nfs_subs.c revision 1.196 1 /* $NetBSD: nfs_subs.c,v 1.196 2008/01/02 19:26:46 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.196 2008/01/02 19:26:46 yamt Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/kmem.h>
91 #include <sys/mount.h>
92 #include <sys/vnode.h>
93 #include <sys/namei.h>
94 #include <sys/mbuf.h>
95 #include <sys/socket.h>
96 #include <sys/stat.h>
97 #include <sys/malloc.h>
98 #include <sys/filedesc.h>
99 #include <sys/time.h>
100 #include <sys/dirent.h>
101 #include <sys/once.h>
102 #include <sys/kauth.h>
103
104 #include <uvm/uvm_extern.h>
105
106 #include <nfs/rpcv2.h>
107 #include <nfs/nfsproto.h>
108 #include <nfs/nfsnode.h>
109 #include <nfs/nfs.h>
110 #include <nfs/xdr_subs.h>
111 #include <nfs/nfsm_subs.h>
112 #include <nfs/nfsmount.h>
113 #include <nfs/nfsrtt.h>
114 #include <nfs/nfs_var.h>
115
116 #include <miscfs/specfs/specdev.h>
117
118 #include <netinet/in.h>
119 #ifdef ISO
120 #include <netiso/iso.h>
121 #endif
122
123 /*
124 * Data items converted to xdr at startup, since they are constant
125 * This is kinda hokey, but may save a little time doing byte swaps
126 */
127 u_int32_t nfs_xdrneg1;
128 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
129 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
130 rpc_auth_kerb;
131 u_int32_t nfs_prog, nfs_true, nfs_false;
132
133 /* And other global data */
134 const nfstype nfsv2_type[9] =
135 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
136 const nfstype nfsv3_type[9] =
137 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
138 const enum vtype nv2tov_type[8] =
139 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
140 const enum vtype nv3tov_type[8] =
141 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
142 int nfs_ticks;
143 int nfs_commitsize;
144
145 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
146
147 /* NFS client/server stats. */
148 struct nfsstats nfsstats;
149
150 /*
151 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
152 */
153 const int nfsv3_procid[NFS_NPROCS] = {
154 NFSPROC_NULL,
155 NFSPROC_GETATTR,
156 NFSPROC_SETATTR,
157 NFSPROC_NOOP,
158 NFSPROC_LOOKUP,
159 NFSPROC_READLINK,
160 NFSPROC_READ,
161 NFSPROC_NOOP,
162 NFSPROC_WRITE,
163 NFSPROC_CREATE,
164 NFSPROC_REMOVE,
165 NFSPROC_RENAME,
166 NFSPROC_LINK,
167 NFSPROC_SYMLINK,
168 NFSPROC_MKDIR,
169 NFSPROC_RMDIR,
170 NFSPROC_READDIR,
171 NFSPROC_FSSTAT,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP
177 };
178
179 /*
180 * and the reverse mapping from generic to Version 2 procedure numbers
181 */
182 const int nfsv2_procid[NFS_NPROCS] = {
183 NFSV2PROC_NULL,
184 NFSV2PROC_GETATTR,
185 NFSV2PROC_SETATTR,
186 NFSV2PROC_LOOKUP,
187 NFSV2PROC_NOOP,
188 NFSV2PROC_READLINK,
189 NFSV2PROC_READ,
190 NFSV2PROC_WRITE,
191 NFSV2PROC_CREATE,
192 NFSV2PROC_MKDIR,
193 NFSV2PROC_SYMLINK,
194 NFSV2PROC_CREATE,
195 NFSV2PROC_REMOVE,
196 NFSV2PROC_RMDIR,
197 NFSV2PROC_RENAME,
198 NFSV2PROC_LINK,
199 NFSV2PROC_READDIR,
200 NFSV2PROC_NOOP,
201 NFSV2PROC_STATFS,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_NOOP,
206 };
207
208 /*
209 * Maps errno values to nfs error numbers.
210 * Use NFSERR_IO as the catch all for ones not specifically defined in
211 * RFC 1094.
212 */
213 static const u_char nfsrv_v2errmap[ELAST] = {
214 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
215 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
216 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
217 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
218 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
219 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
227 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO,
231 };
232
233 /*
234 * Maps errno values to nfs error numbers.
235 * Although it is not obvious whether or not NFS clients really care if
236 * a returned error value is in the specified list for the procedure, the
237 * safest thing to do is filter them appropriately. For Version 2, the
238 * X/Open XNFS document is the only specification that defines error values
239 * for each RPC (The RFC simply lists all possible error values for all RPCs),
240 * so I have decided to not do this for Version 2.
241 * The first entry is the default error return and the rest are the valid
242 * errors for that RPC in increasing numeric order.
243 */
244 static const short nfsv3err_null[] = {
245 0,
246 0,
247 };
248
249 static const short nfsv3err_getattr[] = {
250 NFSERR_IO,
251 NFSERR_IO,
252 NFSERR_STALE,
253 NFSERR_BADHANDLE,
254 NFSERR_SERVERFAULT,
255 0,
256 };
257
258 static const short nfsv3err_setattr[] = {
259 NFSERR_IO,
260 NFSERR_PERM,
261 NFSERR_IO,
262 NFSERR_ACCES,
263 NFSERR_INVAL,
264 NFSERR_NOSPC,
265 NFSERR_ROFS,
266 NFSERR_DQUOT,
267 NFSERR_STALE,
268 NFSERR_BADHANDLE,
269 NFSERR_NOT_SYNC,
270 NFSERR_SERVERFAULT,
271 0,
272 };
273
274 static const short nfsv3err_lookup[] = {
275 NFSERR_IO,
276 NFSERR_NOENT,
277 NFSERR_IO,
278 NFSERR_ACCES,
279 NFSERR_NOTDIR,
280 NFSERR_NAMETOL,
281 NFSERR_STALE,
282 NFSERR_BADHANDLE,
283 NFSERR_SERVERFAULT,
284 0,
285 };
286
287 static const short nfsv3err_access[] = {
288 NFSERR_IO,
289 NFSERR_IO,
290 NFSERR_STALE,
291 NFSERR_BADHANDLE,
292 NFSERR_SERVERFAULT,
293 0,
294 };
295
296 static const short nfsv3err_readlink[] = {
297 NFSERR_IO,
298 NFSERR_IO,
299 NFSERR_ACCES,
300 NFSERR_INVAL,
301 NFSERR_STALE,
302 NFSERR_BADHANDLE,
303 NFSERR_NOTSUPP,
304 NFSERR_SERVERFAULT,
305 0,
306 };
307
308 static const short nfsv3err_read[] = {
309 NFSERR_IO,
310 NFSERR_IO,
311 NFSERR_NXIO,
312 NFSERR_ACCES,
313 NFSERR_INVAL,
314 NFSERR_STALE,
315 NFSERR_BADHANDLE,
316 NFSERR_SERVERFAULT,
317 NFSERR_JUKEBOX,
318 0,
319 };
320
321 static const short nfsv3err_write[] = {
322 NFSERR_IO,
323 NFSERR_IO,
324 NFSERR_ACCES,
325 NFSERR_INVAL,
326 NFSERR_FBIG,
327 NFSERR_NOSPC,
328 NFSERR_ROFS,
329 NFSERR_DQUOT,
330 NFSERR_STALE,
331 NFSERR_BADHANDLE,
332 NFSERR_SERVERFAULT,
333 NFSERR_JUKEBOX,
334 0,
335 };
336
337 static const short nfsv3err_create[] = {
338 NFSERR_IO,
339 NFSERR_IO,
340 NFSERR_ACCES,
341 NFSERR_EXIST,
342 NFSERR_NOTDIR,
343 NFSERR_NOSPC,
344 NFSERR_ROFS,
345 NFSERR_NAMETOL,
346 NFSERR_DQUOT,
347 NFSERR_STALE,
348 NFSERR_BADHANDLE,
349 NFSERR_NOTSUPP,
350 NFSERR_SERVERFAULT,
351 0,
352 };
353
354 static const short nfsv3err_mkdir[] = {
355 NFSERR_IO,
356 NFSERR_IO,
357 NFSERR_ACCES,
358 NFSERR_EXIST,
359 NFSERR_NOTDIR,
360 NFSERR_NOSPC,
361 NFSERR_ROFS,
362 NFSERR_NAMETOL,
363 NFSERR_DQUOT,
364 NFSERR_STALE,
365 NFSERR_BADHANDLE,
366 NFSERR_NOTSUPP,
367 NFSERR_SERVERFAULT,
368 0,
369 };
370
371 static const short nfsv3err_symlink[] = {
372 NFSERR_IO,
373 NFSERR_IO,
374 NFSERR_ACCES,
375 NFSERR_EXIST,
376 NFSERR_NOTDIR,
377 NFSERR_NOSPC,
378 NFSERR_ROFS,
379 NFSERR_NAMETOL,
380 NFSERR_DQUOT,
381 NFSERR_STALE,
382 NFSERR_BADHANDLE,
383 NFSERR_NOTSUPP,
384 NFSERR_SERVERFAULT,
385 0,
386 };
387
388 static const short nfsv3err_mknod[] = {
389 NFSERR_IO,
390 NFSERR_IO,
391 NFSERR_ACCES,
392 NFSERR_EXIST,
393 NFSERR_NOTDIR,
394 NFSERR_NOSPC,
395 NFSERR_ROFS,
396 NFSERR_NAMETOL,
397 NFSERR_DQUOT,
398 NFSERR_STALE,
399 NFSERR_BADHANDLE,
400 NFSERR_NOTSUPP,
401 NFSERR_SERVERFAULT,
402 NFSERR_BADTYPE,
403 0,
404 };
405
406 static const short nfsv3err_remove[] = {
407 NFSERR_IO,
408 NFSERR_NOENT,
409 NFSERR_IO,
410 NFSERR_ACCES,
411 NFSERR_NOTDIR,
412 NFSERR_ROFS,
413 NFSERR_NAMETOL,
414 NFSERR_STALE,
415 NFSERR_BADHANDLE,
416 NFSERR_SERVERFAULT,
417 0,
418 };
419
420 static const short nfsv3err_rmdir[] = {
421 NFSERR_IO,
422 NFSERR_NOENT,
423 NFSERR_IO,
424 NFSERR_ACCES,
425 NFSERR_EXIST,
426 NFSERR_NOTDIR,
427 NFSERR_INVAL,
428 NFSERR_ROFS,
429 NFSERR_NAMETOL,
430 NFSERR_NOTEMPTY,
431 NFSERR_STALE,
432 NFSERR_BADHANDLE,
433 NFSERR_NOTSUPP,
434 NFSERR_SERVERFAULT,
435 0,
436 };
437
438 static const short nfsv3err_rename[] = {
439 NFSERR_IO,
440 NFSERR_NOENT,
441 NFSERR_IO,
442 NFSERR_ACCES,
443 NFSERR_EXIST,
444 NFSERR_XDEV,
445 NFSERR_NOTDIR,
446 NFSERR_ISDIR,
447 NFSERR_INVAL,
448 NFSERR_NOSPC,
449 NFSERR_ROFS,
450 NFSERR_MLINK,
451 NFSERR_NAMETOL,
452 NFSERR_NOTEMPTY,
453 NFSERR_DQUOT,
454 NFSERR_STALE,
455 NFSERR_BADHANDLE,
456 NFSERR_NOTSUPP,
457 NFSERR_SERVERFAULT,
458 0,
459 };
460
461 static const short nfsv3err_link[] = {
