nfs_subs.c revision 1.185 1 /* $NetBSD: nfs_subs.c,v 1.185 2007/04/22 08:30:01 dsl Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.185 2007/04/22 08:30:01 dsl Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 #include <sys/once.h>
101 #include <sys/kauth.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include <nfs/rpcv2.h>
106 #include <nfs/nfsproto.h>
107 #include <nfs/nfsnode.h>
108 #include <nfs/nfs.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114
115 #include <miscfs/specfs/specdev.h>
116
117 #include <netinet/in.h>
118 #ifdef ISO
119 #include <netiso/iso.h>
120 #endif
121
122 /*
123 * Data items converted to xdr at startup, since they are constant
124 * This is kinda hokey, but may save a little time doing byte swaps
125 */
126 u_int32_t nfs_xdrneg1;
127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
128 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
129 rpc_auth_kerb;
130 u_int32_t nfs_prog, nfs_true, nfs_false;
131
132 /* And other global data */
133 const nfstype nfsv2_type[9] =
134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142 int nfs_commitsize;
143
144 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
145
146 /* NFS client/server stats. */
147 struct nfsstats nfsstats;
148
149 /*
150 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
151 */
152 const int nfsv3_procid[NFS_NPROCS] = {
153 NFSPROC_NULL,
154 NFSPROC_GETATTR,
155 NFSPROC_SETATTR,
156 NFSPROC_NOOP,
157 NFSPROC_LOOKUP,
158 NFSPROC_READLINK,
159 NFSPROC_READ,
160 NFSPROC_NOOP,
161 NFSPROC_WRITE,
162 NFSPROC_CREATE,
163 NFSPROC_REMOVE,
164 NFSPROC_RENAME,
165 NFSPROC_LINK,
166 NFSPROC_SYMLINK,
167 NFSPROC_MKDIR,
168 NFSPROC_RMDIR,
169 NFSPROC_READDIR,
170 NFSPROC_FSSTAT,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP
176 };
177
178 /*
179 * and the reverse mapping from generic to Version 2 procedure numbers
180 */
181 const int nfsv2_procid[NFS_NPROCS] = {
182 NFSV2PROC_NULL,
183 NFSV2PROC_GETATTR,
184 NFSV2PROC_SETATTR,
185 NFSV2PROC_LOOKUP,
186 NFSV2PROC_NOOP,
187 NFSV2PROC_READLINK,
188 NFSV2PROC_READ,
189 NFSV2PROC_WRITE,
190 NFSV2PROC_CREATE,
191 NFSV2PROC_MKDIR,
192 NFSV2PROC_SYMLINK,
193 NFSV2PROC_CREATE,
194 NFSV2PROC_REMOVE,
195 NFSV2PROC_RMDIR,
196 NFSV2PROC_RENAME,
197 NFSV2PROC_LINK,
198 NFSV2PROC_READDIR,
199 NFSV2PROC_NOOP,
200 NFSV2PROC_STATFS,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 };
206
207 /*
208 * Maps errno values to nfs error numbers.
209 * Use NFSERR_IO as the catch all for ones not specifically defined in
210 * RFC 1094.
211 */
212 static const u_char nfsrv_v2errmap[ELAST] = {
213 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
214 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
215 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
216 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
217 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
226 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO,
230 };
231
232 /*
233 * Maps errno values to nfs error numbers.
234 * Although it is not obvious whether or not NFS clients really care if
235 * a returned error value is in the specified list for the procedure, the
236 * safest thing to do is filter them appropriately. For Version 2, the
237 * X/Open XNFS document is the only specification that defines error values
238 * for each RPC (The RFC simply lists all possible error values for all RPCs),
239 * so I have decided to not do this for Version 2.
240 * The first entry is the default error return and the rest are the valid
241 * errors for that RPC in increasing numeric order.
242 */
243 static const short nfsv3err_null[] = {
244 0,
245 0,
246 };
247
248 static const short nfsv3err_getattr[] = {
249 NFSERR_IO,
250 NFSERR_IO,
251 NFSERR_STALE,
252 NFSERR_BADHANDLE,
253 NFSERR_SERVERFAULT,
254 0,
255 };
256
257 static const short nfsv3err_setattr[] = {
258 NFSERR_IO,
259 NFSERR_PERM,
260 NFSERR_IO,
261 NFSERR_ACCES,
262 NFSERR_INVAL,
263 NFSERR_NOSPC,
264 NFSERR_ROFS,
265 NFSERR_DQUOT,
266 NFSERR_STALE,
267 NFSERR_BADHANDLE,
268 NFSERR_NOT_SYNC,
269 NFSERR_SERVERFAULT,
270 0,
271 };
272
273 static const short nfsv3err_lookup[] = {
274 NFSERR_IO,
275 NFSERR_NOENT,
276 NFSERR_IO,
277 NFSERR_ACCES,
278 NFSERR_NOTDIR,
279 NFSERR_NAMETOL,
280 NFSERR_STALE,
281 NFSERR_BADHANDLE,
282 NFSERR_SERVERFAULT,
283 0,
284 };
285
286 static const short nfsv3err_access[] = {
287 NFSERR_IO,
288 NFSERR_IO,
289 NFSERR_STALE,
290 NFSERR_BADHANDLE,
291 NFSERR_SERVERFAULT,
292 0,
293 };
294
295 static const short nfsv3err_readlink[] = {
296 NFSERR_IO,
297 NFSERR_IO,
298 NFSERR_ACCES,
299 NFSERR_INVAL,
300 NFSERR_STALE,
301 NFSERR_BADHANDLE,
302 NFSERR_NOTSUPP,
303 NFSERR_SERVERFAULT,
304 0,
305 };
306
307 static const short nfsv3err_read[] = {
308 NFSERR_IO,
309 NFSERR_IO,
310 NFSERR_NXIO,
311 NFSERR_ACCES,
312 NFSERR_INVAL,
313 NFSERR_STALE,
314 NFSERR_BADHANDLE,
315 NFSERR_SERVERFAULT,
316 NFSERR_JUKEBOX,
317 0,
318 };
319
320 static const short nfsv3err_write[] = {
321 NFSERR_IO,
322 NFSERR_IO,
323 NFSERR_ACCES,
324 NFSERR_INVAL,
325 NFSERR_FBIG,
326 NFSERR_NOSPC,
327 NFSERR_ROFS,
328 NFSERR_DQUOT,
329 NFSERR_STALE,
330 NFSERR_BADHANDLE,
331 NFSERR_SERVERFAULT,
332 NFSERR_JUKEBOX,
333 0,
334 };
335
336 static const short nfsv3err_create[] = {
337 NFSERR_IO,
338 NFSERR_IO,
339 NFSERR_ACCES,
340 NFSERR_EXIST,
341 NFSERR_NOTDIR,
342 NFSERR_NOSPC,
343 NFSERR_ROFS,
344 NFSERR_NAMETOL,
345 NFSERR_DQUOT,
346 NFSERR_STALE,
347 NFSERR_BADHANDLE,
348 NFSERR_NOTSUPP,
349 NFSERR_SERVERFAULT,
350 0,
351 };
352
353 static const short nfsv3err_mkdir[] = {
354 NFSERR_IO,
355 NFSERR_IO,
356 NFSERR_ACCES,
357 NFSERR_EXIST,
358 NFSERR_NOTDIR,
359 NFSERR_NOSPC,
360 NFSERR_ROFS,
361 NFSERR_NAMETOL,
362 NFSERR_DQUOT,
363 NFSERR_STALE,
364 NFSERR_BADHANDLE,
365 NFSERR_NOTSUPP,
366 NFSERR_SERVERFAULT,
367 0,
368 };
369
370 static const short nfsv3err_symlink[] = {
371 NFSERR_IO,
372 NFSERR_IO,
373 NFSERR_ACCES,
374 NFSERR_EXIST,
375 NFSERR_NOTDIR,
376 NFSERR_NOSPC,
377 NFSERR_ROFS,
378 NFSERR_NAMETOL,
379 NFSERR_DQUOT,
380 NFSERR_STALE,
381 NFSERR_BADHANDLE,
382 NFSERR_NOTSUPP,
383 NFSERR_SERVERFAULT,
384 0,
385 };
386
387 static const short nfsv3err_mknod[] = {
388 NFSERR_IO,
389 NFSERR_IO,
390 NFSERR_ACCES,
391 NFSERR_EXIST,
392 NFSERR_NOTDIR,
393 NFSERR_NOSPC,
394 NFSERR_ROFS,
395 NFSERR_NAMETOL,
396 NFSERR_DQUOT,
397 NFSERR_STALE,
398 NFSERR_BADHANDLE,
399 NFSERR_NOTSUPP,
400 NFSERR_SERVERFAULT,
401 NFSERR_BADTYPE,
402 0,
403 };
404
405 static const short nfsv3err_remove[] = {
406 NFSERR_IO,
407 NFSERR_NOENT,
408 NFSERR_IO,
409 NFSERR_ACCES,
410 NFSERR_NOTDIR,
411 NFSERR_ROFS,
412 NFSERR_NAMETOL,
413 NFSERR_STALE,
414 NFSERR_BADHANDLE,
415 NFSERR_SERVERFAULT,
416 0,
417 };
418
419 static const short nfsv3err_rmdir[] = {
420 NFSERR_IO,
421 NFSERR_NOENT,
422 NFSERR_IO,
423 NFSERR_ACCES,
424 NFSERR_EXIST,
425 NFSERR_NOTDIR,
426 NFSERR_INVAL,
427 NFSERR_ROFS,
428 NFSERR_NAMETOL,
429 NFSERR_NOTEMPTY,
430 NFSERR_STALE,
431 NFSERR_BADHANDLE,
432 NFSERR_NOTSUPP,
433 NFSERR_SERVERFAULT,
434 0,
435 };
436
437 static const short nfsv3err_rename[] = {
438 NFSERR_IO,
439 NFSERR_NOENT,
440 NFSERR_IO,
441 NFSERR_ACCES,
442 NFSERR_EXIST,
443 NFSERR_XDEV,
444 NFSERR_NOTDIR,
445 NFSERR_ISDIR,
446 NFSERR_INVAL,
447 NFSERR_NOSPC,
448 NFSERR_ROFS,
449 NFSERR_MLINK,
450 NFSERR_NAMETOL,
451 NFSERR_NOTEMPTY,
452 NFSERR_DQUOT,
453 NFSERR_STALE,
454 NFSERR_BADHANDLE,
455 NFSERR_NOTSUPP,
456 NFSERR_SERVERFAULT,
457 0,
458 };
459
460 static const short nfsv3err_link[] = {
461 NFSERR_IO,
462 NFSERR_IO,
463 NFSERR_ACCES,
464 NFSERR_EXIST,
465 NFSERR_XDEV,
466 NFSERR_NOTDIR,
467 NFSERR_INVAL,
468 NFSERR_NOSPC,
469 NFSERR_ROFS,
470 NFSERR_MLINK,
471 NFSERR_NAMETOL,
472 NFSERR_DQUOT,
473 NFSERR_STALE,
474 NFSERR_BADHANDLE,
475 NFSERR_NOTSUPP,
476 NFSERR_SERVERFAULT,
477 0,
478 };
479
480 static const short nfsv3err_readdir[] = {
481 NFSERR_IO,
482 NFSERR_IO,
483 NFSERR_ACCES,
484 NFSERR_NOTDIR,
485 NFSERR_STALE,
486 NFSERR_BADHANDLE,
487 NFSERR_BAD_COOKIE,
488 NFSERR_TOOSMALL,
489 NFSERR_SERVERFAULT,
490 0,
491 };
492
493 static const short nfsv3err_readdirplus[] = {
494 NFSERR_IO,
495 NFSERR_IO,
496 NFSERR_ACCES,
497 NFSERR_NOTDIR,
498 NFSERR_STALE,
499 NFSERR_BADHANDLE,
500 NFSERR_BAD_COOKIE,
501 NFSERR_NOTSUPP,
502 NFSERR_TOOSMALL,
503 NFSERR_SERVERFAULT,
504 0,
505 };
506
507 static const short nfsv3err_fsstat[] = {
508 NFSERR_IO,
509 NFSERR_IO,
510 NFSERR_STALE,
511 NFSERR_BADHANDLE,
512 NFSERR_SERVERFAULT,
513 0,
514 };
515
516 static const short nfsv3err_fsinfo[] = {
517 NFSERR_STALE,
518 NFSERR_STALE,
519 NFSERR_BADHANDLE,
520 NFSERR_SERVERFAULT,
521 0,
522 };
523
524 static const short nfsv3err_pathconf[] = {
525 NFSERR_STALE,
526 NFSERR_STALE,
527 NFSERR_BADHANDLE,
528 NFSERR_SERVERFAULT,
529 0,
530 };
531
532 static const short nfsv3err_commit[] = {
533 NFSERR_IO,
534 NFSERR_IO,
535 NFSERR_STALE,
536 NFSERR_BADHANDLE,
537 NFSERR_SERVERFAULT,
538 0,
539 };
540
541 static const short * const nfsrv_v3errmap[] = {
542 nfsv3err_null,
543 nfsv3err_getattr,
544 nfsv3err_setattr,
545 nfsv3err_lookup,
546 nfsv3err_access,
547 nfsv3err_readlink,
548 nfsv3err_read,
549 nfsv3err_write,
550 nfsv3err_create,
551 nfsv3err_mkdir,
552 nfsv3err_symlink,
553 nfsv3err_mknod,
554 nfsv3err_remove,
555 nfsv3err_rmdir,
556 nfsv3err_rename,
557 nfsv3err_link,
558 nfsv3err_readdir,
559 nfsv3err_readdirplus,
560 nfsv3err_fsstat,
561 nfsv3err_fsinfo,
562 nfsv3err_pathconf,
563 nfsv3err_commit,
564 };
565
566 extern struct nfsrtt nfsrtt;
567 extern struct nfsnodehashhead *nfsnodehashtbl;
568 extern u_long nfsnodehash;
569
570 u_long nfsdirhashmask;
571
572 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
573
574 /*
575 * Create the header for an rpc request packet
576 * The hsiz is the size of the rest of the nfs request header.
