, but save its nfsnode.
1683 * Since the nfsnode does not have a lock, its
1684 * vnode lock has to be carried over.
1685 */
1686 /*
1687 * XXX is the old node sure to be locked here?
1688 */
1689 KASSERT(lockstatus(&vp->v_lock) ==
1690 LK_EXCLUSIVE);
1691 nvp->v_data = vp->v_data;
1692 vp->v_data = NULL;
1693 VOP_UNLOCK(vp, 0);
1694 vp->v_op = spec_vnodeop_p;
1695 vrele(vp);
1696 vgone(vp);
1697 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1698 &nvp->v_interlock);
1699 /*
1700 * Reinitialize aliased node.
1701 */
1702 np->n_vnode = nvp;
1703 *vpp = vp = nvp;
1704 }
1705 }
1706 np->n_mtime = mtime;
1707 }
1708 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1709 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1710 vap = np->n_vattr;
1711
1712 /*
1713 * Invalidate access cache if uid, gid, mode or ctime changed.
1714 */
1715 if (np->n_accstamp != -1 &&
1716 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1717 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1718 np->n_accstamp = -1;
1719
1720 vap->va_type = vtyp;
1721 vap->va_mode = vmode;
1722 vap->va_rdev = (dev_t)rdev;
1723 vap->va_mtime = mtime;
1724 vap->va_ctime = ctime;
1725 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1726 switch (vtyp) {
1727 case VDIR:
1728 vap->va_blocksize = NFS_DIRFRAGSIZ;
1729 break;
1730 case VBLK:
1731 vap->va_blocksize = BLKDEV_IOSIZE;
1732 break;
1733 case VCHR:
1734 vap->va_blocksize = MAXBSIZE;
1735 break;
1736 default:
1737 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1738 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1739 break;
1740 }
1741 if (v3) {
1742 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1743 vap->va_uid = uid;
1744 vap->va_gid = gid;
1745 vap->va_size = fxdr_hyper(&fp->fa3_size);
1746 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1747 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1748 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1749 vap->va_flags = 0;
1750 vap->va_filerev = 0;
1751 } else {
1752 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1753 vap->va_uid = uid;
1754 vap->va_gid = gid;
1755 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1756 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1757 * NFS_FABLKSIZE;
1758 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1759 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1760 vap->va_flags = 0;
1761 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1762 vap->va_filerev = 0;
1763 }
1764 if (vap->va_size != np->n_size) {
1765 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1766 vap->va_size = np->n_size;
1767 } else {
1768 np->n_size = vap->va_size;
1769 if (vap->va_type == VREG) {
1770 /*
1771 * we can't free pages if NAC_NOTRUNC because
1772 * the pages can be owned by ourselves.
1773 */
1774 if (flags & NAC_NOTRUNC) {
1775 np->n_flag |= NTRUNCDELAYED;
1776 } else {
1777 genfs_node_wrlock(vp);
1778 mutex_enter(&vp->v_interlock);
1779 (void)VOP_PUTPAGES(vp, 0,
1780 0, PGO_SYNCIO | PGO_CLEANIT |
1781 PGO_FREE | PGO_ALLPAGES);
1782 uvm_vnp_setsize(vp, np->n_size);
1783 genfs_node_unlock(vp);
1784 }
1785 }
1786 }
1787 }
1788 np->n_attrstamp = time_second;
1789 if (vaper != NULL) {
1790 memcpy((void *)vaper, (void *)vap, sizeof(*vap));
1791 if (np->n_flag & NCHG) {
1792 if (np->n_flag & NACC)
1793 vaper->va_atime = np->n_atim;
1794 if (np->n_flag & NUPD)
1795 vaper->va_mtime = np->n_mtim;
1796 }
1797 }
1798 return (0);
1799 }
1800
1801 /*
1802 * Check the time stamp
1803 * If the cache is valid, copy contents to *vap and return 0
1804 * otherwise return an error
1805 */
1806 int
1807 nfs_getattrcache(vp, vaper)
1808 struct vnode *vp;
1809 struct vattr *vaper;
1810 {
1811 struct nfsnode *np = VTONFS(vp);
1812 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1813 struct vattr *vap;
1814
1815 if (np->n_attrstamp == 0 ||
1816 (time_second - np->n_attrstamp) >= NFS_ATTRTIMEO(nmp, np)) {
1817 nfsstats.attrcache_misses++;
1818 return (ENOENT);
1819 }
1820 nfsstats.attrcache_hits++;
1821 vap = np->n_vattr;
1822 if (vap->va_size != np->n_size) {
1823 if (vap->va_type == VREG) {
1824 if ((np->n_flag & NMODIFIED) != 0 &&
1825 vap->va_size < np->n_size) {
1826 vap->va_size = np->n_size;
1827 } else {
1828 np->n_size = vap->va_size;
1829 }
1830 genfs_node_wrlock(vp);
1831 uvm_vnp_setsize(vp, np->n_size);
1832 genfs_node_unlock(vp);
1833 } else
1834 np->n_size = vap->va_size;
1835 }
1836 memcpy((void *)vaper, (void *)vap, sizeof(struct vattr));
1837 if (np->n_flag & NCHG) {
1838 if (np->n_flag & NACC)
1839 vaper->va_atime = np->n_atim;
1840 if (np->n_flag & NUPD)
1841 vaper->va_mtime = np->n_mtim;
1842 }
1843 return (0);
1844 }
1845
1846 void
1847 nfs_delayedtruncate(vp)
1848 struct vnode *vp;
1849 {
1850 struct nfsnode *np = VTONFS(vp);
1851
1852 if (np->n_flag & NTRUNCDELAYED) {
1853 np->n_flag &= ~NTRUNCDELAYED;
1854 genfs_node_wrlock(vp);
1855 mutex_enter(&vp->v_interlock);
1856 (void)VOP_PUTPAGES(vp, 0,
1857 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1858 uvm_vnp_setsize(vp, np->n_size);
1859 genfs_node_unlock(vp);
1860 }
1861 }
1862
1863 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1864 #define NFS_WCCKLUDGE(nmp, now) \
1865 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1866 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1867
1868 /*
1869 * nfs_check_wccdata: check inaccurate wcc_data
1870 *
1871 * => return non-zero if we shouldn't trust the wcc_data.