462 NFSERR_IO,
463 NFSERR_IO,
464 NFSERR_ACCES,
465 NFSERR_EXIST,
466 NFSERR_XDEV,
467 NFSERR_NOTDIR,
468 NFSERR_INVAL,
469 NFSERR_NOSPC,
470 NFSERR_ROFS,
471 NFSERR_MLINK,
472 NFSERR_NAMETOL,
473 NFSERR_DQUOT,
474 NFSERR_STALE,
475 NFSERR_BADHANDLE,
476 NFSERR_NOTSUPP,
477 NFSERR_SERVERFAULT,
478 0,
479 };
480
481 static const short nfsv3err_readdir[] = {
482 NFSERR_IO,
483 NFSERR_IO,
484 NFSERR_ACCES,
485 NFSERR_NOTDIR,
486 NFSERR_STALE,
487 NFSERR_BADHANDLE,
488 NFSERR_BAD_COOKIE,
489 NFSERR_TOOSMALL,
490 NFSERR_SERVERFAULT,
491 0,
492 };
493
494 static const short nfsv3err_readdirplus[] = {
495 NFSERR_IO,
496 NFSERR_IO,
497 NFSERR_ACCES,
498 NFSERR_NOTDIR,
499 NFSERR_STALE,
500 NFSERR_BADHANDLE,
501 NFSERR_BAD_COOKIE,
502 NFSERR_NOTSUPP,
503 NFSERR_TOOSMALL,
504 NFSERR_SERVERFAULT,
505 0,
506 };
507
508 static const short nfsv3err_fsstat[] = {
509 NFSERR_IO,
510 NFSERR_IO,
511 NFSERR_STALE,
512 NFSERR_BADHANDLE,
513 NFSERR_SERVERFAULT,
514 0,
515 };
516
517 static const short nfsv3err_fsinfo[] = {
518 NFSERR_STALE,
519 NFSERR_STALE,
520 NFSERR_BADHANDLE,
521 NFSERR_SERVERFAULT,
522 0,
523 };
524
525 static const short nfsv3err_pathconf[] = {
526 NFSERR_STALE,
527 NFSERR_STALE,
528 NFSERR_BADHANDLE,
529 NFSERR_SERVERFAULT,
530 0,
531 };
532
533 static const short nfsv3err_commit[] = {
534 NFSERR_IO,
535 NFSERR_IO,
536 NFSERR_STALE,
537 NFSERR_BADHANDLE,
538 NFSERR_SERVERFAULT,
539 0,
540 };
541
542 static const short * const nfsrv_v3errmap[] = {
543 nfsv3err_null,
544 nfsv3err_getattr,
545 nfsv3err_setattr,
546 nfsv3err_lookup,
547 nfsv3err_access,
548 nfsv3err_readlink,
549 nfsv3err_read,
550 nfsv3err_write,
551 nfsv3err_create,
552 nfsv3err_mkdir,
553 nfsv3err_symlink,
554 nfsv3err_mknod,
555 nfsv3err_remove,
556 nfsv3err_rmdir,
557 nfsv3err_rename,
558 nfsv3err_link,
559 nfsv3err_readdir,
560 nfsv3err_readdirplus,
561 nfsv3err_fsstat,
562 nfsv3err_fsinfo,
563 nfsv3err_pathconf,
564 nfsv3err_commit,
565 };
566
567 extern struct nfsrtt nfsrtt;
568 extern struct nfsnodehashhead *nfsnodehashtbl;
569 extern u_long nfsnodehash;
570
571 u_long nfsdirhashmask;
572
573 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
574
575 /*
576 * Create the header for an rpc request packet
577 * The hsiz is the size of the rest of the nfs request header.
578 * (just used to decide if a cluster is a good idea)
579 */
580 struct mbuf *
581 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
582 {
583 struct mbuf *mb;
584 char *bpos;
585
586 mb = m_get(M_WAIT, MT_DATA);
587 MCLAIM(mb, &nfs_mowner);
588 if (hsiz >= MINCLSIZE)
589 m_clget(mb, M_WAIT);
590 mb->m_len = 0;
591 bpos = mtod(mb, void *);
592
593 /* Finally, return values */
594 *bposp = bpos;
595 return (mb);
596 }
597
598 /*
599 * Build the RPC header and fill in the authorization info.
600 * The authorization string argument is only used when the credentials
601 * come from outside of the kernel.
602 * Returns the head of the mbuf list.
603 */
604 struct mbuf *
605 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
606 verf_str, mrest, mrest_len, mbp, xidp)
607 kauth_cred_t cr;
608 int nmflag;
609 int procid;
610 int auth_type;
611 int auth_len;
612 char *auth_str;
613 int verf_len;
614 char *verf_str;
615 struct mbuf *mrest;
616 int mrest_len;
617 struct mbuf **mbp;
618 u_int32_t *xidp;
619 {
620 struct mbuf *mb;
621 u_int32_t *tl;
622 char *bpos;
623 int i;
624 struct mbuf *mreq;
625 int siz, grpsiz, authsiz;
626
627 authsiz = nfsm_rndup(auth_len);
628 mb = m_gethdr(M_WAIT, MT_DATA);
629 MCLAIM(mb, &nfs_mowner);
630 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
631 m_clget(mb, M_WAIT);
632 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
633 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
634 } else {
635 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
636 }
637 mb->m_len = 0;
638 mreq = mb;
639 bpos = mtod(mb, void *);
640
641 /*
642 * First the RPC header.
643 */
644 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
645
646 *tl++ = *xidp = nfs_getxid();
647 *tl++ = rpc_call;
648 *tl++ = rpc_vers;
649 *tl++ = txdr_unsigned(NFS_PROG);
650 if (nmflag & NFSMNT_NFSV3)
651 *tl++ = txdr_unsigned(NFS_VER3);
652 else
653 *tl++ = txdr_unsigned(NFS_VER2);
654 if (nmflag & NFSMNT_NFSV3)
655 *tl++ = txdr_unsigned(procid);
656 else
657 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
658
659 /*
660 * And then the authorization cred.
661 */
662 *tl++ = txdr_unsigned(auth_type);
663 *tl = txdr_unsigned(authsiz);
664 switch (auth_type) {
665 case RPCAUTH_UNIX:
666 nfsm_build(tl, u_int32_t *, auth_len);
667 *tl++ = 0; /* stamp ?? */
668 *tl++ = 0; /* NULL hostname */
669 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
670 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
671 grpsiz = (auth_len >> 2) - 5;
672 *tl++ = txdr_unsigned(grpsiz);
673 for (i = 0; i < grpsiz; i++)
674 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
675 break;
676 case RPCAUTH_KERB4:
677 siz = auth_len;
678 while (siz > 0) {
679 if (M_TRAILINGSPACE(mb) == 0) {
680 struct mbuf *mb2;
681 mb2 = m_get(M_WAIT, MT_DATA);
682 MCLAIM(mb2, &nfs_mowner);
683 if (siz >= MINCLSIZE)
684 m_clget(mb2, M_WAIT);
685 mb->m_next = mb2;
686 mb = mb2;
687 mb->m_len = 0;
688 bpos = mtod(mb, void *);
689 }
690 i = min(siz, M_TRAILINGSPACE(mb));
691 memcpy(bpos, auth_str, i);
692 mb->m_len += i;
693 auth_str += i;
694 bpos += i;
695 siz -= i;
696 }
697 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
698 for (i = 0; i < siz; i++)
699 *bpos++ = '\0';
700 mb->m_len += siz;
701 }
702 break;
703 };
704
705 /*
706 * And the verifier...
707 */
708 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
709 if (verf_str) {
710 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
711 *tl = txdr_unsigned(verf_len);
712 siz = verf_len;
713 while (siz > 0) {
714 if (M_TRAILINGSPACE(mb) == 0) {
715 struct mbuf *mb2;
716 mb2 = m_get(M_WAIT, MT_DATA);
717 MCLAIM(mb2, &nfs_mowner);
718 if (siz >= MINCLSIZE)
719 m_clget(mb2, M_WAIT);
720 mb->m_next = mb2;
721 mb = mb2;
722 mb->m_len = 0;
723 bpos = mtod(mb, void *);
724 }
725 i = min(siz, M_TRAILINGSPACE(mb));
726 memcpy(bpos, verf_str, i);
727 mb->m_len += i;
728 verf_str += i;
729 bpos += i;
730 siz -= i;
731 }
732 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
733 for (i = 0; i < siz; i++)
734 *bpos++ = '\0';
735 mb->m_len += siz;
736 }
737 } else {
738 *tl++ = txdr_unsigned(RPCAUTH_NULL);
739 *tl = 0;
740 }
741 mb->m_next = mrest;
742 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
743 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
744 *mbp = mb;
745 return (mreq);
746 }
747
748 /*
749 * copies mbuf chain to the uio scatter/gather list
750 */
751 int
752 nfsm_mbuftouio(mrep, uiop, siz, dpos)
753 struct mbuf **mrep;
754 struct uio *uiop;
755 int siz;
756 char **dpos;
757 {
758 char *mbufcp, *uiocp;
759 int xfer, left, len;
760 struct mbuf *mp;
761 long uiosiz, rem;
762 int error = 0;
763
764 mp = *mrep;
765 mbufcp = *dpos;
766 len = mtod(mp, char *) + mp->m_len - mbufcp;
767 rem = nfsm_rndup(siz)-siz;
768 while (siz > 0) {
769 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
770 return (EFBIG);
771 left = uiop->uio_iov->iov_len;
772 uiocp = uiop->uio_iov->iov_base;
773 if (left > siz)
774 left = siz;
775 uiosiz = left;
776 while (left > 0) {
777 while (len == 0) {
778 mp = mp->m_next;
779 if (mp == NULL)
780 return (EBADRPC);
781 mbufcp = mtod(mp, void *);
782 len = mp->m_len;
783 }
784 xfer = (left > len) ? len : left;
785 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
786 uiocp, xfer);
787 if (error) {
788 return error;
789 }
790 left -= xfer;
791 len -= xfer;
792 mbufcp += xfer;
793 uiocp += xfer;
794 uiop->uio_offset += xfer;
795 uiop->uio_resid -= xfer;
796 }
797 if (uiop->uio_iov->iov_len <= siz) {
798 uiop->uio_iovcnt--;
799 uiop->uio_iov++;
800 } else {
801 uiop->uio_iov->iov_base =
802 (char *)uiop->uio_iov->iov_base + uiosiz;
803 uiop->uio_iov->iov_len -= uiosiz;
804 }
805 siz -= uiosiz;
806 }
807 *dpos = mbufcp;
808 *mrep = mp;
809 if (rem > 0) {
810 if (len < rem)
811 error = nfs_adv(mrep, dpos, rem, len);
812 else
813 *dpos += rem;
814 }
815 return (error);
816 }
817
818 /*
819 * copies a uio scatter/gather list to an mbuf chain.
