nfs_subs.c revision 1.189 1 /* $NetBSD: nfs_subs.c,v 1.189 2007/07/09 21:11:30 ad Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.189 2007/07/09 21:11:30 ad Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 #include <sys/once.h>
101 #include <sys/kauth.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include <nfs/rpcv2.h>
106 #include <nfs/nfsproto.h>
107 #include <nfs/nfsnode.h>
108 #include <nfs/nfs.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114
115 #include <miscfs/specfs/specdev.h>
116
117 #include <netinet/in.h>
118 #ifdef ISO
119 #include <netiso/iso.h>
120 #endif
121
122 /*
123 * Data items converted to xdr at startup, since they are constant
124 * This is kinda hokey, but may save a little time doing byte swaps
125 */
126 u_int32_t nfs_xdrneg1;
127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
128 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
129 rpc_auth_kerb;
130 u_int32_t nfs_prog, nfs_true, nfs_false;
131
132 /* And other global data */
133 const nfstype nfsv2_type[9] =
134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142 int nfs_commitsize;
143
144 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
145
146 /* NFS client/server stats. */
147 struct nfsstats nfsstats;
148
149 /*
150 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
151 */
152 const int nfsv3_procid[NFS_NPROCS] = {
153 NFSPROC_NULL,
154 NFSPROC_GETATTR,
155 NFSPROC_SETATTR,
156 NFSPROC_NOOP,
157 NFSPROC_LOOKUP,
158 NFSPROC_READLINK,
159 NFSPROC_READ,
160 NFSPROC_NOOP,
161 NFSPROC_WRITE,
162 NFSPROC_CREATE,
163 NFSPROC_REMOVE,
164 NFSPROC_RENAME,
165 NFSPROC_LINK,
166 NFSPROC_SYMLINK,
167 NFSPROC_MKDIR,
168 NFSPROC_RMDIR,
169 NFSPROC_READDIR,
170 NFSPROC_FSSTAT,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP
176 };
177
178 /*
179 * and the reverse mapping from generic to Version 2 procedure numbers
180 */
181 const int nfsv2_procid[NFS_NPROCS] = {
182 NFSV2PROC_NULL,
183 NFSV2PROC_GETATTR,
184 NFSV2PROC_SETATTR,
185 NFSV2PROC_LOOKUP,
186 NFSV2PROC_NOOP,
187 NFSV2PROC_READLINK,
188 NFSV2PROC_READ,
189 NFSV2PROC_WRITE,
190 NFSV2PROC_CREATE,
191 NFSV2PROC_MKDIR,
192 NFSV2PROC_SYMLINK,
193 NFSV2PROC_CREATE,
194 NFSV2PROC_REMOVE,
195 NFSV2PROC_RMDIR,
196 NFSV2PROC_RENAME,
197 NFSV2PROC_LINK,
198 NFSV2PROC_READDIR,
199 NFSV2PROC_NOOP,
200 NFSV2PROC_STATFS,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 };
206
207 /*
208 * Maps errno values to nfs error numbers.
209 * Use NFSERR_IO as the catch all for ones not specifically defined in
210 * RFC 1094.
211 */
212 static const u_char nfsrv_v2errmap[ELAST] = {
213 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
214 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
215 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
216 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
217 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
226 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO,
230 };
231
232 /*
233 * Maps errno values to nfs error numbers.
234 * Although it is not obvious whether or not NFS clients really care if
235 * a returned error value is in the specified list for the procedure, the
236 * safest thing to do is filter them appropriately. For Version 2, the
237 * X/Open XNFS document is the only specification that defines error values
238 * for each RPC (The RFC simply lists all possible error values for all RPCs),
239 * so I have decided to not do this for Version 2.
240 * The first entry is the default error return and the rest are the valid
241 * errors for that RPC in increasing numeric order.
242 */
243 static const short nfsv3err_null[] = {
244 0,
245 0,
246 };
247
248 static const short nfsv3err_getattr[] = {
249 NFSERR_IO,
250 NFSERR_IO,
251 NFSERR_STALE,
252 NFSERR_BADHANDLE,
253 NFSERR_SERVERFAULT,
254 0,
255 };
256
257 static const short nfsv3err_setattr[] = {
258 NFSERR_IO,
259 NFSERR_PERM,
260 NFSERR_IO,
261 NFSERR_ACCES,
262 NFSERR_INVAL,
263 NFSERR_NOSPC,
264 NFSERR_ROFS,
265 NFSERR_DQUOT,
266 NFSERR_STALE,
267 NFSERR_BADHANDLE,
268 NFSERR_NOT_SYNC,
269 NFSERR_SERVERFAULT,
270 0,
271 };
272
273 static const short nfsv3err_lookup[] = {
274 NFSERR_IO,
275 NFSERR_NOENT,
276 NFSERR_IO,
277 NFSERR_ACCES,
278 NFSERR_NOTDIR,
279 NFSERR_NAMETOL,
280 NFSERR_STALE,
281 NFSERR_BADHANDLE,
282 NFSERR_SERVERFAULT,
283 0,
284 };
285
286 static const short nfsv3err_access[] = {
287 NFSERR_IO,
288 NFSERR_IO,
289 NFSERR_STALE,
290 NFSERR_BADHANDLE,
291 NFSERR_SERVERFAULT,
292 0,
293 };
294
295 static const short nfsv3err_readlink[] = {
296 NFSERR_IO,
297 NFSERR_IO,
298 NFSERR_ACCES,
299 NFSERR_INVAL,
300 NFSERR_STALE,
301 NFSERR_BADHANDLE,
302 NFSERR_NOTSUPP,
303 NFSERR_SERVERFAULT,
304 0,
305 };
306
307 static const short nfsv3err_read[] = {
308 NFSERR_IO,
309 NFSERR_IO,
310 NFSERR_NXIO,
311 NFSERR_ACCES,
312 NFSERR_INVAL,
313 NFSERR_STALE,
314 NFSERR_BADHANDLE,
315 NFSERR_SERVERFAULT,
316 NFSERR_JUKEBOX,
317 0,
318 };
319
320 static const short nfsv3err_write[] = {
321 NFSERR_IO,
322 NFSERR_IO,
323 NFSERR_ACCES,
324 NFSERR_INVAL,
325 NFSERR_FBIG,
326 NFSERR_NOSPC,
327 NFSERR_ROFS,
328 NFSERR_DQUOT,
329 NFSERR_STALE,
330 NFSERR_BADHANDLE,
331 NFSERR_SERVERFAULT,
332 NFSERR_JUKEBOX,
333 0,
334 };
335
336 static const short nfsv3err_create[] = {
337 NFSERR_IO,
338 NFSERR_IO,
339 NFSERR_ACCES,
340 NFSERR_EXIST,
341 NFSERR_NOTDIR,
342 NFSERR_NOSPC,
343 NFSERR_ROFS,
344 NFSERR_NAMETOL,
345 NFSERR_DQUOT,
346 NFSERR_STALE,
347 NFSERR_BADHANDLE,
348 NFSERR_NOTSUPP,
349 NFSERR_SERVERFAULT,
350 0,
351 };
352
353 static const short nfsv3err_mkdir[] = {
354 NFSERR_IO,
355 NFSERR_IO,
356 NFSERR_ACCES,
357 NFSERR_EXIST,
358 NFSERR_NOTDIR,
359 NFSERR_NOSPC,
360 NFSERR_ROFS,
361 NFSERR_NAMETOL,
362 NFSERR_DQUOT,
363 NFSERR_STALE,
364 NFSERR_BADHANDLE,
365 NFSERR_NOTSUPP,
366 NFSERR_SERVERFAULT,
367 0,
368 };
369
370 static const short nfsv3err_symlink[] = {
371 NFSERR_IO,
372 NFSERR_IO,
373 NFSERR_ACCES,
374 NFSERR_EXIST,
375 NFSERR_NOTDIR,
376 NFSERR_NOSPC,
377 NFSERR_ROFS,
378 NFSERR_NAMETOL,
379 NFSERR_DQUOT,
380 NFSERR_STALE,
381 NFSERR_BADHANDLE,
382 NFSERR_NOTSUPP,
383 NFSERR_SERVERFAULT,
384 0,
385 };
386
387 static const short nfsv3err_mknod[] = {
388 NFSERR_IO,
389 NFSERR_IO,
390 NFSERR_ACCES,
391 NFSERR_EXIST,
392 NFSERR_NOTDIR,
393 NFSERR_NOSPC,
394 NFSERR_ROFS,
395 NFSERR_NAMETOL,
396 NFSERR_DQUOT,
397 NFSERR_STALE,
398 NFSERR_BADHANDLE,
399 NFSERR_NOTSUPP,
400 NFSERR_SERVERFAULT,
401 NFSERR_BADTYPE,
402 0,
403 };
404
405 static const short nfsv3err_remove[] = {
406 NFSERR_IO,
407 NFSERR_NOENT,
408 NFSERR_IO,
409 NFSERR_ACCES,
410 NFSERR_NOTDIR,
411 NFSERR_ROFS,
412 NFSERR_NAMETOL,
413 NFSERR_STALE,
414 NFSERR_BADHANDLE,
415 NFSERR_SERVERFAULT,
416 0,
417 };
418
419 static const short nfsv3err_rmdir[] = {
420 NFSERR_IO,
421 NFSERR_NOENT,
422 NFSERR_IO,
423 NFSERR_ACCES,
424 NFSERR_EXIST,
425 NFSERR_NOTDIR,
426 NFSERR_INVAL,
427 NFSERR_ROFS,
428 NFSERR_NAMETOL,
429 NFSERR_NOTEMPTY,
430 NFSERR_STALE,
431 NFSERR_BADHANDLE,
432 NFSERR_NOTSUPP,
433 NFSERR_SERVERFAULT,
434 0,
435 };
436
437 static const short nfsv3err_rename[] = {
438 NFSERR_IO,
439 NFSERR_NOENT,
440 NFSERR_IO,
441 NFSERR_ACCES,
442 NFSERR_EXIST,
443 NFSERR_XDEV,
444 NFSERR_NOTDIR,
445 NFSERR_ISDIR,
446 NFSERR_INVAL,
447 NFSERR_NOSPC,
448 NFSERR_ROFS,
449 NFSERR_MLINK,
450 NFSERR_NAMETOL,
451 NFSERR_NOTEMPTY,
452 NFSERR_DQUOT,
453 NFSERR_STALE,
454 NFSERR_BADHANDLE,
455 NFSERR_NOTSUPP,
456 NFSERR_SERVERFAULT,
457 0,
458 };
459
460 static const short nfsv3err_link[] = {
461 NFSERR_IO,
462 NFSERR_IO,
463 NFSERR_ACCES,
464 NFSERR_EXIST,
465 NFSERR_XDEV,
466 NFSERR_NOTDIR,
467 NFSERR_INVAL,
468 NFSERR_NOSPC,
469 NFSERR_ROFS,
470 NFSERR_MLINK,
471 NFSERR_NAMETOL,
472 NFSERR_DQUOT,
473 NFSERR_STALE,
474 NFSERR_BADHANDLE,
475 NFSERR_NOTSUPP,
476 NFSERR_SERVERFAULT,
477 0,
478 };
479
480 static const short nfsv3err_readdir[] = {
481 NFSERR_IO,
482 NFSERR_IO,
483 NFSERR_ACCES,
484 NFSERR_NOTDIR,
485 NFSERR_STALE,
486 NFSERR_BADHANDLE,
487 NFSERR_BAD_COOKIE,
488 NFSERR_TOOSMALL,
489 NFSERR_SERVERFAULT,
490 0,
491 };
492
493 static const short nfsv3err_readdirplus[] = {
494 NFSERR_IO,
495 NFSERR_IO,
496 NFSERR_ACCES,
497 NFSERR_NOTDIR,
498 NFSERR_STALE,
499 NFSERR_BADHANDLE,
500 NFSERR_BAD_COOKIE,
501 NFSERR_NOTSUPP,
502 NFSERR_TOOSMALL,
503 NFSERR_SERVERFAULT,
504 0,
505 };
506
507 static const short nfsv3err_fsstat[] = {
508 NFSERR_IO,
509 NFSERR_IO,
510 NFSERR_STALE,
511 NFSERR_BADHANDLE,
512 NFSERR_SERVERFAULT,
513 0,
514 };
515
516 static const short nfsv3err_fsinfo[] = {
517 NFSERR_STALE,
518 NFSERR_STALE,
519 NFSERR_BADHANDLE,
520 NFSERR_SERVERFAULT,
521 0,
522 };
523
524 static const short nfsv3err_pathconf[] = {
525 NFSERR_STALE,
526 NFSERR_STALE,
527 NFSERR_BADHANDLE,
528 NFSERR_SERVERFAULT,
529 0,
530 };
531
532 static const short nfsv3err_commit[] = {
533 NFSERR_IO,
534 NFSERR_IO,
535 NFSERR_STALE,
536 NFSERR_BADHANDLE,
537 NFSERR_SERVERFAULT,
538 0,
539 };
540
541 static const short * const nfsrv_v3errmap[] = {
542 nfsv3err_null,
543 nfsv3err_getattr,
544 nfsv3err_setattr,
545 nfsv3err_lookup,
546 nfsv3err_access,
547 nfsv3err_readlink,
548 nfsv3err_read,
549 nfsv3err_write,
550 nfsv3err_create,
551 nfsv3err_mkdir,
552 nfsv3err_symlink,
553 nfsv3err_mknod,
554 nfsv3err_remove,
555 nfsv3err_rmdir,
556 nfsv3err_rename,
557 nfsv3err_link,
558 nfsv3err_readdir,
559 nfsv3err_readdirplus,
560 nfsv3err_fsstat,
561 nfsv3err_fsinfo,
562 nfsv3err_pathconf,
563 nfsv3err_commit,
564 };
565
566 extern struct nfsrtt nfsrtt;
567 extern struct nfsnodehashhead *nfsnodehashtbl;
568 extern u_long nfsnodehash;
569
570 u_long nfsdirhashmask;
571
572 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
573
574 /*
575 * Create the header for an rpc request packet
576 * The hsiz is the size of the rest of the nfs request header.
