nfs_subs.c revision 1.198 1 /* $NetBSD: nfs_subs.c,v 1.198 2008/01/28 10:44:51 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.198 2008/01/28 10:44:51 yamt Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/kmem.h>
91 #include <sys/mount.h>
92 #include <sys/vnode.h>
93 #include <sys/namei.h>
94 #include <sys/mbuf.h>
95 #include <sys/socket.h>
96 #include <sys/stat.h>
97 #include <sys/malloc.h>
98 #include <sys/filedesc.h>
99 #include <sys/time.h>
100 #include <sys/dirent.h>
101 #include <sys/once.h>
102 #include <sys/kauth.h>
103
104 #include <uvm/uvm_extern.h>
105
106 #include <nfs/rpcv2.h>
107 #include <nfs/nfsproto.h>
108 #include <nfs/nfsnode.h>
109 #include <nfs/nfs.h>
110 #include <nfs/xdr_subs.h>
111 #include <nfs/nfsm_subs.h>
112 #include <nfs/nfsmount.h>
113 #include <nfs/nfsrtt.h>
114 #include <nfs/nfs_var.h>
115
116 #include <miscfs/specfs/specdev.h>
117
118 #include <netinet/in.h>
119 #ifdef ISO
120 #include <netiso/iso.h>
121 #endif
122
123 /*
124 * Data items converted to xdr at startup, since they are constant
125 * This is kinda hokey, but may save a little time doing byte swaps
126 */
127 u_int32_t nfs_xdrneg1;
128 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
129 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
130 rpc_auth_kerb;
131 u_int32_t nfs_prog, nfs_true, nfs_false;
132
133 /* And other global data */
134 const nfstype nfsv2_type[9] =
135 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
136 const nfstype nfsv3_type[9] =
137 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
138 const enum vtype nv2tov_type[8] =
139 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
140 const enum vtype nv3tov_type[8] =
141 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
142 int nfs_ticks;
143 int nfs_commitsize;
144
145 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
146
147 /* NFS client/server stats. */
148 struct nfsstats nfsstats;
149
150 /*
151 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
152 */
153 const int nfsv3_procid[NFS_NPROCS] = {
154 NFSPROC_NULL,
155 NFSPROC_GETATTR,
156 NFSPROC_SETATTR,
157 NFSPROC_NOOP,
158 NFSPROC_LOOKUP,
159 NFSPROC_READLINK,
160 NFSPROC_READ,
161 NFSPROC_NOOP,
162 NFSPROC_WRITE,
163 NFSPROC_CREATE,
164 NFSPROC_REMOVE,
165 NFSPROC_RENAME,
166 NFSPROC_LINK,
167 NFSPROC_SYMLINK,
168 NFSPROC_MKDIR,
169 NFSPROC_RMDIR,
170 NFSPROC_READDIR,
171 NFSPROC_FSSTAT,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP,
176 NFSPROC_NOOP
177 };
178
179 /*
180 * and the reverse mapping from generic to Version 2 procedure numbers
181 */
182 const int nfsv2_procid[NFS_NPROCS] = {
183 NFSV2PROC_NULL,
184 NFSV2PROC_GETATTR,
185 NFSV2PROC_SETATTR,
186 NFSV2PROC_LOOKUP,
187 NFSV2PROC_NOOP,
188 NFSV2PROC_READLINK,
189 NFSV2PROC_READ,
190 NFSV2PROC_WRITE,
191 NFSV2PROC_CREATE,
192 NFSV2PROC_MKDIR,
193 NFSV2PROC_SYMLINK,
194 NFSV2PROC_CREATE,
195 NFSV2PROC_REMOVE,
196 NFSV2PROC_RMDIR,
197 NFSV2PROC_RENAME,
198 NFSV2PROC_LINK,
199 NFSV2PROC_READDIR,
200 NFSV2PROC_NOOP,
201 NFSV2PROC_STATFS,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 NFSV2PROC_NOOP,
206 };
207
208 /*
209 * Maps errno values to nfs error numbers.
210 * Use NFSERR_IO as the catch all for ones not specifically defined in
211 * RFC 1094.