820 * NOTE: can ony handle iovcnt == 1
821 */
822 int
823 nfsm_uiotombuf(uiop, mq, siz, bpos)
824 struct uio *uiop;
825 struct mbuf **mq;
826 int siz;
827 char **bpos;
828 {
829 char *uiocp;
830 struct mbuf *mp, *mp2;
831 int xfer, left, mlen;
832 int uiosiz, clflg, rem;
833 char *cp;
834 int error;
835
836 #ifdef DIAGNOSTIC
837 if (uiop->uio_iovcnt != 1)
838 panic("nfsm_uiotombuf: iovcnt != 1");
839 #endif
840
841 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
842 clflg = 1;
843 else
844 clflg = 0;
845 rem = nfsm_rndup(siz)-siz;
846 mp = mp2 = *mq;
847 while (siz > 0) {
848 left = uiop->uio_iov->iov_len;
849 uiocp = uiop->uio_iov->iov_base;
850 if (left > siz)
851 left = siz;
852 uiosiz = left;
853 while (left > 0) {
854 mlen = M_TRAILINGSPACE(mp);
855 if (mlen == 0) {
856 mp = m_get(M_WAIT, MT_DATA);
857 MCLAIM(mp, &nfs_mowner);
858 if (clflg)
859 m_clget(mp, M_WAIT);
860 mp->m_len = 0;
861 mp2->m_next = mp;
862 mp2 = mp;
863 mlen = M_TRAILINGSPACE(mp);
864 }
865 xfer = (left > mlen) ? mlen : left;
866 cp = mtod(mp, char *) + mp->m_len;
867 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
868 xfer);
869 if (error) {
870 /* XXX */
871 }
872 mp->m_len += xfer;
873 left -= xfer;
874 uiocp += xfer;
875 uiop->uio_offset += xfer;
876 uiop->uio_resid -= xfer;
877 }
878 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
879 uiosiz;
880 uiop->uio_iov->iov_len -= uiosiz;
881 siz -= uiosiz;
882 }
883 if (rem > 0) {
884 if (rem > M_TRAILINGSPACE(mp)) {
885 mp = m_get(M_WAIT, MT_DATA);
886 MCLAIM(mp, &nfs_mowner);
887 mp->m_len = 0;
888 mp2->m_next = mp;
889 }
890 cp = mtod(mp, char *) + mp->m_len;
891 for (left = 0; left < rem; left++)
892 *cp++ = '\0';
893 mp->m_len += rem;
894 *bpos = cp;
895 } else
896 *bpos = mtod(mp, char *) + mp->m_len;
897 *mq = mp;
898 return (0);
899 }
900
901 /*
902 * Get at least "siz" bytes of correctly aligned data.
903 * When called the mbuf pointers are not necessarily correct,
904 * dsosp points to what ought to be in m_data and left contains
905 * what ought to be in m_len.
906 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
907 * cases. (The macros use the vars. dpos and dpos2)
908 */
909 int
910 nfsm_disct(mdp, dposp, siz, left, cp2)
911 struct mbuf **mdp;
912 char **dposp;
913 int siz;
914 int left;
915 char **cp2;
916 {
917 struct mbuf *m1, *m2;
918 struct mbuf *havebuf = NULL;
919 char *src = *dposp;
920 char *dst;
921 int len;
922
923 #ifdef DEBUG
924 if (left < 0)
925 panic("nfsm_disct: left < 0");
926 #endif
927 m1 = *mdp;
928 /*
929 * Skip through the mbuf chain looking for an mbuf with
930 * some data. If the first mbuf found has enough data
931 * and it is correctly aligned return it.
932 */
933 while (left == 0) {
934 havebuf = m1;
935 *mdp = m1 = m1->m_next;
936 if (m1 == NULL)
937 return (EBADRPC);
938 src = mtod(m1, void *);
939 left = m1->m_len;
940 /*
941 * If we start a new mbuf and it is big enough
942 * and correctly aligned just return it, don't
943 * do any pull up.
944 */
945 if (left >= siz && nfsm_aligned(src)) {
946 *cp2 = src;
947 *dposp = src + siz;
948 return (0);
949 }
950 }
951 if (m1->m_flags & M_EXT) {
952 if (havebuf) {
953 /* If the first mbuf with data has external data
954 * and there is a previous empty mbuf use it
955 * to move the data into.
956 */
957 m2 = m1;
958 *mdp = m1 = havebuf;
959 if (m1->m_flags & M_EXT) {
960 MEXTREMOVE(m1);
961 }
962 } else {
963 /*
964 * If the first mbuf has a external data
965 * and there is no previous empty mbuf
966 * allocate a new mbuf and move the external
967 * data to the new mbuf. Also make the first
968 * mbuf look empty.
969 */
970 m2 = m_get(M_WAIT, MT_DATA);
971 m2->m_ext = m1->m_ext;
972 m2->m_data = src;
973 m2->m_len = left;
974 MCLADDREFERENCE(m1, m2);
975 MEXTREMOVE(m1);
976 m2->m_next = m1->m_next;
977 m1->m_next = m2;
978 }
979 m1->m_len = 0;
980 if (m1->m_flags & M_PKTHDR)
981 dst = m1->m_pktdat;
982 else
983 dst = m1->m_dat;
984 m1->m_data = dst;
985 } else {
986 /*
987 * If the first mbuf has no external data
988 * move the data to the front of the mbuf.
989 */
990 if (m1->m_flags & M_PKTHDR)
991 dst = m1->m_pktdat;
992 else
993 dst = m1->m_dat;
994 m1->m_data = dst;
995 if (dst != src)
996 memmove(dst, src, left);
997 dst += left;
998 m1->m_len = left;
999 m2 = m1->m_next;
1000 }
1001 *cp2 = m1->m_data;
1002 *dposp = mtod(m1, char *) + siz;
1003 /*
1004 * Loop through mbufs pulling data up into first mbuf until
1005 * the first mbuf is full or there is no more data to
1006 * pullup.
1007 */
1008 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1009 if ((len = min(len, m2->m_len)) != 0)
1010 memcpy(dst, m2->m_data, len);
1011 m1->m_len += len;
1012 dst += len;
1013 m2->m_data += len;
1014 m2->m_len -= len;
1015 m2 = m2->m_next;
1016 }
1017 if (m1->m_len < siz)
1018 return (EBADRPC);
1019 return (0);
1020 }
1021
1022 /*
1023 * Advance the position in the mbuf chain.
1024 */
1025 int
1026 nfs_adv(mdp, dposp, offs, left)
1027 struct mbuf **mdp;
1028 char **dposp;
1029 int offs;
1030 int left;
1031 {
1032 struct mbuf *m;
1033 int s;
1034
1035 m = *mdp;
1036 s = left;
1037 while (s < offs) {
1038 offs -= s;
1039 m = m->m_next;
1040 if (m == NULL)
1041 return (EBADRPC);
1042 s = m->m_len;
1043 }
1044 *mdp = m;
1045 *dposp = mtod(m, char *) + offs;
1046 return (0);
1047 }
1048
1049 /*
1050 * Copy a string into mbufs for the hard cases...
1051 */
1052 int
1053 nfsm_strtmbuf(mb, bpos, cp, siz)
1054 struct mbuf **mb;
1055 char **bpos;
1056 const char *cp;
1057 long siz;
1058 {
1059 struct mbuf *m1 = NULL, *m2;
1060 long left, xfer, len, tlen;
1061 u_int32_t *tl;
1062 int putsize;
1063
1064 putsize = 1;
1065 m2 = *mb;
1066 left = M_TRAILINGSPACE(m2);
1067 if (left > 0) {
1068 tl = ((u_int32_t *)(*bpos));
1069 *tl++ = txdr_unsigned(siz);
1070 putsize = 0;
1071 left -= NFSX_UNSIGNED;
1072 m2->m_len += NFSX_UNSIGNED;
1073 if (left > 0) {
1074 memcpy((void *) tl, cp, left);
1075 siz -= left;
1076 cp += left;
1077 m2->m_len += left;
1078 left = 0;
1079 }
1080 }
1081 /* Loop around adding mbufs */
1082 while (siz > 0) {
1083 m1 = m_get(M_WAIT, MT_DATA);
1084 MCLAIM(m1, &nfs_mowner);
1085 if (siz > MLEN)
1086 m_clget(m1, M_WAIT);
1087 m1->m_len = NFSMSIZ(m1);
1088 m2->m_next = m1;
1089 m2 = m1;
1090 tl = mtod(m1, u_int32_t *);
1091 tlen = 0;
1092 if (putsize) {
1093 *tl++ = txdr_unsigned(siz);
1094 m1->m_len -= NFSX_UNSIGNED;
1095 tlen = NFSX_UNSIGNED;
1096 putsize = 0;
1097 }
1098 if (siz < m1->m_len) {
1099 len = nfsm_rndup(siz);
1100 xfer = siz;
1101 if (xfer < len)
1102 *(tl+(xfer>>2)) = 0;
1103 } else {
1104 xfer = len = m1->m_len;
1105 }
1106 memcpy((void *) tl, cp, xfer);
1107 m1->m_len = len+tlen;
1108 siz -= xfer;
1109 cp += xfer;
1110 }
1111 *mb = m1;
1112 *bpos = mtod(m1, char *) + m1->m_len;
1113 return (0);
1114 }
1115
1116 /*
1117 * Directory caching routines. They work as follows:
1118 * - a cache is maintained per VDIR nfsnode.
1119 * - for each offset cookie that is exported to userspace, and can
1120 * thus be thrown back at us as an offset to VOP_READDIR, store
1121 * information in the cache.
1122 * - cached are:
1123 * - cookie itself
1124 * - blocknumber (essentially just a search key in the buffer cache)
1125 * - entry number in block.
1126 * - offset cookie of block in which this entry is stored
1127 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1128 * - entries are looked up in a hash table
1129 * - also maintained is an LRU list of entries, used to determine
1130 * which ones to delete if the cache grows too large.
1131 * - if 32 <-> 64 translation mode is requested for a filesystem,
1132 * the cache also functions as a translation table
1133 * - in the translation case, invalidating the cache does not mean
1134 * flushing it, but just marking entries as invalid, except for
1135 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1136 * still be able to use the cache as a translation table.
1137 * - 32 bit cookies are uniquely created by combining the hash table
1138 * entry value, and one generation count per hash table entry,
1139 * incremented each time an entry is appended to the chain.
1140 * - the cache is invalidated each time a direcory is modified
1141 * - sanity checks are also done; if an entry in a block turns
1142 * out not to have a matching cookie, the cache is invalidated
1143 * and a new block starting from the wanted offset is fetched from
1144 * the server.
1145 * - directory entries as read from the server are extended to contain
1146 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1147 * the cache and exporting them to userspace through the cookie
1148 * argument to VOP_READDIR.