577 * (just used to decide if a cluster is a good idea)
578 */
579 struct mbuf *
580 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
581 {
582 struct mbuf *mb;
583 char *bpos;
584
585 mb = m_get(M_WAIT, MT_DATA);
586 MCLAIM(mb, &nfs_mowner);
587 if (hsiz >= MINCLSIZE)
588 m_clget(mb, M_WAIT);
589 mb->m_len = 0;
590 bpos = mtod(mb, void *);
591
592 /* Finally, return values */
593 *bposp = bpos;
594 return (mb);
595 }
596
597 /*
598 * Build the RPC header and fill in the authorization info.
599 * The authorization string argument is only used when the credentials
600 * come from outside of the kernel.
601 * Returns the head of the mbuf list.
602 */
603 struct mbuf *
604 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
605 verf_str, mrest, mrest_len, mbp, xidp)
606 kauth_cred_t cr;
607 int nmflag;
608 int procid;
609 int auth_type;
610 int auth_len;
611 char *auth_str;
612 int verf_len;
613 char *verf_str;
614 struct mbuf *mrest;
615 int mrest_len;
616 struct mbuf **mbp;
617 u_int32_t *xidp;
618 {
619 struct mbuf *mb;
620 u_int32_t *tl;
621 char *bpos;
622 int i;
623 struct mbuf *mreq;
624 int siz, grpsiz, authsiz;
625
626 authsiz = nfsm_rndup(auth_len);
627 mb = m_gethdr(M_WAIT, MT_DATA);
628 MCLAIM(mb, &nfs_mowner);
629 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
630 m_clget(mb, M_WAIT);
631 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
632 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
633 } else {
634 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
635 }
636 mb->m_len = 0;
637 mreq = mb;
638 bpos = mtod(mb, void *);
639
640 /*
641 * First the RPC header.
642 */
643 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
644
645 *tl++ = *xidp = nfs_getxid();
646 *tl++ = rpc_call;
647 *tl++ = rpc_vers;
648 *tl++ = txdr_unsigned(NFS_PROG);
649 if (nmflag & NFSMNT_NFSV3)
650 *tl++ = txdr_unsigned(NFS_VER3);
651 else
652 *tl++ = txdr_unsigned(NFS_VER2);
653 if (nmflag & NFSMNT_NFSV3)
654 *tl++ = txdr_unsigned(procid);
655 else
656 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
657
658 /*
659 * And then the authorization cred.
660 */
661 *tl++ = txdr_unsigned(auth_type);
662 *tl = txdr_unsigned(authsiz);
663 switch (auth_type) {
664 case RPCAUTH_UNIX:
665 nfsm_build(tl, u_int32_t *, auth_len);
666 *tl++ = 0; /* stamp ?? */
667 *tl++ = 0; /* NULL hostname */
668 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
669 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
670 grpsiz = (auth_len >> 2) - 5;
671 *tl++ = txdr_unsigned(grpsiz);
672 for (i = 0; i < grpsiz; i++)
673 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
674 break;
675 case RPCAUTH_KERB4:
676 siz = auth_len;
677 while (siz > 0) {
678 if (M_TRAILINGSPACE(mb) == 0) {
679 struct mbuf *mb2;
680 mb2 = m_get(M_WAIT, MT_DATA);
681 MCLAIM(mb2, &nfs_mowner);
682 if (siz >= MINCLSIZE)
683 m_clget(mb2, M_WAIT);
684 mb->m_next = mb2;
685 mb = mb2;
686 mb->m_len = 0;
687 bpos = mtod(mb, void *);
688 }
689 i = min(siz, M_TRAILINGSPACE(mb));
690 memcpy(bpos, auth_str, i);
691 mb->m_len += i;
692 auth_str += i;
693 bpos += i;
694 siz -= i;
695 }
696 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
697 for (i = 0; i < siz; i++)
698 *bpos++ = '\0';
699 mb->m_len += siz;
700 }
701 break;
702 };
703
704 /*
705 * And the verifier...
706 */
707 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
708 if (verf_str) {
709 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
710 *tl = txdr_unsigned(verf_len);
711 siz = verf_len;
712 while (siz > 0) {
713 if (M_TRAILINGSPACE(mb) == 0) {
714 struct mbuf *mb2;
715 mb2 = m_get(M_WAIT, MT_DATA);
716 MCLAIM(mb2, &nfs_mowner);
717 if (siz >= MINCLSIZE)
718 m_clget(mb2, M_WAIT);
719 mb->m_next = mb2;
720 mb = mb2;
721 mb->m_len = 0;
722 bpos = mtod(mb, void *);
723 }
724 i = min(siz, M_TRAILINGSPACE(mb));
725 memcpy(bpos, verf_str, i);
726 mb->m_len += i;
727 verf_str += i;
728 bpos += i;
729 siz -= i;
730 }
731 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
732 for (i = 0; i < siz; i++)
733 *bpos++ = '\0';
734 mb->m_len += siz;
735 }
736 } else {
737 *tl++ = txdr_unsigned(RPCAUTH_NULL);
738 *tl = 0;
739 }
740 mb->m_next = mrest;
741 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
742 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
743 *mbp = mb;
744 return (mreq);
745 }
746
747 /*
748 * copies mbuf chain to the uio scatter/gather list
749 */
750 int
751 nfsm_mbuftouio(mrep, uiop, siz, dpos)
752 struct mbuf **mrep;
753 struct uio *uiop;
754 int siz;
755 char **dpos;
756 {
757 char *mbufcp, *uiocp;
758 int xfer, left, len;
759 struct mbuf *mp;
760 long uiosiz, rem;
761 int error = 0;
762
763 mp = *mrep;
764 mbufcp = *dpos;
765 len = mtod(mp, char *) + mp->m_len - mbufcp;
766 rem = nfsm_rndup(siz)-siz;
767 while (siz > 0) {
768 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
769 return (EFBIG);
770 left = uiop->uio_iov->iov_len;
771 uiocp = uiop->uio_iov->iov_base;
772 if (left > siz)
773 left = siz;
774 uiosiz = left;
775 while (left > 0) {
776 while (len == 0) {
777 mp = mp->m_next;
778 if (mp == NULL)
779 return (EBADRPC);
780 mbufcp = mtod(mp, void *);
781 len = mp->m_len;
782 }
783 xfer = (left > len) ? len : left;
784 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
785 uiocp, xfer);
786 if (error) {
787 return error;
788 }
789 left -= xfer;
790 len -= xfer;
791 mbufcp += xfer;
792 uiocp += xfer;
793 uiop->uio_offset += xfer;
794 uiop->uio_resid -= xfer;
795 }
796 if (uiop->uio_iov->iov_len <= siz) {
797 uiop->uio_iovcnt--;
798 uiop->uio_iov++;
799 } else {
800 uiop->uio_iov->iov_base =
801 (char *)uiop->uio_iov->iov_base + uiosiz;
802 uiop->uio_iov->iov_len -= uiosiz;
803 }
804 siz -= uiosiz;
805 }
806 *dpos = mbufcp;
807 *mrep = mp;
808 if (rem > 0) {
809 if (len < rem)
810 error = nfs_adv(mrep, dpos, rem, len);
811 else
812 *dpos += rem;
813 }
814 return (error);
815 }
816
817 /*
818 * copies a uio scatter/gather list to an mbuf chain.
