nfs_subs.c revision 1.191 1 /* $NetBSD: nfs_subs.c,v 1.191 2007/07/27 10:03:58 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.191 2007/07/27 10:03:58 yamt Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/mount.h>
91 #include <sys/vnode.h>
92 #include <sys/namei.h>
93 #include <sys/mbuf.h>
94 #include <sys/socket.h>
95 #include <sys/stat.h>
96 #include <sys/malloc.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 #include <sys/once.h>
101 #include <sys/kauth.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include <nfs/rpcv2.h>
106 #include <nfs/nfsproto.h>
107 #include <nfs/nfsnode.h>
108 #include <nfs/nfs.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114
115 #include <miscfs/specfs/specdev.h>
116
117 #include <netinet/in.h>
118 #ifdef ISO
119 #include <netiso/iso.h>
120 #endif
121
122 /*
123 * Data items converted to xdr at startup, since they are constant
124 * This is kinda hokey, but may save a little time doing byte swaps
125 */
126 u_int32_t nfs_xdrneg1;
127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
128 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
129 rpc_auth_kerb;
130 u_int32_t nfs_prog, nfs_true, nfs_false;
131
132 /* And other global data */
133 const nfstype nfsv2_type[9] =
134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142 int nfs_commitsize;
143
144 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
145
146 /* NFS client/server stats. */
147 struct nfsstats nfsstats;
148
149 /*
150 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
151 */
152 const int nfsv3_procid[NFS_NPROCS] = {
153 NFSPROC_NULL,
154 NFSPROC_GETATTR,
155 NFSPROC_SETATTR,
156 NFSPROC_NOOP,
157 NFSPROC_LOOKUP,
158 NFSPROC_READLINK,
159 NFSPROC_READ,
160 NFSPROC_NOOP,
161 NFSPROC_WRITE,
162 NFSPROC_CREATE,
163 NFSPROC_REMOVE,
164 NFSPROC_RENAME,
165 NFSPROC_LINK,
166 NFSPROC_SYMLINK,
167 NFSPROC_MKDIR,
168 NFSPROC_RMDIR,
169 NFSPROC_READDIR,
170 NFSPROC_FSSTAT,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP
176 };
177
178 /*
179 * and the reverse mapping from generic to Version 2 procedure numbers
180 */
181 const int nfsv2_procid[NFS_NPROCS] = {
182 NFSV2PROC_NULL,
183 NFSV2PROC_GETATTR,
184 NFSV2PROC_SETATTR,
185 NFSV2PROC_LOOKUP,
186 NFSV2PROC_NOOP,
187 NFSV2PROC_READLINK,
188 NFSV2PROC_READ,
189 NFSV2PROC_WRITE,
190 NFSV2PROC_CREATE,
191 NFSV2PROC_MKDIR,
192 NFSV2PROC_SYMLINK,
193 NFSV2PROC_CREATE,
194 NFSV2PROC_REMOVE,
195 NFSV2PROC_RMDIR,
196 NFSV2PROC_RENAME,
197 NFSV2PROC_LINK,
198 NFSV2PROC_READDIR,
199 NFSV2PROC_NOOP,
200 NFSV2PROC_STATFS,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 };
206
207 /*
208 * Maps errno values to nfs error numbers.
209 * Use NFSERR_IO as the catch all for ones not specifically defined in
210 * RFC 1094.
211 */
212 static const u_char nfsrv_v2errmap[ELAST] = {
213 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
214 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
215 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
216 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
217 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
226 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO,
230 };
231
232 /*
233 * Maps errno values to nfs error numbers.
234 * Although it is not obvious whether or not NFS clients really care if
235 * a returned error value is in the specified list for the procedure, the
236 * safest thing to do is filter them appropriately. For Version 2, the
237 * X/Open XNFS document is the only specification that defines error values
238 * for each RPC (The RFC simply lists all possible error values for all RPCs),
239 * so I have decided to not do this for Version 2.
240 * The first entry is the default error return and the rest are the valid
241 * errors for that RPC in increasing numeric order.
242 */
243 static const short nfsv3err_null[] = {
244 0,
245 0,
246 };
247
248 static const short nfsv3err_getattr[] = {
249 NFSERR_IO,
250 NFSERR_IO,
251 NFSERR_STALE,
252 NFSERR_BADHANDLE,
253 NFSERR_SERVERFAULT,
254 0,
255 };
256
257 static const short nfsv3err_setattr[] = {
258 NFSERR_IO,
259 NFSERR_PERM,
260 NFSERR_IO,
261 NFSERR_ACCES,
262 NFSERR_INVAL,
263 NFSERR_NOSPC,
264 NFSERR_ROFS,
265 NFSERR_DQUOT,
266 NFSERR_STALE,
267 NFSERR_BADHANDLE,
268 NFSERR_NOT_SYNC,
269 NFSERR_SERVERFAULT,
270 0,
271 };
272
273 static const short nfsv3err_lookup[] = {
274 NFSERR_IO,
275 NFSERR_NOENT,
276 NFSERR_IO,
277 NFSERR_ACCES,
278 NFSERR_NOTDIR,
279 NFSERR_NAMETOL,
280 NFSERR_STALE,
281 NFSERR_BADHANDLE,
282 NFSERR_SERVERFAULT,
283 0,
284 };
285
286 static const short nfsv3err_access[] = {
287 NFSERR_IO,
288 NFSERR_IO,
289 NFSERR_STALE,
290 NFSERR_BADHANDLE,
291 NFSERR_SERVERFAULT,
292 0,
293 };
294
295 static const short nfsv3err_readlink[] = {
296 NFSERR_IO,
297 NFSERR_IO,
298 NFSERR_ACCES,
299 NFSERR_INVAL,
300 NFSERR_STALE,
301 NFSERR_BADHANDLE,
302 NFSERR_NOTSUPP,
303 NFSERR_SERVERFAULT,
304 0,
305 };
306
307 static const short nfsv3err_read[] = {
308 NFSERR_IO,
309 NFSERR_IO,
310 NFSERR_NXIO,
311 NFSERR_ACCES,
312 NFSERR_INVAL,
313 NFSERR_STALE,
314 NFSERR_BADHANDLE,
315 NFSERR_SERVERFAULT,
316 NFSERR_JUKEBOX,
317 0,
318 };
319
320 static const short nfsv3err_write[] = {
321 NFSERR_IO,
322 NFSERR_IO,
323 NFSERR_ACCES,
324 NFSERR_INVAL,
325 NFSERR_FBIG,
326 NFSERR_NOSPC,
327 NFSERR_ROFS,
328 NFSERR_DQUOT,
329 NFSERR_STALE,
330 NFSERR_BADHANDLE,
331 NFSERR_SERVERFAULT,
332 NFSERR_JUKEBOX,
333 0,
334 };
335
336 static const short nfsv3err_create[] = {
337 NFSERR_IO,
338 NFSERR_IO,
339 NFSERR_ACCES,
340 NFSERR_EXIST,
341 NFSERR_NOTDIR,
342 NFSERR_NOSPC,
343 NFSERR_ROFS,
344 NFSERR_NAMETOL,
345 NFSERR_DQUOT,
346 NFSERR_STALE,
347 NFSERR_BADHANDLE,
348 NFSERR_NOTSUPP,
349 NFSERR_SERVERFAULT,
350 0,
351 };
352
353 static const short nfsv3err_mkdir[] = {
354 NFSERR_IO,
355 NFSERR_IO,
356 NFSERR_ACCES,
357 NFSERR_EXIST,
358 NFSERR_NOTDIR,
359 NFSERR_NOSPC,
360 NFSERR_ROFS,
361 NFSERR_NAMETOL,
362 NFSERR_DQUOT,
363 NFSERR_STALE,
364 NFSERR_BADHANDLE,
365 NFSERR_NOTSUPP,
366 NFSERR_SERVERFAULT,
367 0,
368 };
369
370 static const short nfsv3err_symlink[] = {
371 NFSERR_IO,
372 NFSERR_IO,
373 NFSERR_ACCES,
374 NFSERR_EXIST,
375 NFSERR_NOTDIR,
376 NFSERR_NOSPC,
377 NFSERR_ROFS,
378 NFSERR_NAMETOL,
379 NFSERR_DQUOT,
380 NFSERR_STALE,
381 NFSERR_BADHANDLE,
382 NFSERR_NOTSUPP,
383 NFSERR_SERVERFAULT,
384 0,
385 };
386
387 static const short nfsv3err_mknod[] = {
388 NFSERR_IO,
389 NFSERR_IO,
390 NFSERR_ACCES,
391 NFSERR_EXIST,
392 NFSERR_NOTDIR,
393 NFSERR_NOSPC,
394 NFSERR_ROFS,
395 NFSERR_NAMETOL,
396 NFSERR_DQUOT,
397 NFSERR_STALE,
398 NFSERR_BADHANDLE,
399 NFSERR_NOTSUPP,
400 NFSERR_SERVERFAULT,
401 NFSERR_BADTYPE,
402 0,
403 };
404
405 static const short nfsv3err_remove[] = {
406 NFSERR_IO,
407 NFSERR_NOENT,
408 NFSERR_IO,
409 NFSERR_ACCES,
410 NFSERR_NOTDIR,
411 NFSERR_ROFS,
412 NFSERR_NAMETOL,
413 NFSERR_STALE,
414 NFSERR_BADHANDLE,
415 NFSERR_SERVERFAULT,
416 0,
417 };
418
419 static const short nfsv3err_rmdir[] = {
420 NFSERR_IO,
421 NFSERR_NOENT,
422 NFSERR_IO,
423 NFSERR_ACCES,
424 NFSERR_EXIST,
425 NFSERR_NOTDIR,
426 NFSERR_INVAL,
427 NFSERR_ROFS,
428 NFSERR_NAMETOL,
429 NFSERR_NOTEMPTY,
430 NFSERR_STALE,
431 NFSERR_BADHANDLE,
432 NFSERR_NOTSUPP,
433 NFSERR_SERVERFAULT,
434 0,
435 };
436
437 static const short nfsv3err_rename[] = {
438 NFSERR_IO,
439 NFSERR_NOENT,
440 NFSERR_IO,
441 NFSERR_ACCES,
442 NFSERR_EXIST,
443 NFSERR_XDEV,
444 NFSERR_NOTDIR,
445 NFSERR_ISDIR,
446 NFSERR_INVAL,
447 NFSERR_NOSPC,
448 NFSERR_ROFS,
449 NFSERR_MLINK,
450 NFSERR_NAMETOL,
451 NFSERR_NOTEMPTY,
452 NFSERR_DQUOT,
453 NFSERR_STALE,
454 NFSERR_BADHANDLE,
455 NFSERR_NOTSUPP,
456 NFSERR_SERVERFAULT,
457 0,
458 };
459
460 static const short nfsv3err_link[] = {
461 NFSERR_IO,
462 NFSERR_IO,
463 NFSERR_ACCES,
464 NFSERR_EXIST,
465 NFSERR_XDEV,
466 NFSERR_NOTDIR,
467 NFSERR_INVAL,
468 NFSERR_NOSPC,
469 NFSERR_ROFS,
470 NFSERR_MLINK,
471 NFSERR_NAMETOL,
472 NFSERR_DQUOT,
473 NFSERR_STALE,
474 NFSERR_BADHANDLE,