577 * (just used to decide if a cluster is a good idea)
578 */
579 struct mbuf *
580 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
581 {
582 struct mbuf *mb;
583 char *bpos;
584
585 mb = m_get(M_WAIT, MT_DATA);
586 MCLAIM(mb, &nfs_mowner);
587 if (hsiz >= MINCLSIZE)
588 m_clget(mb, M_WAIT);
589 mb->m_len = 0;
590 bpos = mtod(mb, void *);
591
592 /* Finally, return values */
593 *bposp = bpos;
594 return (mb);
595 }
596
597 /*
598 * Build the RPC header and fill in the authorization info.
599 * The authorization string argument is only used when the credentials
600 * come from outside of the kernel.
601 * Returns the head of the mbuf list.
602 */
603 struct mbuf *
604 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
605 verf_str, mrest, mrest_len, mbp, xidp)
606 kauth_cred_t cr;
607 int nmflag;
608 int procid;
609 int auth_type;
610 int auth_len;
611 char *auth_str;
612 int verf_len;
613 char *verf_str;
614 struct mbuf *mrest;
615 int mrest_len;
616 struct mbuf **mbp;
617 u_int32_t *xidp;
618 {
619 struct mbuf *mb;
620 u_int32_t *tl;
621 char *bpos;
622 int i;
623 struct mbuf *mreq;
624 int siz, grpsiz, authsiz;
625
626 authsiz = nfsm_rndup(auth_len);
627 mb = m_gethdr(M_WAIT, MT_DATA);
628 MCLAIM(mb, &nfs_mowner);
629 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
630 m_clget(mb, M_WAIT);
631 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
632 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
633 } else {
634 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
635 }
636 mb->m_len = 0;
637 mreq = mb;
638 bpos = mtod(mb, void *);
639
640 /*
641 * First the RPC header.
642 */
643 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
644
645 *tl++ = *xidp = nfs_getxid();
646 *tl++ = rpc_call;
647 *tl++ = rpc_vers;
648 *tl++ = txdr_unsigned(NFS_PROG);
649 if (nmflag & NFSMNT_NFSV3)
650 *tl++ = txdr_unsigned(NFS_VER3);
651 else
652 *tl++ = txdr_unsigned(NFS_VER2);
653 if (nmflag & NFSMNT_NFSV3)
654 *tl++ = txdr_unsigned(procid);
655 else
656 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
657
658 /*
659 * And then the authorization cred.
660 */
661 *tl++ = txdr_unsigned(auth_type);
662 *tl = txdr_unsigned(authsiz);
663 switch (auth_type) {
664 case RPCAUTH_UNIX:
665 nfsm_build(tl, u_int32_t *, auth_len);
666 *tl++ = 0; /* stamp ?? */
667 *tl++ = 0; /* NULL hostname */
668 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
669 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
670 grpsiz = (auth_len >> 2) - 5;
671 *tl++ = txdr_unsigned(grpsiz);
672 for (i = 0; i < grpsiz; i++)
673 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
674 break;
675 case RPCAUTH_KERB4:
676 siz = auth_len;
677 while (siz > 0) {
678 if (M_TRAILINGSPACE(mb) == 0) {
679 struct mbuf *mb2;
680 mb2 = m_get(M_WAIT, MT_DATA);
681 MCLAIM(mb2, &nfs_mowner);
682 if (siz >= MINCLSIZE)
683 m_clget(mb2, M_WAIT);
684 mb->m_next = mb2;
685 mb = mb2;
686 mb->m_len = 0;
687 bpos = mtod(mb, void *);
688 }
689 i = min(siz, M_TRAILINGSPACE(mb));
690 memcpy(bpos, auth_str, i);
691 mb->m_len += i;
692 auth_str += i;
693 bpos += i;
694 siz -= i;
695 }
696 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
697 for (i = 0; i < siz; i++)
698 *bpos++ = '\0';
699 mb->m_len += siz;
700 }
701 break;
702 };
703
704 /*
705 * And the verifier...
706 */
707 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
708 if (verf_str) {
709 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
710 *tl = txdr_unsigned(verf_len);
711 siz = verf_len;
712 while (siz > 0) {
713 if (M_TRAILINGSPACE(mb) == 0) {
714 struct mbuf *mb2;
715 mb2 = m_get(M_WAIT, MT_DATA);
716 MCLAIM(mb2, &nfs_mowner);
717 if (siz >= MINCLSIZE)
718 m_clget(mb2, M_WAIT);
719 mb->m_next = mb2;
720 mb = mb2;
721 mb->m_len = 0;
722 bpos = mtod(mb, void *);
723 }
724 i = min(siz, M_TRAILINGSPACE(mb));
725 memcpy(bpos, verf_str, i);
726 mb->m_len += i;
727 verf_str += i;
728 bpos += i;
729 siz -= i;
730 }
731 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
732 for (i = 0; i < siz; i++)
733 *bpos++ = '\0';
734 mb->m_len += siz;
735 }
736 } else {
737 *tl++ = txdr_unsigned(RPCAUTH_NULL);
738 *tl = 0;
739 }
740 mb->m_next = mrest;
741 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
742 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
743 *mbp = mb;
744 return (mreq);
745 }
746
747 /*
748 * copies mbuf chain to the uio scatter/gather list
749 */
750 int
751 nfsm_mbuftouio(mrep, uiop, siz, dpos)
752 struct mbuf **mrep;
753 struct uio *uiop;
754 int siz;
755 char **dpos;
756 {
757 char *mbufcp, *uiocp;
758 int xfer, left, len;
759 struct mbuf *mp;
760 long uiosiz, rem;
761 int error = 0;
762
763 mp = *mrep;
764 mbufcp = *dpos;
765 len = mtod(mp, char *) + mp->m_len - mbufcp;
766 rem = nfsm_rndup(siz)-siz;
767 while (siz > 0) {
768 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
769 return (EFBIG);
770 left = uiop->uio_iov->iov_len;
771 uiocp = uiop->uio_iov->iov_base;
772 if (left > siz)
773 left = siz;
774 uiosiz = left;
775 while (left > 0) {
776 while (len == 0) {
777 mp = mp->m_next;
778 if (mp == NULL)
779 return (EBADRPC);
780 mbufcp = mtod(mp, void *);
781 len = mp->m_len;
782 }
783 xfer = (left > len) ? len : left;
784 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
785 uiocp, xfer);
786 if (error) {
787 return error;
788 }
789 left -= xfer;
790 len -= xfer;
791 mbufcp += xfer;
792 uiocp += xfer;
793 uiop->uio_offset += xfer;
794 uiop->uio_resid -= xfer;
795 }
796 if (uiop->uio_iov->iov_len <= siz) {
797 uiop->uio_iovcnt--;
798 uiop->uio_iov++;
799 } else {
800 uiop->uio_iov->iov_base =
801 (char *)uiop->uio_iov->iov_base + uiosiz;
802 uiop->uio_iov->iov_len -= uiosiz;
803 }
804 siz -= uiosiz;
805 }
806 *dpos = mbufcp;
807 *mrep = mp;
808 if (rem > 0) {
809 if (len < rem)
810 error = nfs_adv(mrep, dpos, rem, len);
811 else
812 *dpos += rem;
813 }
814 return (error);
815 }
816
817 /*
818 * copies a uio scatter/gather list to an mbuf chain.