819 * NOTE: can ony handle iovcnt == 1
820 */
821 int
822 nfsm_uiotombuf(uiop, mq, siz, bpos)
823 struct uio *uiop;
824 struct mbuf **mq;
825 int siz;
826 char **bpos;
827 {
828 char *uiocp;
829 struct mbuf *mp, *mp2;
830 int xfer, left, mlen;
831 int uiosiz, clflg, rem;
832 char *cp;
833 int error;
834
835 #ifdef DIAGNOSTIC
836 if (uiop->uio_iovcnt != 1)
837 panic("nfsm_uiotombuf: iovcnt != 1");
838 #endif
839
840 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
841 clflg = 1;
842 else
843 clflg = 0;
844 rem = nfsm_rndup(siz)-siz;
845 mp = mp2 = *mq;
846 while (siz > 0) {
847 left = uiop->uio_iov->iov_len;
848 uiocp = uiop->uio_iov->iov_base;
849 if (left > siz)
850 left = siz;
851 uiosiz = left;
852 while (left > 0) {
853 mlen = M_TRAILINGSPACE(mp);
854 if (mlen == 0) {
855 mp = m_get(M_WAIT, MT_DATA);
856 MCLAIM(mp, &nfs_mowner);
857 if (clflg)
858 m_clget(mp, M_WAIT);
859 mp->m_len = 0;
860 mp2->m_next = mp;
861 mp2 = mp;
862 mlen = M_TRAILINGSPACE(mp);
863 }
864 xfer = (left > mlen) ? mlen : left;
865 cp = mtod(mp, char *) + mp->m_len;
866 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
867 xfer);
868 if (error) {
869 /* XXX */
870 }
871 mp->m_len += xfer;
872 left -= xfer;
873 uiocp += xfer;
874 uiop->uio_offset += xfer;
875 uiop->uio_resid -= xfer;
876 }
877 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
878 uiosiz;
879 uiop->uio_iov->iov_len -= uiosiz;
880 siz -= uiosiz;
881 }
882 if (rem > 0) {
883 if (rem > M_TRAILINGSPACE(mp)) {
884 mp = m_get(M_WAIT, MT_DATA);
885 MCLAIM(mp, &nfs_mowner);
886 mp->m_len = 0;
887 mp2->m_next = mp;
888 }
889 cp = mtod(mp, char *) + mp->m_len;
890 for (left = 0; left < rem; left++)
891 *cp++ = '\0';
892 mp->m_len += rem;
893 *bpos = cp;
894 } else
895 *bpos = mtod(mp, char *) + mp->m_len;
896 *mq = mp;
897 return (0);
898 }
899
900 /*
901 * Get at least "siz" bytes of correctly aligned data.
902 * When called the mbuf pointers are not necessarily correct,
903 * dsosp points to what ought to be in m_data and left contains
904 * what ought to be in m_len.
905 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
906 * cases. (The macros use the vars. dpos and dpos2)
907 */
908 int
909 nfsm_disct(mdp, dposp, siz, left, cp2)
910 struct mbuf **mdp;
911 char **dposp;
912 int siz;
913 int left;
914 char **cp2;
915 {
916 struct mbuf *m1, *m2;
917 struct mbuf *havebuf = NULL;
918 char *src = *dposp;
919 char *dst;
920 int len;
921
922 #ifdef DEBUG
923 if (left < 0)
924 panic("nfsm_disct: left < 0");
925 #endif
926 m1 = *mdp;
927 /*
928 * Skip through the mbuf chain looking for an mbuf with
929 * some data. If the first mbuf found has enough data
930 * and it is correctly aligned return it.
931 */
932 while (left == 0) {
933 havebuf = m1;
934 *mdp = m1 = m1->m_next;
935 if (m1 == NULL)
936 return (EBADRPC);
937 src = mtod(m1, void *);
938 left = m1->m_len;
939 /*
940 * If we start a new mbuf and it is big enough
941 * and correctly aligned just return it, don't
942 * do any pull up.
943 */
944 if (left >= siz && nfsm_aligned(src)) {
945 *cp2 = src;
946 *dposp = src + siz;
947 return (0);
948 }
949 }
950 if (m1->m_flags & M_EXT) {
951 if (havebuf) {
952 /* If the first mbuf with data has external data
953 * and there is a previous empty mbuf use it
954 * to move the data into.
955 */
956 m2 = m1;
957 *mdp = m1 = havebuf;
958 if (m1->m_flags & M_EXT) {
959 MEXTREMOVE(m1);
960 }
961 } else {
962 /*
963 * If the first mbuf has a external data
964 * and there is no previous empty mbuf
965 * allocate a new mbuf and move the external
966 * data to the new mbuf. Also make the first
967 * mbuf look empty.
968 */
969 m2 = m_get(M_WAIT, MT_DATA);
970 m2->m_ext = m1->m_ext;
971 m2->m_data = src;
972 m2->m_len = left;
973 MCLADDREFERENCE(m1, m2);
974 MEXTREMOVE(m1);
975 m2->m_next = m1->m_next;
976 m1->m_next = m2;
977 }
978 m1->m_len = 0;
979 if (m1->m_flags & M_PKTHDR)
980 dst = m1->m_pktdat;
981 else
982 dst = m1->m_dat;
983 m1->m_data = dst;
984 } else {
985 /*
986 * If the first mbuf has no external data
987 * move the data to the front of the mbuf.
988 */
989 if (m1->m_flags & M_PKTHDR)
990 dst = m1->m_pktdat;
991 else
992 dst = m1->m_dat;
993 m1->m_data = dst;
994 if (dst != src)
995 memmove(dst, src, left);
996 dst += left;
997 m1->m_len = left;
998 m2 = m1->m_next;
999 }
1000 *cp2 = m1->m_data;
1001 *dposp = mtod(m1, char *) + siz;
1002 /*
1003 * Loop through mbufs pulling data up into first mbuf until
1004 * the first mbuf is full or there is no more data to
1005 * pullup.
1006 */
1007 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1008 if ((len = min(len, m2->m_len)) != 0)
1009 memcpy(dst, m2->m_data, len);
1010 m1->m_len += len;
1011 dst += len;
1012 m2->m_data += len;
1013 m2->m_len -= len;
1014 m2 = m2->m_next;
1015 }
1016 if (m1->m_len < siz)
1017 return (EBADRPC);
1018 return (0);
1019 }
1020
1021 /*
1022 * Advance the position in the mbuf chain.
1023 */
1024 int
1025 nfs_adv(mdp, dposp, offs, left)
1026 struct mbuf **mdp;
1027 char **dposp;
1028 int offs;
1029 int left;
1030 {
1031 struct mbuf *m;
1032 int s;
1033
1034 m = *mdp;
1035 s = left;
1036 while (s < offs) {
1037 offs -= s;
1038 m = m->m_next;
1039 if (m == NULL)
1040 return (EBADRPC);
1041 s = m->m_len;
1042 }
1043 *mdp = m;
1044 *dposp = mtod(m, char *) + offs;
1045 return (0);
1046 }
1047
1048 /*
1049 * Copy a string into mbufs for the hard cases...
1050 */
1051 int
1052 nfsm_strtmbuf(mb, bpos, cp, siz)
1053 struct mbuf **mb;
1054 char **bpos;
1055 const char *cp;
1056 long siz;
1057 {
1058 struct mbuf *m1 = NULL, *m2;
1059 long left, xfer, len, tlen;
1060 u_int32_t *tl;
1061 int putsize;
1062
1063 putsize = 1;
1064 m2 = *mb;
1065 left = M_TRAILINGSPACE(m2);
1066 if (left > 0) {
1067 tl = ((u_int32_t *)(*bpos));
1068 *tl++ = txdr_unsigned(siz);
1069 putsize = 0;
1070 left -= NFSX_UNSIGNED;
1071 m2->m_len += NFSX_UNSIGNED;
1072 if (left > 0) {
1073 memcpy((void *) tl, cp, left);
1074 siz -= left;
1075 cp += left;
1076 m2->m_len += left;
1077 left = 0;
1078 }
1079 }
1080 /* Loop around adding mbufs */
1081 while (siz > 0) {
1082 m1 = m_get(M_WAIT, MT_DATA);
1083 MCLAIM(m1, &nfs_mowner);
1084 if (siz > MLEN)
1085 m_clget(m1, M_WAIT);
1086 m1->m_len = NFSMSIZ(m1);
1087 m2->m_next = m1;
1088 m2 = m1;
1089 tl = mtod(m1, u_int32_t *);
1090 tlen = 0;
1091 if (putsize) {
1092 *tl++ = txdr_unsigned(siz);
1093 m1->m_len -= NFSX_UNSIGNED;
1094 tlen = NFSX_UNSIGNED;
1095 putsize = 0;
1096 }
1097 if (siz < m1->m_len) {
1098 len = nfsm_rndup(siz);
1099 xfer = siz;
1100 if (xfer < len)
1101 *(tl+(xfer>>2)) = 0;
1102 } else {
1103 xfer = len = m1->m_len;
1104 }
1105 memcpy((void *) tl, cp, xfer);
1106 m1->m_len = len+tlen;
1107 siz -= xfer;
1108 cp += xfer;
1109 }
1110 *mb = m1;
1111 *bpos = mtod(m1, char *) + m1->m_len;
1112 return (0);
1113 }
1114
1115 /*
1116 * Directory caching routines. They work as follows:
1117 * - a cache is maintained per VDIR nfsnode.
1118 * - for each offset cookie that is exported to userspace, and can
1119 * thus be thrown back at us as an offset to VOP_READDIR, store
1120 * information in the cache.
1121 * - cached are:
1122 * - cookie itself
1123 * - blocknumber (essentially just a search key in the buffer cache)
1124 * - entry number in block.
1125 * - offset cookie of block in which this entry is stored
1126 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1127 * - entries are looked up in a hash table
1128 * - also maintained is an LRU list of entries, used to determine
1129 * which ones to delete if the cache grows too large.
1130 * - if 32 <-> 64 translation mode is requested for a filesystem,
1131 * the cache also functions as a translation table
1132 * - in the translation case, invalidating the cache does not mean
1133 * flushing it, but just marking entries as invalid, except for
1134 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1135 * still be able to use the cache as a translation table.
1136 * - 32 bit cookies are uniquely created by combining the hash table
1137 * entry value, and one generation count per hash table entry,
1138 * incremented each time an entry is appended to the chain.
1139 * - the cache is invalidated each time a direcory is modified
1140 * - sanity checks are also done; if an entry in a block turns
1141 * out not to have a matching cookie, the cache is invalidated
1142 * and a new block starting from the wanted offset is fetched from
1143 * the server.
1144 * - directory entries as read from the server are extended to contain
1145 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1146 * the cache and exporting them to userspace through the cookie
1147 * argument to VOP_READDIR.