1872 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1873 */
1874
1875 int
1876 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1877 struct timespec *mtime, bool docheck)
1878 {
1879 int error = 0;
1880
1881 #if !defined(NFS_V2_ONLY)
1882
1883 if (docheck) {
1884 struct vnode *vp = NFSTOV(np);
1885 struct nfsmount *nmp;
1886 long now = time_second;
1887 const struct timespec *omtime = &np->n_vattr->va_mtime;
1888 const struct timespec *octime = &np->n_vattr->va_ctime;
1889 #if defined(DEBUG)
1890 const char *reason = NULL; /* XXX: gcc */
1891 #endif
1892
1893 if (timespeccmp(omtime, mtime, <=)) {
1894 #if defined(DEBUG)
1895 reason = "mtime";
1896 #endif
1897 error = EINVAL;
1898 }
1899
1900 if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
1901 #if defined(DEBUG)
1902 reason = "ctime";
1903 #endif
1904 error = EINVAL;
1905 }
1906
1907 nmp = VFSTONFS(vp->v_mount);
1908 if (error) {
1909
1910 /*
1911 * despite of the fact that we've updated the file,
1912 * timestamps of the file were not updated as we
1913 * expected.
1914 * it means that the server has incompatible
1915 * semantics of timestamps or (more likely)
1916 * the server time is not precise enough to
1917 * track each modifications.
1918 * in that case, we disable wcc processing.
1919 *
1920 * yes, strictly speaking, we should disable all
1921 * caching. it's a compromise.
1922 */
1923
1924 mutex_enter(&nmp->nm_lock);
1925 #if defined(DEBUG)
1926 if (!NFS_WCCKLUDGE(nmp, now)) {
1927 printf("%s: inaccurate wcc data (%s) detected,"
1928 " disabling wcc"
1929 " (ctime %u.%09u %u.%09u,"
1930 " mtime %u.%09u %u.%09u)\n",
1931 vp->v_mount->mnt_stat.f_mntfromname,
1932 reason,
1933 (unsigned int)octime->tv_sec,
1934 (unsigned int)octime->tv_nsec,
1935 (unsigned int)ctime->tv_sec,
1936 (unsigned int)ctime->tv_nsec,
1937 (unsigned int)omtime->tv_sec,
1938 (unsigned int)omtime->tv_nsec,
1939 (unsigned int)mtime->tv_sec,
1940 (unsigned int)mtime->tv_nsec);
1941 }
1942 #endif
1943 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1944 nmp->nm_wcckludgetime = now;
1945 mutex_exit(&nmp->nm_lock);
1946 } else if (NFS_WCCKLUDGE(nmp, now)) {
1947 error = EPERM; /* XXX */
1948 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1949 mutex_enter(&nmp->nm_lock);
1950 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1951 #if defined(DEBUG)
1952 printf("%s: re-enabling wcc\n",
1953 vp->v_mount->mnt_stat.f_mntfromname);
1954 #endif
1955 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1956 }
1957 mutex_exit(&nmp->nm_lock);
1958 }
1959 }
1960
1961 #endif /* !defined(NFS_V2_ONLY) */
1962
1963 return error;
1964 }
1965
1966 /*
1967 * Heuristic to see if the server XDR encodes directory cookies or not.
1968 * it is not supposed to, but a lot of servers may do this. Also, since
1969 * most/all servers will implement V2 as well, it is expected that they
1970 * may return just 32 bits worth of cookie information, so we need to
1971 * find out in which 32 bits this information is available. We do this
1972 * to avoid trouble with emulated binaries that can't handle 64 bit
1973 * directory offsets.