819 * NOTE: can ony handle iovcnt == 1
820 */
821 int
822 nfsm_uiotombuf(uiop, mq, siz, bpos)
823 struct uio *uiop;
824 struct mbuf **mq;
825 int siz;
826 char **bpos;
827 {
828 char *uiocp;
829 struct mbuf *mp, *mp2;
830 int xfer, left, mlen;
831 int uiosiz, clflg, rem;
832 char *cp;
833 int error;
834
835 #ifdef DIAGNOSTIC
836 if (uiop->uio_iovcnt != 1)
837 panic("nfsm_uiotombuf: iovcnt != 1");
838 #endif
839
840 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
841 clflg = 1;
842 else
843 clflg = 0;
844 rem = nfsm_rndup(siz)-siz;
845 mp = mp2 = *mq;
846 while (siz > 0) {
847 left = uiop->uio_iov->iov_len;
848 uiocp = uiop->uio_iov->iov_base;
849 if (left > siz)
850 left = siz;
851 uiosiz = left;
852 while (left > 0) {
853 mlen = M_TRAILINGSPACE(mp);
854 if (mlen == 0) {
855 mp = m_get(M_WAIT, MT_DATA);
856 MCLAIM(mp, &nfs_mowner);
857 if (clflg)
858 m_clget(mp, M_WAIT);
859 mp->m_len = 0;
860 mp2->m_next = mp;
861 mp2 = mp;
862 mlen = M_TRAILINGSPACE(mp);
863 }
864 xfer = (left > mlen) ? mlen : left;
865 cp = mtod(mp, char *) + mp->m_len;
866 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
867 xfer);
868 if (error) {
869 /* XXX */
870 }
871 mp->m_len += xfer;
872 left -= xfer;
873 uiocp += xfer;
874 uiop->uio_offset += xfer;
875 uiop->uio_resid -= xfer;
876 }
877 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
878 uiosiz;
879 uiop->uio_iov->iov_len -= uiosiz;
880 siz -= uiosiz;
881 }
882 if (rem > 0) {
883 if (rem > M_TRAILINGSPACE(mp)) {
884 mp = m_get(M_WAIT, MT_DATA);
885 MCLAIM(mp, &nfs_mowner);
886 mp->m_len = 0;
887 mp2->m_next = mp;
888 }
889 cp = mtod(mp, char *) + mp->m_len;
890 for (left = 0; left < rem; left++)
891 *cp++ = '\0';
892 mp->m_len += rem;
893 *bpos = cp;
894 } else
895 *bpos = mtod(mp, char *) + mp->m_len;
896 *mq = mp;
897 return (0);
898 }
899
900 /*
901 * Get at least "siz" bytes of correctly aligned data.
902 * When called the mbuf pointers are not necessarily correct,
903 * dsosp points to what ought to be in m_data and left contains
904 * what ought to be in m_len.
905 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
906 * cases. (The macros use the vars. dpos and dpos2)
907 */
908 int
909 nfsm_disct(mdp, dposp, siz, left, cp2)
910 struct mbuf **mdp;
911 char **dposp;
912 int siz;
913 int left;
914 char **cp2;
915 {
916 struct mbuf *m1, *m2;
917 struct mbuf *havebuf = NULL;
918 char *src = *dposp;
919 char *dst;
920 int len;
921
922 #ifdef DEBUG
923 if (left < 0)
924 panic("nfsm_disct: left < 0");
925 #endif
926 m1 = *mdp;
927 /*
928 * Skip through the mbuf chain looking for an mbuf with
929 * some data. If the first mbuf found has enough data
930 * and it is correctly aligned return it.
931 */
932 while (left == 0) {
933 havebuf = m1;
934 *mdp = m1 = m1->m_next;
935 if (m1 == NULL)
936 return (EBADRPC);
937 src = mtod(m1, void *);
938 left = m1->m_len;
939 /*
940 * If we start a new mbuf and it is big enough
941 * and correctly aligned just return it, don't
942 * do any pull up.
943 */
944 if (left >= siz && nfsm_aligned(src)) {
945 *cp2 = src;
946 *dposp = src + siz;
947 return (0);
948 }
949 }
950 if (m1->m_flags & M_EXT) {
951 if (havebuf) {
952 /* If the first mbuf with data has external data
953 * and there is a previous empty mbuf use it
954 * to move the data into.
955 */
956 m2 = m1;
957 *mdp = m1 = havebuf;
958 if (m1->m_flags & M_EXT) {
959 MEXTREMOVE(m1);
960 }
961 } else {
962 /*
963 * If the first mbuf has a external data
964 * and there is no previous empty mbuf
965 * allocate a new mbuf and move the external
966 * data to the new mbuf. Also make the first
967 * mbuf look empty.
968 */
969 m2 = m_get(M_WAIT, MT_DATA);
970 m2->m_ext = m1->m_ext;
971 m2->m_data = src;
972 m2->m_len = left;
973 MCLADDREFERENCE(m1, m2);
974 MEXTREMOVE(m1);
975 m2->m_next = m1->m_next;
976 m1->m_next = m2;
977 }
978 m1->m_len = 0;
979 if (m1->m_flags & M_PKTHDR)
980 dst = m1->m_pktdat;
981 else
982 dst = m1->m_dat;
983 m1->m_data = dst;
984 } else {
985 /*
986 * If the first mbuf has no external data
987 * move the data to the front of the mbuf.
988 */
989 if (m1->m_flags & M_PKTHDR)
990 dst = m1->m_pktdat;
991 else
992 dst = m1->m_dat;
993 m1->m_data = dst;
994 if (dst != src)
995 memmove(dst, src, left);
996 dst += left;
997 m1->m_len = left;
998 m2 = m1->m_next;
999 }
1000 *cp2 = m1->m_data;
1001 *dposp = mtod(m1, char *) + siz;
1002 /*
1003 * Loop through mbufs pulling data up into first mbuf until
1004 * the first mbuf is full or there is no more data to
1005 * pullup.
1006 */
1007 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1008 if ((len = min(len, m2->m_len)) != 0)
1009 memcpy(dst, m2->m_data, len);
1010 m1->m_len += len;
1011 dst += len;
1012 m2->m_data += len;
1013 m2->m_len -= len;
1014 m2 = m2->m_next;
1015 }
1016 if (m1->m_len < siz)
1017 return (EBADRPC);
1018 return (0);
1019 }
1020
1021 /*
1022 * Advance the position in the mbuf chain.
1023 */
1024 int
1025 nfs_adv(mdp, dposp, offs, left)
1026 struct mbuf **mdp;
1027 char **dposp;
1028 int offs;
1029 int left;
1030 {
1031 struct mbuf *m;
1032 int s;
1033
1034 m = *mdp;
1035 s = left;
1036 while (s < offs) {
1037 offs -= s;
1038 m = m->m_next;
1039 if (m == NULL)
1040 return (EBADRPC);
1041 s = m->m_len;
1042 }
1043 *mdp = m;
1044 *dposp = mtod(m, char *) + offs;
1045 return (0);
1046 }
1047
1048 /*
1049 * Copy a string into mbufs for the hard cases...
1050 */
1051 int
1052 nfsm_strtmbuf(mb, bpos, cp, siz)
1053 struct mbuf **mb;
1054 char **bpos;
1055 const char *cp;
1056 long siz;
1057 {
1058 struct mbuf *m1 = NULL, *m2;
1059 long left, xfer, len, tlen;
1060 u_int32_t *tl;
1061 int putsize;
1062
1063 putsize = 1;
1064 m2 = *mb;
1065 left = M_TRAILINGSPACE(m2);
1066 if (left > 0) {
1067 tl = ((u_int32_t *)(*bpos));
1068 *tl++ = txdr_unsigned(siz);
1069 putsize = 0;
1070 left -= NFSX_UNSIGNED;
1071 m2->m_len += NFSX_UNSIGNED;
1072 if (left > 0) {
1073 memcpy((void *) tl, cp, left);
1074 siz -= left;
1075 cp += left;
1076 m2->m_len += left;
1077 left = 0;
1078 }
1079 }
1080 /* Loop around adding mbufs */
1081 while (siz > 0) {
1082 m1 = m_get(M_WAIT, MT_DATA);
1083 MCLAIM(m1, &nfs_mowner);
1084 if (siz > MLEN)
1085 m_clget(m1, M_WAIT);
1086 m1->m_len = NFSMSIZ(m1);
1087 m2->m_next = m1;
1088 m2 = m1;
1089 tl = mtod(m1, u_int32_t *);
1090 tlen = 0;
1091 if (putsize) {
1092 *tl++ = txdr_unsigned(siz);
1093 m1->m_len -= NFSX_UNSIGNED;
1094 tlen = NFSX_UNSIGNED;
1095 putsize = 0;
1096 }
1097 if (siz < m1->m_len) {
1098 len = nfsm_rndup(siz);
1099 xfer = siz;
1100 if (xfer < len)
1101 *(tl+(xfer>>2)) = 0;
1102 } else {
1103 xfer = len = m1->m_len;
1104 }
1105 memcpy((void *) tl, cp, xfer);
1106 m1->m_len = len+tlen;
1107 siz -= xfer;
1108 cp += xfer;
1109 }
1110 *mb = m1;
1111 *bpos = mtod(m1, char *) + m1->m_len;
1112 return (0);
1113 }
1114
1115 /*
1116 * Directory caching routines. They work as follows:
1117 * - a cache is maintained per VDIR nfsnode.
1118 * - for each offset cookie that is exported to userspace, and can
1119 * thus be thrown back at us as an offset to VOP_READDIR, store
1120 * information in the cache.
1121 * - cached are:
1122 * - cookie itself
1123 * - blocknumber (essentially just a search key in the buffer cache)
1124 * - entry number in block.
1125 * - offset cookie of block in which this entry is stored
1126 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1127 * - entries are looked up in a hash table
1128 * - also maintained is an LRU list of entries, used to determine
1129 * which ones to delete if the cache grows too large.
1130 * - if 32 <-> 64 translation mode is requested for a filesystem,
1131 * the cache also functions as a translation table
1132 * - in the translation case, invalidating the cache does not mean
1133 * flushing it, but just marking entries as invalid, except for
1134 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1135 * still be able to use the cache as a translation table.
1136 * - 32 bit cookies are uniquely created by combining the hash table
1137 * entry value, and one generation count per hash table entry,
1138 * incremented each time an entry is appended to the chain.
1139 * - the cache is invalidated each time a direcory is modified
1140 * - sanity checks are also done; if an entry in a block turns
1141 * out not to have a matching cookie, the cache is invalidated
1142 * and a new block starting from the wanted offset is fetched from
1143 * the server.
1144 * - directory entries as read from the server are extended to contain
1145 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1146 * the cache and exporting them to userspace through the cookie
1147 * argument to VOP_READDIR.