1149 */
1150
1151 u_long
1152 nfs_dirhash(off)
1153 off_t off;
1154 {
1155 int i;
1156 char *cp = (char *)&off;
1157 u_long sum = 0L;
1158
1159 for (i = 0 ; i < sizeof (off); i++)
1160 sum += *cp++;
1161
1162 return sum;
1163 }
1164
1165 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1166 #define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np))
1167 #define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np))
1168 #define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
1169
1170 void
1171 nfs_initdircache(vp)
1172 struct vnode *vp;
1173 {
1174 struct nfsnode *np = VTONFS(vp);
1175 struct nfsdirhashhead *dircache;
1176
1177 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1178 M_WAITOK, &nfsdirhashmask);
1179
1180 NFSDC_LOCK(np);
1181 if (np->n_dircache == NULL) {
1182 np->n_dircachesize = 0;
1183 np->n_dircache = dircache;
1184 dircache = NULL;
1185 TAILQ_INIT(&np->n_dirchain);
1186 }
1187 NFSDC_UNLOCK(np);
1188 if (dircache)
1189 hashdone(dircache, M_NFSDIROFF);
1190 }
1191
1192 void
1193 nfs_initdirxlatecookie(vp)
1194 struct vnode *vp;
1195 {
1196 struct nfsnode *np = VTONFS(vp);
1197 unsigned *dirgens;
1198
1199 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1200
1201 dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
1202 NFSDC_LOCK(np);
1203 if (np->n_dirgens == NULL) {
1204 np->n_dirgens = dirgens;
1205 dirgens = NULL;
1206 }
1207 NFSDC_UNLOCK(np);
1208 if (dirgens)
1209 kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
1210 }
1211
1212 static const struct nfsdircache dzero;
1213
1214 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1215 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1216 struct nfsdircache *));
1217
1218 static void
1219 nfs_unlinkdircache(np, ndp)
1220 struct nfsnode *np;
1221 struct nfsdircache *ndp;
1222 {
1223
1224 NFSDC_ASSERT_LOCKED(np);
1225 KASSERT(ndp != &dzero);
1226
1227 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1228 return;
1229
1230 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1231 LIST_REMOVE(ndp, dc_hash);
1232 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1233
1234 nfs_putdircache_unlocked(np, ndp);
1235 }
1236
1237 void
1238 nfs_putdircache(np, ndp)
1239 struct nfsnode *np;
1240 struct nfsdircache *ndp;
1241 {
1242 int ref;
1243
1244 if (ndp == &dzero)
1245 return;
1246
1247 KASSERT(ndp->dc_refcnt > 0);
1248 NFSDC_LOCK(np);
1249 ref = --ndp->dc_refcnt;
1250 NFSDC_UNLOCK(np);
1251
1252 if (ref == 0)
1253 kmem_free(ndp, sizeof(*ndp));
1254 }
1255
1256 static void
1257 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1258 {
1259 int ref;
1260
1261 NFSDC_ASSERT_LOCKED(np);
1262
1263 if (ndp == &dzero)
1264 return;
1265
1266 KASSERT(ndp->dc_refcnt > 0);
1267 ref = --ndp->dc_refcnt;
1268 if (ref == 0)
1269 kmem_free(ndp, sizeof(*ndp));
1270 }
1271
1272 struct nfsdircache *
1273 nfs_searchdircache(vp, off, do32, hashent)
1274 struct vnode *vp;
1275 off_t off;
1276 int do32;
1277 int *hashent;
1278 {
1279 struct nfsdirhashhead *ndhp;
1280 struct nfsdircache *ndp = NULL;
1281 struct nfsnode *np = VTONFS(vp);
1282 unsigned ent;
1283
1284 /*
1285 * Zero is always a valid cookie.
1286 */
1287 if (off == 0)
1288 /* XXXUNCONST */
1289 return (struct nfsdircache *)__UNCONST(&dzero);
1290
1291 if (!np->n_dircache)
1292 return NULL;
1293
1294 /*
1295 * We use a 32bit cookie as search key, directly reconstruct
1296 * the hashentry. Else use the hashfunction.
1297 */
1298 if (do32) {
1299 ent = (u_int32_t)off >> 24;
1300 if (ent >= NFS_DIRHASHSIZ)
1301 return NULL;
1302 ndhp = &np->n_dircache[ent];
1303 } else {
1304 ndhp = NFSDIRHASH(np, off);
1305 }
1306
1307 if (hashent)
1308 *hashent = (int)(ndhp - np->n_dircache);
1309
1310 NFSDC_LOCK(np);
1311 if (do32) {
1312 LIST_FOREACH(ndp, ndhp, dc_hash) {
1313 if (ndp->dc_cookie32 == (u_int32_t)off) {
1314 /*
1315 * An invalidated entry will become the
1316 * start of a new block fetched from
1317 * the server.
1318 */
1319 if (ndp->dc_flags & NFSDC_INVALID) {
1320 ndp->dc_blkcookie = ndp->dc_cookie;
1321 ndp->dc_entry = 0;
1322 ndp->dc_flags &= ~NFSDC_INVALID;
1323 }
1324 break;
1325 }
1326 }
1327 } else {
1328 LIST_FOREACH(ndp, ndhp, dc_hash) {
1329 if (ndp->dc_cookie == off)
1330 break;
1331 }
1332 }
1333 if (ndp != NULL)
1334 ndp->dc_refcnt++;
1335 NFSDC_UNLOCK(np);
1336 return ndp;
1337 }
1338
1339
1340 struct nfsdircache *
1341 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1342 daddr_t blkno)
1343 {
1344 struct nfsnode *np = VTONFS(vp);
1345 struct nfsdirhashhead *ndhp;
1346 struct nfsdircache *ndp = NULL;
1347 struct nfsdircache *newndp = NULL;
1348 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1349 int hashent = 0, gen, overwrite; /* XXX: GCC */
1350
1351 /*
1352 * XXX refuse entries for offset 0. amd(8) erroneously sets
1353 * cookie 0 for the '.' entry, making this necessary. This
1354 * isn't so bad, as 0 is a special case anyway.
1355 */
1356 if (off == 0)
1357 /* XXXUNCONST */
1358 return (struct nfsdircache *)__UNCONST(&dzero);
1359
1360 if (!np->n_dircache)
1361 /*
1362 * XXX would like to do this in nfs_nget but vtype
1363 * isn't known at that time.
1364 */
1365 nfs_initdircache(vp);
1366
1367 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1368 nfs_initdirxlatecookie(vp);
1369
1370 retry:
1371 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1372
1373 NFSDC_LOCK(np);
1374 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1375 /*
1376 * Overwriting an old entry. Check if it's the same.
1377 * If so, just return. If not, remove the old entry.
1378 */
1379 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1380 goto done;
1381 nfs_unlinkdircache(np, ndp);
1382 nfs_putdircache_unlocked(np, ndp);
1383 ndp = NULL;
1384 }
1385
1386 ndhp = &np->n_dircache[hashent];
1387
1388 if (!ndp) {
1389 if (newndp == NULL) {
1390 NFSDC_UNLOCK(np);
1391 newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP);
1392 newndp->dc_refcnt = 1;
1393 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1394 goto retry;
1395 }
1396 ndp = newndp;
1397 newndp = NULL;
1398 overwrite = 0;
1399 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1400 /*
1401 * We're allocating a new entry, so bump the
1402 * generation number.
1403 */
1404 KASSERT(np->n_dirgens);
1405 gen = ++np->n_dirgens[hashent];
1406 if (gen == 0) {
1407 np->n_dirgens[hashent]++;
1408 gen++;
1409 }
1410 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1411 }
1412 } else
1413 overwrite = 1;
1414
1415 ndp->dc_cookie = off;
1416 ndp->dc_blkcookie = blkoff;
1417 ndp->dc_entry = en;
1418 ndp->dc_flags = 0;
1419
1420 if (overwrite)
1421 goto done;
1422
1423 /*
1424 * If the maximum directory cookie cache size has been reached
1425 * for this node, take one off the front. The idea is that
1426 * directories are typically read front-to-back once, so that
1427 * the oldest entries can be thrown away without much performance
1428 * loss.
1429 */
1430 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1431 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1432 } else
1433 np->n_dircachesize++;
1434
1435 KASSERT(ndp->dc_refcnt == 1);
1436 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1437 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1438 ndp->dc_refcnt++;
1439 done:
1440 KASSERT(ndp->dc_refcnt > 0);
1441 NFSDC_UNLOCK(np);
1442 if (newndp)
1443 nfs_putdircache(np, newndp);
1444 return ndp;
1445 }
1446
1447 void
1448 nfs_invaldircache(vp, flags)
1449 struct vnode *vp;
1450 int flags;
1451 {
1452 struct nfsnode *np = VTONFS(vp);
1453 struct nfsdircache *ndp = NULL;
1454 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1455 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1456
1457 #ifdef DIAGNOSTIC
1458 if (vp->v_type != VDIR)
1459 panic("nfs: invaldircache: not dir");
1460 #endif
1461
1462 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1463 np->n_flag &= ~NEOFVALID;
1464
1465 if (!np->n_dircache)
1466 return;
1467
1468 NFSDC_LOCK(np);
1469 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1470 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1471 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1472 nfs_unlinkdircache(np, ndp);
1473 }
1474 np->n_dircachesize = 0;
1475 if (forcefree && np->n_dirgens) {
1476 kmem_free(np->n_dirgens,
1477 NFS_DIRHASHSIZ * sizeof(unsigned));
1478 np->n_dirgens = NULL;
1479 }
1480 } else {
1481 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1482 ndp->dc_flags |= NFSDC_INVALID;
1483 }
1484
1485 NFSDC_UNLOCK(np);
1486 }
1487
1488 /*
1489 * Called once before VFS init to initialize shared and
1490 * server-specific data structures.
1491 */
1492 static int
1493 nfs_init0(void)
1494 {
1495
1496 nfsrtt.pos = 0;
1497 rpc_vers = txdr_unsigned(RPC_VER2);
1498 rpc_call = txdr_unsigned(RPC_CALL);
1499 rpc_reply = txdr_unsigned(RPC_REPLY);
1500 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1501 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1502 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1503 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1504 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1505 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1506 nfs_prog = txdr_unsigned(NFS_PROG);
1507 nfs_true = txdr_unsigned(true);
1508 nfs_false = txdr_unsigned(false);
1509 nfs_xdrneg1 = txdr_unsigned(-1);
1510 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1511 if (nfs_ticks < 1)
1512 nfs_ticks = 1;
1513 #ifdef NFSSERVER
1514 nfsrv_init(0); /* Init server data structures */
1515 nfsrv_initcache(); /* Init the server request cache */
1516 {
1517 extern krwlock_t netexport_lock; /* XXX */
1518 rw_init(&netexport_lock);
1519 }
1520 #endif /* NFSSERVER */
1521
1522 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
1523 nfsdreq_init();
1524 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
1525
1526 /*
1527 * Initialize reply list and start timer
1528 */
1529 TAILQ_INIT(&nfs_reqq);
1530 nfs_timer_init();
1531 MOWNER_ATTACH(&nfs_mowner);
1532
1533 #ifdef NFS
1534 /* Initialize the kqueue structures */
1535 nfs_kqinit();
1536 /* Initialize the iod structures */
1537 nfs_iodinit();
1538 #endif
1539 return 0;
1540 }
1541
1542 void
1543 nfs_init(void)
1544 {
1545 static ONCE_DECL(nfs_init_once);
1546
1547 RUN_ONCE(&nfs_init_once, nfs_init0);
1548 }
1549
1550 #ifdef NFS
1551 /*
1552 * Called once at VFS init to initialize client-specific data structures.