475 NFSERR_NOTSUPP,
476 NFSERR_SERVERFAULT,
477 0,
478 };
479
480 static const short nfsv3err_readdir[] = {
481 NFSERR_IO,
482 NFSERR_IO,
483 NFSERR_ACCES,
484 NFSERR_NOTDIR,
485 NFSERR_STALE,
486 NFSERR_BADHANDLE,
487 NFSERR_BAD_COOKIE,
488 NFSERR_TOOSMALL,
489 NFSERR_SERVERFAULT,
490 0,
491 };
492
493 static const short nfsv3err_readdirplus[] = {
494 NFSERR_IO,
495 NFSERR_IO,
496 NFSERR_ACCES,
497 NFSERR_NOTDIR,
498 NFSERR_STALE,
499 NFSERR_BADHANDLE,
500 NFSERR_BAD_COOKIE,
501 NFSERR_NOTSUPP,
502 NFSERR_TOOSMALL,
503 NFSERR_SERVERFAULT,
504 0,
505 };
506
507 static const short nfsv3err_fsstat[] = {
508 NFSERR_IO,
509 NFSERR_IO,
510 NFSERR_STALE,
511 NFSERR_BADHANDLE,
512 NFSERR_SERVERFAULT,
513 0,
514 };
515
516 static const short nfsv3err_fsinfo[] = {
517 NFSERR_STALE,
518 NFSERR_STALE,
519 NFSERR_BADHANDLE,
520 NFSERR_SERVERFAULT,
521 0,
522 };
523
524 static const short nfsv3err_pathconf[] = {
525 NFSERR_STALE,
526 NFSERR_STALE,
527 NFSERR_BADHANDLE,
528 NFSERR_SERVERFAULT,
529 0,
530 };
531
532 static const short nfsv3err_commit[] = {
533 NFSERR_IO,
534 NFSERR_IO,
535 NFSERR_STALE,
536 NFSERR_BADHANDLE,
537 NFSERR_SERVERFAULT,
538 0,
539 };
540
541 static const short * const nfsrv_v3errmap[] = {
542 nfsv3err_null,
543 nfsv3err_getattr,
544 nfsv3err_setattr,
545 nfsv3err_lookup,
546 nfsv3err_access,
547 nfsv3err_readlink,
548 nfsv3err_read,
549 nfsv3err_write,
550 nfsv3err_create,
551 nfsv3err_mkdir,
552 nfsv3err_symlink,
553 nfsv3err_mknod,
554 nfsv3err_remove,
555 nfsv3err_rmdir,
556 nfsv3err_rename,
557 nfsv3err_link,
558 nfsv3err_readdir,
559 nfsv3err_readdirplus,
560 nfsv3err_fsstat,
561 nfsv3err_fsinfo,
562 nfsv3err_pathconf,
563 nfsv3err_commit,
564 };
565
566 extern struct nfsrtt nfsrtt;
567 extern struct nfsnodehashhead *nfsnodehashtbl;
568 extern u_long nfsnodehash;
569
570 u_long nfsdirhashmask;
571
572 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
573
574 /*
575 * Create the header for an rpc request packet
576 * The hsiz is the size of the rest of the nfs request header.
577 * (just used to decide if a cluster is a good idea)
578 */
579 struct mbuf *
580 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
581 {
582 struct mbuf *mb;
583 char *bpos;
584
585 mb = m_get(M_WAIT, MT_DATA);
586 MCLAIM(mb, &nfs_mowner);
587 if (hsiz >= MINCLSIZE)
588 m_clget(mb, M_WAIT);
589 mb->m_len = 0;
590 bpos = mtod(mb, void *);
591
592 /* Finally, return values */
593 *bposp = bpos;
594 return (mb);
595 }
596
597 /*
598 * Build the RPC header and fill in the authorization info.
599 * The authorization string argument is only used when the credentials
600 * come from outside of the kernel.
601 * Returns the head of the mbuf list.
602 */
603 struct mbuf *
604 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
605 verf_str, mrest, mrest_len, mbp, xidp)
606 kauth_cred_t cr;
607 int nmflag;
608 int procid;
609 int auth_type;
610 int auth_len;
611 char *auth_str;
612 int verf_len;
613 char *verf_str;
614 struct mbuf *mrest;
615 int mrest_len;
616 struct mbuf **mbp;
617 u_int32_t *xidp;
618 {
619 struct mbuf *mb;
620 u_int32_t *tl;
621 char *bpos;
622 int i;
623 struct mbuf *mreq;
624 int siz, grpsiz, authsiz;
625
626 authsiz = nfsm_rndup(auth_len);
627 mb = m_gethdr(M_WAIT, MT_DATA);
628 MCLAIM(mb, &nfs_mowner);
629 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
630 m_clget(mb, M_WAIT);
631 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
632 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
633 } else {
634 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
635 }
636 mb->m_len = 0;
637 mreq = mb;
638 bpos = mtod(mb, void *);
639
640 /*
641 * First the RPC header.
642 */
643 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
644
645 *tl++ = *xidp = nfs_getxid();
646 *tl++ = rpc_call;
647 *tl++ = rpc_vers;
648 *tl++ = txdr_unsigned(NFS_PROG);
649 if (nmflag & NFSMNT_NFSV3)
650 *tl++ = txdr_unsigned(NFS_VER3);
651 else
652 *tl++ = txdr_unsigned(NFS_VER2);
653 if (nmflag & NFSMNT_NFSV3)
654 *tl++ = txdr_unsigned(procid);
655 else
656 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
657
658 /*
659 * And then the authorization cred.
660 */
661 *tl++ = txdr_unsigned(auth_type);
662 *tl = txdr_unsigned(authsiz);
663 switch (auth_type) {
664 case RPCAUTH_UNIX:
665 nfsm_build(tl, u_int32_t *, auth_len);
666 *tl++ = 0; /* stamp ?? */
667 *tl++ = 0; /* NULL hostname */
668 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
669 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
670 grpsiz = (auth_len >> 2) - 5;
671 *tl++ = txdr_unsigned(grpsiz);
672 for (i = 0; i < grpsiz; i++)
673 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
674 break;
675 case RPCAUTH_KERB4:
676 siz = auth_len;
677 while (siz > 0) {
678 if (M_TRAILINGSPACE(mb) == 0) {
679 struct mbuf *mb2;
680 mb2 = m_get(M_WAIT, MT_DATA);
681 MCLAIM(mb2, &nfs_mowner);
682 if (siz >= MINCLSIZE)
683 m_clget(mb2, M_WAIT);
684 mb->m_next = mb2;
685 mb = mb2;
686 mb->m_len = 0;
687 bpos = mtod(mb, void *);
688 }
689 i = min(siz, M_TRAILINGSPACE(mb));
690 memcpy(bpos, auth_str, i);
691 mb->m_len += i;
692 auth_str += i;
693 bpos += i;
694 siz -= i;
695 }
696 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
697 for (i = 0; i < siz; i++)
698 *bpos++ = '\0';
699 mb->m_len += siz;
700 }
701 break;
702 };
703
704 /*
705 * And the verifier...
706 */
707 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
708 if (verf_str) {
709 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
710 *tl = txdr_unsigned(verf_len);
711 siz = verf_len;
712 while (siz > 0) {
713 if (M_TRAILINGSPACE(mb) == 0) {
714 struct mbuf *mb2;
715 mb2 = m_get(M_WAIT, MT_DATA);
716 MCLAIM(mb2, &nfs_mowner);
717 if (siz >= MINCLSIZE)
718 m_clget(mb2, M_WAIT);
719 mb->m_next = mb2;
720 mb = mb2;
721 mb->m_len = 0;
722 bpos = mtod(mb, void *);
723 }
724 i = min(siz, M_TRAILINGSPACE(mb));
725 memcpy(bpos, verf_str, i);
726 mb->m_len += i;
727 verf_str += i;
728 bpos += i;
729 siz -= i;
730 }
731 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
732 for (i = 0; i < siz; i++)
733 *bpos++ = '\0';
734 mb->m_len += siz;
735 }
736 } else {
737 *tl++ = txdr_unsigned(RPCAUTH_NULL);
738 *tl = 0;
739 }
740 mb->m_next = mrest;
741 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
742 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
743 *mbp = mb;
744 return (mreq);
745 }
746
747 /*
748 * copies mbuf chain to the uio scatter/gather list
749 */
750 int
751 nfsm_mbuftouio(mrep, uiop, siz, dpos)
752 struct mbuf **mrep;
753 struct uio *uiop;
754 int siz;
755 char **dpos;
756 {
757 char *mbufcp, *uiocp;
758 int xfer, left, len;
759 struct mbuf *mp;
760 long uiosiz, rem;
761 int error = 0;
762
763 mp = *mrep;
764 mbufcp = *dpos;
765 len = mtod(mp, char *) + mp->m_len - mbufcp;
766 rem = nfsm_rndup(siz)-siz;
767 while (siz > 0) {
768 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
769 return (EFBIG);
770 left = uiop->uio_iov->iov_len;
771 uiocp = uiop->uio_iov->iov_base;
772 if (left > siz)
773 left = siz;
774 uiosiz = left;
775 while (left > 0) {
776 while (len == 0) {
777 mp = mp->m_next;
778 if (mp == NULL)
779 return (EBADRPC);
780 mbufcp = mtod(mp, void *);
781 len = mp->m_len;
782 }
783 xfer = (left > len) ? len : left;
784 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
785 uiocp, xfer);
786 if (error) {
787 return error;
788 }
789 left -= xfer;
790 len -= xfer;
791 mbufcp += xfer;
792 uiocp += xfer;
793 uiop->uio_offset += xfer;
794 uiop->uio_resid -= xfer;
795 }
796 if (uiop->uio_iov->iov_len <= siz) {
797 uiop->uio_iovcnt--;
798 uiop->uio_iov++;
799 } else {
800 uiop->uio_iov->iov_base =
801 (char *)uiop->uio_iov->iov_base + uiosiz;
802 uiop->uio_iov->iov_len -= uiosiz;
803 }
804 siz -= uiosiz;
805 }
806 *dpos = mbufcp;
807 *mrep = mp;
808 if (rem > 0) {
809 if (len < rem)
810 error = nfs_adv(mrep, dpos, rem, len);
811 else
812 *dpos += rem;
813 }
814 return (error);
815 }
816
817 /*
818 * copies a uio scatter/gather list to an mbuf chain.