1974 */
1975
1976 void
1977 nfs_cookieheuristic(vp, flagp, l, cred)
1978 struct vnode *vp;
1979 int *flagp;
1980 struct lwp *l;
1981 kauth_cred_t cred;
1982 {
1983 struct uio auio;
1984 struct iovec aiov;
1985 char *tbuf, *cp;
1986 struct dirent *dp;
1987 off_t *cookies = NULL, *cop;
1988 int error, eof, nc, len;
1989
1990 MALLOC(tbuf, void *, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1991
1992 aiov.iov_base = tbuf;
1993 aiov.iov_len = NFS_DIRFRAGSIZ;
1994 auio.uio_iov = &aiov;
1995 auio.uio_iovcnt = 1;
1996 auio.uio_rw = UIO_READ;
1997 auio.uio_resid = NFS_DIRFRAGSIZ;
1998 auio.uio_offset = 0;
1999 UIO_SETUP_SYSSPACE(&auio);
2000
2001 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
2002
2003 len = NFS_DIRFRAGSIZ - auio.uio_resid;
2004 if (error || len == 0) {
2005 FREE(tbuf, M_TEMP);
2006 if (cookies)
2007 free(cookies, M_TEMP);
2008 return;
2009 }
2010
2011 /*
2012 * Find the first valid entry and look at its offset cookie.
2013 */
2014
2015 cp = tbuf;
2016 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2017 dp = (struct dirent *)cp;
2018 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2019 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2020 *flagp |= NFSMNT_SWAPCOOKIE;
2021 nfs_invaldircache(vp, 0);
2022 nfs_vinvalbuf(vp, 0, cred, l, 1);
2023 }
2024 break;
2025 }
2026 cop++;
2027 cp += dp->d_reclen;
2028 }
2029
2030 FREE(tbuf, M_TEMP);
2031 free(cookies, M_TEMP);
2032 }
2033 #endif /* NFS */
2034
2035 #ifdef NFSSERVER
2036 /*
2037 * Set up nameidata for a lookup() call and do it.
2038 *
2039 * If pubflag is set, this call is done for a lookup operation on the
2040 * public filehandle. In that case we allow crossing mountpoints and
2041 * absolute pathnames. However, the caller is expected to check that
2042 * the lookup result is within the public fs, and deny access if
2043 * it is not.
2044 */
2045 int
2046 nfs_namei(ndp, nsfh, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2047 struct nameidata *ndp;
2048 nfsrvfh_t *nsfh;
2049 uint32_t len;
2050 struct nfssvc_sock *slp;
2051 struct mbuf *nam;
2052 struct mbuf **mdp;
2053 char **dposp;
2054 struct vnode **retdirp;
2055 struct lwp *l;
2056 int kerbflag, pubflag;
2057 {
2058 int i, rem;
2059 struct mbuf *md;
2060 char *fromcp, *tocp, *cp;
2061 struct iovec aiov;
2062 struct uio auio;
2063 struct vnode *dp;
2064 int error, rdonly, linklen;
2065 struct componentname *cnp = &ndp->ni_cnd;
2066
2067 *retdirp = NULL;
2068
2069 if ((len + 1) > MAXPATHLEN)
2070 return (ENAMETOOLONG);
2071 if (len == 0)
2072 return (EACCES);
2073 cnp->cn_pnbuf = PNBUF_GET();
2074
2075 /*
2076 * Copy the name from the mbuf list to ndp->ni_pnbuf
2077 * and set the various ndp fields appropriately.
2078 */
2079 fromcp = *dposp;
2080 tocp = cnp->cn_pnbuf;
2081 md = *mdp;
2082 rem = mtod(md, char *) + md->m_len - fromcp;
2083 for (i = 0; i < len; i++) {
2084 while (rem == 0) {
2085 md = md->m_next;
2086 if (md == NULL) {
2087 error = EBADRPC;
2088 goto out;
2089 }
2090 fromcp = mtod(md, void *);
2091 rem = md->m_len;
2092 }
2093 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2094 error = EACCES;
2095 goto out;
2096 }
2097 *tocp++ = *fromcp++;
2098 rem--;
2099 }
2100 *tocp = '\0';
2101 *mdp = md;
2102 *dposp = fromcp;
2103 len = nfsm_rndup(len)-len;
2104 if (len > 0) {
2105 if (rem >= len)
2106 *dposp += len;
2107 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2108 goto out;
2109 }
2110
2111 /*
2112 * Extract and set starting directory.
2113 */
2114 error = nfsrv_fhtovp(nsfh, false, &dp, ndp->ni_cnd.cn_cred, slp,
2115 nam, &rdonly, kerbflag, pubflag);
2116 if (error)
2117 goto out;
2118 if (dp->v_type != VDIR) {
2119 vrele(dp);
2120 error = ENOTDIR;
2121 goto out;
2122 }
2123
2124 if (rdonly)
2125 cnp->cn_flags |= RDONLY;
2126
2127 *retdirp = dp;
2128
2129 if (pubflag) {
2130 /*
2131 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2132 * and the 'native path' indicator.
2133 */
2134 cp = PNBUF_GET();
2135 fromcp = cnp->cn_pnbuf;
2136 tocp = cp;
2137 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2138 switch ((unsigned char)*fromcp) {
2139 case WEBNFS_NATIVE_CHAR:
2140 /*
2141 * 'Native' path for us is the same
2142 * as a path according to the NFS spec,
2143 * just skip the escape char.