1553 */
1554 void
1555 nfs_vfs_init()
1556 {
1557 /* Initialize NFS server / client shared data. */
1558 nfs_init();
1559
1560 nfs_nhinit(); /* Init the nfsnode table */
1561 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1562 }
1563
1564 void
1565 nfs_vfs_reinit()
1566 {
1567 nfs_nhreinit();
1568 }
1569
1570 void
1571 nfs_vfs_done()
1572 {
1573 nfs_nhdone();
1574 }
1575
1576 /*
1577 * Attribute cache routines.
1578 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1579 * that are on the mbuf list
1580 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1581 * error otherwise
1582 */
1583
1584 /*
1585 * Load the attribute cache (that lives in the nfsnode entry) with
1586 * the values on the mbuf list and
1587 * Iff vap not NULL
1588 * copy the attributes to *vaper
1589 */
1590 int
1591 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1592 struct vnode **vpp;
1593 struct mbuf **mdp;
1594 char **dposp;
1595 struct vattr *vaper;
1596 int flags;
1597 {
1598 int32_t t1;
1599 char *cp2;
1600 int error = 0;
1601 struct mbuf *md;
1602 int v3 = NFS_ISV3(*vpp);
1603
1604 md = *mdp;
1605 t1 = (mtod(md, char *) + md->m_len) - *dposp;
1606 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1607 if (error)
1608 return (error);
1609 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1610 }
1611
1612 int
1613 nfs_loadattrcache(vpp, fp, vaper, flags)
1614 struct vnode **vpp;
1615 struct nfs_fattr *fp;
1616 struct vattr *vaper;
1617 int flags;
1618 {
1619 struct vnode *vp = *vpp;
1620 struct vattr *vap;
1621 int v3 = NFS_ISV3(vp);
1622 enum vtype vtyp;
1623 u_short vmode;
1624 struct timespec mtime;
1625 struct timespec ctime;
1626 struct vnode *nvp;
1627 int32_t rdev;
1628 struct nfsnode *np;
1629 extern int (**spec_nfsv2nodeop_p) __P((void *));
1630 uid_t uid;
1631 gid_t gid;
1632
1633 if (v3) {
1634 vtyp = nfsv3tov_type(fp->fa_type);
1635 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1636 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1637 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1638 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1639 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1640 } else {
1641 vtyp = nfsv2tov_type(fp->fa_type);
1642 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1643 if (vtyp == VNON || vtyp == VREG)
1644 vtyp = IFTOVT(vmode);
1645 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1646 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1647 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1648 fp->fa2_ctime.nfsv2_sec);
1649 ctime.tv_nsec = 0;
1650
1651 /*
1652 * Really ugly NFSv2 kludge.
1653 */
1654 if (vtyp == VCHR && rdev == 0xffffffff)
1655 vtyp = VFIFO;
1656 }
1657
1658 vmode &= ALLPERMS;
1659
1660 /*
1661 * If v_type == VNON it is a new node, so fill in the v_type,
1662 * n_mtime fields. Check to see if it represents a special
1663 * device, and if so, check for a possible alias. Once the
1664 * correct vnode has been obtained, fill in the rest of the
1665 * information.
1666 */
1667 np = VTONFS(vp);
1668 if (vp->v_type == VNON) {
1669 vp->v_type = vtyp;
1670 if (vp->v_type == VFIFO) {
1671 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1672 vp->v_op = fifo_nfsv2nodeop_p;
1673 } else if (vp->v_type == VREG) {
1674 mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
1675 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1676 vp->v_op = spec_nfsv2nodeop_p;
1677 nvp = checkalias(vp, (dev_t)rdev, vp->v_mount);
1678 if (nvp) {
1679 /*
1680 * Discard unneeded vnode, but save its nfsnode.
1681 * Since the nfsnode does not have a lock, its
1682 * vnode lock has to be carried over.
1683 */
1684 /*
1685 * XXX is the old node sure to be locked here?
1686 */
1687 KASSERT(lockstatus(&vp->v_lock) ==
1688 LK_EXCLUSIVE);
1689 nvp->v_data = vp->v_data;
1690 vp->v_data = NULL;
1691 VOP_UNLOCK(vp, 0);
1692 vp->v_op = spec_vnodeop_p;
1693 vgone(vp);
1694 lockmgr(&nvp->v_lock, LK_EXCLUSIVE,
1695 &nvp->v_interlock);
1696 /*
1697 * Reinitialize aliased node.
1698 */
1699 np->n_vnode = nvp;
1700 *vpp = vp = nvp;
1701 }
1702 }
1703 np->n_mtime = mtime;
1704 }
1705 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1706 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1707 vap = np->n_vattr;
1708
1709 /*
1710 * Invalidate access cache if uid, gid, mode or ctime changed.
1711 */
1712 if (np->n_accstamp != -1 &&
1713 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1714 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1715 np->n_accstamp = -1;
1716
1717 vap->va_type = vtyp;
1718 vap->va_mode = vmode;
1719 vap->va_rdev = (dev_t)rdev;
1720 vap->va_mtime = mtime;
1721 vap->va_ctime = ctime;
1722 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1723 switch (vtyp) {
1724 case VDIR:
1725 vap->va_blocksize = NFS_DIRFRAGSIZ;
1726 break;
1727 case VBLK:
1728 vap->va_blocksize = BLKDEV_IOSIZE;
1729 break;
1730 case VCHR:
1731 vap->va_blocksize = MAXBSIZE;
1732 break;
1733 default:
1734 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1735 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1736 break;
1737 }
1738 if (v3) {
1739 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1740 vap->va_uid = uid;
1741 vap->va_gid = gid;
1742 vap->va_size = fxdr_hyper(&fp->fa3_size);
1743 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1744 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1745 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1746 vap->va_flags = 0;
1747 vap->va_filerev = 0;
1748 } else {
1749 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1750 vap->va_uid = uid;
1751 vap->va_gid = gid;
1752 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1753 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1754 * NFS_FABLKSIZE;
1755 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1756 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1757 vap->va_flags = 0;
1758 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1759 vap->va_filerev = 0;
1760 }
1761 if (vap->va_size != np->n_size) {
1762 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1763 vap->va_size = np->n_size;
1764 } else {
1765 np->n_size = vap->va_size;
1766 if (vap->va_type == VREG) {
1767 /*
1768 * we can't free pages if NAC_NOTRUNC because
1769 * the pages can be owned by ourselves.
1770 */
1771 if (flags & NAC_NOTRUNC) {
1772 np->n_flag |= NTRUNCDELAYED;
1773 } else {
1774 genfs_node_wrlock(vp);
1775 mutex_enter(&vp->v_interlock);
1776 (void)VOP_PUTPAGES(vp, 0,
1777 0, PGO_SYNCIO | PGO_CLEANIT |
1778 PGO_FREE | PGO_ALLPAGES);
1779 uvm_vnp_setsize(vp, np->n_size);
1780 genfs_node_unlock(vp);
1781 }
1782 }
1783 }
1784 }
1785 np->n_attrstamp = time_second;
1786 if (vaper != NULL) {
1787 memcpy((void *)vaper, (void *)vap, sizeof(*vap));
1788 if (np->n_flag & NCHG) {
1789 if (np->n_flag & NACC)
1790 vaper->va_atime = np->n_atim;
1791 if (np->n_flag & NUPD)
1792 vaper->va_mtime = np->n_mtim;
1793 }
1794 }
1795 return (0);
1796 }
1797
1798 /*
1799 * Check the time stamp
1800 * If the cache is valid, copy contents to *vap and return 0
1801 * otherwise return an error
1802 */
1803 int
1804 nfs_getattrcache(vp, vaper)
1805 struct vnode *vp;
1806 struct vattr *vaper;
1807 {
1808 struct nfsnode *np = VTONFS(vp);
1809 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1810 struct vattr *vap;
1811
1812 if (np->n_attrstamp == 0 ||
1813 (time_second - np->n_attrstamp) >= nfs_attrtimeo(nmp, np)) {
1814 nfsstats.attrcache_misses++;
1815 return (ENOENT);
1816 }
1817 nfsstats.attrcache_hits++;
1818 vap = np->n_vattr;
1819 if (vap->va_size != np->n_size) {
1820 if (vap->va_type == VREG) {
1821 if ((np->n_flag & NMODIFIED) != 0 &&
1822 vap->va_size < np->n_size) {
1823 vap->va_size = np->n_size;
1824 } else {
1825 np->n_size = vap->va_size;
1826 }
1827 genfs_node_wrlock(vp);
1828 uvm_vnp_setsize(vp, np->n_size);
1829 genfs_node_unlock(vp);
1830 } else
1831 np->n_size = vap->va_size;
1832 }
1833 memcpy((void *)vaper, (void *)vap, sizeof(struct vattr));
1834 if (np->n_flag & NCHG) {
1835 if (np->n_flag & NACC)
1836 vaper->va_atime = np->n_atim;
1837 if (np->n_flag & NUPD)
1838 vaper->va_mtime = np->n_mtim;
1839 }
1840 return (0);
1841 }
1842
1843 void
1844 nfs_delayedtruncate(vp)
1845 struct vnode *vp;
1846 {
1847 struct nfsnode *np = VTONFS(vp);
1848
1849 if (np->n_flag & NTRUNCDELAYED) {
1850 np->n_flag &= ~NTRUNCDELAYED;
1851 genfs_node_wrlock(vp);
1852 mutex_enter(&vp->v_interlock);
1853 (void)VOP_PUTPAGES(vp, 0,
1854 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1855 uvm_vnp_setsize(vp, np->n_size);
1856 genfs_node_unlock(vp);
1857 }
1858 }
1859
1860 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1861 #define NFS_WCCKLUDGE(nmp, now) \
1862 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1863 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1864
1865 /*
1866 * nfs_check_wccdata: check inaccurate wcc_data
1867 *
1868 * => return non-zero if we shouldn't trust the wcc_data.
1869 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1870 */
1871
1872 int
1873 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1874 struct timespec *mtime, bool docheck)
1875 {
1876 int error = 0;
1877
1878 #if !defined(NFS_V2_ONLY)
1879
1880 if (docheck) {
1881 struct vnode *vp = NFSTOV(np);
1882 struct nfsmount *nmp;
1883 long now = time_second;
1884 const struct timespec *omtime = &np->n_vattr->va_mtime;
1885 const struct timespec *octime = &np->n_vattr->va_ctime;
1886 #if defined(DEBUG)
1887 const char *reason = NULL; /* XXX: gcc */
1888 #endif
1889
1890 if (timespeccmp(omtime, mtime, <=)) {
1891 #if defined(DEBUG)
1892 reason = "mtime";
1893 #endif
1894 error = EINVAL;
1895 }
1896
1897 if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
1898 #if defined(DEBUG)
1899 reason = "ctime";
1900 #endif
1901 error = EINVAL;
1902 }
1903
1904 nmp = VFSTONFS(vp->v_mount);
1905 if (error) {
1906
1907 /*
1908 * despite of the fact that we've updated the file,
1909 * timestamps of the file were not updated as we
1910 * expected.