819 * NOTE: can ony handle iovcnt == 1
820 */
821 int
822 nfsm_uiotombuf(uiop, mq, siz, bpos)
823 struct uio *uiop;
824 struct mbuf **mq;
825 int siz;
826 char **bpos;
827 {
828 char *uiocp;
829 struct mbuf *mp, *mp2;
830 int xfer, left, mlen;
831 int uiosiz, clflg, rem;
832 char *cp;
833 int error;
834
835 #ifdef DIAGNOSTIC
836 if (uiop->uio_iovcnt != 1)
837 panic("nfsm_uiotombuf: iovcnt != 1");
838 #endif
839
840 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
841 clflg = 1;
842 else
843 clflg = 0;
844 rem = nfsm_rndup(siz)-siz;
845 mp = mp2 = *mq;
846 while (siz > 0) {
847 left = uiop->uio_iov->iov_len;
848 uiocp = uiop->uio_iov->iov_base;
849 if (left > siz)
850 left = siz;
851 uiosiz = left;
852 while (left > 0) {
853 mlen = M_TRAILINGSPACE(mp);
854 if (mlen == 0) {
855 mp = m_get(M_WAIT, MT_DATA);
856 MCLAIM(mp, &nfs_mowner);
857 if (clflg)
858 m_clget(mp, M_WAIT);
859 mp->m_len = 0;
860 mp2->m_next = mp;
861 mp2 = mp;
862 mlen = M_TRAILINGSPACE(mp);
863 }
864 xfer = (left > mlen) ? mlen : left;
865 cp = mtod(mp, char *) + mp->m_len;
866 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
867 xfer);
868 if (error) {
869 /* XXX */
870 }
871 mp->m_len += xfer;
872 left -= xfer;
873 uiocp += xfer;
874 uiop->uio_offset += xfer;
875 uiop->uio_resid -= xfer;
876 }
877 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
878 uiosiz;
879 uiop->uio_iov->iov_len -= uiosiz;
880 siz -= uiosiz;
881 }
882 if (rem > 0) {
883 if (rem > M_TRAILINGSPACE(mp)) {
884 mp = m_get(M_WAIT, MT_DATA);
885 MCLAIM(mp, &nfs_mowner);
886 mp->m_len = 0;
887 mp2->m_next = mp;
888 }
889 cp = mtod(mp, char *) + mp->m_len;
890 for (left = 0; left < rem; left++)
891 *cp++ = '\0';
892 mp->m_len += rem;
893 *bpos = cp;
894 } else
895 *bpos = mtod(mp, char *) + mp->m_len;
896 *mq = mp;
897 return (0);
898 }
899
900 /*
901 * Get at least "siz" bytes of correctly aligned data.
902 * When called the mbuf pointers are not necessarily correct,
903 * dsosp points to what ought to be in m_data and left contains
904 * what ought to be in m_len.
905 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
906 * cases. (The macros use the vars. dpos and dpos2)
907 */
908 int
909 nfsm_disct(mdp, dposp, siz, left, cp2)
910 struct mbuf **mdp;
911 char **dposp;
912 int siz;
913 int left;
914 char **cp2;
915 {
916 struct mbuf *m1, *m2;
917 struct mbuf *havebuf = NULL;
918 char *src = *dposp;
919 char *dst;
920 int len;
921
922 #ifdef DEBUG
923 if (left < 0)
924 panic("nfsm_disct: left < 0");
925 #endif
926 m1 = *mdp;
927 /*
928 * Skip through the mbuf chain looking for an mbuf with
929 * some data. If the first mbuf found has enough data
930 * and it is correctly aligned return it.
931 */
932 while (left == 0) {
933 havebuf = m1;
934 *mdp = m1 = m1->m_next;
935 if (m1 == NULL)
936 return (EBADRPC);
937 src = mtod(m1, void *);
938 left = m1->m_len;
939 /*
940 * If we start a new mbuf and it is big enough
941 * and correctly aligned just return it, don't
942 * do any pull up.
943 */
944 if (left >= siz && nfsm_aligned(src)) {
945 *cp2 = src;
946 *dposp = src + siz;
947 return (0);
948 }
949 }
950 if (m1->m_flags & M_EXT) {
951 if (havebuf) {
952 /* If the first mbuf with data has external data
953 * and there is a previous empty mbuf use it
954 * to move the data into.
955 */
956 m2 = m1;
957 *mdp = m1 = havebuf;
958 if (m1->m_flags & M_EXT) {
959 MEXTREMOVE(m1);
960 }
961 } else {
962 /*
963 * If the first mbuf has a external data
964 * and there is no previous empty mbuf
965 * allocate a new mbuf and move the external
966 * data to the new mbuf. Also make the first
967 * mbuf look empty.
968 */
969 m2 = m_get(M_WAIT, MT_DATA);
970 m2->m_ext = m1->m_ext;
971 m2->m_data = src;
972 m2->m_len = left;
973 MCLADDREFERENCE(m1, m2);
974 MEXTREMOVE(m1);
975 m2->m_next = m1->m_next;
976 m1->m_next = m2;
977 }
978 m1->m_len = 0;
979 if (m1->m_flags & M_PKTHDR)
980 dst = m1->m_pktdat;
981 else
982 dst = m1->m_dat;
983 m1->m_data = dst;
984 } else {
985 /*
986 * If the first mbuf has no external data
987 * move the data to the front of the mbuf.
988 */
989 if (m1->m_flags & M_PKTHDR)
990 dst = m1->m_pktdat;
991 else
992 dst = m1->m_dat;
993 m1->m_data = dst;
994 if (dst != src)
995 memmove(dst, src, left);
996 dst += left;
997 m1->m_len = left;
998 m2 = m1->m_next;
999 }
1000 *cp2 = m1->m_data;
1001 *dposp = mtod(m1, char *) + siz;
1002 /*
1003 * Loop through mbufs pulling data up into first mbuf until
1004 * the first mbuf is full or there is no more data to
1005 * pullup.
1006 */
1007 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1008 if ((len = min(len, m2->m_len)) != 0)
1009 memcpy(dst, m2->m_data, len);
1010 m1->m_len += len;
1011 dst += len;
1012 m2->m_data += len;
1013 m2->m_len -= len;
1014 m2 = m2->m_next;
1015 }
1016 if (m1->m_len < siz)
1017 return (EBADRPC);
1018 return (0);
1019 }
1020
1021 /*
1022 * Advance the position in the mbuf chain.
1023 */
1024 int
1025 nfs_adv(mdp, dposp, offs, left)
1026 struct mbuf **mdp;
1027 char **dposp;
1028 int offs;
1029 int left;
1030 {
1031 struct mbuf *m;
1032 int s;
1033
1034 m = *mdp;
1035 s = left;
1036 while (s < offs) {
1037 offs -= s;
1038 m = m->m_next;
1039 if (m == NULL)
1040 return (EBADRPC);
1041 s = m->m_len;
1042 }
1043 *mdp = m;
1044 *dposp = mtod(m, char *) + offs;
1045 return (0);
1046 }
1047
1048 /*
1049 * Copy a string into mbufs for the hard cases...
1050 */
1051 int
1052 nfsm_strtmbuf(mb, bpos, cp, siz)
1053 struct mbuf **mb;
1054 char **bpos;
1055 const char *cp;
1056 long siz;
1057 {
1058 struct mbuf *m1 = NULL, *m2;
1059 long left, xfer, len, tlen;
1060 u_int32_t *tl;
1061 int putsize;
1062
1063 putsize = 1;
1064 m2 = *mb;
1065 left = M_TRAILINGSPACE(m2);
1066 if (left > 0) {
1067 tl = ((u_int32_t *)(*bpos));
1068 *tl++ = txdr_unsigned(siz);
1069 putsize = 0;
1070 left -= NFSX_UNSIGNED;
1071 m2->m_len += NFSX_UNSIGNED;
1072 if (left > 0) {
1073 memcpy((void *) tl, cp, left);
1074 siz -= left;
1075 cp += left;
1076 m2->m_len += left;
1077 left = 0;
1078 }
1079 }
1080 /* Loop around adding mbufs */
1081 while (siz > 0) {
1082 m1 = m_get(M_WAIT, MT_DATA);
1083 MCLAIM(m1, &nfs_mowner);
1084 if (siz > MLEN)
1085 m_clget(m1, M_WAIT);
1086 m1->m_len = NFSMSIZ(m1);
1087 m2->m_next = m1;
1088 m2 = m1;
1089 tl = mtod(m1, u_int32_t *);
1090 tlen = 0;
1091 if (putsize) {
1092 *tl++ = txdr_unsigned(siz);
1093 m1->m_len -= NFSX_UNSIGNED;
1094 tlen = NFSX_UNSIGNED;
1095 putsize = 0;
1096 }
1097 if (siz < m1->m_len) {
1098 len = nfsm_rndup(siz);
1099 xfer = siz;
1100 if (xfer < len)
1101 *(tl+(xfer>>2)) = 0;
1102 } else {
1103 xfer = len = m1->m_len;
1104 }
1105 memcpy((void *) tl, cp, xfer);
1106 m1->m_len = len+tlen;
1107 siz -= xfer;
1108 cp += xfer;
1109 }
1110 *mb = m1;
1111 *bpos = mtod(m1, char *) + m1->m_len;
1112 return (0);
1113 }
1114
1115 /*
1116 * Directory caching routines. They work as follows:
1117 * - a cache is maintained per VDIR nfsnode.
1118 * - for each offset cookie that is exported to userspace, and can
1119 * thus be thrown back at us as an offset to VOP_READDIR, store
1120 * information in the cache.
1121 * - cached are:
1122 * - cookie itself
1123 * - blocknumber (essentially just a search key in the buffer cache)
1124 * - entry number in block.
1125 * - offset cookie of block in which this entry is stored
1126 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1127 * - entries are looked up in a hash table
1128 * - also maintained is an LRU list of entries, used to determine
1129 * which ones to delete if the cache grows too large.
1130 * - if 32 <-> 64 translation mode is requested for a filesystem,
1131 * the cache also functions as a translation table
1132 * - in the translation case, invalidating the cache does not mean
1133 * flushing it, but just marking entries as invalid, except for
1134 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1135 * still be able to use the cache as a translation table.
1136 * - 32 bit cookies are uniquely created by combining the hash table
1137 * entry value, and one generation count per hash table entry,
1138 * incremented each time an entry is appended to the chain.
1139 * - the cache is invalidated each time a direcory is modified
1140 * - sanity checks are also done; if an entry in a block turns
1141 * out not to have a matching cookie, the cache is invalidated
1142 * and a new block starting from the wanted offset is fetched from
1143 * the server.
1144 * - directory entries as read from the server are extended to contain
1145 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1146 * the cache and exporting them to userspace through the cookie
1147 * argument to VOP_READDIR.