2144 */
2145 fromcp++;
2146 break;
2147 /*
2148 * More may be added in the future, range 0x80-0xff
2149 */
2150 default:
2151 error = EIO;
2152 vrele(dp);
2153 PNBUF_PUT(cp);
2154 goto out;
2155 }
2156 }
2157 /*
2158 * Translate the '%' escapes, URL-style.
2159 */
2160 while (*fromcp != '\0') {
2161 if (*fromcp == WEBNFS_ESC_CHAR) {
2162 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2163 fromcp++;
2164 *tocp++ = HEXSTRTOI(fromcp);
2165 fromcp += 2;
2166 continue;
2167 } else {
2168 error = ENOENT;
2169 vrele(dp);
2170 PNBUF_PUT(cp);
2171 goto out;
2172 }
2173 } else
2174 *tocp++ = *fromcp++;
2175 }
2176 *tocp = '\0';
2177 PNBUF_PUT(cnp->cn_pnbuf);
2178 cnp->cn_pnbuf = cp;
2179 }
2180
2181 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2182 ndp->ni_segflg = UIO_SYSSPACE;
2183 ndp->ni_rootdir = rootvnode;
2184 ndp->ni_erootdir = NULL;
2185
2186 if (pubflag) {
2187 ndp->ni_loopcnt = 0;
2188 if (cnp->cn_pnbuf[0] == '/')
2189 dp = rootvnode;
2190 } else {
2191 cnp->cn_flags |= NOCROSSMOUNT;
2192 }
2193
2194 cnp->cn_lwp = l;
2195 VREF(dp);
2196 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2197
2198 for (;;) {
2199 cnp->cn_nameptr = cnp->cn_pnbuf;
2200 ndp->ni_startdir = dp;
2201
2202 /*
2203 * And call lookup() to do the real work
2204 */
2205 error = lookup(ndp);
2206 if (error) {
2207 if (ndp->ni_dvp) {
2208 vput(ndp->ni_dvp);
2209 }
2210 PNBUF_PUT(cnp->cn_pnbuf);
2211 return (error);
2212 }
2213
2214 /*
2215 * Check for encountering a symbolic link
2216 */
2217 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2218 if ((cnp->cn_flags & LOCKPARENT) == 0 && ndp->ni_dvp) {
2219 if (ndp->ni_dvp == ndp->ni_vp) {
2220 vrele(ndp->ni_dvp);
2221 } else {
2222 vput(ndp->ni_dvp);
2223 }
2224 }
2225 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2226 cnp->cn_flags |= HASBUF;
2227 else
2228 PNBUF_PUT(cnp->cn_pnbuf);
2229 return (0);
2230 } else {
2231 if (!pubflag) {
2232 error = EINVAL;
2233 break;
2234 }
2235 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2236 error = ELOOP;
2237 break;
2238 }
2239 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2240 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2241 cnp->cn_lwp);
2242 if (error != 0)
2243 break;
2244 }
2245 if (ndp->ni_pathlen > 1)
2246 cp = PNBUF_GET();
2247 else
2248 cp = cnp->cn_pnbuf;
2249 aiov.iov_base = cp;
2250 aiov.iov_len = MAXPATHLEN;
2251 auio.uio_iov = &aiov;
2252 auio.uio_iovcnt = 1;
2253 auio.uio_offset = 0;
2254 auio.uio_rw = UIO_READ;
2255 auio.uio_resid = MAXPATHLEN;
2256 UIO_SETUP_SYSSPACE(&auio);
2257 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2258 if (error) {
2259 badlink:
2260 if (ndp->ni_pathlen > 1)
2261 PNBUF_PUT(cp);
2262 break;
2263 }
2264 linklen = MAXPATHLEN - auio.uio_resid;
2265 if (linklen == 0) {
2266 error = ENOENT;
2267 goto badlink;
2268 }
2269 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2270 error = ENAMETOOLONG;
2271 goto badlink;
2272 }
2273 if (ndp->ni_pathlen > 1) {
2274 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2275 PNBUF_PUT(cnp->cn_pnbuf);
2276 cnp->cn_pnbuf = cp;
2277 } else
2278 cnp->cn_pnbuf[linklen] = '\0';
2279 ndp->ni_pathlen += linklen;
2280 vput(ndp->ni_vp);
2281 dp = ndp->ni_dvp;
2282
2283 /*
2284 * Check if root directory should replace current directory.
2285 */
2286 if (cnp->cn_pnbuf[0] == '/') {
2287 vput(dp);
2288 dp = ndp->ni_rootdir;
2289 VREF(dp);
2290 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2291 }
2292 }
2293 }
2294 vput(ndp->ni_dvp);
2295 vput(ndp->ni_vp);
2296 ndp->ni_vp = NULL;
2297 out:
2298 PNBUF_PUT(cnp->cn_pnbuf);
2299 return (error);
2300 }
2301 #endif /* NFSSERVER */
2302
2303 /*
2304 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2305 * boundary and only trims off the back end
2306 *
2307 * 1. trim off 'len' bytes as m_adj(mp, -len).