1148 */
1149
1150 u_long
1151 nfs_dirhash(off)
1152 off_t off;
1153 {
1154 int i;
1155 char *cp = (char *)&off;
1156 u_long sum = 0L;
1157
1158 for (i = 0 ; i < sizeof (off); i++)
1159 sum += *cp++;
1160
1161 return sum;
1162 }
1163
1164 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1165 #define NFSDC_LOCK(np) simple_lock(_NFSDC_MTX(np))
1166 #define NFSDC_UNLOCK(np) simple_unlock(_NFSDC_MTX(np))
1167 #define NFSDC_ASSERT_LOCKED(np) LOCK_ASSERT(simple_lock_held(_NFSDC_MTX(np)))
1168
1169 void
1170 nfs_initdircache(vp)
1171 struct vnode *vp;
1172 {
1173 struct nfsnode *np = VTONFS(vp);
1174 struct nfsdirhashhead *dircache;
1175
1176 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1177 M_WAITOK, &nfsdirhashmask);
1178
1179 NFSDC_LOCK(np);
1180 if (np->n_dircache == NULL) {
1181 np->n_dircachesize = 0;
1182 np->n_dircache = dircache;
1183 dircache = NULL;
1184 TAILQ_INIT(&np->n_dirchain);
1185 }
1186 NFSDC_UNLOCK(np);
1187 if (dircache)
1188 hashdone(dircache, M_NFSDIROFF);
1189 }
1190
1191 void
1192 nfs_initdirxlatecookie(vp)
1193 struct vnode *vp;
1194 {
1195 struct nfsnode *np = VTONFS(vp);
1196 unsigned *dirgens;
1197
1198 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1199
1200 dirgens = malloc(NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1201 M_WAITOK|M_ZERO);
1202 NFSDC_LOCK(np);
1203 if (np->n_dirgens == NULL) {
1204 np->n_dirgens = dirgens;
1205 dirgens = NULL;
1206 }
1207 NFSDC_UNLOCK(np);
1208 if (dirgens)
1209 free(dirgens, M_NFSDIROFF);
1210 }
1211
1212 static const struct nfsdircache dzero;
1213
1214 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1215 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1216 struct nfsdircache *));
1217
1218 static void
1219 nfs_unlinkdircache(np, ndp)
1220 struct nfsnode *np;
1221 struct nfsdircache *ndp;
1222 {
1223
1224 NFSDC_ASSERT_LOCKED(np);
1225 KASSERT(ndp != &dzero);
1226
1227 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1228 return;
1229
1230 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1231 LIST_REMOVE(ndp, dc_hash);
1232 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1233
1234 nfs_putdircache_unlocked(np, ndp);
1235 }
1236
1237 void
1238 nfs_putdircache(np, ndp)
1239 struct nfsnode *np;
1240 struct nfsdircache *ndp;
1241 {
1242 int ref;
1243
1244 if (ndp == &dzero)
1245 return;
1246
1247 KASSERT(ndp->dc_refcnt > 0);
1248 NFSDC_LOCK(np);
1249 ref = --ndp->dc_refcnt;
1250 NFSDC_UNLOCK(np);
1251
1252 if (ref == 0)
1253 free(ndp, M_NFSDIROFF);
1254 }
1255
1256 static void
1257 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1258 {
1259 int ref;
1260
1261 NFSDC_ASSERT_LOCKED(np);
1262
1263 if (ndp == &dzero)
1264 return;
1265
1266 KASSERT(ndp->dc_refcnt > 0);
1267 ref = --ndp->dc_refcnt;
1268 if (ref == 0)
1269 free(ndp, M_NFSDIROFF);
1270 }
1271
1272 struct nfsdircache *
1273 nfs_searchdircache(vp, off, do32, hashent)
1274 struct vnode *vp;
1275 off_t off;
1276 int do32;
1277 int *hashent;
1278 {
1279 struct nfsdirhashhead *ndhp;
1280 struct nfsdircache *ndp = NULL;
1281 struct nfsnode *np = VTONFS(vp);
1282 unsigned ent;
1283
1284 /*
1285 * Zero is always a valid cookie.
1286 */
1287 if (off == 0)
1288 /* XXXUNCONST */
1289 return (struct nfsdircache *)__UNCONST(&dzero);
1290
1291 if (!np->n_dircache)
1292 return NULL;
1293
1294 /*
1295 * We use a 32bit cookie as search key, directly reconstruct
1296 * the hashentry. Else use the hashfunction.
1297 */
1298 if (do32) {
1299 ent = (u_int32_t)off >> 24;
1300 if (ent >= NFS_DIRHASHSIZ)
1301 return NULL;
1302 ndhp = &np->n_dircache[ent];
1303 } else {
1304 ndhp = NFSDIRHASH(np, off);
1305 }
1306
1307 if (hashent)
1308 *hashent = (int)(ndhp - np->n_dircache);
1309
1310 NFSDC_LOCK(np);
1311 if (do32) {
1312 LIST_FOREACH(ndp, ndhp, dc_hash) {
1313 if (ndp->dc_cookie32 == (u_int32_t)off) {
1314 /*
1315 * An invalidated entry will become the
1316 * start of a new block fetched from
1317 * the server.
1318 */
1319 if (ndp->dc_flags & NFSDC_INVALID) {
1320 ndp->dc_blkcookie = ndp->dc_cookie;
1321 ndp->dc_entry = 0;
1322 ndp->dc_flags &= ~NFSDC_INVALID;
1323 }
1324 break;
1325 }
1326 }
1327 } else {
1328 LIST_FOREACH(ndp, ndhp, dc_hash) {
1329 if (ndp->dc_cookie == off)
1330 break;
1331 }
1332 }
1333 if (ndp != NULL)
1334 ndp->dc_refcnt++;
1335 NFSDC_UNLOCK(np);
1336 return ndp;
1337 }
1338
1339
1340 struct nfsdircache *
1341 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1342 daddr_t blkno)
1343 {
1344 struct nfsnode *np = VTONFS(vp);
1345 struct nfsdirhashhead *ndhp;
1346 struct nfsdircache *ndp = NULL;
1347 struct nfsdircache *newndp = NULL;
1348 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1349 int hashent = 0, gen, overwrite; /* XXX: GCC */
1350
1351 /*
1352 * XXX refuse entries for offset 0. amd(8) erroneously sets
1353 * cookie 0 for the '.' entry, making this necessary. This
1354 * isn't so bad, as 0 is a special case anyway.
1355 */
1356 if (off == 0)
1357 /* XXXUNCONST */
1358 return (struct nfsdircache *)__UNCONST(&dzero);
1359
1360 if (!np->n_dircache)
1361 /*
1362 * XXX would like to do this in nfs_nget but vtype
1363 * isn't known at that time.
1364 */
1365 nfs_initdircache(vp);
1366
1367 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1368 nfs_initdirxlatecookie(vp);
1369
1370 retry:
1371 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1372
1373 NFSDC_LOCK(np);
1374 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1375 /*
1376 * Overwriting an old entry. Check if it's the same.
1377 * If so, just return. If not, remove the old entry.
1378 */
1379 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1380 goto done;
1381 nfs_unlinkdircache(np, ndp);
1382 nfs_putdircache_unlocked(np, ndp);
1383 ndp = NULL;
1384 }
1385
1386 ndhp = &np->n_dircache[hashent];
1387
1388 if (!ndp) {
1389 if (newndp == NULL) {
1390 NFSDC_UNLOCK(np);
1391 newndp = malloc(sizeof(*ndp), M_NFSDIROFF, M_WAITOK);
1392 newndp->dc_refcnt = 1;
1393 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1394 goto retry;
1395 }
1396 ndp = newndp;
1397 newndp = NULL;
1398 overwrite = 0;
1399 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1400 /*
1401 * We're allocating a new entry, so bump the
1402 * generation number.
1403 */
1404 KASSERT(np->n_dirgens);
1405 gen = ++np->n_dirgens[hashent];
1406 if (gen == 0) {
1407 np->n_dirgens[hashent]++;
1408 gen++;
1409 }
1410 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1411 }
1412 } else
1413 overwrite = 1;
1414
1415 ndp->dc_cookie = off;
1416 ndp->dc_blkcookie = blkoff;
1417 ndp->dc_entry = en;
1418 ndp->dc_flags = 0;
1419
1420 if (overwrite)
1421 goto done;
1422
1423 /*
1424 * If the maximum directory cookie cache size has been reached
1425 * for this node, take one off the front. The idea is that
1426 * directories are typically read front-to-back once, so that
1427 * the oldest entries can be thrown away without much performance
1428 * loss.
1429 */
1430 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1431 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1432 } else
1433 np->n_dircachesize++;
1434
1435 KASSERT(ndp->dc_refcnt == 1);
1436 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1437 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1438 ndp->dc_refcnt++;
1439 done:
1440 KASSERT(ndp->dc_refcnt > 0);
1441 NFSDC_UNLOCK(np);
1442 if (newndp)
1443 nfs_putdircache(np, newndp);
1444 return ndp;
1445 }
1446
1447 void
1448 nfs_invaldircache(vp, flags)
1449 struct vnode *vp;
1450 int flags;
1451 {
1452 struct nfsnode *np = VTONFS(vp);
1453 struct nfsdircache *ndp = NULL;
1454 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1455 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1456
1457 #ifdef DIAGNOSTIC
1458 if (vp->v_type != VDIR)
1459 panic("nfs: invaldircache: not dir");
1460 #endif
1461
1462 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1463 np->n_flag &= ~NEOFVALID;
1464
1465 if (!np->n_dircache)
1466 return;
1467
1468 NFSDC_LOCK(np);
1469 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1470 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1471 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1472 nfs_unlinkdircache(np, ndp);
1473 }
1474 np->n_dircachesize = 0;
1475 if (forcefree && np->n_dirgens) {
1476 FREE(np->n_dirgens, M_NFSDIROFF);
1477 np->n_dirgens = NULL;
1478 }
1479 } else {
1480 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1481 ndp->dc_flags |= NFSDC_INVALID;
1482 }
1483
1484 NFSDC_UNLOCK(np);
1485 }
1486
1487 /*
1488 * Called once before VFS init to initialize shared and
1489 * server-specific data structures.
1490 */
1491 static int
1492 nfs_init0(void)
1493 {
1494 nfsrtt.pos = 0;
1495 rpc_vers = txdr_unsigned(RPC_VER2);
1496 rpc_call = txdr_unsigned(RPC_CALL);
1497 rpc_reply = txdr_unsigned(RPC_REPLY);
1498 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1499 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1500 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1501 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1502 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1503 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1504 nfs_prog = txdr_unsigned(NFS_PROG);
1505 nfs_true = txdr_unsigned(true);
1506 nfs_false = txdr_unsigned(false);
1507 nfs_xdrneg1 = txdr_unsigned(-1);
1508 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1509 if (nfs_ticks < 1)
1510 nfs_ticks = 1;
1511 #ifdef NFSSERVER
1512 nfsrv_init(0); /* Init server data structures */
1513 nfsrv_initcache(); /* Init the server request cache */
1514 #endif /* NFSSERVER */
1515
1516 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
1517 nfsdreq_init();
1518 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
1519
1520 exithook_establish(nfs_exit, NULL);
1521
1522 /*
1523 * Initialize reply list and start timer
1524 */
1525 TAILQ_INIT(&nfs_reqq);
1526 nfs_timer(NULL);
1527 MOWNER_ATTACH(&nfs_mowner);
1528
1529 #ifdef NFS
1530 /* Initialize the kqueue structures */
1531 nfs_kqinit();
1532 /* Initialize the iod structures */
1533 nfs_iodinit();
1534 #endif
1535 return 0;
1536 }
1537
1538 void
1539 nfs_init(void)
1540 {
1541 static ONCE_DECL(nfs_init_once);
1542
1543 RUN_ONCE(&nfs_init_once, nfs_init0);
1544 }
1545
1546 #ifdef NFS
1547 /*
1548 * Called once at VFS init to initialize client-specific data structures.