1911 * it means that the server has incompatible
1912 * semantics of timestamps or (more likely)
1913 * the server time is not precise enough to
1914 * track each modifications.
1915 * in that case, we disable wcc processing.
1916 *
1917 * yes, strictly speaking, we should disable all
1918 * caching. it's a compromise.
1919 */
1920
1921 mutex_enter(&nmp->nm_lock);
1922 #if defined(DEBUG)
1923 if (!NFS_WCCKLUDGE(nmp, now)) {
1924 printf("%s: inaccurate wcc data (%s) detected,"
1925 " disabling wcc"
1926 " (ctime %u.%09u %u.%09u,"
1927 " mtime %u.%09u %u.%09u)\n",
1928 vp->v_mount->mnt_stat.f_mntfromname,
1929 reason,
1930 (unsigned int)octime->tv_sec,
1931 (unsigned int)octime->tv_nsec,
1932 (unsigned int)ctime->tv_sec,
1933 (unsigned int)ctime->tv_nsec,
1934 (unsigned int)omtime->tv_sec,
1935 (unsigned int)omtime->tv_nsec,
1936 (unsigned int)mtime->tv_sec,
1937 (unsigned int)mtime->tv_nsec);
1938 }
1939 #endif
1940 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1941 nmp->nm_wcckludgetime = now;
1942 mutex_exit(&nmp->nm_lock);
1943 } else if (NFS_WCCKLUDGE(nmp, now)) {
1944 error = EPERM; /* XXX */
1945 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1946 mutex_enter(&nmp->nm_lock);
1947 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1948 #if defined(DEBUG)
1949 printf("%s: re-enabling wcc\n",
1950 vp->v_mount->mnt_stat.f_mntfromname);
1951 #endif
1952 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1953 }
1954 mutex_exit(&nmp->nm_lock);
1955 }
1956 }
1957
1958 #endif /* !defined(NFS_V2_ONLY) */
1959
1960 return error;
1961 }
1962
1963 /*
1964 * Heuristic to see if the server XDR encodes directory cookies or not.
1965 * it is not supposed to, but a lot of servers may do this. Also, since
1966 * most/all servers will implement V2 as well, it is expected that they
1967 * may return just 32 bits worth of cookie information, so we need to
1968 * find out in which 32 bits this information is available. We do this
1969 * to avoid trouble with emulated binaries that can't handle 64 bit
1970 * directory offsets.
1971 */
1972
1973 void
1974 nfs_cookieheuristic(vp, flagp, l, cred)
1975 struct vnode *vp;
1976 int *flagp;
1977 struct lwp *l;
1978 kauth_cred_t cred;
1979 {
1980 struct uio auio;
1981 struct iovec aiov;
1982 char *tbuf, *cp;
1983 struct dirent *dp;
1984 off_t *cookies = NULL, *cop;
1985 int error, eof, nc, len;
1986
1987 MALLOC(tbuf, void *, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1988
1989 aiov.iov_base = tbuf;
1990 aiov.iov_len = NFS_DIRFRAGSIZ;
1991 auio.uio_iov = &aiov;
1992 auio.uio_iovcnt = 1;
1993 auio.uio_rw = UIO_READ;
1994 auio.uio_resid = NFS_DIRFRAGSIZ;
1995 auio.uio_offset = 0;
1996 UIO_SETUP_SYSSPACE(&auio);
1997
1998 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1999
2000 len = NFS_DIRFRAGSIZ - auio.uio_resid;
2001 if (error || len == 0) {
2002 FREE(tbuf, M_TEMP);
2003 if (cookies)
2004 free(cookies, M_TEMP);
2005 return;
2006 }
2007
2008 /*
2009 * Find the first valid entry and look at its offset cookie.
2010 */
2011
2012 cp = tbuf;
2013 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2014 dp = (struct dirent *)cp;
2015 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2016 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2017 *flagp |= NFSMNT_SWAPCOOKIE;
2018 nfs_invaldircache(vp, 0);
2019 nfs_vinvalbuf(vp, 0, cred, l, 1);
2020 }
2021 break;
2022 }
2023 cop++;
2024 cp += dp->d_reclen;
2025 }
2026
2027 FREE(tbuf, M_TEMP);
2028 free(cookies, M_TEMP);
2029 }
2030 #endif /* NFS */
2031
2032 #ifdef NFSSERVER
2033 /*
2034 * Set up nameidata for a lookup() call and do it.
2035 *
2036 * If pubflag is set, this call is done for a lookup operation on the
2037 * public filehandle. In that case we allow crossing mountpoints and
2038 * absolute pathnames. However, the caller is expected to check that
2039 * the lookup result is within the public fs, and deny access if
2040 * it is not.
2041 */
2042 int
2043 nfs_namei(ndp, nsfh, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2044 struct nameidata *ndp;
2045 nfsrvfh_t *nsfh;
2046 uint32_t len;
2047 struct nfssvc_sock *slp;
2048 struct mbuf *nam;
2049 struct mbuf **mdp;
2050 char **dposp;
2051 struct vnode **retdirp;
2052 struct lwp *l;
2053 int kerbflag, pubflag;
2054 {
2055 int i, rem;
2056 struct mbuf *md;
2057 char *fromcp, *tocp, *cp;
2058 struct iovec aiov;
2059 struct uio auio;
2060 struct vnode *dp;
2061 int error, rdonly, linklen;
2062 struct componentname *cnp = &ndp->ni_cnd;
2063
2064 *retdirp = NULL;
2065
2066 if ((len + 1) > MAXPATHLEN)
2067 return (ENAMETOOLONG);
2068 if (len == 0)
2069 return (EACCES);
2070 cnp->cn_pnbuf = PNBUF_GET();
2071
2072 /*
2073 * Copy the name from the mbuf list to ndp->ni_pnbuf
2074 * and set the various ndp fields appropriately.
2075 */
2076 fromcp = *dposp;
2077 tocp = cnp->cn_pnbuf;
2078 md = *mdp;
2079 rem = mtod(md, char *) + md->m_len - fromcp;
2080 for (i = 0; i < len; i++) {
2081 while (rem == 0) {
2082 md = md->m_next;
2083 if (md == NULL) {
2084 error = EBADRPC;
2085 goto out;
2086 }
2087 fromcp = mtod(md, void *);
2088 rem = md->m_len;
2089 }
2090 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2091 error = EACCES;
2092 goto out;
2093 }
2094 *tocp++ = *fromcp++;
2095 rem--;
2096 }
2097 *tocp = '\0';
2098 *mdp = md;
2099 *dposp = fromcp;
2100 len = nfsm_rndup(len)-len;
2101 if (len > 0) {
2102 if (rem >= len)
2103 *dposp += len;
2104 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2105 goto out;
2106 }
2107
2108 /*
2109 * Extract and set starting directory.
2110 */
2111 error = nfsrv_fhtovp(nsfh, false, &dp, ndp->ni_cnd.cn_cred, slp,
2112 nam, &rdonly, kerbflag, pubflag);
2113 if (error)
2114 goto out;
2115 if (dp->v_type != VDIR) {
2116 vrele(dp);
2117 error = ENOTDIR;
2118 goto out;
2119 }
2120
2121 if (rdonly)
2122 cnp->cn_flags |= RDONLY;
2123
2124 *retdirp = dp;
2125
2126 if (pubflag) {
2127 /*
2128 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2129 * and the 'native path' indicator.
2130 */
2131 cp = PNBUF_GET();
2132 fromcp = cnp->cn_pnbuf;
2133 tocp = cp;
2134 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2135 switch ((unsigned char)*fromcp) {
2136 case WEBNFS_NATIVE_CHAR:
2137 /*
2138 * 'Native' path for us is the same
2139 * as a path according to the NFS spec,
2140 * just skip the escape char.
2141 */
2142 fromcp++;
2143 break;
2144 /*
2145 * More may be added in the future, range 0x80-0xff
2146 */
2147 default:
2148 error = EIO;
2149 vrele(dp);
2150 PNBUF_PUT(cp);
2151 goto out;
2152 }
2153 }
2154 /*
2155 * Translate the '%' escapes, URL-style.
2156 */
2157 while (*fromcp != '\0') {
2158 if (*fromcp == WEBNFS_ESC_CHAR) {
2159 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2160 fromcp++;
2161 *tocp++ = HEXSTRTOI(fromcp);
2162 fromcp += 2;
2163 continue;
2164 } else {
2165 error = ENOENT;
2166 vrele(dp);
2167 PNBUF_PUT(cp);
2168 goto out;
2169 }
2170 } else
2171 *tocp++ = *fromcp++;
2172 }
2173 *tocp = '\0';
2174 PNBUF_PUT(cnp->cn_pnbuf);
2175 cnp->cn_pnbuf = cp;
2176 }
2177
2178 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2179 ndp->ni_segflg = UIO_SYSSPACE;
2180 ndp->ni_rootdir = rootvnode;
2181 ndp->ni_erootdir = NULL;
2182
2183 if (pubflag) {
2184 ndp->ni_loopcnt = 0;
2185 if (cnp->cn_pnbuf[0] == '/')
2186 dp = rootvnode;
2187 } else {
2188 cnp->cn_flags |= NOCROSSMOUNT;
2189 }
2190
2191 VREF(dp);
2192 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2193
2194 for (;;) {
2195 cnp->cn_nameptr = cnp->cn_pnbuf;
2196 ndp->ni_startdir = dp;
2197
2198 /*
2199 * And call lookup() to do the real work
2200 */
2201 error = lookup(ndp);
2202 if (error) {
2203 if (ndp->ni_dvp) {
2204 vput(ndp->ni_dvp);
2205 }
2206 PNBUF_PUT(cnp->cn_pnbuf);
2207 return (error);
2208 }
2209
2210 /*
2211 * Check for encountering a symbolic link
2212 */
2213 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2214 if ((cnp->cn_flags & LOCKPARENT) == 0 && ndp->ni_dvp) {
2215 if (ndp->ni_dvp == ndp->ni_vp) {
2216 vrele(ndp->ni_dvp);
2217 } else {
2218 vput(ndp->ni_dvp);
2219 }
2220 }
2221 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2222 cnp->cn_flags |= HASBUF;
2223 else
2224 PNBUF_PUT(cnp->cn_pnbuf);
2225 return (0);
2226 } else {
2227 if (!pubflag) {
2228 error = EINVAL;
2229 break;
2230 }
2231 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2232 error = ELOOP;
2233 break;
2234 }
2235 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2236 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred);
2237 if (error != 0)
2238 break;
2239 }
2240 if (ndp->ni_pathlen > 1)
2241 cp = PNBUF_GET();
2242 else
2243 cp = cnp->cn_pnbuf;
2244 aiov.iov_base = cp;
2245 aiov.iov_len = MAXPATHLEN;
2246 auio.uio_iov = &aiov;
2247 auio.uio_iovcnt = 1;
2248 auio.uio_offset = 0;
2249 auio.uio_rw = UIO_READ;
2250 auio.uio_resid = MAXPATHLEN;
2251 UIO_SETUP_SYSSPACE(&auio);
2252 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2253 if (error) {
2254 badlink:
2255 if (ndp->ni_pathlen > 1)
2256 PNBUF_PUT(cp);
2257 break;
2258 }
2259 linklen = MAXPATHLEN - auio.uio_resid;
2260 if (linklen == 0) {
2261 error = ENOENT;
2262 goto badlink;
2263 }
2264 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2265 error = ENAMETOOLONG;
2266 goto badlink;
2267 }
2268 if (ndp->ni_pathlen > 1) {
2269 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2270 PNBUF_PUT(cnp->cn_pnbuf);
2271 cnp->cn_pnbuf = cp;
2272 } else
2273 cnp->cn_pnbuf[linklen] = '\0';
2274 ndp->ni_pathlen += linklen;
2275 vput(ndp->ni_vp);
2276 dp = ndp->ni_dvp;
2277
2278 /*
2279 * Check if root directory should replace current directory.