2308 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2309 */
2310 void
2311 nfs_zeropad(mp, len, nul)
2312 struct mbuf *mp;
2313 int len;
2314 int nul;
2315 {
2316 struct mbuf *m;
2317 int count;
2318
2319 /*
2320 * Trim from tail. Scan the mbuf chain,
2321 * calculating its length and finding the last mbuf.
2322 * If the adjustment only affects this mbuf, then just
2323 * adjust and return. Otherwise, rescan and truncate
2324 * after the remaining size.
2325 */
2326 count = 0;
2327 m = mp;
2328 for (;;) {
2329 count += m->m_len;
2330 if (m->m_next == NULL)
2331 break;
2332 m = m->m_next;
2333 }
2334
2335 KDASSERT(count >= len);
2336
2337 if (m->m_len >= len) {
2338 m->m_len -= len;
2339 } else {
2340 count -= len;
2341 /*
2342 * Correct length for chain is "count".
2343 * Find the mbuf with last data, adjust its length,
2344 * and toss data from remaining mbufs on chain.
2345 */
2346 for (m = mp; m; m = m->m_next) {
2347 if (m->m_len >= count) {
2348 m->m_len = count;
2349 break;
2350 }
2351 count -= m->m_len;
2352 }
2353 KASSERT(m && m->m_next);
2354 m_freem(m->m_next);
2355 m->m_next = NULL;
2356 }
2357
2358 KDASSERT(m->m_next == NULL);
2359
2360 /*
2361 * zero-padding.
2362 */
2363 if (nul > 0) {
2364 char *cp;
2365 int i;
2366
2367 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2368 struct mbuf *n;
2369
2370 KDASSERT(MLEN >= nul);
2371 n = m_get(M_WAIT, MT_DATA);
2372 MCLAIM(n, &nfs_mowner);
2373 n->m_len = nul;
2374 n->m_next = NULL;
2375 m->m_next = n;
2376 cp = mtod(n, void *);
2377 } else {
2378 cp = mtod(m, char *) + m->m_len;
2379 m->m_len += nul;
2380 }
2381 for (i = 0; i < nul; i++)
2382 *cp++ = '\0';
2383 }
2384 return;
2385 }
2386
2387 /*
2388 * Make these functions instead of macros, so that the kernel text size
2389 * doesn't get too big...
2390 */
2391 void
2392 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2393 struct nfsrv_descript *nfsd;
2394 int before_ret;
2395 struct vattr *before_vap;
2396 int after_ret;
2397 struct vattr *after_vap;
2398 struct mbuf **mbp;
2399 char **bposp;
2400 {
2401 struct mbuf *mb = *mbp;
2402 char *bpos = *bposp;
2403 u_int32_t *tl;
2404
2405 if (before_ret) {
2406 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2407 *tl = nfs_false;
2408 } else {
2409 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2410 *tl++ = nfs_true;
2411 txdr_hyper(before_vap->va_size, tl);
2412 tl += 2;
2413 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2414 tl += 2;
2415 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2416 }
2417 *bposp = bpos;
2418 *mbp = mb;
2419 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2420 }
2421
2422 void
2423 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2424 struct nfsrv_descript *nfsd;
2425 int after_ret;
2426 struct vattr *after_vap;
2427 struct mbuf **mbp;
2428 char **bposp;
2429 {
2430 struct mbuf *mb = *mbp;
2431 char *bpos = *bposp;
2432 u_int32_t *tl;
2433 struct nfs_fattr *fp;
2434
2435 if (after_ret) {
2436 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2437 *tl = nfs_false;
2438 } else {
2439 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2440 *tl++ = nfs_true;
2441 fp = (struct nfs_fattr *)tl;
2442 nfsm_srvfattr(nfsd, after_vap, fp);
2443 }
2444 *mbp = mb;
2445 *bposp = bpos;
2446 }
2447
2448 void
2449 nfsm_srvfattr(nfsd, vap, fp)
2450 struct nfsrv_descript *nfsd;
2451 struct vattr *vap;
2452 struct nfs_fattr *fp;
2453 {
2454
2455 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2456 fp->fa_uid = txdr_unsigned(vap->va_uid);
2457 fp->fa_gid = txdr_unsigned(vap->va_gid);
2458 if (nfsd->nd_flag & ND_NFSV3) {
2459 fp->fa_type = vtonfsv3_type(vap->va_type);
2460 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2461 txdr_hyper(vap->va_size, &fp->fa3_size);
2462 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2463 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2464 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2465 fp->fa3_fsid.nfsuquad[0] = 0;
2466 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2467 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2468 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2469 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2470 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2471 } else {
2472 fp->fa_type = vtonfsv2_type(vap->va_type);
2473 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2474 fp->fa2_size = txdr_unsigned(vap->va_size);
2475 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2476 if (vap->va_type == VFIFO)
2477 fp->fa2_rdev = 0xffffffff;
2478 else
2479 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2480 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2481 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2482 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2483 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2484 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2485 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2486 }