1148 */
1149
1150 u_long
1151 nfs_dirhash(off)
1152 off_t off;
1153 {
1154 int i;
1155 char *cp = (char *)&off;
1156 u_long sum = 0L;
1157
1158 for (i = 0 ; i < sizeof (off); i++)
1159 sum += *cp++;
1160
1161 return sum;
1162 }
1163
1164 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1165 #define NFSDC_LOCK(np) simple_lock(_NFSDC_MTX(np))
1166 #define NFSDC_UNLOCK(np) simple_unlock(_NFSDC_MTX(np))
1167 #define NFSDC_ASSERT_LOCKED(np) LOCK_ASSERT(simple_lock_held(_NFSDC_MTX(np)))
1168
1169 void
1170 nfs_initdircache(vp)
1171 struct vnode *vp;
1172 {
1173 struct nfsnode *np = VTONFS(vp);
1174 struct nfsdirhashhead *dircache;
1175
1176 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1177 M_WAITOK, &nfsdirhashmask);
1178
1179 NFSDC_LOCK(np);
1180 if (np->n_dircache == NULL) {
1181 np->n_dircachesize = 0;
1182 np->n_dircache = dircache;
1183 dircache = NULL;
1184 TAILQ_INIT(&np->n_dirchain);
1185 }
1186 NFSDC_UNLOCK(np);
1187 if (dircache)
1188 hashdone(dircache, M_NFSDIROFF);
1189 }
1190
1191 void
1192 nfs_initdirxlatecookie(vp)
1193 struct vnode *vp;
1194 {
1195 struct nfsnode *np = VTONFS(vp);
1196 unsigned *dirgens;
1197
1198 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1199
1200 dirgens = malloc(NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1201 M_WAITOK|M_ZERO);
1202 NFSDC_LOCK(np);
1203 if (np->n_dirgens == NULL) {
1204 np->n_dirgens = dirgens;
1205 dirgens = NULL;
1206 }
1207 NFSDC_UNLOCK(np);
1208 if (dirgens)
1209 free(dirgens, M_NFSDIROFF);
1210 }
1211
1212 static const struct nfsdircache dzero;
1213
1214 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1215 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1216 struct nfsdircache *));
1217
1218 static void
1219 nfs_unlinkdircache(np, ndp)
1220 struct nfsnode *np;
1221 struct nfsdircache *ndp;
1222 {
1223
1224 NFSDC_ASSERT_LOCKED(np);
1225 KASSERT(ndp != &dzero);
1226
1227 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1228 return;
1229
1230 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1231 LIST_REMOVE(ndp, dc_hash);
1232 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1233
1234 nfs_putdircache_unlocked(np, ndp);
1235 }
1236
1237 void
1238 nfs_putdircache(np, ndp)
1239 struct nfsnode *np;
1240 struct nfsdircache *ndp;
1241 {
1242 int ref;
1243
1244 if (ndp == &dzero)
1245 return;
1246
1247 KASSERT(ndp->dc_refcnt > 0);
1248 NFSDC_LOCK(np);
1249 ref = --ndp->dc_refcnt;
1250 NFSDC_UNLOCK(np);
1251
1252 if (ref == 0)
1253 free(ndp, M_NFSDIROFF);
1254 }
1255
1256 static void
1257 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1258 {
1259 int ref;
1260
1261 NFSDC_ASSERT_LOCKED(np);
1262
1263 if (ndp == &dzero)
1264 return;
1265
1266 KASSERT(ndp->dc_refcnt > 0);
1267 ref = --ndp->dc_refcnt;
1268 if (ref == 0)
1269 free(ndp, M_NFSDIROFF);
1270 }
1271
1272 struct nfsdircache *
1273 nfs_searchdircache(vp, off, do32, hashent)
1274 struct vnode *vp;
1275 off_t off;
1276 int do32;
1277 int *hashent;
1278 {
1279 struct nfsdirhashhead *ndhp;
1280 struct nfsdircache *ndp = NULL;
1281 struct nfsnode *np = VTONFS(vp);
1282 unsigned ent;
1283
1284 /*
1285 * Zero is always a valid cookie.
1286 */
1287 if (off == 0)
1288 /* XXXUNCONST */
1289 return (struct nfsdircache *)__UNCONST(&dzero);
1290
1291 if (!np->n_dircache)
1292 return NULL;
1293
1294 /*
1295 * We use a 32bit cookie as search key, directly reconstruct
1296 * the hashentry. Else use the hashfunction.
1297 */
1298 if (do32) {
1299 ent = (u_int32_t)off >> 24;
1300 if (ent >= NFS_DIRHASHSIZ)
1301 return NULL;
1302 ndhp = &np->n_dircache[ent];
1303 } else {
1304 ndhp = NFSDIRHASH(np, off);
1305 }
1306
1307 if (hashent)
1308 *hashent = (int)(ndhp - np->n_dircache);
1309
1310 NFSDC_LOCK(np);
1311 if (do32) {
1312 LIST_FOREACH(ndp, ndhp, dc_hash) {
1313 if (ndp->dc_cookie32 == (u_int32_t)off) {
1314 /*
1315 * An invalidated entry will become the
1316 * start of a new block fetched from
1317 * the server.
1318 */
1319 if (ndp->dc_flags & NFSDC_INVALID) {
1320 ndp->dc_blkcookie = ndp->dc_cookie;
1321 ndp->dc_entry = 0;
1322 ndp->dc_flags &= ~NFSDC_INVALID;
1323 }
1324 break;
1325 }
1326 }
1327 } else {
1328 LIST_FOREACH(ndp, ndhp, dc_hash) {
1329 if (ndp->dc_cookie == off)
1330 break;
1331 }
1332 }
1333 if (ndp != NULL)
1334 ndp->dc_refcnt++;
1335 NFSDC_UNLOCK(np);
1336 return ndp;
1337 }
1338
1339
1340 struct nfsdircache *
1341 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1342 daddr_t blkno)
1343 {
1344 struct nfsnode *np = VTONFS(vp);
1345 struct nfsdirhashhead *ndhp;
1346 struct nfsdircache *ndp = NULL;
1347 struct nfsdircache *newndp = NULL;
1348 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1349 int hashent = 0, gen, overwrite; /* XXX: GCC */
1350
1351 /*
1352 * XXX refuse entries for offset 0. amd(8) erroneously sets
1353 * cookie 0 for the '.' entry, making this necessary. This
1354 * isn't so bad, as 0 is a special case anyway.
1355 */
1356 if (off == 0)
1357 /* XXXUNCONST */
1358 return (struct nfsdircache *)__UNCONST(&dzero);
1359
1360 if (!np->n_dircache)
1361 /*
1362 * XXX would like to do this in nfs_nget but vtype
1363 * isn't known at that time.
1364 */
1365 nfs_initdircache(vp);
1366
1367 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1368 nfs_initdirxlatecookie(vp);
1369
1370 retry:
1371 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1372
1373 NFSDC_LOCK(np);
1374 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1375 /*
1376 * Overwriting an old entry. Check if it's the same.
1377 * If so, just return. If not, remove the old entry.
1378 */
1379 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1380 goto done;
1381 nfs_unlinkdircache(np, ndp);
1382 nfs_putdircache_unlocked(np, ndp);
1383 ndp = NULL;
1384 }
1385
1386 ndhp = &np->n_dircache[hashent];
1387
1388 if (!ndp) {
1389 if (newndp == NULL) {
1390 NFSDC_UNLOCK(np);
1391 newndp = malloc(sizeof(*ndp), M_NFSDIROFF, M_WAITOK);
1392 newndp->dc_refcnt = 1;
1393 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1394 goto retry;
1395 }
1396 ndp = newndp;
1397 newndp = NULL;
1398 overwrite = 0;
1399 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1400 /*
1401 * We're allocating a new entry, so bump the
1402 * generation number.
1403 */
1404 KASSERT(np->n_dirgens);
1405 gen = ++np->n_dirgens[hashent];
1406 if (gen == 0) {
1407 np->n_dirgens[hashent]++;
1408 gen++;
1409 }
1410 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1411 }
1412 } else
1413 overwrite = 1;
1414
1415 ndp->dc_cookie = off;
1416 ndp->dc_blkcookie = blkoff;
1417 ndp->dc_entry = en;
1418 ndp->dc_flags = 0;
1419
1420 if (overwrite)
1421 goto done;
1422
1423 /*
1424 * If the maximum directory cookie cache size has been reached
1425 * for this node, take one off the front. The idea is that
1426 * directories are typically read front-to-back once, so that
1427 * the oldest entries can be thrown away without much performance
1428 * loss.
1429 */
1430 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1431 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1432 } else
1433 np->n_dircachesize++;
1434
1435 KASSERT(ndp->dc_refcnt == 1);
1436 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1437 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1438 ndp->dc_refcnt++;
1439 done:
1440 KASSERT(ndp->dc_refcnt > 0);
1441 NFSDC_UNLOCK(np);
1442 if (newndp)
1443 nfs_putdircache(np, newndp);
1444 return ndp;
1445 }
1446
1447 void
1448 nfs_invaldircache(vp, flags)
1449 struct vnode *vp;
1450 int flags;
1451 {
1452 struct nfsnode *np = VTONFS(vp);
1453 struct nfsdircache *ndp = NULL;
1454 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1455 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1456
1457 #ifdef DIAGNOSTIC
1458 if (vp->v_type != VDIR)
1459 panic("nfs: invaldircache: not dir");
1460 #endif
1461
1462 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1463 np->n_flag &= ~NEOFVALID;
1464
1465 if (!np->n_dircache)
1466 return;
1467
1468 NFSDC_LOCK(np);
1469 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1470 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1471 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1472 nfs_unlinkdircache(np, ndp);
1473 }
1474 np->n_dircachesize = 0;
1475 if (forcefree && np->n_dirgens) {
1476 FREE(np->n_dirgens, M_NFSDIROFF);
1477 np->n_dirgens = NULL;
1478 }
1479 } else {
1480 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1481 ndp->dc_flags |= NFSDC_INVALID;
1482 }
1483
1484 NFSDC_UNLOCK(np);
1485 }
1486
1487 /*
1488 * Called once before VFS init to initialize shared and
1489 * server-specific data structures.
1490 */
1491 static int
1492 nfs_init0(void)
1493 {
1494 extern krwlock_t netexport_lock; /* XXX */
1495
1496 rw_init(&netexport_lock);
1497
1498 nfsrtt.pos = 0;
1499 rpc_vers = txdr_unsigned(RPC_VER2);
1500 rpc_call = txdr_unsigned(RPC_CALL);
1501 rpc_reply = txdr_unsigned(RPC_REPLY);
1502 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1503 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1504 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1505 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1506 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1507 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1508 nfs_prog = txdr_unsigned(NFS_PROG);
1509 nfs_true = txdr_unsigned(true);
1510 nfs_false = txdr_unsigned(false);
1511 nfs_xdrneg1 = txdr_unsigned(-1);
1512 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1513 if (nfs_ticks < 1)
1514 nfs_ticks = 1;
1515 #ifdef NFSSERVER
1516 nfsrv_init(0); /* Init server data structures */
1517 nfsrv_initcache(); /* Init the server request cache */
1518 #endif /* NFSSERVER */
1519
1520 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
1521 nfsdreq_init();
1522 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
1523
1524 /*
1525 * Initialize reply list and start timer
1526 */
1527 TAILQ_INIT(&nfs_reqq);
1528 nfs_timer(nfs_timer);
1529 MOWNER_ATTACH(&nfs_mowner);
1530
1531 #ifdef NFS
1532 /* Initialize the kqueue structures */
1533 nfs_kqinit();
1534 /* Initialize the iod structures */
1535 nfs_iodinit();
1536 #endif
1537 return 0;
1538 }
1539
1540 void
1541 nfs_init(void)
1542 {
1543 static ONCE_DECL(nfs_init_once);
1544
1545 RUN_ONCE(&nfs_init_once, nfs_init0);
1546 }
1547
1548 #ifdef NFS
1549 /*
1550 * Called once at VFS init to initialize client-specific data structures.