2280 */
2281 if (cnp->cn_pnbuf[0] == '/') {
2282 vput(dp);
2283 dp = ndp->ni_rootdir;
2284 VREF(dp);
2285 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2286 }
2287 }
2288 }
2289 vput(ndp->ni_dvp);
2290 vput(ndp->ni_vp);
2291 ndp->ni_vp = NULL;
2292 out:
2293 PNBUF_PUT(cnp->cn_pnbuf);
2294 return (error);
2295 }
2296 #endif /* NFSSERVER */
2297
2298 /*
2299 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2300 * boundary and only trims off the back end
2301 *
2302 * 1. trim off 'len' bytes as m_adj(mp, -len).
2303 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2304 */
2305 void
2306 nfs_zeropad(mp, len, nul)
2307 struct mbuf *mp;
2308 int len;
2309 int nul;
2310 {
2311 struct mbuf *m;
2312 int count;
2313
2314 /*
2315 * Trim from tail. Scan the mbuf chain,
2316 * calculating its length and finding the last mbuf.
2317 * If the adjustment only affects this mbuf, then just
2318 * adjust and return. Otherwise, rescan and truncate
2319 * after the remaining size.
2320 */
2321 count = 0;
2322 m = mp;
2323 for (;;) {
2324 count += m->m_len;
2325 if (m->m_next == NULL)
2326 break;
2327 m = m->m_next;
2328 }
2329
2330 KDASSERT(count >= len);
2331
2332 if (m->m_len >= len) {
2333 m->m_len -= len;
2334 } else {
2335 count -= len;
2336 /*
2337 * Correct length for chain is "count".
2338 * Find the mbuf with last data, adjust its length,
2339 * and toss data from remaining mbufs on chain.
2340 */
2341 for (m = mp; m; m = m->m_next) {
2342 if (m->m_len >= count) {
2343 m->m_len = count;
2344 break;
2345 }
2346 count -= m->m_len;
2347 }
2348 KASSERT(m && m->m_next);
2349 m_freem(m->m_next);
2350 m->m_next = NULL;
2351 }
2352
2353 KDASSERT(m->m_next == NULL);
2354
2355 /*
2356 * zero-padding.
2357 */
2358 if (nul > 0) {
2359 char *cp;
2360 int i;
2361
2362 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2363 struct mbuf *n;
2364
2365 KDASSERT(MLEN >= nul);
2366 n = m_get(M_WAIT, MT_DATA);
2367 MCLAIM(n, &nfs_mowner);
2368 n->m_len = nul;
2369 n->m_next = NULL;
2370 m->m_next = n;
2371 cp = mtod(n, void *);
2372 } else {
2373 cp = mtod(m, char *) + m->m_len;
2374 m->m_len += nul;
2375 }
2376 for (i = 0; i < nul; i++)
2377 *cp++ = '\0';
2378 }
2379 return;
2380 }
2381
2382 /*
2383 * Make these functions instead of macros, so that the kernel text size
2384 * doesn't get too big...
2385 */
2386 void
2387 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2388 struct nfsrv_descript *nfsd;
2389 int before_ret;
2390 struct vattr *before_vap;
2391 int after_ret;
2392 struct vattr *after_vap;
2393 struct mbuf **mbp;
2394 char **bposp;
2395 {
2396 struct mbuf *mb = *mbp;
2397 char *bpos = *bposp;
2398 u_int32_t *tl;
2399
2400 if (before_ret) {
2401 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2402 *tl = nfs_false;
2403 } else {
2404 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2405 *tl++ = nfs_true;
2406 txdr_hyper(before_vap->va_size, tl);
2407 tl += 2;
2408 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2409 tl += 2;
2410 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2411 }
2412 *bposp = bpos;
2413 *mbp = mb;
2414 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2415 }
2416
2417 void
2418 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2419 struct nfsrv_descript *nfsd;
2420 int after_ret;
2421 struct vattr *after_vap;
2422 struct mbuf **mbp;
2423 char **bposp;
2424 {
2425 struct mbuf *mb = *mbp;
2426 char *bpos = *bposp;
2427 u_int32_t *tl;
2428 struct nfs_fattr *fp;
2429
2430 if (after_ret) {
2431 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2432 *tl = nfs_false;
2433 } else {
2434 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2435 *tl++ = nfs_true;
2436 fp = (struct nfs_fattr *)tl;
2437 nfsm_srvfattr(nfsd, after_vap, fp);
2438 }
2439 *mbp = mb;
2440 *bposp = bpos;
2441 }
2442
2443 void
2444 nfsm_srvfattr(nfsd, vap, fp)
2445 struct nfsrv_descript *nfsd;
2446 struct vattr *vap;
2447 struct nfs_fattr *fp;
2448 {
2449
2450 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2451 fp->fa_uid = txdr_unsigned(vap->va_uid);
2452 fp->fa_gid = txdr_unsigned(vap->va_gid);
2453 if (nfsd->nd_flag & ND_NFSV3) {
2454 fp->fa_type = vtonfsv3_type(vap->va_type);
2455 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2456 txdr_hyper(vap->va_size, &fp->fa3_size);
2457 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2458 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2459 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2460 fp->fa3_fsid.nfsuquad[0] = 0;
2461 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2462 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2463 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2464 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2465 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2466 } else {
2467 fp->fa_type = vtonfsv2_type(vap->va_type);
2468 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2469 fp->fa2_size = txdr_unsigned(vap->va_size);
2470 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2471 if (vap->va_type == VFIFO)
2472 fp->fa2_rdev = 0xffffffff;
2473 else
2474 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2475 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2476 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2477 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2478 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2479 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2480 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2481 }
2482 }
2483
2484 #ifdef NFSSERVER
2485 /*
2486 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2487 * - look up fsid in mount list (if not found ret error)
2488 * - get vp and export rights by calling VFS_FHTOVP()
2489 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2490 * - if not lockflag unlock it with VOP_UNLOCK()
2491 */
2492 int
2493 nfsrv_fhtovp(nfsrvfh_t *nsfh, int lockflag, struct vnode **vpp,
2494 kauth_cred_t cred, struct nfssvc_sock *slp, struct mbuf *nam, int *rdonlyp,
2495 int kerbflag, int pubflag)
2496 {
2497 struct mount *mp;
2498 kauth_cred_t credanon;
2499 int error, exflags;
2500 struct sockaddr_in *saddr;
2501 fhandle_t *fhp;
2502
2503 fhp = NFSRVFH_FHANDLE(nsfh);
2504 *vpp = (struct vnode *)0;
2505
2506 if (nfs_ispublicfh(nsfh)) {
2507 if (!pubflag || !nfs_pub.np_valid)
2508 return (ESTALE);
2509 fhp = nfs_pub.np_handle;
2510 }
2511
2512 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2513 if (error) {
2514 return error;
2515 }
2516
2517 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2518 if (error)
2519 return (error);
2520
2521 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2522 saddr = mtod(nam, struct sockaddr_in *);
2523 if ((saddr->sin_family == AF_INET) &&
2524 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2525 vput(*vpp);
2526 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2527 }
2528 #ifdef INET6
2529 if ((saddr->sin_family == AF_INET6) &&
2530 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2531 vput(*vpp);
2532 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2533 }
2534 #endif
2535 }
2536 /*
2537 * Check/setup credentials.
2538 */
2539 if (exflags & MNT_EXKERB) {
2540 if (!kerbflag) {
2541 vput(*vpp);
2542 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2543 }
2544 } else if (kerbflag) {
2545 vput(*vpp);
2546 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2547 } else if (kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER,
2548 NULL) == 0 || (exflags & MNT_EXPORTANON)) {
2549 kauth_cred_clone(credanon, cred);
2550 }
2551 if (exflags & MNT_EXRDONLY)
2552 *rdonlyp = 1;
2553 else
2554 *rdonlyp = 0;
2555 if (!lockflag)
2556 VOP_UNLOCK(*vpp, 0);
2557 return (0);
2558 }
2559
2560 /*
2561 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2562 * means a length of 0, for v2 it means all zeroes.
2563 */
2564 int
2565 nfs_ispublicfh(const nfsrvfh_t *nsfh)
2566 {
2567 const char *cp = (const void *)(NFSRVFH_DATA(nsfh));
2568 int i;
2569
2570 if (NFSRVFH_SIZE(nsfh) == 0) {
2571 return true;
2572 }
2573 if (NFSRVFH_SIZE(nsfh) != NFSX_V2FH) {
2574 return false;
2575 }
2576 for (i = 0; i < NFSX_V2FH; i++)
2577 if (*cp++ != 0)
2578 return false;
2579 return true;
2580 }
2581 #endif /* NFSSERVER */
2582
2583 /*
2584 * This function compares two net addresses by family and returns true
2585 * if they are the same host.
2586 * If there is any doubt, return false.
2587 * The AF_INET family is handled as a special case so that address mbufs
2588 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2589 */
2590 int
2591 netaddr_match(family, haddr, nam)
2592 int family;
2593 union nethostaddr *haddr;
2594 struct mbuf *nam;
2595 {
2596 struct sockaddr_in *inetaddr;
2597
2598 switch (family) {
2599 case AF_INET:
2600 inetaddr = mtod(nam, struct sockaddr_in *);
2601 if (inetaddr->sin_family == AF_INET &&
2602 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2603 return (1);
2604 break;
2605 #ifdef INET6
2606 case AF_INET6:
2607 {
2608 struct sockaddr_in6 *sin6_1, *sin6_2;
2609
2610 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2611 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2612 if (sin6_1->sin6_family == AF_INET6 &&
2613 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2614 return 1;
2615 }
2616 #endif
2617 #ifdef ISO
2618 case AF_ISO:
2619 {
2620 struct sockaddr_iso *isoaddr1, *isoaddr2;
2621
2622 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2623 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2624 if (isoaddr1->siso_family == AF_ISO &&
2625 isoaddr1->siso_nlen > 0 &&
2626 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2627 SAME_ISOADDR(isoaddr1, isoaddr2))
2628 return (1);
2629 break;
2630 }
2631 #endif /* ISO */
2632 default:
2633 break;
2634 };
2635 return (0);
2636 }
2637
2638 /*
2639 * The write verifier has changed (probably due to a server reboot), so all
2640 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2641 * as dirty or are being written out just now, all this takes is clearing
2642 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2643 * the mount point.