2487 }
2488
2489 #ifdef NFSSERVER
2490 /*
2491 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2492 * - look up fsid in mount list (if not found ret error)
2493 * - get vp and export rights by calling VFS_FHTOVP()
2494 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2495 * - if not lockflag unlock it with VOP_UNLOCK()
2496 */
2497 int
2498 nfsrv_fhtovp(nfsrvfh_t *nsfh, int lockflag, struct vnode **vpp,
2499 kauth_cred_t cred, struct nfssvc_sock *slp, struct mbuf *nam, int *rdonlyp,
2500 int kerbflag, int pubflag)
2501 {
2502 struct mount *mp;
2503 kauth_cred_t credanon;
2504 int error, exflags;
2505 struct sockaddr_in *saddr;
2506 fhandle_t *fhp;
2507
2508 fhp = NFSRVFH_FHANDLE(nsfh);
2509 *vpp = (struct vnode *)0;
2510
2511 if (nfs_ispublicfh(nsfh)) {
2512 if (!pubflag || !nfs_pub.np_valid)
2513 return (ESTALE);
2514 fhp = nfs_pub.np_handle;
2515 }
2516
2517 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2518 if (error) {
2519 return error;
2520 }
2521
2522 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2523 if (error)
2524 return (error);
2525
2526 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2527 saddr = mtod(nam, struct sockaddr_in *);
2528 if ((saddr->sin_family == AF_INET) &&
2529 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2530 vput(*vpp);
2531 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2532 }
2533 #ifdef INET6
2534 if ((saddr->sin_family == AF_INET6) &&
2535 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2536 vput(*vpp);
2537 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2538 }
2539 #endif
2540 }
2541 /*
2542 * Check/setup credentials.
2543 */
2544 if (exflags & MNT_EXKERB) {
2545 if (!kerbflag) {
2546 vput(*vpp);
2547 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2548 }
2549 } else if (kerbflag) {
2550 vput(*vpp);
2551 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2552 } else if (kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER,
2553 NULL) == 0 || (exflags & MNT_EXPORTANON)) {
2554 kauth_cred_clone(credanon, cred);
2555 }
2556 if (exflags & MNT_EXRDONLY)
2557 *rdonlyp = 1;
2558 else
2559 *rdonlyp = 0;
2560 if (!lockflag)
2561 VOP_UNLOCK(*vpp, 0);
2562 return (0);
2563 }
2564
2565 /*
2566 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2567 * means a length of 0, for v2 it means all zeroes.
2568 */
2569 int
2570 nfs_ispublicfh(const nfsrvfh_t *nsfh)
2571 {
2572 const char *cp = (const void *)(NFSRVFH_DATA(nsfh));
2573 int i;
2574
2575 if (NFSRVFH_SIZE(nsfh) == 0) {
2576 return true;
2577 }
2578 if (NFSRVFH_SIZE(nsfh) != NFSX_V2FH) {
2579 return false;
2580 }
2581 for (i = 0; i < NFSX_V2FH; i++)
2582 if (*cp++ != 0)
2583 return false;
2584 return true;
2585 }
2586 #endif /* NFSSERVER */
2587
2588 /*
2589 * This function compares two net addresses by family and returns true
2590 * if they are the same host.
2591 * If there is any doubt, return false.
2592 * The AF_INET family is handled as a special case so that address mbufs
2593 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2594 */
2595 int
2596 netaddr_match(family, haddr, nam)
2597 int family;
2598 union nethostaddr *haddr;
2599 struct mbuf *nam;
2600 {
2601 struct sockaddr_in *inetaddr;
2602
2603 switch (family) {
2604 case AF_INET:
2605 inetaddr = mtod(nam, struct sockaddr_in *);
2606 if (inetaddr->sin_family == AF_INET &&
2607 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2608 return (1);
2609 break;
2610 #ifdef INET6
2611 case AF_INET6:
2612 {
2613 struct sockaddr_in6 *sin6_1, *sin6_2;
2614
2615 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2616 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2617 if (sin6_1->sin6_family == AF_INET6 &&
2618 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2619 return 1;
2620 }
2621 #endif
2622 #ifdef ISO
2623 case AF_ISO:
2624 {
2625 struct sockaddr_iso *isoaddr1, *isoaddr2;
2626
2627 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2628 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2629 if (isoaddr1->siso_family == AF_ISO &&
2630 isoaddr1->siso_nlen > 0 &&
2631 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2632 SAME_ISOADDR(isoaddr1, isoaddr2))
2633 return (1);
2634 break;
2635 }
2636 #endif /* ISO */
2637 default:
2638 break;
2639 };
2640 return (0);
2641 }
2642
2643 /*
2644 * The write verifier has changed (probably due to a server reboot), so all
2645 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2646 * as dirty or are being written out just now, all this takes is clearing
2647 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2648 * the mount point.