1551 */
1552 void
1553 nfs_vfs_init()
1554 {
1555 /* Initialize NFS server / client shared data. */
1556 nfs_init();
1557
1558 nfs_nhinit(); /* Init the nfsnode table */
1559 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1560 }
1561
1562 void
1563 nfs_vfs_reinit()
1564 {
1565 nfs_nhreinit();
1566 }
1567
1568 void
1569 nfs_vfs_done()
1570 {
1571 nfs_nhdone();
1572 }
1573
1574 /*
1575 * Attribute cache routines.
1576 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1577 * that are on the mbuf list
1578 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1579 * error otherwise
1580 */
1581
1582 /*
1583 * Load the attribute cache (that lives in the nfsnode entry) with
1584 * the values on the mbuf list and
1585 * Iff vap not NULL
1586 * copy the attributes to *vaper
1587 */
1588 int
1589 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1590 struct vnode **vpp;
1591 struct mbuf **mdp;
1592 char **dposp;
1593 struct vattr *vaper;
1594 int flags;
1595 {
1596 int32_t t1;
1597 char *cp2;
1598 int error = 0;
1599 struct mbuf *md;
1600 int v3 = NFS_ISV3(*vpp);
1601
1602 md = *mdp;
1603 t1 = (mtod(md, char *) + md->m_len) - *dposp;
1604 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1605 if (error)
1606 return (error);
1607 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1608 }
1609
1610 int
1611 nfs_loadattrcache(vpp, fp, vaper, flags)
1612 struct vnode **vpp;
1613 struct nfs_fattr *fp;
1614 struct vattr *vaper;
1615 int flags;
1616 {
1617 struct vnode *vp = *vpp;
1618 struct vattr *vap;
1619 int v3 = NFS_ISV3(vp);
1620 enum vtype vtyp;
1621 u_short vmode;
1622 struct timespec mtime;
1623 struct timespec ctime;
1624 struct vnode *nvp;
1625 int32_t rdev;
1626 struct nfsnode *np;
1627 extern int (**spec_nfsv2nodeop_p) __P((void *));
1628 uid_t uid;
1629 gid_t gid;
1630
1631 if (v3) {
1632 vtyp = nfsv3tov_type(fp->fa_type);
1633 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1634 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1635 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1636 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1637 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1638 } else {
1639 vtyp = nfsv2tov_type(fp->fa_type);
1640 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1641 if (vtyp == VNON || vtyp == VREG)
1642 vtyp = IFTOVT(vmode);
1643 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1644 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1645 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1646 fp->fa2_ctime.nfsv2_sec);
1647 ctime.tv_nsec = 0;
1648
1649 /*
1650 * Really ugly NFSv2 kludge.
1651 */
1652 if (vtyp == VCHR && rdev == 0xffffffff)
1653 vtyp = VFIFO;
1654 }
1655
1656 vmode &= ALLPERMS;
1657
1658 /*
1659 * If v_type == VNON it is a new node, so fill in the v_type,
1660 * n_mtime fields. Check to see if it represents a special
1661 * device, and if so, check for a possible alias. Once the
1662 * correct vnode has been obtained, fill in the rest of the
1663 * information.
1664 */
1665 np = VTONFS(vp);
1666 if (vp->v_type == VNON) {
1667 vp->v_type = vtyp;
1668 if (vp->v_type == VFIFO) {
1669 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1670 vp->v_op = fifo_nfsv2nodeop_p;
1671 } else if (vp->v_type == VREG) {
1672 mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
1673 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1674 vp->v_op = spec_nfsv2nodeop_p;
1675 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1676 if (nvp) {
1677 /*
1678 * Discard unneeded vnode, but save its nfsnode.
1679 * Since the nfsnode does not have a lock, its
1680 * vnode lock has to be carried over.
1681 */
1682 /*
1683 * XXX is the old node sure to be locked here?
1684 */
1685 KASSERT(lockstatus(&vp->v_lock) ==
1686 LK_EXCLUSIVE);
1687 nvp->v_data = vp->v_data;
1688 vp->v_data = NULL;
1689 VOP_UNLOCK(vp, 0);
1690 vp->v_op = spec_vnodeop_p;
1691 vrele(vp);
1692 vgone(vp);
1693 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1694 &nvp->v_interlock);
1695 /*
1696 * Reinitialize aliased node.
1697 */
1698 np->n_vnode = nvp;
1699 *vpp = vp = nvp;
1700 }
1701 }
1702 np->n_mtime = mtime;
1703 }
1704 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1705 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1706 vap = np->n_vattr;
1707
1708 /*
1709 * Invalidate access cache if uid, gid, mode or ctime changed.
1710 */
1711 if (np->n_accstamp != -1 &&
1712 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1713 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1714 np->n_accstamp = -1;
1715
1716 vap->va_type = vtyp;
1717 vap->va_mode = vmode;
1718 vap->va_rdev = (dev_t)rdev;
1719 vap->va_mtime = mtime;
1720 vap->va_ctime = ctime;
1721 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1722 switch (vtyp) {
1723 case VDIR:
1724 vap->va_blocksize = NFS_DIRFRAGSIZ;
1725 break;
1726 case VBLK:
1727 vap->va_blocksize = BLKDEV_IOSIZE;
1728 break;
1729 case VCHR:
1730 vap->va_blocksize = MAXBSIZE;
1731 break;
1732 default:
1733 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1734 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1735 break;
1736 }
1737 if (v3) {
1738 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1739 vap->va_uid = uid;
1740 vap->va_gid = gid;
1741 vap->va_size = fxdr_hyper(&fp->fa3_size);
1742 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1743 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1744 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1745 vap->va_flags = 0;
1746 vap->va_filerev = 0;
1747 } else {
1748 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1749 vap->va_uid = uid;
1750 vap->va_gid = gid;
1751 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1752 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1753 * NFS_FABLKSIZE;
1754 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1755 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1756 vap->va_flags = 0;
1757 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1758 vap->va_filerev = 0;
1759 }
1760 if (vap->va_size != np->n_size) {
1761 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1762 vap->va_size = np->n_size;
1763 } else {
1764 np->n_size = vap->va_size;
1765 if (vap->va_type == VREG) {
1766 /*
1767 * we can't free pages if NAC_NOTRUNC because
1768 * the pages can be owned by ourselves.
1769 */
1770 if (flags & NAC_NOTRUNC) {
1771 np->n_flag |= NTRUNCDELAYED;
1772 } else {
1773 genfs_node_wrlock(vp);
1774 simple_lock(&vp->v_interlock);
1775 (void)VOP_PUTPAGES(vp, 0,
1776 0, PGO_SYNCIO | PGO_CLEANIT |
1777 PGO_FREE | PGO_ALLPAGES);
1778 uvm_vnp_setsize(vp, np->n_size);
1779 genfs_node_unlock(vp);
1780 }
1781 }
1782 }
1783 }
1784 np->n_attrstamp = time_second;
1785 if (vaper != NULL) {
1786 memcpy((void *)vaper, (void *)vap, sizeof(*vap));
1787 if (np->n_flag & NCHG) {
1788 if (np->n_flag & NACC)
1789 vaper->va_atime = np->n_atim;
1790 if (np->n_flag & NUPD)
1791 vaper->va_mtime = np->n_mtim;
1792 }
1793 }
1794 return (0);
1795 }
1796
1797 /*
1798 * Check the time stamp
1799 * If the cache is valid, copy contents to *vap and return 0
1800 * otherwise return an error
1801 */
1802 int
1803 nfs_getattrcache(vp, vaper)
1804 struct vnode *vp;
1805 struct vattr *vaper;
1806 {
1807 struct nfsnode *np = VTONFS(vp);
1808 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1809 struct vattr *vap;
1810
1811 if (np->n_attrstamp == 0 ||
1812 (time_second - np->n_attrstamp) >= NFS_ATTRTIMEO(nmp, np)) {
1813 nfsstats.attrcache_misses++;
1814 return (ENOENT);
1815 }
1816 nfsstats.attrcache_hits++;
1817 vap = np->n_vattr;
1818 if (vap->va_size != np->n_size) {
1819 if (vap->va_type == VREG) {
1820 if ((np->n_flag & NMODIFIED) != 0 &&
1821 vap->va_size < np->n_size) {
1822 vap->va_size = np->n_size;
1823 } else {
1824 np->n_size = vap->va_size;
1825 }
1826 genfs_node_wrlock(vp);
1827 uvm_vnp_setsize(vp, np->n_size);
1828 genfs_node_unlock(vp);
1829 } else
1830 np->n_size = vap->va_size;
1831 }
1832 memcpy((void *)vaper, (void *)vap, sizeof(struct vattr));
1833 if (np->n_flag & NCHG) {
1834 if (np->n_flag & NACC)
1835 vaper->va_atime = np->n_atim;
1836 if (np->n_flag & NUPD)
1837 vaper->va_mtime = np->n_mtim;
1838 }
1839 return (0);
1840 }
1841
1842 void
1843 nfs_delayedtruncate(vp)
1844 struct vnode *vp;
1845 {
1846 struct nfsnode *np = VTONFS(vp);
1847
1848 if (np->n_flag & NTRUNCDELAYED) {
1849 np->n_flag &= ~NTRUNCDELAYED;
1850 genfs_node_wrlock(vp);
1851 simple_lock(&vp->v_interlock);
1852 (void)VOP_PUTPAGES(vp, 0,
1853 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1854 uvm_vnp_setsize(vp, np->n_size);
1855 genfs_node_unlock(vp);
1856 }
1857 }
1858
1859 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1860 #define NFS_WCCKLUDGE(nmp, now) \
1861 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1862 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1863
1864 /*
1865 * nfs_check_wccdata: check inaccurate wcc_data
1866 *
1867 * => return non-zero if we shouldn't trust the wcc_data.
1868 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1869 */
1870
1871 int
1872 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1873 struct timespec *mtime, bool docheck)
1874 {
1875 int error = 0;
1876
1877 #if !defined(NFS_V2_ONLY)
1878
1879 if (docheck) {
1880 struct vnode *vp = NFSTOV(np);
1881 struct nfsmount *nmp;
1882 long now = time_second;
1883 const struct timespec *omtime = &np->n_vattr->va_mtime;
1884 const struct timespec *octime = &np->n_vattr->va_ctime;
1885 #if defined(DEBUG)
1886 const char *reason = NULL; /* XXX: gcc */
1887 #endif
1888
1889 if (timespeccmp(omtime, mtime, <=)) {
1890 #if defined(DEBUG)
1891 reason = "mtime";
1892 #endif
1893 error = EINVAL;
1894 }
1895
1896 if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
1897 #if defined(DEBUG)
1898 reason = "ctime";
1899 #endif
1900 error = EINVAL;
1901 }
1902
1903 nmp = VFSTONFS(vp->v_mount);
1904 if (error) {
1905
1906 /*
1907 * despite of the fact that we've updated the file,
1908 * timestamps of the file were not updated as we
1909 * expected.