1148 */
1149
1150 u_long
1151 nfs_dirhash(off)
1152 off_t off;
1153 {
1154 int i;
1155 char *cp = (char *)&off;
1156 u_long sum = 0L;
1157
1158 for (i = 0 ; i < sizeof (off); i++)
1159 sum += *cp++;
1160
1161 return sum;
1162 }
1163
1164 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1165 #define NFSDC_LOCK(np) simple_lock(_NFSDC_MTX(np))
1166 #define NFSDC_UNLOCK(np) simple_unlock(_NFSDC_MTX(np))
1167 #define NFSDC_ASSERT_LOCKED(np) LOCK_ASSERT(simple_lock_held(_NFSDC_MTX(np)))
1168
1169 void
1170 nfs_initdircache(vp)
1171 struct vnode *vp;
1172 {
1173 struct nfsnode *np = VTONFS(vp);
1174 struct nfsdirhashhead *dircache;
1175
1176 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1177 M_WAITOK, &nfsdirhashmask);
1178
1179 NFSDC_LOCK(np);
1180 if (np->n_dircache == NULL) {
1181 np->n_dircachesize = 0;
1182 np->n_dircache = dircache;
1183 dircache = NULL;
1184 TAILQ_INIT(&np->n_dirchain);
1185 }
1186 NFSDC_UNLOCK(np);
1187 if (dircache)
1188 hashdone(dircache, M_NFSDIROFF);
1189 }
1190
1191 void
1192 nfs_initdirxlatecookie(vp)
1193 struct vnode *vp;
1194 {
1195 struct nfsnode *np = VTONFS(vp);
1196 unsigned *dirgens;
1197
1198 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1199
1200 dirgens = malloc(NFS_DIRHASHSIZ * sizeof (unsigned), M_NFSDIROFF,
1201 M_WAITOK|M_ZERO);
1202 NFSDC_LOCK(np);
1203 if (np->n_dirgens == NULL) {
1204 np->n_dirgens = dirgens;
1205 dirgens = NULL;
1206 }
1207 NFSDC_UNLOCK(np);
1208 if (dirgens)
1209 free(dirgens, M_NFSDIROFF);
1210 }
1211
1212 static const struct nfsdircache dzero;
1213
1214 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1215 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1216 struct nfsdircache *));
1217
1218 static void
1219 nfs_unlinkdircache(np, ndp)
1220 struct nfsnode *np;
1221 struct nfsdircache *ndp;
1222 {
1223
1224 NFSDC_ASSERT_LOCKED(np);
1225 KASSERT(ndp != &dzero);
1226
1227 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1228 return;
1229
1230 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1231 LIST_REMOVE(ndp, dc_hash);
1232 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1233
1234 nfs_putdircache_unlocked(np, ndp);
1235 }
1236
1237 void
1238 nfs_putdircache(np, ndp)
1239 struct nfsnode *np;
1240 struct nfsdircache *ndp;
1241 {
1242 int ref;
1243
1244 if (ndp == &dzero)
1245 return;
1246
1247 KASSERT(ndp->dc_refcnt > 0);
1248 NFSDC_LOCK(np);
1249 ref = --ndp->dc_refcnt;
1250 NFSDC_UNLOCK(np);
1251
1252 if (ref == 0)
1253 free(ndp, M_NFSDIROFF);
1254 }
1255
1256 static void
1257 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1258 {
1259 int ref;
1260
1261 NFSDC_ASSERT_LOCKED(np);
1262
1263 if (ndp == &dzero)
1264 return;
1265
1266 KASSERT(ndp->dc_refcnt > 0);
1267 ref = --ndp->dc_refcnt;
1268 if (ref == 0)
1269 free(ndp, M_NFSDIROFF);
1270 }
1271
1272 struct nfsdircache *
1273 nfs_searchdircache(vp, off, do32, hashent)
1274 struct vnode *vp;
1275 off_t off;
1276 int do32;
1277 int *hashent;
1278 {
1279 struct nfsdirhashhead *ndhp;
1280 struct nfsdircache *ndp = NULL;
1281 struct nfsnode *np = VTONFS(vp);
1282 unsigned ent;
1283
1284 /*
1285 * Zero is always a valid cookie.
1286 */
1287 if (off == 0)
1288 /* XXXUNCONST */
1289 return (struct nfsdircache *)__UNCONST(&dzero);
1290
1291 if (!np->n_dircache)
1292 return NULL;
1293
1294 /*
1295 * We use a 32bit cookie as search key, directly reconstruct
1296 * the hashentry. Else use the hashfunction.
1297 */
1298 if (do32) {
1299 ent = (u_int32_t)off >> 24;
1300 if (ent >= NFS_DIRHASHSIZ)
1301 return NULL;
1302 ndhp = &np->n_dircache[ent];
1303 } else {
1304 ndhp = NFSDIRHASH(np, off);
1305 }
1306
1307 if (hashent)
1308 *hashent = (int)(ndhp - np->n_dircache);
1309
1310 NFSDC_LOCK(np);
1311 if (do32) {
1312 LIST_FOREACH(ndp, ndhp, dc_hash) {
1313 if (ndp->dc_cookie32 == (u_int32_t)off) {
1314 /*
1315 * An invalidated entry will become the
1316 * start of a new block fetched from
1317 * the server.
1318 */
1319 if (ndp->dc_flags & NFSDC_INVALID) {
1320 ndp->dc_blkcookie = ndp->dc_cookie;
1321 ndp->dc_entry = 0;
1322 ndp->dc_flags &= ~NFSDC_INVALID;
1323 }
1324 break;
1325 }
1326 }
1327 } else {
1328 LIST_FOREACH(ndp, ndhp, dc_hash) {
1329 if (ndp->dc_cookie == off)
1330 break;
1331 }
1332 }
1333 if (ndp != NULL)
1334 ndp->dc_refcnt++;
1335 NFSDC_UNLOCK(np);
1336 return ndp;
1337 }
1338
1339
1340 struct nfsdircache *
1341 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1342 daddr_t blkno)
1343 {
1344 struct nfsnode *np = VTONFS(vp);
1345 struct nfsdirhashhead *ndhp;
1346 struct nfsdircache *ndp = NULL;
1347 struct nfsdircache *newndp = NULL;
1348 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1349 int hashent = 0, gen, overwrite; /* XXX: GCC */
1350
1351 /*
1352 * XXX refuse entries for offset 0. amd(8) erroneously sets
1353 * cookie 0 for the '.' entry, making this necessary. This
1354 * isn't so bad, as 0 is a special case anyway.
1355 */
1356 if (off == 0)
1357 /* XXXUNCONST */
1358 return (struct nfsdircache *)__UNCONST(&dzero);
1359
1360 if (!np->n_dircache)
1361 /*
1362 * XXX would like to do this in nfs_nget but vtype
1363 * isn't known at that time.
1364 */
1365 nfs_initdircache(vp);
1366
1367 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1368 nfs_initdirxlatecookie(vp);
1369
1370 retry:
1371 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1372
1373 NFSDC_LOCK(np);
1374 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1375 /*
1376 * Overwriting an old entry. Check if it's the same.
1377 * If so, just return. If not, remove the old entry.
1378 */
1379 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1380 goto done;
1381 nfs_unlinkdircache(np, ndp);
1382 nfs_putdircache_unlocked(np, ndp);
1383 ndp = NULL;
1384 }
1385
1386 ndhp = &np->n_dircache[hashent];
1387
1388 if (!ndp) {
1389 if (newndp == NULL) {
1390 NFSDC_UNLOCK(np);
1391 newndp = malloc(sizeof(*ndp), M_NFSDIROFF, M_WAITOK);
1392 newndp->dc_refcnt = 1;
1393 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1394 goto retry;
1395 }
1396 ndp = newndp;
1397 newndp = NULL;
1398 overwrite = 0;
1399 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1400 /*
1401 * We're allocating a new entry, so bump the
1402 * generation number.
1403 */
1404 KASSERT(np->n_dirgens);
1405 gen = ++np->n_dirgens[hashent];
1406 if (gen == 0) {
1407 np->n_dirgens[hashent]++;
1408 gen++;
1409 }
1410 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1411 }
1412 } else
1413 overwrite = 1;
1414
1415 ndp->dc_cookie = off;
1416 ndp->dc_blkcookie = blkoff;
1417 ndp->dc_entry = en;
1418 ndp->dc_flags = 0;
1419
1420 if (overwrite)
1421 goto done;
1422
1423 /*
1424 * If the maximum directory cookie cache size has been reached
1425 * for this node, take one off the front. The idea is that
1426 * directories are typically read front-to-back once, so that
1427 * the oldest entries can be thrown away without much performance
1428 * loss.
1429 */
1430 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1431 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1432 } else
1433 np->n_dircachesize++;
1434
1435 KASSERT(ndp->dc_refcnt == 1);
1436 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1437 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1438 ndp->dc_refcnt++;
1439 done:
1440 KASSERT(ndp->dc_refcnt > 0);
1441 NFSDC_UNLOCK(np);
1442 if (newndp)
1443 nfs_putdircache(np, newndp);
1444 return ndp;
1445 }
1446
1447 void
1448 nfs_invaldircache(vp, flags)
1449 struct vnode *vp;
1450 int flags;
1451 {
1452 struct nfsnode *np = VTONFS(vp);
1453 struct nfsdircache *ndp = NULL;
1454 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1455 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1456
1457 #ifdef DIAGNOSTIC
1458 if (vp->v_type != VDIR)
1459 panic("nfs: invaldircache: not dir");
1460 #endif
1461
1462 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1463 np->n_flag &= ~NEOFVALID;
1464
1465 if (!np->n_dircache)
1466 return;
1467
1468 NFSDC_LOCK(np);
1469 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1470 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1471 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1472 nfs_unlinkdircache(np, ndp);
1473 }
1474 np->n_dircachesize = 0;
1475 if (forcefree && np->n_dirgens) {
1476 FREE(np->n_dirgens, M_NFSDIROFF);
1477 np->n_dirgens = NULL;
1478 }
1479 } else {
1480 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1481 ndp->dc_flags |= NFSDC_INVALID;
1482 }
1483
1484 NFSDC_UNLOCK(np);
1485 }
1486
1487 /*
1488 * Called once before VFS init to initialize shared and
1489 * server-specific data structures.
1490 */
1491 static int
1492 nfs_init0(void)
1493 {
1494
1495 nfsrtt.pos = 0;
1496 rpc_vers = txdr_unsigned(RPC_VER2);
1497 rpc_call = txdr_unsigned(RPC_CALL);
1498 rpc_reply = txdr_unsigned(RPC_REPLY);
1499 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1500 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1501 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1502 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1503 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1504 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1505 nfs_prog = txdr_unsigned(NFS_PROG);
1506 nfs_true = txdr_unsigned(true);
1507 nfs_false = txdr_unsigned(false);
1508 nfs_xdrneg1 = txdr_unsigned(-1);
1509 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1510 if (nfs_ticks < 1)
1511 nfs_ticks = 1;
1512 #ifdef NFSSERVER
1513 nfsrv_init(0); /* Init server data structures */
1514 nfsrv_initcache(); /* Init the server request cache */
1515 {
1516 extern krwlock_t netexport_lock; /* XXX */
1517 rw_init(&netexport_lock);
1518 }
1519 #endif /* NFSSERVER */
1520
1521 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
1522 nfsdreq_init();
1523 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
1524
1525 /*
1526 * Initialize reply list and start timer
1527 */
1528 TAILQ_INIT(&nfs_reqq);
1529 nfs_timer_init();
1530 MOWNER_ATTACH(&nfs_mowner);
1531
1532 #ifdef NFS
1533 /* Initialize the kqueue structures */
1534 nfs_kqinit();
1535 /* Initialize the iod structures */
1536 nfs_iodinit();
1537 #endif
1538 return 0;
1539 }
1540
1541 void
1542 nfs_init(void)
1543 {
1544 static ONCE_DECL(nfs_init_once);
1545
1546 RUN_ONCE(&nfs_init_once, nfs_init0);
1547 }
1548
1549 #ifdef NFS
1550 /*
1551 * Called once at VFS init to initialize client-specific data structures.