2649 */
2650 void
2651 nfs_clearcommit(mp)
2652 struct mount *mp;
2653 {
2654 struct vnode *vp;
2655 struct nfsnode *np;
2656 struct vm_page *pg;
2657 struct nfsmount *nmp = VFSTONFS(mp);
2658
2659 rw_enter(&nmp->nm_writeverflock, RW_WRITER);
2660
2661 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2662 KASSERT(vp->v_mount == mp);
2663 if (vp->v_type != VREG)
2664 continue;
2665 np = VTONFS(vp);
2666 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2667 np->n_pushedhi = 0;
2668 np->n_commitflags &=
2669 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2670 mutex_enter(&vp->v_uobj.vmobjlock);
2671 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2672 pg->flags &= ~PG_NEEDCOMMIT;
2673 }
2674 mutex_exit(&vp->v_uobj.vmobjlock);
2675 }
2676 mutex_enter(&nmp->nm_lock);
2677 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2678 mutex_exit(&nmp->nm_lock);
2679 rw_exit(&nmp->nm_writeverflock);
2680 }
2681
2682 void
2683 nfs_merge_commit_ranges(vp)
2684 struct vnode *vp;
2685 {
2686 struct nfsnode *np = VTONFS(vp);
2687
2688 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2689
2690 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2691 np->n_pushedlo = np->n_pushlo;
2692 np->n_pushedhi = np->n_pushhi;
2693 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2694 } else {
2695 if (np->n_pushlo < np->n_pushedlo)
2696 np->n_pushedlo = np->n_pushlo;
2697 if (np->n_pushhi > np->n_pushedhi)
2698 np->n_pushedhi = np->n_pushhi;
2699 }
2700
2701 np->n_pushlo = np->n_pushhi = 0;
2702 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2703
2704 #ifdef NFS_DEBUG_COMMIT
2705 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2706 (unsigned)np->n_pushedhi);
2707 #endif
2708 }
2709
2710 int
2711 nfs_in_committed_range(vp, off, len)
2712 struct vnode *vp;
2713 off_t off, len;
2714 {
2715 struct nfsnode *np = VTONFS(vp);
2716 off_t lo, hi;
2717
2718 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2719 return 0;
2720 lo = off;
2721 hi = lo + len;
2722
2723 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2724 }
2725
2726 int
2727 nfs_in_tobecommitted_range(vp, off, len)
2728 struct vnode *vp;
2729 off_t off, len;
2730 {
2731 struct nfsnode *np = VTONFS(vp);
2732 off_t lo, hi;
2733
2734 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2735 return 0;
2736 lo = off;
2737 hi = lo + len;
2738
2739 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2740 }
2741
2742 void
2743 nfs_add_committed_range(vp, off, len)
2744 struct vnode *vp;
2745 off_t off, len;
2746 {
2747 struct nfsnode *np = VTONFS(vp);
2748 off_t lo, hi;
2749
2750 lo = off;
2751 hi = lo + len;
2752
2753 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2754 np->n_pushedlo = lo;
2755 np->n_pushedhi = hi;
2756 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2757 } else {
2758 if (hi > np->n_pushedhi)
2759 np->n_pushedhi = hi;
2760 if (lo < np->n_pushedlo)
2761 np->n_pushedlo = lo;
2762 }
2763 #ifdef NFS_DEBUG_COMMIT
2764 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2765 (unsigned)np->n_pushedhi);
2766 #endif
2767 }
2768
2769 void
2770 nfs_del_committed_range(vp, off, len)
2771 struct vnode *vp;
2772 off_t off, len;
2773 {
2774 struct nfsnode *np = VTONFS(vp);
2775 off_t lo, hi;
2776
2777 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2778 return;
2779
2780 lo = off;
2781 hi = lo + len;
2782
2783 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2784 return;
2785 if (lo <= np->n_pushedlo)
2786 np->n_pushedlo = hi;
2787 else if (hi >= np->n_pushedhi)
2788 np->n_pushedhi = lo;
2789 else {
2790 /*
2791 * XXX There's only one range. If the deleted range
2792 * is in the middle, pick the largest of the
2793 * contiguous ranges that it leaves.
2794 */
2795 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2796 np->n_pushedhi = lo;
2797 else
2798 np->n_pushedlo = hi;
2799 }
2800 #ifdef NFS_DEBUG_COMMIT
2801 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2802 (unsigned)np->n_pushedhi);
2803 #endif
2804 }
2805
2806 void
2807 nfs_add_tobecommitted_range(vp, off, len)
2808 struct vnode *vp;
2809 off_t off, len;
2810 {
2811 struct nfsnode *np = VTONFS(vp);
2812 off_t lo, hi;
2813
2814 lo = off;
2815 hi = lo + len;
2816
2817 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2818 np->n_pushlo = lo;
2819 np->n_pushhi = hi;
2820 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2821 } else {
2822 if (lo < np->n_pushlo)
2823 np->n_pushlo = lo;
2824 if (hi > np->n_pushhi)
2825 np->n_pushhi = hi;
2826 }
2827 #ifdef NFS_DEBUG_COMMIT
2828 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2829 (unsigned)np->n_pushhi);
2830 #endif
2831 }
2832
2833 void
2834 nfs_del_tobecommitted_range(vp, off, len)
2835 struct vnode *vp;
2836 off_t off, len;
2837 {
2838 struct nfsnode *np = VTONFS(vp);
2839 off_t lo, hi;
2840
2841 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2842 return;
2843
2844 lo = off;
2845 hi = lo + len;
2846
2847 if (lo > np->n_pushhi || hi < np->n_pushlo)
2848 return;
2849
2850 if (lo <= np->n_pushlo)
2851 np->n_pushlo = hi;
2852 else if (hi >= np->n_pushhi)
2853 np->n_pushhi = lo;
2854 else {
2855 /*
2856 * XXX There's only one range. If the deleted range
2857 * is in the middle, pick the largest of the
2858 * contiguous ranges that it leaves.