1549 */
1550 void
1551 nfs_vfs_init()
1552 {
1553 /* Initialize NFS server / client shared data. */
1554 nfs_init();
1555
1556 nfs_nhinit(); /* Init the nfsnode table */
1557 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1558 }
1559
1560 void
1561 nfs_vfs_reinit()
1562 {
1563 nfs_nhreinit();
1564 }
1565
1566 void
1567 nfs_vfs_done()
1568 {
1569 nfs_nhdone();
1570 }
1571
1572 /*
1573 * Attribute cache routines.
1574 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1575 * that are on the mbuf list
1576 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1577 * error otherwise
1578 */
1579
1580 /*
1581 * Load the attribute cache (that lives in the nfsnode entry) with
1582 * the values on the mbuf list and
1583 * Iff vap not NULL
1584 * copy the attributes to *vaper
1585 */
1586 int
1587 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1588 struct vnode **vpp;
1589 struct mbuf **mdp;
1590 char **dposp;
1591 struct vattr *vaper;
1592 int flags;
1593 {
1594 int32_t t1;
1595 char *cp2;
1596 int error = 0;
1597 struct mbuf *md;
1598 int v3 = NFS_ISV3(*vpp);
1599
1600 md = *mdp;
1601 t1 = (mtod(md, char *) + md->m_len) - *dposp;
1602 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1603 if (error)
1604 return (error);
1605 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1606 }
1607
1608 int
1609 nfs_loadattrcache(vpp, fp, vaper, flags)
1610 struct vnode **vpp;
1611 struct nfs_fattr *fp;
1612 struct vattr *vaper;
1613 int flags;
1614 {
1615 struct vnode *vp = *vpp;
1616 struct vattr *vap;
1617 int v3 = NFS_ISV3(vp);
1618 enum vtype vtyp;
1619 u_short vmode;
1620 struct timespec mtime;
1621 struct timespec ctime;
1622 struct vnode *nvp;
1623 int32_t rdev;
1624 struct nfsnode *np;
1625 extern int (**spec_nfsv2nodeop_p) __P((void *));
1626 uid_t uid;
1627 gid_t gid;
1628
1629 if (v3) {
1630 vtyp = nfsv3tov_type(fp->fa_type);
1631 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1632 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1633 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1634 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1635 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1636 } else {
1637 vtyp = nfsv2tov_type(fp->fa_type);
1638 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1639 if (vtyp == VNON || vtyp == VREG)
1640 vtyp = IFTOVT(vmode);
1641 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1642 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1643 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1644 fp->fa2_ctime.nfsv2_sec);
1645 ctime.tv_nsec = 0;
1646
1647 /*
1648 * Really ugly NFSv2 kludge.
1649 */
1650 if (vtyp == VCHR && rdev == 0xffffffff)
1651 vtyp = VFIFO;
1652 }
1653
1654 vmode &= ALLPERMS;
1655
1656 /*
1657 * If v_type == VNON it is a new node, so fill in the v_type,
1658 * n_mtime fields. Check to see if it represents a special
1659 * device, and if so, check for a possible alias. Once the
1660 * correct vnode has been obtained, fill in the rest of the
1661 * information.
1662 */
1663 np = VTONFS(vp);
1664 if (vp->v_type == VNON) {
1665 vp->v_type = vtyp;
1666 if (vp->v_type == VFIFO) {
1667 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1668 vp->v_op = fifo_nfsv2nodeop_p;
1669 } else if (vp->v_type == VREG) {
1670 mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
1671 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1672 vp->v_op = spec_nfsv2nodeop_p;
1673 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1674 if (nvp) {
1675 /*
1676 * Discard unneeded vnode, but save its nfsnode.
1677 * Since the nfsnode does not have a lock, its
1678 * vnode lock has to be carried over.
1679 */
1680 /*
1681 * XXX is the old node sure to be locked here?
1682 */
1683 KASSERT(lockstatus(&vp->v_lock) ==
1684 LK_EXCLUSIVE);
1685 nvp->v_data = vp->v_data;
1686 vp->v_data = NULL;
1687 VOP_UNLOCK(vp, 0);
1688 vp->v_op = spec_vnodeop_p;
1689 vrele(vp);
1690 vgone(vp);
1691 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1692 &nvp->v_interlock);
1693 /*
1694 * Reinitialize aliased node.
1695 */
1696 np->n_vnode = nvp;
1697 *vpp = vp = nvp;
1698 }
1699 }
1700 np->n_mtime = mtime;
1701 }
1702 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1703 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1704 vap = np->n_vattr;
1705
1706 /*
1707 * Invalidate access cache if uid, gid, mode or ctime changed.
1708 */
1709 if (np->n_accstamp != -1 &&
1710 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1711 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1712 np->n_accstamp = -1;
1713
1714 vap->va_type = vtyp;
1715 vap->va_mode = vmode;
1716 vap->va_rdev = (dev_t)rdev;
1717 vap->va_mtime = mtime;
1718 vap->va_ctime = ctime;
1719 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1720 switch (vtyp) {
1721 case VDIR:
1722 vap->va_blocksize = NFS_DIRFRAGSIZ;
1723 break;
1724 case VBLK:
1725 vap->va_blocksize = BLKDEV_IOSIZE;
1726 break;
1727 case VCHR:
1728 vap->va_blocksize = MAXBSIZE;
1729 break;
1730 default:
1731 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1732 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1733 break;
1734 }
1735 if (v3) {
1736 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1737 vap->va_uid = uid;
1738 vap->va_gid = gid;
1739 vap->va_size = fxdr_hyper(&fp->fa3_size);
1740 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1741 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1742 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1743 vap->va_flags = 0;
1744 vap->va_filerev = 0;
1745 } else {
1746 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1747 vap->va_uid = uid;
1748 vap->va_gid = gid;
1749 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1750 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1751 * NFS_FABLKSIZE;
1752 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1753 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1754 vap->va_flags = 0;
1755 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1756 vap->va_filerev = 0;
1757 }
1758 if (vap->va_size != np->n_size) {
1759 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1760 vap->va_size = np->n_size;
1761 } else {
1762 np->n_size = vap->va_size;
1763 if (vap->va_type == VREG) {
1764 /*
1765 * we can't free pages if NAC_NOTRUNC because
1766 * the pages can be owned by ourselves.
1767 */
1768 if (flags & NAC_NOTRUNC) {
1769 np->n_flag |= NTRUNCDELAYED;
1770 } else {
1771 genfs_node_wrlock(vp);
1772 simple_lock(&vp->v_interlock);
1773 (void)VOP_PUTPAGES(vp, 0,
1774 0, PGO_SYNCIO | PGO_CLEANIT |
1775 PGO_FREE | PGO_ALLPAGES);
1776 uvm_vnp_setsize(vp, np->n_size);
1777 genfs_node_unlock(vp);
1778 }
1779 }
1780 }
1781 }
1782 np->n_attrstamp = time_second;
1783 if (vaper != NULL) {
1784 memcpy((void *)vaper, (void *)vap, sizeof(*vap));
1785 if (np->n_flag & NCHG) {
1786 if (np->n_flag & NACC)
1787 vaper->va_atime = np->n_atim;
1788 if (np->n_flag & NUPD)
1789 vaper->va_mtime = np->n_mtim;
1790 }
1791 }
1792 return (0);
1793 }
1794
1795 /*
1796 * Check the time stamp
1797 * If the cache is valid, copy contents to *vap and return 0
1798 * otherwise return an error
1799 */
1800 int
1801 nfs_getattrcache(vp, vaper)
1802 struct vnode *vp;
1803 struct vattr *vaper;
1804 {
1805 struct nfsnode *np = VTONFS(vp);
1806 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1807 struct vattr *vap;
1808
1809 if (np->n_attrstamp == 0 ||
1810 (time_second - np->n_attrstamp) >= NFS_ATTRTIMEO(nmp, np)) {
1811 nfsstats.attrcache_misses++;
1812 return (ENOENT);
1813 }
1814 nfsstats.attrcache_hits++;
1815 vap = np->n_vattr;
1816 if (vap->va_size != np->n_size) {
1817 if (vap->va_type == VREG) {
1818 if (np->n_flag & NMODIFIED) {
1819 if (vap->va_size < np->n_size)
1820 vap->va_size = np->n_size;
1821 else
1822 np->n_size = vap->va_size;
1823 } else
1824 np->n_size = vap->va_size;
1825 genfs_node_wrlock(vp);
1826 uvm_vnp_setsize(vp, np->n_size);
1827 genfs_node_unlock(vp);
1828 } else
1829 np->n_size = vap->va_size;
1830 }
1831 memcpy((void *)vaper, (void *)vap, sizeof(struct vattr));
1832 if (np->n_flag & NCHG) {
1833 if (np->n_flag & NACC)
1834 vaper->va_atime = np->n_atim;
1835 if (np->n_flag & NUPD)
1836 vaper->va_mtime = np->n_mtim;
1837 }
1838 return (0);
1839 }
1840
1841 void
1842 nfs_delayedtruncate(vp)
1843 struct vnode *vp;
1844 {
1845 struct nfsnode *np = VTONFS(vp);
1846
1847 if (np->n_flag & NTRUNCDELAYED) {
1848 np->n_flag &= ~NTRUNCDELAYED;
1849 genfs_node_wrlock(vp);
1850 simple_lock(&vp->v_interlock);
1851 (void)VOP_PUTPAGES(vp, 0,
1852 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1853 uvm_vnp_setsize(vp, np->n_size);
1854 genfs_node_unlock(vp);
1855 }
1856 }
1857
1858 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1859 #define NFS_WCCKLUDGE(nmp, now) \
1860 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1861 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1862
1863 /*
1864 * nfs_check_wccdata: check inaccurate wcc_data
1865 *
1866 * => return non-zero if we shouldn't trust the wcc_data.
1867 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1868 */
1869
1870 int
1871 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1872 struct timespec *mtime, bool docheck)
1873 {
1874 int error = 0;
1875
1876 #if !defined(NFS_V2_ONLY)
1877
1878 if (docheck) {
1879 struct vnode *vp = NFSTOV(np);
1880 struct nfsmount *nmp;
1881 long now = time_second;
1882 const struct timespec *omtime = &np->n_vattr->va_mtime;
1883 const struct timespec *octime = &np->n_vattr->va_ctime;
1884 #if defined(DEBUG)
1885 const char *reason = NULL; /* XXX: gcc */
1886 #endif
1887
1888 if (timespeccmp(omtime, mtime, <=)) {
1889 #if defined(DEBUG)
1890 reason = "mtime";
1891 #endif
1892 error = EINVAL;
1893 }
1894
1895 if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
1896 #if defined(DEBUG)
1897 reason = "ctime";
1898 #endif
1899 error = EINVAL;
1900 }
1901
1902 nmp = VFSTONFS(vp->v_mount);
1903 if (error) {
1904
1905 /*
1906 * despite of the fact that we've updated the file,
1907 * timestamps of the file were not updated as we
1908 * expected.