1552 */
1553 void
1554 nfs_vfs_init()
1555 {
1556 /* Initialize NFS server / client shared data. */
1557 nfs_init();
1558
1559 nfs_nhinit(); /* Init the nfsnode table */
1560 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1561 }
1562
1563 void
1564 nfs_vfs_reinit()
1565 {
1566 nfs_nhreinit();
1567 }
1568
1569 void
1570 nfs_vfs_done()
1571 {
1572 nfs_nhdone();
1573 }
1574
1575 /*
1576 * Attribute cache routines.
1577 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1578 * that are on the mbuf list
1579 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1580 * error otherwise
1581 */
1582
1583 /*
1584 * Load the attribute cache (that lives in the nfsnode entry) with
1585 * the values on the mbuf list and
1586 * Iff vap not NULL
1587 * copy the attributes to *vaper
1588 */
1589 int
1590 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1591 struct vnode **vpp;
1592 struct mbuf **mdp;
1593 char **dposp;
1594 struct vattr *vaper;
1595 int flags;
1596 {
1597 int32_t t1;
1598 char *cp2;
1599 int error = 0;
1600 struct mbuf *md;
1601 int v3 = NFS_ISV3(*vpp);
1602
1603 md = *mdp;
1604 t1 = (mtod(md, char *) + md->m_len) - *dposp;
1605 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1606 if (error)
1607 return (error);
1608 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1609 }
1610
1611 int
1612 nfs_loadattrcache(vpp, fp, vaper, flags)
1613 struct vnode **vpp;
1614 struct nfs_fattr *fp;
1615 struct vattr *vaper;
1616 int flags;
1617 {
1618 struct vnode *vp = *vpp;
1619 struct vattr *vap;
1620 int v3 = NFS_ISV3(vp);
1621 enum vtype vtyp;
1622 u_short vmode;
1623 struct timespec mtime;
1624 struct timespec ctime;
1625 struct vnode *nvp;
1626 int32_t rdev;
1627 struct nfsnode *np;
1628 extern int (**spec_nfsv2nodeop_p) __P((void *));
1629 uid_t uid;
1630 gid_t gid;
1631
1632 if (v3) {
1633 vtyp = nfsv3tov_type(fp->fa_type);
1634 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1635 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1636 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1637 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1638 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1639 } else {
1640 vtyp = nfsv2tov_type(fp->fa_type);
1641 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1642 if (vtyp == VNON || vtyp == VREG)
1643 vtyp = IFTOVT(vmode);
1644 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1645 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1646 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1647 fp->fa2_ctime.nfsv2_sec);
1648 ctime.tv_nsec = 0;
1649
1650 /*
1651 * Really ugly NFSv2 kludge.
1652 */
1653 if (vtyp == VCHR && rdev == 0xffffffff)
1654 vtyp = VFIFO;
1655 }
1656
1657 vmode &= ALLPERMS;
1658
1659 /*
1660 * If v_type == VNON it is a new node, so fill in the v_type,
1661 * n_mtime fields. Check to see if it represents a special
1662 * device, and if so, check for a possible alias. Once the
1663 * correct vnode has been obtained, fill in the rest of the
1664 * information.
1665 */
1666 np = VTONFS(vp);
1667 if (vp->v_type == VNON) {
1668 vp->v_type = vtyp;
1669 if (vp->v_type == VFIFO) {
1670 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1671 vp->v_op = fifo_nfsv2nodeop_p;
1672 } else if (vp->v_type == VREG) {
1673 mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
1674 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1675 vp->v_op = spec_nfsv2nodeop_p;
1676 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1677 if (nvp) {
1678 /*
1679 * Discard unneeded vnode, but save its nfsnode.
1680 * Since the nfsnode does not have a lock, its
1681 * vnode lock has to be carried over.
1682 */
1683 /*
1684 * XXX is the old node sure to be locked here?
1685 */
1686 KASSERT(lockstatus(&vp->v_lock) ==
1687 LK_EXCLUSIVE);
1688 nvp->v_data = vp->v_data;
1689 vp->v_data = NULL;
1690 VOP_UNLOCK(vp, 0);
1691 vp->v_op = spec_vnodeop_p;
1692 vrele(vp);
1693 vgone(vp);
1694 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1695 &nvp->v_interlock);
1696 /*
1697 * Reinitialize aliased node.
1698 */
1699 np->n_vnode = nvp;
1700 *vpp = vp = nvp;
1701 }
1702 }
1703 np->n_mtime = mtime;
1704 }
1705 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1706 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1707 vap = np->n_vattr;
1708
1709 /*
1710 * Invalidate access cache if uid, gid, mode or ctime changed.
1711 */
1712 if (np->n_accstamp != -1 &&
1713 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1714 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1715 np->n_accstamp = -1;
1716
1717 vap->va_type = vtyp;
1718 vap->va_mode = vmode;
1719 vap->va_rdev = (dev_t)rdev;
1720 vap->va_mtime = mtime;
1721 vap->va_ctime = ctime;
1722 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1723 switch (vtyp) {
1724 case VDIR:
1725 vap->va_blocksize = NFS_DIRFRAGSIZ;
1726 break;
1727 case VBLK:
1728 vap->va_blocksize = BLKDEV_IOSIZE;
1729 break;
1730 case VCHR:
1731 vap->va_blocksize = MAXBSIZE;
1732 break;
1733 default:
1734 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1735 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1736 break;
1737 }
1738 if (v3) {
1739 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1740 vap->va_uid = uid;
1741 vap->va_gid = gid;
1742 vap->va_size = fxdr_hyper(&fp->fa3_size);
1743 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1744 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1745 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1746 vap->va_flags = 0;
1747 vap->va_filerev = 0;
1748 } else {
1749 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1750 vap->va_uid = uid;
1751 vap->va_gid = gid;
1752 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1753 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1754 * NFS_FABLKSIZE;
1755 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1756 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1757 vap->va_flags = 0;
1758 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1759 vap->va_filerev = 0;
1760 }
1761 if (vap->va_size != np->n_size) {
1762 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1763 vap->va_size = np->n_size;
1764 } else {
1765 np->n_size = vap->va_size;
1766 if (vap->va_type == VREG) {
1767 /*
1768 * we can't free pages if NAC_NOTRUNC because
1769 * the pages can be owned by ourselves.
1770 */
1771 if (flags & NAC_NOTRUNC) {
1772 np->n_flag |= NTRUNCDELAYED;
1773 } else {
1774 genfs_node_wrlock(vp);
1775 simple_lock(&vp->v_interlock);
1776 (void)VOP_PUTPAGES(vp, 0,
1777 0, PGO_SYNCIO | PGO_CLEANIT |
1778 PGO_FREE | PGO_ALLPAGES);
1779 uvm_vnp_setsize(vp, np->n_size);
1780 genfs_node_unlock(vp);
1781 }
1782 }
1783 }
1784 }
1785 np->n_attrstamp = time_second;
1786 if (vaper != NULL) {
1787 memcpy((void *)vaper, (void *)vap, sizeof(*vap));
1788 if (np->n_flag & NCHG) {
1789 if (np->n_flag & NACC)
1790 vaper->va_atime = np->n_atim;
1791 if (np->n_flag & NUPD)
1792 vaper->va_mtime = np->n_mtim;
1793 }
1794 }
1795 return (0);
1796 }
1797
1798 /*
1799 * Check the time stamp
1800 * If the cache is valid, copy contents to *vap and return 0
1801 * otherwise return an error
1802 */
1803 int
1804 nfs_getattrcache(vp, vaper)
1805 struct vnode *vp;
1806 struct vattr *vaper;
1807 {
1808 struct nfsnode *np = VTONFS(vp);
1809 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1810 struct vattr *vap;
1811
1812 if (np->n_attrstamp == 0 ||
1813 (time_second - np->n_attrstamp) >= NFS_ATTRTIMEO(nmp, np)) {
1814 nfsstats.attrcache_misses++;
1815 return (ENOENT);
1816 }
1817 nfsstats.attrcache_hits++;
1818 vap = np->n_vattr;
1819 if (vap->va_size != np->n_size) {
1820 if (vap->va_type == VREG) {
1821 if ((np->n_flag & NMODIFIED) != 0 &&
1822 vap->va_size < np->n_size) {
1823 vap->va_size = np->n_size;
1824 } else {
1825 np->n_size = vap->va_size;
1826 }
1827 genfs_node_wrlock(vp);
1828 uvm_vnp_setsize(vp, np->n_size);
1829 genfs_node_unlock(vp);
1830 } else
1831 np->n_size = vap->va_size;
1832 }
1833 memcpy((void *)vaper, (void *)vap, sizeof(struct vattr));
1834 if (np->n_flag & NCHG) {
1835 if (np->n_flag & NACC)
1836 vaper->va_atime = np->n_atim;
1837 if (np->n_flag & NUPD)
1838 vaper->va_mtime = np->n_mtim;
1839 }
1840 return (0);
1841 }
1842
1843 void
1844 nfs_delayedtruncate(vp)
1845 struct vnode *vp;
1846 {
1847 struct nfsnode *np = VTONFS(vp);
1848
1849 if (np->n_flag & NTRUNCDELAYED) {
1850 np->n_flag &= ~NTRUNCDELAYED;
1851 genfs_node_wrlock(vp);
1852 simple_lock(&vp->v_interlock);
1853 (void)VOP_PUTPAGES(vp, 0,
1854 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1855 uvm_vnp_setsize(vp, np->n_size);
1856 genfs_node_unlock(vp);
1857 }
1858 }
1859
1860 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1861 #define NFS_WCCKLUDGE(nmp, now) \
1862 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1863 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1864
1865 /*
1866 * nfs_check_wccdata: check inaccurate wcc_data
1867 *
1868 * => return non-zero if we shouldn't trust the wcc_data.
1869 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1870 */
1871
1872 int
1873 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1874 struct timespec *mtime, bool docheck)
1875 {
1876 int error = 0;
1877
1878 #if !defined(NFS_V2_ONLY)
1879
1880 if (docheck) {
1881 struct vnode *vp = NFSTOV(np);
1882 struct nfsmount *nmp;
1883 long now = time_second;
1884 const struct timespec *omtime = &np->n_vattr->va_mtime;
1885 const struct timespec *octime = &np->n_vattr->va_ctime;
1886 #if defined(DEBUG)
1887 const char *reason = NULL; /* XXX: gcc */
1888 #endif
1889
1890 if (timespeccmp(omtime, mtime, <=)) {
1891 #if defined(DEBUG)
1892 reason = "mtime";
1893 #endif
1894 error = EINVAL;
1895 }
1896
1897 if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
1898 #if defined(DEBUG)
1899 reason = "ctime";
1900 #endif
1901 error = EINVAL;
1902 }
1903
1904 nmp = VFSTONFS(vp->v_mount);
1905 if (error) {
1906
1907 /*
1908 * despite of the fact that we've updated the file,
1909 * timestamps of the file were not updated as we
1910 * expected.