2859 */
2860 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2861 np->n_pushhi = lo;
2862 else
2863 np->n_pushlo = hi;
2864 }
2865 #ifdef NFS_DEBUG_COMMIT
2866 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2867 (unsigned)np->n_pushhi);
2868 #endif
2869 }
2870
2871 /*
2872 * Map errnos to NFS error numbers. For Version 3 also filter out error
2873 * numbers not specified for the associated procedure.
2874 */
2875 int
2876 nfsrv_errmap(nd, err)
2877 struct nfsrv_descript *nd;
2878 int err;
2879 {
2880 const short *defaulterrp, *errp;
2881
2882 if (nd->nd_flag & ND_NFSV3) {
2883 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2884 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2885 while (*++errp) {
2886 if (*errp == err)
2887 return (err);
2888 else if (*errp > err)
2889 break;
2890 }
2891 return ((int)*defaulterrp);
2892 } else
2893 return (err & 0xffff);
2894 }
2895 if (err <= ELAST)
2896 return ((int)nfsrv_v2errmap[err - 1]);
2897 return (NFSERR_IO);
2898 }
2899
2900 u_int32_t
2901 nfs_getxid()
2902 {
2903 static u_int32_t base;
2904 static u_int32_t nfs_xid = 0;
2905 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2906 u_int32_t newxid;
2907
2908 simple_lock(&nfs_xidlock);
2909 /*
2910 * derive initial xid from system time
2911 * XXX time is invalid if root not yet mounted
2912 */
2913 if (__predict_false(!base && (rootvp))) {
2914 struct timeval tv;
2915
2916 microtime(&tv);
2917 base = tv.tv_sec << 12;
2918 nfs_xid = base;
2919 }
2920
2921 /*
2922 * Skip zero xid if it should ever happen.
2923 */
2924 if (__predict_false(++nfs_xid == 0))
2925 nfs_xid++;
2926 newxid = nfs_xid;
2927 simple_unlock(&nfs_xidlock);
2928
2929 return txdr_unsigned(newxid);
2930 }
2931
2932 /*
2933 * assign a new xid for existing request.
2934 * used for NFSERR_JUKEBOX handling.
2935 */
2936 void
2937 nfs_renewxid(struct nfsreq *req)
2938 {
2939 u_int32_t xid;
2940 int off;
2941
2942 xid = nfs_getxid();
2943 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2944 off = sizeof(u_int32_t); /* RPC record mark */
2945 else
2946 off = 0;
2947
2948 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2949 req->r_xid = xid;
2950 }
2951
2952 #if defined(NFSSERVER)
2953 int
2954 nfsrv_composefh(struct vnode *vp, nfsrvfh_t *nsfh, bool v3)
2955 {
2956 int error;
2957 size_t fhsize;
2958
2959 fhsize = NFSD_MAXFHSIZE;
2960 error = vfs_composefh(vp, (void *)NFSRVFH_DATA(nsfh), &fhsize);
2961 if (NFSX_FHTOOBIG_P(fhsize, v3)) {
2962 error = EOPNOTSUPP;
2963 }
2964 if (error != 0) {
2965 return error;
2966 }
2967 if (!v3 && fhsize < NFSX_V2FH) {
2968 memset((char *)NFSRVFH_DATA(nsfh) + fhsize, 0,
2969 NFSX_V2FH - fhsize);
2970 fhsize = NFSX_V2FH;
2971 }
2972 if ((fhsize % NFSX_UNSIGNED) != 0) {
2973 return EOPNOTSUPP;
2974 }
2975 nsfh->nsfh_size = fhsize;
2976 return 0;
2977 }
2978
2979 int
2980 nfsrv_comparefh(const nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2981 {
2982
2983 if (NFSRVFH_SIZE(fh1) != NFSRVFH_SIZE(fh2)) {
2984 return NFSRVFH_SIZE(fh2) - NFSRVFH_SIZE(fh1);
2985 }
2986 return memcmp(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), NFSRVFH_SIZE(fh1));
2987 }
2988
2989 void
2990 nfsrv_copyfh(nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2991 {
2992 size_t size;
2993
2994 fh1->nsfh_size = size = NFSRVFH_SIZE(fh2);
2995 memcpy(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), size);
2996 }
2997 #endif /* defined(NFSSERVER) */
2998