1909 * it means that the server has incompatible
1910 * semantics of timestamps or (more likely)
1911 * the server time is not precise enough to
1912 * track each modifications.
1913 * in that case, we disable wcc processing.
1914 *
1915 * yes, strictly speaking, we should disable all
1916 * caching. it's a compromise.
1917 */
1918
1919 simple_lock(&nmp->nm_slock);
1920 #if defined(DEBUG)
1921 if (!NFS_WCCKLUDGE(nmp, now)) {
1922 printf("%s: inaccurate wcc data (%s) detected,"
1923 " disabling wcc"
1924 " (ctime %u.%09u %u.%09u,"
1925 " mtime %u.%09u %u.%09u)\n",
1926 vp->v_mount->mnt_stat.f_mntfromname,
1927 reason,
1928 (unsigned int)octime->tv_sec,
1929 (unsigned int)octime->tv_nsec,
1930 (unsigned int)ctime->tv_sec,
1931 (unsigned int)ctime->tv_nsec,
1932 (unsigned int)omtime->tv_sec,
1933 (unsigned int)omtime->tv_nsec,
1934 (unsigned int)mtime->tv_sec,
1935 (unsigned int)mtime->tv_nsec);
1936 }
1937 #endif
1938 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1939 nmp->nm_wcckludgetime = now;
1940 simple_unlock(&nmp->nm_slock);
1941 } else if (NFS_WCCKLUDGE(nmp, now)) {
1942 error = EPERM; /* XXX */
1943 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1944 simple_lock(&nmp->nm_slock);
1945 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1946 #if defined(DEBUG)
1947 printf("%s: re-enabling wcc\n",
1948 vp->v_mount->mnt_stat.f_mntfromname);
1949 #endif
1950 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1951 }
1952 simple_unlock(&nmp->nm_slock);
1953 }
1954 }
1955
1956 #endif /* !defined(NFS_V2_ONLY) */
1957
1958 return error;
1959 }
1960
1961 /*
1962 * Heuristic to see if the server XDR encodes directory cookies or not.
1963 * it is not supposed to, but a lot of servers may do this. Also, since
1964 * most/all servers will implement V2 as well, it is expected that they
1965 * may return just 32 bits worth of cookie information, so we need to
1966 * find out in which 32 bits this information is available. We do this
1967 * to avoid trouble with emulated binaries that can't handle 64 bit
1968 * directory offsets.
1969 */
1970
1971 void
1972 nfs_cookieheuristic(vp, flagp, l, cred)
1973 struct vnode *vp;
1974 int *flagp;
1975 struct lwp *l;
1976 kauth_cred_t cred;
1977 {
1978 struct uio auio;
1979 struct iovec aiov;
1980 char *tbuf, *cp;
1981 struct dirent *dp;
1982 off_t *cookies = NULL, *cop;
1983 int error, eof, nc, len;
1984
1985 MALLOC(tbuf, void *, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1986
1987 aiov.iov_base = tbuf;
1988 aiov.iov_len = NFS_DIRFRAGSIZ;
1989 auio.uio_iov = &aiov;
1990 auio.uio_iovcnt = 1;
1991 auio.uio_rw = UIO_READ;
1992 auio.uio_resid = NFS_DIRFRAGSIZ;
1993 auio.uio_offset = 0;
1994 UIO_SETUP_SYSSPACE(&auio);
1995
1996 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1997
1998 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1999 if (error || len == 0) {
2000 FREE(tbuf, M_TEMP);
2001 if (cookies)
2002 free(cookies, M_TEMP);
2003 return;
2004 }
2005
2006 /*
2007 * Find the first valid entry and look at its offset cookie.
2008 */
2009
2010 cp = tbuf;
2011 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2012 dp = (struct dirent *)cp;
2013 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2014 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2015 *flagp |= NFSMNT_SWAPCOOKIE;
2016 nfs_invaldircache(vp, 0);
2017 nfs_vinvalbuf(vp, 0, cred, l, 1);
2018 }
2019 break;
2020 }
2021 cop++;
2022 cp += dp->d_reclen;
2023 }
2024
2025 FREE(tbuf, M_TEMP);
2026 free(cookies, M_TEMP);
2027 }
2028 #endif /* NFS */
2029
2030 #ifdef NFSSERVER
2031 /*
2032 * Set up nameidata for a lookup() call and do it.
2033 *
2034 * If pubflag is set, this call is done for a lookup operation on the
2035 * public filehandle. In that case we allow crossing mountpoints and
2036 * absolute pathnames. However, the caller is expected to check that
2037 * the lookup result is within the public fs, and deny access if
2038 * it is not.
2039 */
2040 int
2041 nfs_namei(ndp, nsfh, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2042 struct nameidata *ndp;
2043 nfsrvfh_t *nsfh;
2044 uint32_t len;
2045 struct nfssvc_sock *slp;
2046 struct mbuf *nam;
2047 struct mbuf **mdp;
2048 char **dposp;
2049 struct vnode **retdirp;
2050 struct lwp *l;
2051 int kerbflag, pubflag;
2052 {
2053 int i, rem;
2054 struct mbuf *md;
2055 char *fromcp, *tocp, *cp;
2056 struct iovec aiov;
2057 struct uio auio;
2058 struct vnode *dp;
2059 int error, rdonly, linklen;
2060 struct componentname *cnp = &ndp->ni_cnd;
2061
2062 *retdirp = NULL;
2063
2064 if ((len + 1) > MAXPATHLEN)
2065 return (ENAMETOOLONG);
2066 if (len == 0)
2067 return (EACCES);
2068 cnp->cn_pnbuf = PNBUF_GET();
2069
2070 /*
2071 * Copy the name from the mbuf list to ndp->ni_pnbuf
2072 * and set the various ndp fields appropriately.
2073 */
2074 fromcp = *dposp;
2075 tocp = cnp->cn_pnbuf;
2076 md = *mdp;
2077 rem = mtod(md, char *) + md->m_len - fromcp;
2078 for (i = 0; i < len; i++) {
2079 while (rem == 0) {
2080 md = md->m_next;
2081 if (md == NULL) {
2082 error = EBADRPC;
2083 goto out;
2084 }
2085 fromcp = mtod(md, void *);
2086 rem = md->m_len;
2087 }
2088 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2089 error = EACCES;
2090 goto out;
2091 }
2092 *tocp++ = *fromcp++;
2093 rem--;
2094 }
2095 *tocp = '\0';
2096 *mdp = md;
2097 *dposp = fromcp;
2098 len = nfsm_rndup(len)-len;
2099 if (len > 0) {
2100 if (rem >= len)
2101 *dposp += len;
2102 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2103 goto out;
2104 }
2105
2106 /*
2107 * Extract and set starting directory.
2108 */
2109 error = nfsrv_fhtovp(nsfh, false, &dp, ndp->ni_cnd.cn_cred, slp,
2110 nam, &rdonly, kerbflag, pubflag);
2111 if (error)
2112 goto out;
2113 if (dp->v_type != VDIR) {
2114 vrele(dp);
2115 error = ENOTDIR;
2116 goto out;
2117 }
2118
2119 if (rdonly)
2120 cnp->cn_flags |= RDONLY;
2121
2122 *retdirp = dp;
2123
2124 if (pubflag) {
2125 /*
2126 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2127 * and the 'native path' indicator.
2128 */
2129 cp = PNBUF_GET();
2130 fromcp = cnp->cn_pnbuf;
2131 tocp = cp;
2132 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2133 switch ((unsigned char)*fromcp) {
2134 case WEBNFS_NATIVE_CHAR:
2135 /*
2136 * 'Native' path for us is the same
2137 * as a path according to the NFS spec,
2138 * just skip the escape char.
2139 */
2140 fromcp++;
2141 break;
2142 /*
2143 * More may be added in the future, range 0x80-0xff
2144 */
2145 default:
2146 error = EIO;
2147 vrele(dp);
2148 PNBUF_PUT(cp);
2149 goto out;
2150 }
2151 }
2152 /*
2153 * Translate the '%' escapes, URL-style.
2154 */
2155 while (*fromcp != '\0') {
2156 if (*fromcp == WEBNFS_ESC_CHAR) {
2157 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2158 fromcp++;
2159 *tocp++ = HEXSTRTOI(fromcp);
2160 fromcp += 2;
2161 continue;
2162 } else {
2163 error = ENOENT;
2164 vrele(dp);
2165 PNBUF_PUT(cp);
2166 goto out;
2167 }
2168 } else
2169 *tocp++ = *fromcp++;
2170 }
2171 *tocp = '\0';
2172 PNBUF_PUT(cnp->cn_pnbuf);
2173 cnp->cn_pnbuf = cp;
2174 }
2175
2176 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2177 ndp->ni_segflg = UIO_SYSSPACE;
2178 ndp->ni_rootdir = rootvnode;
2179 ndp->ni_erootdir = NULL;
2180
2181 if (pubflag) {
2182 ndp->ni_loopcnt = 0;
2183 if (cnp->cn_pnbuf[0] == '/')
2184 dp = rootvnode;
2185 } else {
2186 cnp->cn_flags |= NOCROSSMOUNT;
2187 }
2188
2189 cnp->cn_lwp = l;
2190 VREF(dp);
2191 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2192
2193 for (;;) {
2194 cnp->cn_nameptr = cnp->cn_pnbuf;
2195 ndp->ni_startdir = dp;
2196
2197 /*
2198 * And call lookup() to do the real work
2199 */
2200 error = lookup(ndp);
2201 if (error) {
2202 if (ndp->ni_dvp) {
2203 vput(ndp->ni_dvp);
2204 }
2205 PNBUF_PUT(cnp->cn_pnbuf);
2206 return (error);
2207 }
2208
2209 /*
2210 * Check for encountering a symbolic link
2211 */
2212 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2213 if ((cnp->cn_flags & LOCKPARENT) == 0 && ndp->ni_dvp) {
2214 if (ndp->ni_dvp == ndp->ni_vp) {
2215 vrele(ndp->ni_dvp);
2216 } else {
2217 vput(ndp->ni_dvp);
2218 }
2219 }
2220 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2221 cnp->cn_flags |= HASBUF;
2222 else
2223 PNBUF_PUT(cnp->cn_pnbuf);
2224 return (0);
2225 } else {
2226 if (!pubflag) {
2227 error = EINVAL;
2228 break;
2229 }
2230 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2231 error = ELOOP;
2232 break;
2233 }
2234 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2235 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2236 cnp->cn_lwp);
2237 if (error != 0)
2238 break;
2239 }
2240 if (ndp->ni_pathlen > 1)
2241 cp = PNBUF_GET();
2242 else
2243 cp = cnp->cn_pnbuf;
2244 aiov.iov_base = cp;
2245 aiov.iov_len = MAXPATHLEN;
2246 auio.uio_iov = &aiov;
2247 auio.uio_iovcnt = 1;
2248 auio.uio_offset = 0;
2249 auio.uio_rw = UIO_READ;
2250 auio.uio_resid = MAXPATHLEN;
2251 UIO_SETUP_SYSSPACE(&auio);
2252 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2253 if (error) {
2254 badlink:
2255 if (ndp->ni_pathlen > 1)
2256 PNBUF_PUT(cp);
2257 break;
2258 }
2259 linklen = MAXPATHLEN - auio.uio_resid;
2260 if (linklen == 0) {
2261 error = ENOENT;
2262 goto badlink;
2263 }
2264 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2265 error = ENAMETOOLONG;
2266 goto badlink;
2267 }
2268 if (ndp->ni_pathlen > 1) {
2269 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2270 PNBUF_PUT(cnp->cn_pnbuf);
2271 cnp->cn_pnbuf = cp;
2272 } else
2273 cnp->cn_pnbuf[linklen] = '\0';
2274 ndp->ni_pathlen += linklen;
2275 vput(ndp->ni_vp);
2276 dp = ndp->ni_dvp;
2277
2278 /*
2279 * Check if root directory should replace current directory.