1911 * it means that the server has incompatible
1912 * semantics of timestamps or (more likely)
1913 * the server time is not precise enough to
1914 * track each modifications.
1915 * in that case, we disable wcc processing.
1916 *
1917 * yes, strictly speaking, we should disable all
1918 * caching. it's a compromise.
1919 */
1920
1921 mutex_enter(&nmp->nm_lock);
1922 #if defined(DEBUG)
1923 if (!NFS_WCCKLUDGE(nmp, now)) {
1924 printf("%s: inaccurate wcc data (%s) detected,"
1925 " disabling wcc"
1926 " (ctime %u.%09u %u.%09u,"
1927 " mtime %u.%09u %u.%09u)\n",
1928 vp->v_mount->mnt_stat.f_mntfromname,
1929 reason,
1930 (unsigned int)octime->tv_sec,
1931 (unsigned int)octime->tv_nsec,
1932 (unsigned int)ctime->tv_sec,
1933 (unsigned int)ctime->tv_nsec,
1934 (unsigned int)omtime->tv_sec,
1935 (unsigned int)omtime->tv_nsec,
1936 (unsigned int)mtime->tv_sec,
1937 (unsigned int)mtime->tv_nsec);
1938 }
1939 #endif
1940 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1941 nmp->nm_wcckludgetime = now;
1942 mutex_exit(&nmp->nm_lock);
1943 } else if (NFS_WCCKLUDGE(nmp, now)) {
1944 error = EPERM; /* XXX */
1945 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1946 mutex_enter(&nmp->nm_lock);
1947 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1948 #if defined(DEBUG)
1949 printf("%s: re-enabling wcc\n",
1950 vp->v_mount->mnt_stat.f_mntfromname);
1951 #endif
1952 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1953 }
1954 mutex_exit(&nmp->nm_lock);
1955 }
1956 }
1957
1958 #endif /* !defined(NFS_V2_ONLY) */
1959
1960 return error;
1961 }
1962
1963 /*
1964 * Heuristic to see if the server XDR encodes directory cookies or not.
1965 * it is not supposed to, but a lot of servers may do this. Also, since
1966 * most/all servers will implement V2 as well, it is expected that they
1967 * may return just 32 bits worth of cookie information, so we need to
1968 * find out in which 32 bits this information is available. We do this
1969 * to avoid trouble with emulated binaries that can't handle 64 bit
1970 * directory offsets.
1971 */
1972
1973 void
1974 nfs_cookieheuristic(vp, flagp, l, cred)
1975 struct vnode *vp;
1976 int *flagp;
1977 struct lwp *l;
1978 kauth_cred_t cred;
1979 {
1980 struct uio auio;
1981 struct iovec aiov;
1982 char *tbuf, *cp;
1983 struct dirent *dp;
1984 off_t *cookies = NULL, *cop;
1985 int error, eof, nc, len;
1986
1987 MALLOC(tbuf, void *, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1988
1989 aiov.iov_base = tbuf;
1990 aiov.iov_len = NFS_DIRFRAGSIZ;
1991 auio.uio_iov = &aiov;
1992 auio.uio_iovcnt = 1;
1993 auio.uio_rw = UIO_READ;
1994 auio.uio_resid = NFS_DIRFRAGSIZ;
1995 auio.uio_offset = 0;
1996 UIO_SETUP_SYSSPACE(&auio);
1997
1998 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1999
2000 len = NFS_DIRFRAGSIZ - auio.uio_resid;
2001 if (error || len == 0) {
2002 FREE(tbuf, M_TEMP);
2003 if (cookies)
2004 free(cookies, M_TEMP);
2005 return;
2006 }
2007
2008 /*
2009 * Find the first valid entry and look at its offset cookie.
2010 */
2011
2012 cp = tbuf;
2013 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2014 dp = (struct dirent *)cp;
2015 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2016 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2017 *flagp |= NFSMNT_SWAPCOOKIE;
2018 nfs_invaldircache(vp, 0);
2019 nfs_vinvalbuf(vp, 0, cred, l, 1);
2020 }
2021 break;
2022 }
2023 cop++;
2024 cp += dp->d_reclen;
2025 }
2026
2027 FREE(tbuf, M_TEMP);
2028 free(cookies, M_TEMP);
2029 }
2030 #endif /* NFS */
2031
2032 #ifdef NFSSERVER
2033 /*
2034 * Set up nameidata for a lookup() call and do it.
2035 *
2036 * If pubflag is set, this call is done for a lookup operation on the
2037 * public filehandle. In that case we allow crossing mountpoints and
2038 * absolute pathnames. However, the caller is expected to check that
2039 * the lookup result is within the public fs, and deny access if
2040 * it is not.
2041 */
2042 int
2043 nfs_namei(ndp, nsfh, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2044 struct nameidata *ndp;
2045 nfsrvfh_t *nsfh;
2046 uint32_t len;
2047 struct nfssvc_sock *slp;
2048 struct mbuf *nam;
2049 struct mbuf **mdp;
2050 char **dposp;
2051 struct vnode **retdirp;
2052 struct lwp *l;
2053 int kerbflag, pubflag;
2054 {
2055 int i, rem;
2056 struct mbuf *md;
2057 char *fromcp, *tocp, *cp;
2058 struct iovec aiov;
2059 struct uio auio;
2060 struct vnode *dp;
2061 int error, rdonly, linklen;
2062 struct componentname *cnp = &ndp->ni_cnd;
2063
2064 *retdirp = NULL;
2065
2066 if ((len + 1) > MAXPATHLEN)
2067 return (ENAMETOOLONG);
2068 if (len == 0)
2069 return (EACCES);
2070 cnp->cn_pnbuf = PNBUF_GET();
2071
2072 /*
2073 * Copy the name from the mbuf list to ndp->ni_pnbuf
2074 * and set the various ndp fields appropriately.
2075 */
2076 fromcp = *dposp;
2077 tocp = cnp->cn_pnbuf;
2078 md = *mdp;
2079 rem = mtod(md, char *) + md->m_len - fromcp;
2080 for (i = 0; i < len; i++) {
2081 while (rem == 0) {
2082 md = md->m_next;
2083 if (md == NULL) {
2084 error = EBADRPC;
2085 goto out;
2086 }
2087 fromcp = mtod(md, void *);
2088 rem = md->m_len;
2089 }
2090 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2091 error = EACCES;
2092 goto out;
2093 }
2094 *tocp++ = *fromcp++;
2095 rem--;
2096 }
2097 *tocp = '\0';
2098 *mdp = md;
2099 *dposp = fromcp;
2100 len = nfsm_rndup(len)-len;
2101 if (len > 0) {
2102 if (rem >= len)
2103 *dposp += len;
2104 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2105 goto out;
2106 }
2107
2108 /*
2109 * Extract and set starting directory.
2110 */
2111 error = nfsrv_fhtovp(nsfh, false, &dp, ndp->ni_cnd.cn_cred, slp,
2112 nam, &rdonly, kerbflag, pubflag);
2113 if (error)
2114 goto out;
2115 if (dp->v_type != VDIR) {
2116 vrele(dp);
2117 error = ENOTDIR;
2118 goto out;
2119 }
2120
2121 if (rdonly)
2122 cnp->cn_flags |= RDONLY;
2123
2124 *retdirp = dp;
2125
2126 if (pubflag) {
2127 /*
2128 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2129 * and the 'native path' indicator.
2130 */
2131 cp = PNBUF_GET();
2132 fromcp = cnp->cn_pnbuf;
2133 tocp = cp;
2134 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2135 switch ((unsigned char)*fromcp) {
2136 case WEBNFS_NATIVE_CHAR:
2137 /*
2138 * 'Native' path for us is the same
2139 * as a path according to the NFS spec,
2140 * just skip the escape char.
2141 */
2142 fromcp++;
2143 break;
2144 /*
2145 * More may be added in the future, range 0x80-0xff
2146 */
2147 default:
2148 error = EIO;
2149 vrele(dp);
2150 PNBUF_PUT(cp);
2151 goto out;
2152 }
2153 }
2154 /*
2155 * Translate the '%' escapes, URL-style.
2156 */
2157 while (*fromcp != '\0') {
2158 if (*fromcp == WEBNFS_ESC_CHAR) {
2159 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2160 fromcp++;
2161 *tocp++ = HEXSTRTOI(fromcp);
2162 fromcp += 2;
2163 continue;
2164 } else {
2165 error = ENOENT;
2166 vrele(dp);
2167 PNBUF_PUT(cp);
2168 goto out;
2169 }
2170 } else
2171 *tocp++ = *fromcp++;
2172 }
2173 *tocp = '\0';
2174 PNBUF_PUT(cnp->cn_pnbuf);
2175 cnp->cn_pnbuf = cp;
2176 }
2177
2178 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2179 ndp->ni_segflg = UIO_SYSSPACE;
2180 ndp->ni_rootdir = rootvnode;
2181 ndp->ni_erootdir = NULL;
2182
2183 if (pubflag) {
2184 ndp->ni_loopcnt = 0;
2185 if (cnp->cn_pnbuf[0] == '/')
2186 dp = rootvnode;
2187 } else {
2188 cnp->cn_flags |= NOCROSSMOUNT;
2189 }
2190
2191 cnp->cn_lwp = l;
2192 VREF(dp);
2193 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2194
2195 for (;;) {
2196 cnp->cn_nameptr = cnp->cn_pnbuf;
2197 ndp->ni_startdir = dp;
2198
2199 /*
2200 * And call lookup() to do the real work
2201 */
2202 error = lookup(ndp);
2203 if (error) {
2204 if (ndp->ni_dvp) {
2205 vput(ndp->ni_dvp);
2206 }
2207 PNBUF_PUT(cnp->cn_pnbuf);
2208 return (error);
2209 }
2210
2211 /*
2212 * Check for encountering a symbolic link
2213 */
2214 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2215 if ((cnp->cn_flags & LOCKPARENT) == 0 && ndp->ni_dvp) {
2216 if (ndp->ni_dvp == ndp->ni_vp) {
2217 vrele(ndp->ni_dvp);
2218 } else {
2219 vput(ndp->ni_dvp);
2220 }
2221 }
2222 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2223 cnp->cn_flags |= HASBUF;
2224 else
2225 PNBUF_PUT(cnp->cn_pnbuf);
2226 return (0);
2227 } else {
2228 if (!pubflag) {
2229 error = EINVAL;
2230 break;
2231 }
2232 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2233 error = ELOOP;
2234 break;
2235 }
2236 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2237 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred,
2238 cnp->cn_lwp);
2239 if (error != 0)
2240 break;
2241 }
2242 if (ndp->ni_pathlen > 1)
2243 cp = PNBUF_GET();
2244 else
2245 cp = cnp->cn_pnbuf;
2246 aiov.iov_base = cp;
2247 aiov.iov_len = MAXPATHLEN;
2248 auio.uio_iov = &aiov;
2249 auio.uio_iovcnt = 1;
2250 auio.uio_offset = 0;
2251 auio.uio_rw = UIO_READ;
2252 auio.uio_resid = MAXPATHLEN;
2253 UIO_SETUP_SYSSPACE(&auio);
2254 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2255 if (error) {
2256 badlink:
2257 if (ndp->ni_pathlen > 1)
2258 PNBUF_PUT(cp);
2259 break;
2260 }
2261 linklen = MAXPATHLEN - auio.uio_resid;
2262 if (linklen == 0) {
2263 error = ENOENT;
2264 goto badlink;
2265 }
2266 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2267 error = ENAMETOOLONG;
2268 goto badlink;
2269 }
2270 if (ndp->ni_pathlen > 1) {
2271 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2272 PNBUF_PUT(cnp->cn_pnbuf);
2273 cnp->cn_pnbuf = cp;
2274 } else
2275 cnp->cn_pnbuf[linklen] = '\0';
2276 ndp->ni_pathlen += linklen;
2277 vput(ndp->ni_vp);
2278 dp = ndp->ni_dvp;
2279
2280 /*
2281 * Check if root directory should replace current directory.