1910 * it means that the server has incompatible
1911 * semantics of timestamps or (more likely)
1912 * the server time is not precise enough to
1913 * track each modifications.
1914 * in that case, we disable wcc processing.
1915 *
1916 * yes, strictly speaking, we should disable all
1917 * caching. it's a compromise.
1918 */
1919
1920 mutex_enter(&nmp->nm_lock);
1921 #if defined(DEBUG)
1922 if (!NFS_WCCKLUDGE(nmp, now)) {
1923 printf("%s: inaccurate wcc data (%s) detected,"
1924 " disabling wcc"
1925 " (ctime %u.%09u %u.%09u,"
1926 " mtime %u.%09u %u.%09u)\n",
1927 vp->v_mount->mnt_stat.f_mntfromname,
1928 reason,
1929 (unsigned int)octime->tv_sec,
1930 (unsigned int)octime->tv_nsec,
1931 (unsigned int)ctime->tv_sec,
1932 (unsigned int)ctime->tv_nsec,
1933 (unsigned int)omtime->tv_sec,
1934 (unsigned int)omtime->tv_nsec,
1935 (unsigned int)mtime->tv_sec,
1936 (unsigned int)mtime->tv_nsec);
1937 }
1938 #endif
1939 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1940 nmp->nm_wcckludgetime = now;
1941 mutex_exit(&nmp->nm_lock);
1942 } else if (NFS_WCCKLUDGE(nmp, now)) {
1943 error = EPERM; /* XXX */
1944 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1945 mutex_enter(&nmp->nm_lock);
1946 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1947 #if defined(DEBUG)
1948 printf("%s: re-enabling wcc\n",
1949 vp->v_mount->mnt_stat.f_mntfromname);
1950 #endif
1951 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1952 }
1953 mutex_exit(&nmp->nm_lock);
1954 }
1955 }
1956
1957 #endif /* !defined(NFS_V2_ONLY) */
1958
1959 return error;
1960 }
1961
1962 /*
1963 * Heuristic to see if the server XDR encodes directory cookies or not.
1964 * it is not supposed to, but a lot of servers may do this. Also, since
1965 * most/all servers will implement V2 as well, it is expected that they
1966 * may return just 32 bits worth of cookie information, so we need to
1967 * find out in which 32 bits this information is available. We do this
1968 * to avoid trouble with emulated binaries that can't handle 64 bit
1969 * directory offsets.
1970 */
1971
1972 void
1973 nfs_cookieheuristic(vp, flagp, l, cred)
1974 struct vnode *vp;
1975 int *flagp;
1976 struct lwp *l;
1977 kauth_cred_t cred;
1978 {
1979 struct uio auio;
1980 struct iovec aiov;
1981 char *tbuf, *cp;
1982 struct dirent *dp;
1983 off_t *cookies = NULL, *cop;
1984 int error, eof, nc, len;
1985
1986 MALLOC(tbuf, void *, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1987
1988 aiov.iov_base = tbuf;
1989 aiov.iov_len = NFS_DIRFRAGSIZ;
1990 auio.uio_iov = &aiov;
1991 auio.uio_iovcnt = 1;
1992 auio.uio_rw = UIO_READ;
1993 auio.uio_resid = NFS_DIRFRAGSIZ;
1994 auio.uio_offset = 0;
1995 UIO_SETUP_SYSSPACE(&auio);
1996
1997 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1998
1999 len = NFS_DIRFRAGSIZ - auio.uio_resid;
2000 if (error || len == 0) {
2001 FREE(tbuf, M_TEMP);
2002 if (cookies)
2003 free(cookies, M_TEMP);
2004 return;
2005 }
2006
2007 /*
2008 * Find the first valid entry and look at its offset cookie.
2009 */
2010
2011 cp = tbuf;
2012 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2013 dp = (struct dirent *)cp;
2014 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2015 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2016 *flagp |= NFSMNT_SWAPCOOKIE;
2017 nfs_invaldircache(vp, 0);
2018 nfs_vinvalbuf(vp, 0, cred, l, 1);
2019 }
2020 break;
2021 }
2022 cop++;
2023 cp += dp->d_reclen;
2024 }
2025
2026 FREE(tbuf, M_TEMP);
2027 free(cookies, M_TEMP);
2028 }
2029 #endif /* NFS */
2030
2031 #ifdef NFSSERVER
2032 /*
2033 * Set up nameidata for a lookup() call and do it.
2034 *
2035 * If pubflag is set, this call is done for a lookup operation on the
2036 * public filehandle. In that case we allow crossing mountpoints and
2037 * absolute pathnames. However, the caller is expected to check that
2038 * the lookup result is within the public fs, and deny access if
2039 * it is not.
2040 */
2041 int
2042 nfs_namei(ndp, nsfh, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2043 struct nameidata *ndp;
2044 nfsrvfh_t *nsfh;
2045 uint32_t len;
2046 struct nfssvc_sock *slp;
2047 struct mbuf *nam;
2048 struct mbuf **mdp;
2049 char **dposp;
2050 struct vnode **retdirp;
2051 struct lwp *l;
2052 int kerbflag, pubflag;
2053 {
2054 int i, rem;
2055 struct mbuf *md;
2056 char *fromcp, *tocp, *cp;
2057 struct iovec aiov;
2058 struct uio auio;
2059 struct vnode *dp;
2060 int error, rdonly, linklen;
2061 struct componentname *cnp = &ndp->ni_cnd;
2062
2063 *retdirp = NULL;
2064
2065 if ((len + 1) > MAXPATHLEN)
2066 return (ENAMETOOLONG);
2067 if (len == 0)
2068 return (EACCES);
2069 cnp->cn_pnbuf = PNBUF_GET();
2070
2071 /*
2072 * Copy the name from the mbuf list to ndp->ni_pnbuf
2073 * and set the various ndp fields appropriately.
2074 */
2075 fromcp = *dposp;
2076 tocp = cnp->cn_pnbuf;
2077 md = *mdp;
2078 rem = mtod(md, char *) + md->m_len - fromcp;
2079 for (i = 0; i < len; i++) {
2080 while (rem == 0) {
2081 md = md->m_next;
2082 if (md == NULL) {
2083 error = EBADRPC;
2084 goto out;
2085 }
2086 fromcp = mtod(md, void *);
2087 rem = md->m_len;
2088 }
2089 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2090 error = EACCES;
2091 goto out;
2092 }
2093 *tocp++ = *fromcp++;
2094 rem--;
2095 }
2096 *tocp = '\0';
2097 *mdp = md;
2098 *dposp = fromcp;
2099 len = nfsm_rndup(len)-len;
2100 if (len > 0) {
2101 if (rem >= len)
2102 *dposp += len;
2103 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2104 goto out;
2105 }
2106
2107 /*
2108 * Extract and set starting directory.
2109 */
2110 error = nfsrv_fhtovp(nsfh, false, &dp, ndp->ni_cnd.cn_cred, slp,
2111 nam, &rdonly, kerbflag, pubflag);
2112 if (error)
2113 goto out;
2114 if (dp->v_type != VDIR) {
2115 vrele(dp);
2116 error = ENOTDIR;
2117 goto out;
2118 }
2119
2120 if (rdonly)
2121 cnp->cn_flags |= RDONLY;
2122
2123 *retdirp = dp;
2124
2125 if (pubflag) {
2126 /*
2127 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2128 * and the 'native path' indicator.
2129 */
2130 cp = PNBUF_GET();
2131 fromcp = cnp->cn_pnbuf;
2132 tocp = cp;
2133 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2134 switch ((unsigned char)*fromcp) {
2135 case WEBNFS_NATIVE_CHAR:
2136 /*
2137 * 'Native' path for us is the same
2138 * as a path according to the NFS spec,
2139 * just skip the escape char.
2140 */
2141 fromcp++;
2142 break;
2143 /*
2144 * More may be added in the future, range 0x80-0xff
2145 */
2146 default:
2147 error = EIO;
2148 vrele(dp);
2149 PNBUF_PUT(cp);
2150 goto out;
2151 }
2152 }
2153 /*
2154 * Translate the '%' escapes, URL-style.
2155 */
2156 while (*fromcp != '\0') {
2157 if (*fromcp == WEBNFS_ESC_CHAR) {
2158 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2159 fromcp++;
2160 *tocp++ = HEXSTRTOI(fromcp);
2161 fromcp += 2;
2162 continue;
2163 } else {
2164 error = ENOENT;
2165 vrele(dp);
2166 PNBUF_PUT(cp);
2167 goto out;
2168 }
2169 } else
2170 *tocp++ = *fromcp++;
2171 }
2172 *tocp = '\0';
2173 PNBUF_PUT(cnp->cn_pnbuf);
2174 cnp->cn_pnbuf = cp;
2175 }
2176
2177 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2178 ndp->ni_segflg = UIO_SYSSPACE;
2179 ndp->ni_rootdir = rootvnode;
2180 ndp->ni_erootdir = NULL;
2181
2182 if (pubflag) {
2183 ndp->ni_loopcnt = 0;
2184 if (cnp->cn_pnbuf[0] == '/')
2185 dp = rootvnode;
2186 } else {
2187 cnp->cn_flags |= NOCROSSMOUNT;
2188 }
2189
2190 cnp->cn_lwp = l;
2191 VREF(dp);
2192 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2193
2194 for (;;) {
2195 cnp->cn_nameptr = cnp->cn_pnbuf;
2196 ndp->ni_startdir = dp;
2197
2198 /*
2199 * And call lookup() to do the real work
2200 */
2201 error = lookup(ndp);
2202 if (error) {
2203 if (ndp->ni_dvp) {
2204 vput(ndp->ni_dvp);
2205 }
2206 PNBUF_PUT(cnp->cn_pnbuf);
2207 return (error);
2208 }
2209
2210 /*
2211 * Check for encountering a symbolic link
2212 */
2213 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2214 if ((cnp->cn_flags & LOCKPARENT) == 0 && ndp->ni_dvp) {
2215 if (ndp->ni_dvp == ndp->ni_vp) {
2216 vrele(ndp->ni_dvp);
2217 } else {
2218 vput(ndp->ni_dvp);
2219 }
2220 }
2221 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2222 cnp->cn_flags |= HASBUF;
2223 else
2224 PNBUF_PUT(cnp->cn_pnbuf);
2225 return (0);
2226 } else {
2227 if (!pubflag) {
2228 error = EINVAL;
2229 break;
2230 }
2231 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2232 error = ELOOP;
2233 break;
2234 }
2235 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2236 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2237 cnp->cn_lwp);
2238 if (error != 0)
2239 break;
2240 }
2241 if (ndp->ni_pathlen > 1)
2242 cp = PNBUF_GET();
2243 else
2244 cp = cnp->cn_pnbuf;
2245 aiov.iov_base = cp;
2246 aiov.iov_len = MAXPATHLEN;
2247 auio.uio_iov = &aiov;
2248 auio.uio_iovcnt = 1;
2249 auio.uio_offset = 0;
2250 auio.uio_rw = UIO_READ;
2251 auio.uio_resid = MAXPATHLEN;
2252 UIO_SETUP_SYSSPACE(&auio);
2253 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2254 if (error) {
2255 badlink:
2256 if (ndp->ni_pathlen > 1)
2257 PNBUF_PUT(cp);
2258 break;
2259 }
2260 linklen = MAXPATHLEN - auio.uio_resid;
2261 if (linklen == 0) {
2262 error = ENOENT;
2263 goto badlink;
2264 }
2265 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2266 error = ENAMETOOLONG;
2267 goto badlink;
2268 }
2269 if (ndp->ni_pathlen > 1) {
2270 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2271 PNBUF_PUT(cnp->cn_pnbuf);
2272 cnp->cn_pnbuf = cp;
2273 } else
2274 cnp->cn_pnbuf[linklen] = '\0';
2275 ndp->ni_pathlen += linklen;
2276 vput(ndp->ni_vp);
2277 dp = ndp->ni_dvp;
2278
2279 /*
2280 * Check if root directory should replace current directory.