2644 */
2645 void
2646 nfs_clearcommit(mp)
2647 struct mount *mp;
2648 {
2649 struct vnode *vp;
2650 struct nfsnode *np;
2651 struct vm_page *pg;
2652 struct nfsmount *nmp = VFSTONFS(mp);
2653
2654 rw_enter(&nmp->nm_writeverflock, RW_WRITER);
2655 mutex_enter(&mntvnode_lock);
2656 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2657 KASSERT(vp->v_mount == mp);
2658 if (vp->v_type != VREG)
2659 continue;
2660 np = VTONFS(vp);
2661 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2662 np->n_pushedhi = 0;
2663 np->n_commitflags &=
2664 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2665 mutex_enter(&vp->v_uobj.vmobjlock);
2666 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2667 pg->flags &= ~PG_NEEDCOMMIT;
2668 }
2669 mutex_exit(&vp->v_uobj.vmobjlock);
2670 }
2671 mutex_exit(&mntvnode_lock);
2672 mutex_enter(&nmp->nm_lock);
2673 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2674 mutex_exit(&nmp->nm_lock);
2675 rw_exit(&nmp->nm_writeverflock);
2676 }
2677
2678 void
2679 nfs_merge_commit_ranges(vp)
2680 struct vnode *vp;
2681 {
2682 struct nfsnode *np = VTONFS(vp);
2683
2684 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2685
2686 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2687 np->n_pushedlo = np->n_pushlo;
2688 np->n_pushedhi = np->n_pushhi;
2689 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2690 } else {
2691 if (np->n_pushlo < np->n_pushedlo)
2692 np->n_pushedlo = np->n_pushlo;
2693 if (np->n_pushhi > np->n_pushedhi)
2694 np->n_pushedhi = np->n_pushhi;
2695 }
2696
2697 np->n_pushlo = np->n_pushhi = 0;
2698 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2699
2700 #ifdef NFS_DEBUG_COMMIT
2701 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2702 (unsigned)np->n_pushedhi);
2703 #endif
2704 }
2705
2706 int
2707 nfs_in_committed_range(vp, off, len)
2708 struct vnode *vp;
2709 off_t off, len;
2710 {
2711 struct nfsnode *np = VTONFS(vp);
2712 off_t lo, hi;
2713
2714 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2715 return 0;
2716 lo = off;
2717 hi = lo + len;
2718
2719 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2720 }
2721
2722 int
2723 nfs_in_tobecommitted_range(vp, off, len)
2724 struct vnode *vp;
2725 off_t off, len;
2726 {
2727 struct nfsnode *np = VTONFS(vp);
2728 off_t lo, hi;
2729
2730 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2731 return 0;
2732 lo = off;
2733 hi = lo + len;
2734
2735 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2736 }
2737
2738 void
2739 nfs_add_committed_range(vp, off, len)
2740 struct vnode *vp;
2741 off_t off, len;
2742 {
2743 struct nfsnode *np = VTONFS(vp);
2744 off_t lo, hi;
2745
2746 lo = off;
2747 hi = lo + len;
2748
2749 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2750 np->n_pushedlo = lo;
2751 np->n_pushedhi = hi;
2752 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2753 } else {
2754 if (hi > np->n_pushedhi)
2755 np->n_pushedhi = hi;
2756 if (lo < np->n_pushedlo)
2757 np->n_pushedlo = lo;
2758 }
2759 #ifdef NFS_DEBUG_COMMIT
2760 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2761 (unsigned)np->n_pushedhi);
2762 #endif
2763 }
2764
2765 void
2766 nfs_del_committed_range(vp, off, len)
2767 struct vnode *vp;
2768 off_t off, len;
2769 {
2770 struct nfsnode *np = VTONFS(vp);
2771 off_t lo, hi;
2772
2773 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2774 return;
2775
2776 lo = off;
2777 hi = lo + len;
2778
2779 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2780 return;
2781 if (lo <= np->n_pushedlo)
2782 np->n_pushedlo = hi;
2783 else if (hi >= np->n_pushedhi)
2784 np->n_pushedhi = lo;
2785 else {
2786 /*
2787 * XXX There's only one range. If the deleted range
2788 * is in the middle, pick the largest of the
2789 * contiguous ranges that it leaves.
2790 */
2791 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2792 np->n_pushedhi = lo;
2793 else
2794 np->n_pushedlo = hi;
2795 }
2796 #ifdef NFS_DEBUG_COMMIT
2797 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2798 (unsigned)np->n_pushedhi);
2799 #endif
2800 }
2801
2802 void
2803 nfs_add_tobecommitted_range(vp, off, len)
2804 struct vnode *vp;
2805 off_t off, len;
2806 {
2807 struct nfsnode *np = VTONFS(vp);
2808 off_t lo, hi;
2809
2810 lo = off;
2811 hi = lo + len;
2812
2813 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2814 np->n_pushlo = lo;
2815 np->n_pushhi = hi;
2816 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2817 } else {
2818 if (lo < np->n_pushlo)
2819 np->n_pushlo = lo;
2820 if (hi > np->n_pushhi)
2821 np->n_pushhi = hi;
2822 }
2823 #ifdef NFS_DEBUG_COMMIT
2824 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2825 (unsigned)np->n_pushhi);
2826 #endif
2827 }
2828
2829 void
2830 nfs_del_tobecommitted_range(vp, off, len)
2831 struct vnode *vp;
2832 off_t off, len;
2833 {
2834 struct nfsnode *np = VTONFS(vp);
2835 off_t lo, hi;
2836
2837 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2838 return;
2839
2840 lo = off;
2841 hi = lo + len;
2842
2843 if (lo > np->n_pushhi || hi < np->n_pushlo)
2844 return;
2845
2846 if (lo <= np->n_pushlo)
2847 np->n_pushlo = hi;
2848 else if (hi >= np->n_pushhi)
2849 np->n_pushhi = lo;
2850 else {
2851 /*
2852 * XXX There's only one range. If the deleted range
2853 * is in the middle, pick the largest of the
2854 * contiguous ranges that it leaves.
2855 */
2856 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2857 np->n_pushhi = lo;
2858 else
2859 np->n_pushlo = hi;
2860 }
2861 #ifdef NFS_DEBUG_COMMIT
2862 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2863 (unsigned)np->n_pushhi);
2864 #endif
2865 }
2866
2867 /*
2868 * Map errnos to NFS error numbers. For Version 3 also filter out error
2869 * numbers not specified for the associated procedure.
2870 */
2871 int
2872 nfsrv_errmap(nd, err)
2873 struct nfsrv_descript *nd;
2874 int err;
2875 {
2876 const short *defaulterrp, *errp;
2877
2878 if (nd->nd_flag & ND_NFSV3) {
2879 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2880 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2881 while (*++errp) {
2882 if (*errp == err)
2883 return (err);
2884 else if (*errp > err)
2885 break;
2886 }
2887 return ((int)*defaulterrp);
2888 } else
2889 return (err & 0xffff);
2890 }
2891 if (err <= ELAST)
2892 return ((int)nfsrv_v2errmap[err - 1]);
2893 return (NFSERR_IO);
2894 }
2895
2896 u_int32_t
2897 nfs_getxid()
2898 {
2899 static u_int32_t base;
2900 static u_int32_t nfs_xid = 0;
2901 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2902 u_int32_t newxid;
2903
2904 simple_lock(&nfs_xidlock);
2905 /*
2906 * derive initial xid from system time
2907 * XXX time is invalid if root not yet mounted
2908 */
2909 if (__predict_false(!base && (rootvp))) {
2910 struct timeval tv;
2911
2912 microtime(&tv);
2913 base = tv.tv_sec << 12;
2914 nfs_xid = base;
2915 }
2916
2917 /*
2918 * Skip zero xid if it should ever happen.
2919 */
2920 if (__predict_false(++nfs_xid == 0))
2921 nfs_xid++;
2922 newxid = nfs_xid;
2923 simple_unlock(&nfs_xidlock);
2924
2925 return txdr_unsigned(newxid);
2926 }
2927
2928 /*
2929 * assign a new xid for existing request.
2930 * used for NFSERR_JUKEBOX handling.
2931 */
2932 void
2933 nfs_renewxid(struct nfsreq *req)
2934 {
2935 u_int32_t xid;
2936 int off;
2937
2938 xid = nfs_getxid();
2939 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2940 off = sizeof(u_int32_t); /* RPC record mark */
2941 else
2942 off = 0;
2943
2944 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2945 req->r_xid = xid;
2946 }
2947
2948 #if defined(NFSSERVER)
2949 int
2950 nfsrv_composefh(struct vnode *vp, nfsrvfh_t *nsfh, bool v3)
2951 {
2952 int error;
2953 size_t fhsize;
2954
2955 fhsize = NFSD_MAXFHSIZE;
2956 error = vfs_composefh(vp, (void *)NFSRVFH_DATA(nsfh), &fhsize);
2957 if (NFSX_FHTOOBIG_P(fhsize, v3)) {
2958 error = EOPNOTSUPP;
2959 }
2960 if (error != 0) {
2961 return error;
2962 }
2963 if (!v3 && fhsize < NFSX_V2FH) {
2964 memset((char *)NFSRVFH_DATA(nsfh) + fhsize, 0,
2965 NFSX_V2FH - fhsize);
2966 fhsize = NFSX_V2FH;
2967 }
2968 if ((fhsize % NFSX_UNSIGNED) != 0) {
2969 return EOPNOTSUPP;
2970 }
2971 nsfh->nsfh_size = fhsize;
2972 return 0;
2973 }
2974
2975 int
2976 nfsrv_comparefh(const nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2977 {
2978
2979 if (NFSRVFH_SIZE(fh1) != NFSRVFH_SIZE(fh2)) {
2980 return NFSRVFH_SIZE(fh2) - NFSRVFH_SIZE(fh1);
2981 }
2982 return memcmp(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), NFSRVFH_SIZE(fh1));
2983 }
2984
2985 void
2986 nfsrv_copyfh(nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2987 {
2988 size_t size;
2989
2990 fh1->nsfh_size = size = NFSRVFH_SIZE(fh2);
2991 memcpy(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), size);
2992 }
2993 #endif /* defined(NFSSERVER) */
2994
2995 #if defined(NFS)
2996 /*
2997 * Set the attribute timeout based on how recently the file has been modified.
2998 */
2999
3000 time_t
3001 nfs_attrtimeo(struct nfsmount *nmp, struct nfsnode *np)
3002 {
3003 time_t timeo;
3004
3005 if ((nmp->nm_flag & NFSMNT_NOAC) != 0)
3006 return 0;
3007
3008 if (((np)->n_flag & NMODIFIED) != 0)
3009 return NFS_MINATTRTIMO;
3010
3011 timeo = (time_second - np->n_mtime.tv_sec) / 10;
3012 timeo = max(timeo, NFS_MINATTRTIMO);
3013 timeo = min(timeo, NFS_MAXATTRTIMO);
3014 return timeo;
3015 }
3016 #endif /* defined(NFS) */
3017