2282 */
2283 if (cnp->cn_pnbuf[0] == '/') {
2284 vput(dp);
2285 dp = ndp->ni_rootdir;
2286 VREF(dp);
2287 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2288 }
2289 }
2290 }
2291 vput(ndp->ni_dvp);
2292 vput(ndp->ni_vp);
2293 ndp->ni_vp = NULL;
2294 out:
2295 PNBUF_PUT(cnp->cn_pnbuf);
2296 return (error);
2297 }
2298 #endif /* NFSSERVER */
2299
2300 /*
2301 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2302 * boundary and only trims off the back end
2303 *
2304 * 1. trim off 'len' bytes as m_adj(mp, -len).
2305 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2306 */
2307 void
2308 nfs_zeropad(mp, len, nul)
2309 struct mbuf *mp;
2310 int len;
2311 int nul;
2312 {
2313 struct mbuf *m;
2314 int count;
2315
2316 /*
2317 * Trim from tail. Scan the mbuf chain,
2318 * calculating its length and finding the last mbuf.
2319 * If the adjustment only affects this mbuf, then just
2320 * adjust and return. Otherwise, rescan and truncate
2321 * after the remaining size.
2322 */
2323 count = 0;
2324 m = mp;
2325 for (;;) {
2326 count += m->m_len;
2327 if (m->m_next == NULL)
2328 break;
2329 m = m->m_next;
2330 }
2331
2332 KDASSERT(count >= len);
2333
2334 if (m->m_len >= len) {
2335 m->m_len -= len;
2336 } else {
2337 count -= len;
2338 /*
2339 * Correct length for chain is "count".
2340 * Find the mbuf with last data, adjust its length,
2341 * and toss data from remaining mbufs on chain.
2342 */
2343 for (m = mp; m; m = m->m_next) {
2344 if (m->m_len >= count) {
2345 m->m_len = count;
2346 break;
2347 }
2348 count -= m->m_len;
2349 }
2350 KASSERT(m && m->m_next);
2351 m_freem(m->m_next);
2352 m->m_next = NULL;
2353 }
2354
2355 KDASSERT(m->m_next == NULL);
2356
2357 /*
2358 * zero-padding.
2359 */
2360 if (nul > 0) {
2361 char *cp;
2362 int i;
2363
2364 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2365 struct mbuf *n;
2366
2367 KDASSERT(MLEN >= nul);
2368 n = m_get(M_WAIT, MT_DATA);
2369 MCLAIM(n, &nfs_mowner);
2370 n->m_len = nul;
2371 n->m_next = NULL;
2372 m->m_next = n;
2373 cp = mtod(n, void *);
2374 } else {
2375 cp = mtod(m, char *) + m->m_len;
2376 m->m_len += nul;
2377 }
2378 for (i = 0; i < nul; i++)
2379 *cp++ = '\0';
2380 }
2381 return;
2382 }
2383
2384 /*
2385 * Make these functions instead of macros, so that the kernel text size
2386 * doesn't get too big...
2387 */
2388 void
2389 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2390 struct nfsrv_descript *nfsd;
2391 int before_ret;
2392 struct vattr *before_vap;
2393 int after_ret;
2394 struct vattr *after_vap;
2395 struct mbuf **mbp;
2396 char **bposp;
2397 {
2398 struct mbuf *mb = *mbp;
2399 char *bpos = *bposp;
2400 u_int32_t *tl;
2401
2402 if (before_ret) {
2403 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2404 *tl = nfs_false;
2405 } else {
2406 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2407 *tl++ = nfs_true;
2408 txdr_hyper(before_vap->va_size, tl);
2409 tl += 2;
2410 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2411 tl += 2;
2412 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2413 }
2414 *bposp = bpos;
2415 *mbp = mb;
2416 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2417 }
2418
2419 void
2420 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2421 struct nfsrv_descript *nfsd;
2422 int after_ret;
2423 struct vattr *after_vap;
2424 struct mbuf **mbp;
2425 char **bposp;
2426 {
2427 struct mbuf *mb = *mbp;
2428 char *bpos = *bposp;
2429 u_int32_t *tl;
2430 struct nfs_fattr *fp;
2431
2432 if (after_ret) {
2433 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2434 *tl = nfs_false;
2435 } else {
2436 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2437 *tl++ = nfs_true;
2438 fp = (struct nfs_fattr *)tl;
2439 nfsm_srvfattr(nfsd, after_vap, fp);
2440 }
2441 *mbp = mb;
2442 *bposp = bpos;
2443 }
2444
2445 void
2446 nfsm_srvfattr(nfsd, vap, fp)
2447 struct nfsrv_descript *nfsd;
2448 struct vattr *vap;
2449 struct nfs_fattr *fp;
2450 {
2451
2452 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2453 fp->fa_uid = txdr_unsigned(vap->va_uid);
2454 fp->fa_gid = txdr_unsigned(vap->va_gid);
2455 if (nfsd->nd_flag & ND_NFSV3) {
2456 fp->fa_type = vtonfsv3_type(vap->va_type);
2457 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2458 txdr_hyper(vap->va_size, &fp->fa3_size);
2459 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2460 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2461 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2462 fp->fa3_fsid.nfsuquad[0] = 0;
2463 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2464 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2465 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2466 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2467 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2468 } else {
2469 fp->fa_type = vtonfsv2_type(vap->va_type);
2470 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2471 fp->fa2_size = txdr_unsigned(vap->va_size);
2472 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2473 if (vap->va_type == VFIFO)
2474 fp->fa2_rdev = 0xffffffff;
2475 else
2476 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2477 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2478 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2479 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2480 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2481 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2482 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2483 }
2484 }
2485
2486 #ifdef NFSSERVER
2487 /*
2488 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2489 * - look up fsid in mount list (if not found ret error)
2490 * - get vp and export rights by calling VFS_FHTOVP()
2491 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2492 * - if not lockflag unlock it with VOP_UNLOCK()
2493 */
2494 int
2495 nfsrv_fhtovp(nfsrvfh_t *nsfh, int lockflag, struct vnode **vpp,
2496 kauth_cred_t cred, struct nfssvc_sock *slp, struct mbuf *nam, int *rdonlyp,
2497 int kerbflag, int pubflag)
2498 {
2499 struct mount *mp;
2500 kauth_cred_t credanon;
2501 int error, exflags;
2502 struct sockaddr_in *saddr;
2503 fhandle_t *fhp;
2504
2505 fhp = NFSRVFH_FHANDLE(nsfh);
2506 *vpp = (struct vnode *)0;
2507
2508 if (nfs_ispublicfh(nsfh)) {
2509 if (!pubflag || !nfs_pub.np_valid)
2510 return (ESTALE);
2511 fhp = nfs_pub.np_handle;
2512 }
2513
2514 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2515 if (error) {
2516 return error;
2517 }
2518
2519 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2520 if (error)
2521 return (error);
2522
2523 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2524 saddr = mtod(nam, struct sockaddr_in *);
2525 if ((saddr->sin_family == AF_INET) &&
2526 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2527 vput(*vpp);
2528 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2529 }
2530 #ifdef INET6
2531 if ((saddr->sin_family == AF_INET6) &&
2532 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2533 vput(*vpp);
2534 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2535 }
2536 #endif
2537 }
2538 /*
2539 * Check/setup credentials.
2540 */
2541 if (exflags & MNT_EXKERB) {
2542 if (!kerbflag) {
2543 vput(*vpp);
2544 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2545 }
2546 } else if (kerbflag) {
2547 vput(*vpp);
2548 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2549 } else if (kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER,
2550 NULL) == 0 || (exflags & MNT_EXPORTANON)) {
2551 kauth_cred_clone(credanon, cred);
2552 }
2553 if (exflags & MNT_EXRDONLY)
2554 *rdonlyp = 1;
2555 else
2556 *rdonlyp = 0;
2557 if (!lockflag)
2558 VOP_UNLOCK(*vpp, 0);
2559 return (0);
2560 }
2561
2562 /*
2563 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2564 * means a length of 0, for v2 it means all zeroes.
2565 */
2566 int
2567 nfs_ispublicfh(const nfsrvfh_t *nsfh)
2568 {
2569 const char *cp = (const void *)(NFSRVFH_DATA(nsfh));
2570 int i;
2571
2572 if (NFSRVFH_SIZE(nsfh) == 0) {
2573 return true;
2574 }
2575 if (NFSRVFH_SIZE(nsfh) != NFSX_V2FH) {
2576 return false;
2577 }
2578 for (i = 0; i < NFSX_V2FH; i++)
2579 if (*cp++ != 0)
2580 return false;
2581 return true;
2582 }
2583 #endif /* NFSSERVER */
2584
2585 /*
2586 * This function compares two net addresses by family and returns true
2587 * if they are the same host.
2588 * If there is any doubt, return false.