2281 */
2282 if (cnp->cn_pnbuf[0] == '/') {
2283 vput(dp);
2284 dp = ndp->ni_rootdir;
2285 VREF(dp);
2286 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2287 }
2288 }
2289 }
2290 vput(ndp->ni_dvp);
2291 vput(ndp->ni_vp);
2292 ndp->ni_vp = NULL;
2293 out:
2294 PNBUF_PUT(cnp->cn_pnbuf);
2295 return (error);
2296 }
2297 #endif /* NFSSERVER */
2298
2299 /*
2300 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2301 * boundary and only trims off the back end
2302 *
2303 * 1. trim off 'len' bytes as m_adj(mp, -len).
2304 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2305 */
2306 void
2307 nfs_zeropad(mp, len, nul)
2308 struct mbuf *mp;
2309 int len;
2310 int nul;
2311 {
2312 struct mbuf *m;
2313 int count;
2314
2315 /*
2316 * Trim from tail. Scan the mbuf chain,
2317 * calculating its length and finding the last mbuf.
2318 * If the adjustment only affects this mbuf, then just
2319 * adjust and return. Otherwise, rescan and truncate
2320 * after the remaining size.
2321 */
2322 count = 0;
2323 m = mp;
2324 for (;;) {
2325 count += m->m_len;
2326 if (m->m_next == NULL)
2327 break;
2328 m = m->m_next;
2329 }
2330
2331 KDASSERT(count >= len);
2332
2333 if (m->m_len >= len) {
2334 m->m_len -= len;
2335 } else {
2336 count -= len;
2337 /*
2338 * Correct length for chain is "count".
2339 * Find the mbuf with last data, adjust its length,
2340 * and toss data from remaining mbufs on chain.
2341 */
2342 for (m = mp; m; m = m->m_next) {
2343 if (m->m_len >= count) {
2344 m->m_len = count;
2345 break;
2346 }
2347 count -= m->m_len;
2348 }
2349 KASSERT(m && m->m_next);
2350 m_freem(m->m_next);
2351 m->m_next = NULL;
2352 }
2353
2354 KDASSERT(m->m_next == NULL);
2355
2356 /*
2357 * zero-padding.
2358 */
2359 if (nul > 0) {
2360 char *cp;
2361 int i;
2362
2363 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2364 struct mbuf *n;
2365
2366 KDASSERT(MLEN >= nul);
2367 n = m_get(M_WAIT, MT_DATA);
2368 MCLAIM(n, &nfs_mowner);
2369 n->m_len = nul;
2370 n->m_next = NULL;
2371 m->m_next = n;
2372 cp = mtod(n, void *);
2373 } else {
2374 cp = mtod(m, char *) + m->m_len;
2375 m->m_len += nul;
2376 }
2377 for (i = 0; i < nul; i++)
2378 *cp++ = '\0';
2379 }
2380 return;
2381 }
2382
2383 /*
2384 * Make these functions instead of macros, so that the kernel text size
2385 * doesn't get too big...
2386 */
2387 void
2388 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2389 struct nfsrv_descript *nfsd;
2390 int before_ret;
2391 struct vattr *before_vap;
2392 int after_ret;
2393 struct vattr *after_vap;
2394 struct mbuf **mbp;
2395 char **bposp;
2396 {
2397 struct mbuf *mb = *mbp;
2398 char *bpos = *bposp;
2399 u_int32_t *tl;
2400
2401 if (before_ret) {
2402 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2403 *tl = nfs_false;
2404 } else {
2405 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2406 *tl++ = nfs_true;
2407 txdr_hyper(before_vap->va_size, tl);
2408 tl += 2;
2409 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2410 tl += 2;
2411 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2412 }
2413 *bposp = bpos;
2414 *mbp = mb;
2415 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2416 }
2417
2418 void
2419 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2420 struct nfsrv_descript *nfsd;
2421 int after_ret;
2422 struct vattr *after_vap;
2423 struct mbuf **mbp;
2424 char **bposp;
2425 {
2426 struct mbuf *mb = *mbp;
2427 char *bpos = *bposp;
2428 u_int32_t *tl;
2429 struct nfs_fattr *fp;
2430
2431 if (after_ret) {
2432 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2433 *tl = nfs_false;
2434 } else {
2435 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2436 *tl++ = nfs_true;
2437 fp = (struct nfs_fattr *)tl;
2438 nfsm_srvfattr(nfsd, after_vap, fp);
2439 }
2440 *mbp = mb;
2441 *bposp = bpos;
2442 }
2443
2444 void
2445 nfsm_srvfattr(nfsd, vap, fp)
2446 struct nfsrv_descript *nfsd;
2447 struct vattr *vap;
2448 struct nfs_fattr *fp;
2449 {
2450
2451 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2452 fp->fa_uid = txdr_unsigned(vap->va_uid);
2453 fp->fa_gid = txdr_unsigned(vap->va_gid);
2454 if (nfsd->nd_flag & ND_NFSV3) {
2455 fp->fa_type = vtonfsv3_type(vap->va_type);
2456 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2457 txdr_hyper(vap->va_size, &fp->fa3_size);
2458 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2459 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2460 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2461 fp->fa3_fsid.nfsuquad[0] = 0;
2462 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2463 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2464 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2465 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2466 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2467 } else {
2468 fp->fa_type = vtonfsv2_type(vap->va_type);
2469 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2470 fp->fa2_size = txdr_unsigned(vap->va_size);
2471 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2472 if (vap->va_type == VFIFO)
2473 fp->fa2_rdev = 0xffffffff;
2474 else
2475 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2476 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2477 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2478 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2479 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2480 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2481 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2482 }
2483 }
2484
2485 #ifdef NFSSERVER
2486 /*
2487 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2488 * - look up fsid in mount list (if not found ret error)
2489 * - get vp and export rights by calling VFS_FHTOVP()
2490 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2491 * - if not lockflag unlock it with VOP_UNLOCK()
2492 */
2493 int
2494 nfsrv_fhtovp(nfsrvfh_t *nsfh, int lockflag, struct vnode **vpp,
2495 kauth_cred_t cred, struct nfssvc_sock *slp, struct mbuf *nam, int *rdonlyp,
2496 int kerbflag, int pubflag)
2497 {
2498 struct mount *mp;
2499 kauth_cred_t credanon;
2500 int error, exflags;
2501 struct sockaddr_in *saddr;
2502 fhandle_t *fhp;
2503
2504 fhp = NFSRVFH_FHANDLE(nsfh);
2505 *vpp = (struct vnode *)0;
2506
2507 if (nfs_ispublicfh(nsfh)) {
2508 if (!pubflag || !nfs_pub.np_valid)
2509 return (ESTALE);
2510 fhp = nfs_pub.np_handle;
2511 }
2512
2513 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2514 if (error) {
2515 return error;
2516 }
2517
2518 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2519 if (error)
2520 return (error);
2521
2522 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2523 saddr = mtod(nam, struct sockaddr_in *);
2524 if ((saddr->sin_family == AF_INET) &&
2525 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2526 vput(*vpp);
2527 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2528 }
2529 #ifdef INET6
2530 if ((saddr->sin_family == AF_INET6) &&
2531 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2532 vput(*vpp);
2533 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2534 }
2535 #endif
2536 }
2537 /*
2538 * Check/setup credentials.
2539 */
2540 if (exflags & MNT_EXKERB) {
2541 if (!kerbflag) {
2542 vput(*vpp);
2543 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2544 }
2545 } else if (kerbflag) {
2546 vput(*vpp);
2547 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2548 } else if (kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER,
2549 NULL) == 0 || (exflags & MNT_EXPORTANON)) {
2550 kauth_cred_clone(credanon, cred);
2551 }
2552 if (exflags & MNT_EXRDONLY)
2553 *rdonlyp = 1;
2554 else
2555 *rdonlyp = 0;
2556 if (!lockflag)
2557 VOP_UNLOCK(*vpp, 0);
2558 return (0);
2559 }
2560
2561 /*
2562 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2563 * means a length of 0, for v2 it means all zeroes.
2564 */
2565 int
2566 nfs_ispublicfh(const nfsrvfh_t *nsfh)
2567 {
2568 const char *cp = (const void *)(NFSRVFH_DATA(nsfh));
2569 int i;
2570
2571 if (NFSRVFH_SIZE(nsfh) == 0) {
2572 return true;
2573 }
2574 if (NFSRVFH_SIZE(nsfh) != NFSX_V2FH) {
2575 return false;
2576 }
2577 for (i = 0; i < NFSX_V2FH; i++)
2578 if (*cp++ != 0)
2579 return false;
2580 return true;
2581 }
2582 #endif /* NFSSERVER */
2583
2584 /*
2585 * This function compares two net addresses by family and returns true
2586 * if they are the same host.
2587 * If there is any doubt, return false.