2280 */
2281 if (cnp->cn_pnbuf[0] == '/') {
2282 vput(dp);
2283 dp = ndp->ni_rootdir;
2284 VREF(dp);
2285 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2286 }
2287 }
2288 }
2289 vput(ndp->ni_dvp);
2290 vput(ndp->ni_vp);
2291 ndp->ni_vp = NULL;
2292 out:
2293 PNBUF_PUT(cnp->cn_pnbuf);
2294 return (error);
2295 }
2296 #endif /* NFSSERVER */
2297
2298 /*
2299 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2300 * boundary and only trims off the back end
2301 *
2302 * 1. trim off 'len' bytes as m_adj(mp, -len).
2303 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2304 */
2305 void
2306 nfs_zeropad(mp, len, nul)
2307 struct mbuf *mp;
2308 int len;
2309 int nul;
2310 {
2311 struct mbuf *m;
2312 int count;
2313
2314 /*
2315 * Trim from tail. Scan the mbuf chain,
2316 * calculating its length and finding the last mbuf.
2317 * If the adjustment only affects this mbuf, then just
2318 * adjust and return. Otherwise, rescan and truncate
2319 * after the remaining size.
2320 */
2321 count = 0;
2322 m = mp;
2323 for (;;) {
2324 count += m->m_len;
2325 if (m->m_next == NULL)
2326 break;
2327 m = m->m_next;
2328 }
2329
2330 KDASSERT(count >= len);
2331
2332 if (m->m_len >= len) {
2333 m->m_len -= len;
2334 } else {
2335 count -= len;
2336 /*
2337 * Correct length for chain is "count".
2338 * Find the mbuf with last data, adjust its length,
2339 * and toss data from remaining mbufs on chain.
2340 */
2341 for (m = mp; m; m = m->m_next) {
2342 if (m->m_len >= count) {
2343 m->m_len = count;
2344 break;
2345 }
2346 count -= m->m_len;
2347 }
2348 KASSERT(m && m->m_next);
2349 m_freem(m->m_next);
2350 m->m_next = NULL;
2351 }
2352
2353 KDASSERT(m->m_next == NULL);
2354
2355 /*
2356 * zero-padding.
2357 */
2358 if (nul > 0) {
2359 char *cp;
2360 int i;
2361
2362 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2363 struct mbuf *n;
2364
2365 KDASSERT(MLEN >= nul);
2366 n = m_get(M_WAIT, MT_DATA);
2367 MCLAIM(n, &nfs_mowner);
2368 n->m_len = nul;
2369 n->m_next = NULL;
2370 m->m_next = n;
2371 cp = mtod(n, void *);
2372 } else {
2373 cp = mtod(m, char *) + m->m_len;
2374 m->m_len += nul;
2375 }
2376 for (i = 0; i < nul; i++)
2377 *cp++ = '\0';
2378 }
2379 return;
2380 }
2381
2382 /*
2383 * Make these functions instead of macros, so that the kernel text size
2384 * doesn't get too big...
2385 */
2386 void
2387 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2388 struct nfsrv_descript *nfsd;
2389 int before_ret;
2390 struct vattr *before_vap;
2391 int after_ret;
2392 struct vattr *after_vap;
2393 struct mbuf **mbp;
2394 char **bposp;
2395 {
2396 struct mbuf *mb = *mbp;
2397 char *bpos = *bposp;
2398 u_int32_t *tl;
2399
2400 if (before_ret) {
2401 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2402 *tl = nfs_false;
2403 } else {
2404 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2405 *tl++ = nfs_true;
2406 txdr_hyper(before_vap->va_size, tl);
2407 tl += 2;
2408 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2409 tl += 2;
2410 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2411 }
2412 *bposp = bpos;
2413 *mbp = mb;
2414 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2415 }
2416
2417 void
2418 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2419 struct nfsrv_descript *nfsd;
2420 int after_ret;
2421 struct vattr *after_vap;
2422 struct mbuf **mbp;
2423 char **bposp;
2424 {
2425 struct mbuf *mb = *mbp;
2426 char *bpos = *bposp;
2427 u_int32_t *tl;
2428 struct nfs_fattr *fp;
2429
2430 if (after_ret) {
2431 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2432 *tl = nfs_false;
2433 } else {
2434 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2435 *tl++ = nfs_true;
2436 fp = (struct nfs_fattr *)tl;
2437 nfsm_srvfattr(nfsd, after_vap, fp);
2438 }
2439 *mbp = mb;
2440 *bposp = bpos;
2441 }
2442
2443 void
2444 nfsm_srvfattr(nfsd, vap, fp)
2445 struct nfsrv_descript *nfsd;
2446 struct vattr *vap;
2447 struct nfs_fattr *fp;
2448 {
2449
2450 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2451 fp->fa_uid = txdr_unsigned(vap->va_uid);
2452 fp->fa_gid = txdr_unsigned(vap->va_gid);
2453 if (nfsd->nd_flag & ND_NFSV3) {
2454 fp->fa_type = vtonfsv3_type(vap->va_type);
2455 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2456 txdr_hyper(vap->va_size, &fp->fa3_size);
2457 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2458 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2459 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2460 fp->fa3_fsid.nfsuquad[0] = 0;
2461 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2462 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2463 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2464 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2465 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2466 } else {
2467 fp->fa_type = vtonfsv2_type(vap->va_type);
2468 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2469 fp->fa2_size = txdr_unsigned(vap->va_size);
2470 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2471 if (vap->va_type == VFIFO)
2472 fp->fa2_rdev = 0xffffffff;
2473 else
2474 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2475 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2476 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2477 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2478 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2479 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2480 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2481 }
2482 }
2483
2484 #ifdef NFSSERVER
2485 /*
2486 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2487 * - look up fsid in mount list (if not found ret error)
2488 * - get vp and export rights by calling VFS_FHTOVP()
2489 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2490 * - if not lockflag unlock it with VOP_UNLOCK()
2491 */
2492 int
2493 nfsrv_fhtovp(nfsrvfh_t *nsfh, int lockflag, struct vnode **vpp,
2494 kauth_cred_t cred, struct nfssvc_sock *slp, struct mbuf *nam, int *rdonlyp,
2495 int kerbflag, int pubflag)
2496 {
2497 struct mount *mp;
2498 kauth_cred_t credanon;
2499 int error, exflags;
2500 struct sockaddr_in *saddr;
2501 fhandle_t *fhp;
2502
2503 fhp = NFSRVFH_FHANDLE(nsfh);
2504 *vpp = (struct vnode *)0;
2505
2506 if (nfs_ispublicfh(nsfh)) {
2507 if (!pubflag || !nfs_pub.np_valid)
2508 return (ESTALE);
2509 fhp = nfs_pub.np_handle;
2510 }
2511
2512 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2513 if (error) {
2514 return error;
2515 }
2516
2517 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2518 if (error)
2519 return (error);
2520
2521 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2522 saddr = mtod(nam, struct sockaddr_in *);
2523 if ((saddr->sin_family == AF_INET) &&
2524 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2525 vput(*vpp);
2526 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2527 }
2528 #ifdef INET6
2529 if ((saddr->sin_family == AF_INET6) &&
2530 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2531 vput(*vpp);
2532 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2533 }
2534 #endif
2535 }
2536 /*
2537 * Check/setup credentials.
2538 */
2539 if (exflags & MNT_EXKERB) {
2540 if (!kerbflag) {
2541 vput(*vpp);
2542 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2543 }
2544 } else if (kerbflag) {
2545 vput(*vpp);
2546 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2547 } else if (kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER,
2548 NULL) == 0 || (exflags & MNT_EXPORTANON)) {
2549 kauth_cred_clone(credanon, cred);
2550 }
2551 if (exflags & MNT_EXRDONLY)
2552 *rdonlyp = 1;
2553 else
2554 *rdonlyp = 0;
2555 if (!lockflag)
2556 VOP_UNLOCK(*vpp, 0);
2557 return (0);
2558 }
2559
2560 /*
2561 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2562 * means a length of 0, for v2 it means all zeroes.
2563 */
2564 int
2565 nfs_ispublicfh(const nfsrvfh_t *nsfh)
2566 {
2567 const char *cp = (const void *)(NFSRVFH_DATA(nsfh));
2568 int i;
2569
2570 if (NFSRVFH_SIZE(nsfh) == 0) {
2571 return true;
2572 }
2573 if (NFSRVFH_SIZE(nsfh) != NFSX_V2FH) {
2574 return false;
2575 }
2576 for (i = 0; i < NFSX_V2FH; i++)
2577 if (*cp++ != 0)
2578 return false;
2579 return true;
2580 }
2581 #endif /* NFSSERVER */
2582
2583 /*
2584 * This function compares two net addresses by family and returns true
2585 * if they are the same host.
2586 * If there is any doubt, return false.