2589 * The AF_INET family is handled as a special case so that address mbufs
2590 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2591 */
2592 int
2593 netaddr_match(family, haddr, nam)
2594 int family;
2595 union nethostaddr *haddr;
2596 struct mbuf *nam;
2597 {
2598 struct sockaddr_in *inetaddr;
2599
2600 switch (family) {
2601 case AF_INET:
2602 inetaddr = mtod(nam, struct sockaddr_in *);
2603 if (inetaddr->sin_family == AF_INET &&
2604 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2605 return (1);
2606 break;
2607 #ifdef INET6
2608 case AF_INET6:
2609 {
2610 struct sockaddr_in6 *sin6_1, *sin6_2;
2611
2612 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2613 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2614 if (sin6_1->sin6_family == AF_INET6 &&
2615 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2616 return 1;
2617 }
2618 #endif
2619 #ifdef ISO
2620 case AF_ISO:
2621 {
2622 struct sockaddr_iso *isoaddr1, *isoaddr2;
2623
2624 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2625 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2626 if (isoaddr1->siso_family == AF_ISO &&
2627 isoaddr1->siso_nlen > 0 &&
2628 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2629 SAME_ISOADDR(isoaddr1, isoaddr2))
2630 return (1);
2631 break;
2632 }
2633 #endif /* ISO */
2634 default:
2635 break;
2636 };
2637 return (0);
2638 }
2639
2640 /*
2641 * The write verifier has changed (probably due to a server reboot), so all
2642 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2643 * as dirty or are being written out just now, all this takes is clearing
2644 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2645 * the mount point.
2646 */
2647 void
2648 nfs_clearcommit(mp)
2649 struct mount *mp;
2650 {
2651 struct vnode *vp;
2652 struct nfsnode *np;
2653 struct vm_page *pg;
2654 struct nfsmount *nmp = VFSTONFS(mp);
2655
2656 rw_enter(&nmp->nm_writeverflock, RW_WRITER);
2657
2658 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2659 KASSERT(vp->v_mount == mp);
2660 if (vp->v_type != VREG)
2661 continue;
2662 np = VTONFS(vp);
2663 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2664 np->n_pushedhi = 0;
2665 np->n_commitflags &=
2666 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2667 simple_lock(&vp->v_uobj.vmobjlock);
2668 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2669 pg->flags &= ~PG_NEEDCOMMIT;
2670 }
2671 simple_unlock(&vp->v_uobj.vmobjlock);
2672 }
2673 mutex_enter(&nmp->nm_lock);
2674 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2675 mutex_exit(&nmp->nm_lock);
2676 rw_exit(&nmp->nm_writeverflock);
2677 }
2678
2679 void
2680 nfs_merge_commit_ranges(vp)
2681 struct vnode *vp;
2682 {
2683 struct nfsnode *np = VTONFS(vp);
2684
2685 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2686
2687 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2688 np->n_pushedlo = np->n_pushlo;
2689 np->n_pushedhi = np->n_pushhi;
2690 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2691 } else {
2692 if (np->n_pushlo < np->n_pushedlo)
2693 np->n_pushedlo = np->n_pushlo;
2694 if (np->n_pushhi > np->n_pushedhi)
2695 np->n_pushedhi = np->n_pushhi;
2696 }
2697
2698 np->n_pushlo = np->n_pushhi = 0;
2699 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2700
2701 #ifdef NFS_DEBUG_COMMIT
2702 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2703 (unsigned)np->n_pushedhi);
2704 #endif
2705 }
2706
2707 int
2708 nfs_in_committed_range(vp, off, len)
2709 struct vnode *vp;
2710 off_t off, len;
2711 {
2712 struct nfsnode *np = VTONFS(vp);
2713 off_t lo, hi;
2714
2715 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2716 return 0;
2717 lo = off;
2718 hi = lo + len;
2719
2720 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2721 }
2722
2723 int
2724 nfs_in_tobecommitted_range(vp, off, len)
2725 struct vnode *vp;
2726 off_t off, len;
2727 {
2728 struct nfsnode *np = VTONFS(vp);
2729 off_t lo, hi;
2730
2731 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2732 return 0;
2733 lo = off;
2734 hi = lo + len;
2735
2736 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2737 }
2738
2739 void
2740 nfs_add_committed_range(vp, off, len)
2741 struct vnode *vp;
2742 off_t off, len;
2743 {
2744 struct nfsnode *np = VTONFS(vp);
2745 off_t lo, hi;
2746
2747 lo = off;
2748 hi = lo + len;
2749
2750 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2751 np->n_pushedlo = lo;
2752 np->n_pushedhi = hi;
2753 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2754 } else {
2755 if (hi > np->n_pushedhi)
2756 np->n_pushedhi = hi;
2757 if (lo < np->n_pushedlo)
2758 np->n_pushedlo = lo;
2759 }
2760 #ifdef NFS_DEBUG_COMMIT
2761 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2762 (unsigned)np->n_pushedhi);
2763 #endif
2764 }
2765
2766 void
2767 nfs_del_committed_range(vp, off, len)
2768 struct vnode *vp;
2769 off_t off, len;
2770 {
2771 struct nfsnode *np = VTONFS(vp);
2772 off_t lo, hi;
2773
2774 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2775 return;
2776
2777 lo = off;
2778 hi = lo + len;
2779
2780 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2781 return;
2782 if (lo <= np->n_pushedlo)
2783 np->n_pushedlo = hi;
2784 else if (hi >= np->n_pushedhi)
2785 np->n_pushedhi = lo;
2786 else {
2787 /*
2788 * XXX There's only one range. If the deleted range
2789 * is in the middle, pick the largest of the
2790 * contiguous ranges that it leaves.
2791 */
2792 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2793 np->n_pushedhi = lo;
2794 else
2795 np->n_pushedlo = hi;
2796 }
2797 #ifdef NFS_DEBUG_COMMIT
2798 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2799 (unsigned)np->n_pushedhi);
2800 #endif
2801 }
2802
2803 void
2804 nfs_add_tobecommitted_range(vp, off, len)
2805 struct vnode *vp;
2806 off_t off, len;
2807 {
2808 struct nfsnode *np = VTONFS(vp);
2809 off_t lo, hi;
2810
2811 lo = off;
2812 hi = lo + len;
2813
2814 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2815 np->n_pushlo = lo;
2816 np->n_pushhi = hi;
2817 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2818 } else {
2819 if (lo < np->n_pushlo)
2820 np->n_pushlo = lo;
2821 if (hi > np->n_pushhi)
2822 np->n_pushhi = hi;
2823 }
2824 #ifdef NFS_DEBUG_COMMIT
2825 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2826 (unsigned)np->n_pushhi);
2827 #endif
2828 }
2829
2830 void
2831 nfs_del_tobecommitted_range(vp, off, len)
2832 struct vnode *vp;
2833 off_t off, len;
2834 {
2835 struct nfsnode *np = VTONFS(vp);
2836 off_t lo, hi;
2837
2838 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2839 return;
2840
2841 lo = off;
2842 hi = lo + len;
2843
2844 if (lo > np->n_pushhi || hi < np->n_pushlo)
2845 return;
2846
2847 if (lo <= np->n_pushlo)
2848 np->n_pushlo = hi;
2849 else if (hi >= np->n_pushhi)
2850 np->n_pushhi = lo;
2851 else {
2852 /*
2853 * XXX There's only one range. If the deleted range
2854 * is in the middle, pick the largest of the
2855 * contiguous ranges that it leaves.
2856 */
2857 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2858 np->n_pushhi = lo;
2859 else
2860 np->n_pushlo = hi;
2861 }
2862 #ifdef NFS_DEBUG_COMMIT
2863 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2864 (unsigned)np->n_pushhi);
2865 #endif
2866 }
2867
2868 /*
2869 * Map errnos to NFS error numbers. For Version 3 also filter out error
2870 * numbers not specified for the associated procedure.
2871 */
2872 int
2873 nfsrv_errmap(nd, err)
2874 struct nfsrv_descript *nd;
2875 int err;
2876 {
2877 const short *defaulterrp, *errp;
2878
2879 if (nd->nd_flag & ND_NFSV3) {
2880 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2881 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2882 while (*++errp) {
2883 if (*errp == err)
2884 return (err);
2885 else if (*errp > err)
2886 break;
2887 }
2888 return ((int)*defaulterrp);
2889 } else
2890 return (err & 0xffff);
2891 }
2892 if (err <= ELAST)
2893 return ((int)nfsrv_v2errmap[err - 1]);
2894 return (NFSERR_IO);
2895 }
2896
2897 u_int32_t
2898 nfs_getxid()
2899 {
2900 static u_int32_t base;
2901 static u_int32_t nfs_xid = 0;
2902 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2903 u_int32_t newxid;
2904
2905 simple_lock(&nfs_xidlock);
2906 /*
2907 * derive initial xid from system time
2908 * XXX time is invalid if root not yet mounted
2909 */
2910 if (__predict_false(!base && (rootvp))) {
2911 struct timeval tv;
2912
2913 microtime(&tv);
2914 base = tv.tv_sec << 12;
2915 nfs_xid = base;
2916 }
2917
2918 /*
2919 * Skip zero xid if it should ever happen.
2920 */
2921 if (__predict_false(++nfs_xid == 0))
2922 nfs_xid++;
2923 newxid = nfs_xid;
2924 simple_unlock(&nfs_xidlock);
2925
2926 return txdr_unsigned(newxid);
2927 }
2928
2929 /*
2930 * assign a new xid for existing request.
2931 * used for NFSERR_JUKEBOX handling.
2932 */
2933 void
2934 nfs_renewxid(struct nfsreq *req)
2935 {
2936 u_int32_t xid;
2937 int off;
2938
2939 xid = nfs_getxid();
2940 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2941 off = sizeof(u_int32_t); /* RPC record mark */
2942 else
2943 off = 0;
2944
2945 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2946 req->r_xid = xid;
2947 }
2948
2949 #if defined(NFSSERVER)
2950 int
2951 nfsrv_composefh(struct vnode *vp, nfsrvfh_t *nsfh, bool v3)
2952 {
2953 int error;
2954 size_t fhsize;
2955
2956 fhsize = NFSD_MAXFHSIZE;
2957 error = vfs_composefh(vp, (void *)NFSRVFH_DATA(nsfh), &fhsize);
2958 if (NFSX_FHTOOBIG_P(fhsize, v3)) {
2959 error = EOPNOTSUPP;
2960 }
2961 if (error != 0) {
2962 return error;
2963 }
2964 if (!v3 && fhsize < NFSX_V2FH) {
2965 memset((char *)NFSRVFH_DATA(nsfh) + fhsize, 0,
2966 NFSX_V2FH - fhsize);
2967 fhsize = NFSX_V2FH;
2968 }
2969 if ((fhsize % NFSX_UNSIGNED) != 0) {
2970 return EOPNOTSUPP;
2971 }
2972 nsfh->nsfh_size = fhsize;
2973 return 0;
2974 }
2975
2976 int
2977 nfsrv_comparefh(const nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2978 {
2979
2980 if (NFSRVFH_SIZE(fh1) != NFSRVFH_SIZE(fh2)) {
2981 return NFSRVFH_SIZE(fh2) - NFSRVFH_SIZE(fh1);
2982 }
2983 return memcmp(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), NFSRVFH_SIZE(fh1));
2984 }
2985
2986 void
2987 nfsrv_copyfh(nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2988 {
2989 size_t size;
2990
2991 fh1->nsfh_size = size = NFSRVFH_SIZE(fh2);
2992 memcpy(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), size);
2993 }
2994 #endif /* defined(NFSSERVER) */
2995