2588 * The AF_INET family is handled as a special case so that address mbufs
2589 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2590 */
2591 int
2592 netaddr_match(family, haddr, nam)
2593 int family;
2594 union nethostaddr *haddr;
2595 struct mbuf *nam;
2596 {
2597 struct sockaddr_in *inetaddr;
2598
2599 switch (family) {
2600 case AF_INET:
2601 inetaddr = mtod(nam, struct sockaddr_in *);
2602 if (inetaddr->sin_family == AF_INET &&
2603 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2604 return (1);
2605 break;
2606 #ifdef INET6
2607 case AF_INET6:
2608 {
2609 struct sockaddr_in6 *sin6_1, *sin6_2;
2610
2611 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2612 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2613 if (sin6_1->sin6_family == AF_INET6 &&
2614 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2615 return 1;
2616 }
2617 #endif
2618 #ifdef ISO
2619 case AF_ISO:
2620 {
2621 struct sockaddr_iso *isoaddr1, *isoaddr2;
2622
2623 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2624 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2625 if (isoaddr1->siso_family == AF_ISO &&
2626 isoaddr1->siso_nlen > 0 &&
2627 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2628 SAME_ISOADDR(isoaddr1, isoaddr2))
2629 return (1);
2630 break;
2631 }
2632 #endif /* ISO */
2633 default:
2634 break;
2635 };
2636 return (0);
2637 }
2638
2639 /*
2640 * The write verifier has changed (probably due to a server reboot), so all
2641 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2642 * as dirty or are being written out just now, all this takes is clearing
2643 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2644 * the mount point.
2645 */
2646 void
2647 nfs_clearcommit(mp)
2648 struct mount *mp;
2649 {
2650 struct vnode *vp;
2651 struct nfsnode *np;
2652 struct vm_page *pg;
2653 struct nfsmount *nmp = VFSTONFS(mp);
2654
2655 rw_enter(&nmp->nm_writeverflock, RW_WRITER);
2656
2657 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2658 KASSERT(vp->v_mount == mp);
2659 if (vp->v_type != VREG)
2660 continue;
2661 np = VTONFS(vp);
2662 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2663 np->n_pushedhi = 0;
2664 np->n_commitflags &=
2665 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2666 simple_lock(&vp->v_uobj.vmobjlock);
2667 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2668 pg->flags &= ~PG_NEEDCOMMIT;
2669 }
2670 simple_unlock(&vp->v_uobj.vmobjlock);
2671 }
2672 mutex_enter(&nmp->nm_lock);
2673 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2674 mutex_exit(&nmp->nm_lock);
2675 rw_exit(&nmp->nm_writeverflock);
2676 }
2677
2678 void
2679 nfs_merge_commit_ranges(vp)
2680 struct vnode *vp;
2681 {
2682 struct nfsnode *np = VTONFS(vp);
2683
2684 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2685
2686 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2687 np->n_pushedlo = np->n_pushlo;
2688 np->n_pushedhi = np->n_pushhi;
2689 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2690 } else {
2691 if (np->n_pushlo < np->n_pushedlo)
2692 np->n_pushedlo = np->n_pushlo;
2693 if (np->n_pushhi > np->n_pushedhi)
2694 np->n_pushedhi = np->n_pushhi;
2695 }
2696
2697 np->n_pushlo = np->n_pushhi = 0;
2698 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2699
2700 #ifdef NFS_DEBUG_COMMIT
2701 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2702 (unsigned)np->n_pushedhi);
2703 #endif
2704 }
2705
2706 int
2707 nfs_in_committed_range(vp, off, len)
2708 struct vnode *vp;
2709 off_t off, len;
2710 {
2711 struct nfsnode *np = VTONFS(vp);
2712 off_t lo, hi;
2713
2714 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2715 return 0;
2716 lo = off;
2717 hi = lo + len;
2718
2719 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2720 }
2721
2722 int
2723 nfs_in_tobecommitted_range(vp, off, len)
2724 struct vnode *vp;
2725 off_t off, len;
2726 {
2727 struct nfsnode *np = VTONFS(vp);
2728 off_t lo, hi;
2729
2730 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2731 return 0;
2732 lo = off;
2733 hi = lo + len;
2734
2735 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2736 }
2737
2738 void
2739 nfs_add_committed_range(vp, off, len)
2740 struct vnode *vp;
2741 off_t off, len;
2742 {
2743 struct nfsnode *np = VTONFS(vp);
2744 off_t lo, hi;
2745
2746 lo = off;
2747 hi = lo + len;
2748
2749 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2750 np->n_pushedlo = lo;
2751 np->n_pushedhi = hi;
2752 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2753 } else {
2754 if (hi > np->n_pushedhi)
2755 np->n_pushedhi = hi;
2756 if (lo < np->n_pushedlo)
2757 np->n_pushedlo = lo;
2758 }
2759 #ifdef NFS_DEBUG_COMMIT
2760 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2761 (unsigned)np->n_pushedhi);
2762 #endif
2763 }
2764
2765 void
2766 nfs_del_committed_range(vp, off, len)
2767 struct vnode *vp;
2768 off_t off, len;
2769 {
2770 struct nfsnode *np = VTONFS(vp);
2771 off_t lo, hi;
2772
2773 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2774 return;
2775
2776 lo = off;
2777 hi = lo + len;
2778
2779 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2780 return;
2781 if (lo <= np->n_pushedlo)
2782 np->n_pushedlo = hi;
2783 else if (hi >= np->n_pushedhi)
2784 np->n_pushedhi = lo;
2785 else {
2786 /*
2787 * XXX There's only one range. If the deleted range
2788 * is in the middle, pick the largest of the
2789 * contiguous ranges that it leaves.
2790 */
2791 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2792 np->n_pushedhi = lo;
2793 else
2794 np->n_pushedlo = hi;
2795 }
2796 #ifdef NFS_DEBUG_COMMIT
2797 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2798 (unsigned)np->n_pushedhi);
2799 #endif
2800 }
2801
2802 void
2803 nfs_add_tobecommitted_range(vp, off, len)
2804 struct vnode *vp;
2805 off_t off, len;
2806 {
2807 struct nfsnode *np = VTONFS(vp);
2808 off_t lo, hi;
2809
2810 lo = off;
2811 hi = lo + len;
2812
2813 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2814 np->n_pushlo = lo;
2815 np->n_pushhi = hi;
2816 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2817 } else {
2818 if (lo < np->n_pushlo)
2819 np->n_pushlo = lo;
2820 if (hi > np->n_pushhi)
2821 np->n_pushhi = hi;
2822 }
2823 #ifdef NFS_DEBUG_COMMIT
2824 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2825 (unsigned)np->n_pushhi);
2826 #endif
2827 }
2828
2829 void
2830 nfs_del_tobecommitted_range(vp, off, len)
2831 struct vnode *vp;
2832 off_t off, len;
2833 {
2834 struct nfsnode *np = VTONFS(vp);
2835 off_t lo, hi;
2836
2837 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2838 return;
2839
2840 lo = off;
2841 hi = lo + len;
2842
2843 if (lo > np->n_pushhi || hi < np->n_pushlo)
2844 return;
2845
2846 if (lo <= np->n_pushlo)
2847 np->n_pushlo = hi;
2848 else if (hi >= np->n_pushhi)
2849 np->n_pushhi = lo;
2850 else {
2851 /*
2852 * XXX There's only one range. If the deleted range
2853 * is in the middle, pick the largest of the
2854 * contiguous ranges that it leaves.
2855 */
2856 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2857 np->n_pushhi = lo;
2858 else
2859 np->n_pushlo = hi;
2860 }
2861 #ifdef NFS_DEBUG_COMMIT
2862 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2863 (unsigned)np->n_pushhi);
2864 #endif
2865 }
2866
2867 /*
2868 * Map errnos to NFS error numbers. For Version 3 also filter out error
2869 * numbers not specified for the associated procedure.
2870 */
2871 int
2872 nfsrv_errmap(nd, err)
2873 struct nfsrv_descript *nd;
2874 int err;
2875 {
2876 const short *defaulterrp, *errp;
2877
2878 if (nd->nd_flag & ND_NFSV3) {
2879 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2880 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2881 while (*++errp) {
2882 if (*errp == err)
2883 return (err);
2884 else if (*errp > err)
2885 break;
2886 }
2887 return ((int)*defaulterrp);
2888 } else
2889 return (err & 0xffff);
2890 }
2891 if (err <= ELAST)
2892 return ((int)nfsrv_v2errmap[err - 1]);
2893 return (NFSERR_IO);
2894 }
2895
2896 u_int32_t
2897 nfs_getxid()
2898 {
2899 static u_int32_t base;
2900 static u_int32_t nfs_xid = 0;
2901 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2902 u_int32_t newxid;
2903
2904 simple_lock(&nfs_xidlock);
2905 /*
2906 * derive initial xid from system time
2907 * XXX time is invalid if root not yet mounted
2908 */
2909 if (__predict_false(!base && (rootvp))) {
2910 struct timeval tv;
2911
2912 microtime(&tv);
2913 base = tv.tv_sec << 12;
2914 nfs_xid = base;
2915 }
2916
2917 /*
2918 * Skip zero xid if it should ever happen.
2919 */
2920 if (__predict_false(++nfs_xid == 0))
2921 nfs_xid++;
2922 newxid = nfs_xid;
2923 simple_unlock(&nfs_xidlock);
2924
2925 return txdr_unsigned(newxid);
2926 }
2927
2928 /*
2929 * assign a new xid for existing request.
2930 * used for NFSERR_JUKEBOX handling.
2931 */
2932 void
2933 nfs_renewxid(struct nfsreq *req)
2934 {
2935 u_int32_t xid;
2936 int off;
2937
2938 xid = nfs_getxid();
2939 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2940 off = sizeof(u_int32_t); /* RPC record mark */
2941 else
2942 off = 0;
2943
2944 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2945 req->r_xid = xid;
2946 }
2947
2948 #if defined(NFSSERVER)
2949 int
2950 nfsrv_composefh(struct vnode *vp, nfsrvfh_t *nsfh, bool v3)
2951 {
2952 int error;
2953 size_t fhsize;
2954
2955 fhsize = NFSD_MAXFHSIZE;
2956 error = vfs_composefh(vp, (void *)NFSRVFH_DATA(nsfh), &fhsize);
2957 if (NFSX_FHTOOBIG_P(fhsize, v3)) {
2958 error = EOPNOTSUPP;
2959 }
2960 if (error != 0) {
2961 return error;
2962 }
2963 if (!v3 && fhsize < NFSX_V2FH) {
2964 memset((char *)NFSRVFH_DATA(nsfh) + fhsize, 0,
2965 NFSX_V2FH - fhsize);
2966 fhsize = NFSX_V2FH;
2967 }
2968 if ((fhsize % NFSX_UNSIGNED) != 0) {
2969 return EOPNOTSUPP;
2970 }
2971 nsfh->nsfh_size = fhsize;
2972 return 0;
2973 }
2974
2975 int
2976 nfsrv_comparefh(const nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2977 {
2978
2979 if (NFSRVFH_SIZE(fh1) != NFSRVFH_SIZE(fh2)) {
2980 return NFSRVFH_SIZE(fh2) - NFSRVFH_SIZE(fh1);
2981 }
2982 return memcmp(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), NFSRVFH_SIZE(fh1));
2983 }
2984
2985 void
2986 nfsrv_copyfh(nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2987 {
2988 size_t size;
2989
2990 fh1->nsfh_size = size = NFSRVFH_SIZE(fh2);
2991 memcpy(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), size);
2992 }
2993 #endif /* defined(NFSSERVER) */
2994