2587 * The AF_INET family is handled as a special case so that address mbufs
2588 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2589 */
2590 int
2591 netaddr_match(family, haddr, nam)
2592 int family;
2593 union nethostaddr *haddr;
2594 struct mbuf *nam;
2595 {
2596 struct sockaddr_in *inetaddr;
2597
2598 switch (family) {
2599 case AF_INET:
2600 inetaddr = mtod(nam, struct sockaddr_in *);
2601 if (inetaddr->sin_family == AF_INET &&
2602 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2603 return (1);
2604 break;
2605 #ifdef INET6
2606 case AF_INET6:
2607 {
2608 struct sockaddr_in6 *sin6_1, *sin6_2;
2609
2610 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2611 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2612 if (sin6_1->sin6_family == AF_INET6 &&
2613 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2614 return 1;
2615 }
2616 #endif
2617 #ifdef ISO
2618 case AF_ISO:
2619 {
2620 struct sockaddr_iso *isoaddr1, *isoaddr2;
2621
2622 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2623 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2624 if (isoaddr1->siso_family == AF_ISO &&
2625 isoaddr1->siso_nlen > 0 &&
2626 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2627 SAME_ISOADDR(isoaddr1, isoaddr2))
2628 return (1);
2629 break;
2630 }
2631 #endif /* ISO */
2632 default:
2633 break;
2634 };
2635 return (0);
2636 }
2637
2638 /*
2639 * The write verifier has changed (probably due to a server reboot), so all
2640 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2641 * as dirty or are being written out just now, all this takes is clearing
2642 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2643 * the mount point.
2644 */
2645 void
2646 nfs_clearcommit(mp)
2647 struct mount *mp;
2648 {
2649 struct vnode *vp;
2650 struct nfsnode *np;
2651 struct vm_page *pg;
2652 struct nfsmount *nmp = VFSTONFS(mp);
2653
2654 rw_enter(&nmp->nm_writeverflock, RW_WRITER);
2655
2656 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2657 KASSERT(vp->v_mount == mp);
2658 if (vp->v_type != VREG)
2659 continue;
2660 np = VTONFS(vp);
2661 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2662 np->n_pushedhi = 0;
2663 np->n_commitflags &=
2664 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2665 simple_lock(&vp->v_uobj.vmobjlock);
2666 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2667 pg->flags &= ~PG_NEEDCOMMIT;
2668 }
2669 simple_unlock(&vp->v_uobj.vmobjlock);
2670 }
2671 simple_lock(&nmp->nm_slock);
2672 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2673 simple_unlock(&nmp->nm_slock);
2674 rw_exit(&nmp->nm_writeverflock);
2675 }
2676
2677 void
2678 nfs_merge_commit_ranges(vp)
2679 struct vnode *vp;
2680 {
2681 struct nfsnode *np = VTONFS(vp);
2682
2683 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2684
2685 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2686 np->n_pushedlo = np->n_pushlo;
2687 np->n_pushedhi = np->n_pushhi;
2688 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2689 } else {
2690 if (np->n_pushlo < np->n_pushedlo)
2691 np->n_pushedlo = np->n_pushlo;
2692 if (np->n_pushhi > np->n_pushedhi)
2693 np->n_pushedhi = np->n_pushhi;
2694 }
2695
2696 np->n_pushlo = np->n_pushhi = 0;
2697 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2698
2699 #ifdef NFS_DEBUG_COMMIT
2700 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2701 (unsigned)np->n_pushedhi);
2702 #endif
2703 }
2704
2705 int
2706 nfs_in_committed_range(vp, off, len)
2707 struct vnode *vp;
2708 off_t off, len;
2709 {
2710 struct nfsnode *np = VTONFS(vp);
2711 off_t lo, hi;
2712
2713 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2714 return 0;
2715 lo = off;
2716 hi = lo + len;
2717
2718 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2719 }
2720
2721 int
2722 nfs_in_tobecommitted_range(vp, off, len)
2723 struct vnode *vp;
2724 off_t off, len;
2725 {
2726 struct nfsnode *np = VTONFS(vp);
2727 off_t lo, hi;
2728
2729 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2730 return 0;
2731 lo = off;
2732 hi = lo + len;
2733
2734 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2735 }
2736
2737 void
2738 nfs_add_committed_range(vp, off, len)
2739 struct vnode *vp;
2740 off_t off, len;
2741 {
2742 struct nfsnode *np = VTONFS(vp);
2743 off_t lo, hi;
2744
2745 lo = off;
2746 hi = lo + len;
2747
2748 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2749 np->n_pushedlo = lo;
2750 np->n_pushedhi = hi;
2751 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2752 } else {
2753 if (hi > np->n_pushedhi)
2754 np->n_pushedhi = hi;
2755 if (lo < np->n_pushedlo)
2756 np->n_pushedlo = lo;
2757 }
2758 #ifdef NFS_DEBUG_COMMIT
2759 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2760 (unsigned)np->n_pushedhi);
2761 #endif
2762 }
2763
2764 void
2765 nfs_del_committed_range(vp, off, len)
2766 struct vnode *vp;
2767 off_t off, len;
2768 {
2769 struct nfsnode *np = VTONFS(vp);
2770 off_t lo, hi;
2771
2772 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2773 return;
2774
2775 lo = off;
2776 hi = lo + len;
2777
2778 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2779 return;
2780 if (lo <= np->n_pushedlo)
2781 np->n_pushedlo = hi;
2782 else if (hi >= np->n_pushedhi)
2783 np->n_pushedhi = lo;
2784 else {
2785 /*
2786 * XXX There's only one range. If the deleted range
2787 * is in the middle, pick the largest of the
2788 * contiguous ranges that it leaves.
2789 */
2790 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2791 np->n_pushedhi = lo;
2792 else
2793 np->n_pushedlo = hi;
2794 }
2795 #ifdef NFS_DEBUG_COMMIT
2796 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2797 (unsigned)np->n_pushedhi);
2798 #endif
2799 }
2800
2801 void
2802 nfs_add_tobecommitted_range(vp, off, len)
2803 struct vnode *vp;
2804 off_t off, len;
2805 {
2806 struct nfsnode *np = VTONFS(vp);
2807 off_t lo, hi;
2808
2809 lo = off;
2810 hi = lo + len;
2811
2812 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2813 np->n_pushlo = lo;
2814 np->n_pushhi = hi;
2815 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2816 } else {
2817 if (lo < np->n_pushlo)
2818 np->n_pushlo = lo;
2819 if (hi > np->n_pushhi)
2820 np->n_pushhi = hi;
2821 }
2822 #ifdef NFS_DEBUG_COMMIT
2823 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2824 (unsigned)np->n_pushhi);
2825 #endif
2826 }
2827
2828 void
2829 nfs_del_tobecommitted_range(vp, off, len)
2830 struct vnode *vp;
2831 off_t off, len;
2832 {
2833 struct nfsnode *np = VTONFS(vp);
2834 off_t lo, hi;
2835
2836 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2837 return;
2838
2839 lo = off;
2840 hi = lo + len;
2841
2842 if (lo > np->n_pushhi || hi < np->n_pushlo)
2843 return;
2844
2845 if (lo <= np->n_pushlo)
2846 np->n_pushlo = hi;
2847 else if (hi >= np->n_pushhi)
2848 np->n_pushhi = lo;
2849 else {
2850 /*
2851 * XXX There's only one range. If the deleted range
2852 * is in the middle, pick the largest of the
2853 * contiguous ranges that it leaves.
2854 */
2855 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2856 np->n_pushhi = lo;
2857 else
2858 np->n_pushlo = hi;
2859 }
2860 #ifdef NFS_DEBUG_COMMIT
2861 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2862 (unsigned)np->n_pushhi);
2863 #endif
2864 }
2865
2866 /*
2867 * Map errnos to NFS error numbers. For Version 3 also filter out error
2868 * numbers not specified for the associated procedure.
2869 */
2870 int
2871 nfsrv_errmap(nd, err)
2872 struct nfsrv_descript *nd;
2873 int err;
2874 {
2875 const short *defaulterrp, *errp;
2876
2877 if (nd->nd_flag & ND_NFSV3) {
2878 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2879 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2880 while (*++errp) {
2881 if (*errp == err)
2882 return (err);
2883 else if (*errp > err)
2884 break;
2885 }
2886 return ((int)*defaulterrp);
2887 } else
2888 return (err & 0xffff);
2889 }
2890 if (err <= ELAST)
2891 return ((int)nfsrv_v2errmap[err - 1]);
2892 return (NFSERR_IO);
2893 }
2894
2895 u_int32_t
2896 nfs_getxid()
2897 {
2898 static u_int32_t base;
2899 static u_int32_t nfs_xid = 0;
2900 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2901 u_int32_t newxid;
2902
2903 simple_lock(&nfs_xidlock);
2904 /*
2905 * derive initial xid from system time
2906 * XXX time is invalid if root not yet mounted
2907 */
2908 if (__predict_false(!base && (rootvp))) {
2909 struct timeval tv;
2910
2911 microtime(&tv);
2912 base = tv.tv_sec << 12;
2913 nfs_xid = base;
2914 }
2915
2916 /*
2917 * Skip zero xid if it should ever happen.
2918 */
2919 if (__predict_false(++nfs_xid == 0))
2920 nfs_xid++;
2921 newxid = nfs_xid;
2922 simple_unlock(&nfs_xidlock);
2923
2924 return txdr_unsigned(newxid);
2925 }
2926
2927 /*
2928 * assign a new xid for existing request.
2929 * used for NFSERR_JUKEBOX handling.
2930 */
2931 void
2932 nfs_renewxid(struct nfsreq *req)
2933 {
2934 u_int32_t xid;
2935 int off;
2936
2937 xid = nfs_getxid();
2938 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2939 off = sizeof(u_int32_t); /* RPC record mark */
2940 else
2941 off = 0;
2942
2943 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2944 req->r_xid = xid;
2945 }
2946
2947 #if defined(NFSSERVER)
2948 int
2949 nfsrv_composefh(struct vnode *vp, nfsrvfh_t *nsfh, bool v3)
2950 {
2951 int error;
2952 size_t fhsize;
2953
2954 fhsize = NFSD_MAXFHSIZE;
2955 error = vfs_composefh(vp, (void *)NFSRVFH_DATA(nsfh), &fhsize);
2956 if (NFSX_FHTOOBIG_P(fhsize, v3)) {
2957 error = EOPNOTSUPP;
2958 }
2959 if (error != 0) {
2960 return error;
2961 }
2962 if (!v3 && fhsize < NFSX_V2FH) {
2963 memset((char *)NFSRVFH_DATA(nsfh) + fhsize, 0,
2964 NFSX_V2FH - fhsize);
2965 fhsize = NFSX_V2FH;
2966 }
2967 if ((fhsize % NFSX_UNSIGNED) != 0) {
2968 return EOPNOTSUPP;
2969 }
2970 nsfh->nsfh_size = fhsize;
2971 return 0;
2972 }
2973
2974 int
2975 nfsrv_comparefh(const nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2976 {
2977
2978 if (NFSRVFH_SIZE(fh1) != NFSRVFH_SIZE(fh2)) {
2979 return NFSRVFH_SIZE(fh2) - NFSRVFH_SIZE(fh1);
2980 }
2981 return memcmp(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), NFSRVFH_SIZE(fh1));
2982 }
2983
2984 void
2985 nfsrv_copyfh(nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2986 {
2987 size_t size;
2988
2989 fh1->nsfh_size = size = NFSRVFH_SIZE(fh2);
2990 memcpy(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), size);
2991 }
2992 #endif /* defined(NFSSERVER) */
2993