212 */
213 static const u_char nfsrv_v2errmap[ELAST] = {
214 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
215 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
216 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
217 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
218 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
219 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
226 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
227 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
230 NFSERR_IO, NFSERR_IO,
231 };
232
233 /*
234 * Maps errno values to nfs error numbers.
235 * Although it is not obvious whether or not NFS clients really care if
236 * a returned error value is in the specified list for the procedure, the
237 * safest thing to do is filter them appropriately. For Version 2, the
238 * X/Open XNFS document is the only specification that defines error values
239 * for each RPC (The RFC simply lists all possible error values for all RPCs),
240 * so I have decided to not do this for Version 2.
241 * The first entry is the default error return and the rest are the valid
242 * errors for that RPC in increasing numeric order.
243 */
244 static const short nfsv3err_null[] = {
245 0,
246 0,
247 };
248
249 static const short nfsv3err_getattr[] = {
250 NFSERR_IO,
251 NFSERR_IO,
252 NFSERR_STALE,
253 NFSERR_BADHANDLE,
254 NFSERR_SERVERFAULT,
255 0,
256 };
257
258 static const short nfsv3err_setattr[] = {
259 NFSERR_IO,
260 NFSERR_PERM,
261 NFSERR_IO,
262 NFSERR_ACCES,
263 NFSERR_INVAL,
264 NFSERR_NOSPC,
265 NFSERR_ROFS,
266 NFSERR_DQUOT,
267 NFSERR_STALE,
268 NFSERR_BADHANDLE,
269 NFSERR_NOT_SYNC,
270 NFSERR_SERVERFAULT,
271 0,
272 };
273
274 static const short nfsv3err_lookup[] = {
275 NFSERR_IO,
276 NFSERR_NOENT,
277 NFSERR_IO,
278 NFSERR_ACCES,
279 NFSERR_NOTDIR,
280 NFSERR_NAMETOL,
281 NFSERR_STALE,
282 NFSERR_BADHANDLE,
283 NFSERR_SERVERFAULT,
284 0,
285 };
286
287 static const short nfsv3err_access[] = {
288 NFSERR_IO,
289 NFSERR_IO,
290 NFSERR_STALE,
291 NFSERR_BADHANDLE,
292 NFSERR_SERVERFAULT,
293 0,
294 };
295
296 static const short nfsv3err_readlink[] = {
297 NFSERR_IO,
298 NFSERR_IO,
299 NFSERR_ACCES,
300 NFSERR_INVAL,
301 NFSERR_STALE,
302 NFSERR_BADHANDLE,
303 NFSERR_NOTSUPP,
304 NFSERR_SERVERFAULT,
305 0,
306 };
307
308 static const short nfsv3err_read[] = {
309 NFSERR_IO,
310 NFSERR_IO,
311 NFSERR_NXIO,
312 NFSERR_ACCES,
313 NFSERR_INVAL,
314 NFSERR_STALE,
315 NFSERR_BADHANDLE,
316 NFSERR_SERVERFAULT,
317 NFSERR_JUKEBOX,
318 0,
319 };
320
321 static const short nfsv3err_write[] = {
322 NFSERR_IO,
323 NFSERR_IO,
324 NFSERR_ACCES,
325 NFSERR_INVAL,
326 NFSERR_FBIG,
327 NFSERR_NOSPC,
328 NFSERR_ROFS,
329 NFSERR_DQUOT,
330 NFSERR_STALE,
331 NFSERR_BADHANDLE,
332 NFSERR_SERVERFAULT,
333 NFSERR_JUKEBOX,
334 0,
335 };
336
337 static const short nfsv3err_create[] = {
338 NFSERR_IO,
339 NFSERR_IO,
340 NFSERR_ACCES,
341 NFSERR_EXIST,
342 NFSERR_NOTDIR,
343 NFSERR_NOSPC,
344 NFSERR_ROFS,
345 NFSERR_NAMETOL,
346 NFSERR_DQUOT,
347 NFSERR_STALE,
348 NFSERR_BADHANDLE,
349 NFSERR_NOTSUPP,
350 NFSERR_SERVERFAULT,
351 0,
352 };
353
354 static const short nfsv3err_mkdir[] = {
355 NFSERR_IO,
356 NFSERR_IO,
357 NFSERR_ACCES,
358 NFSERR_EXIST,
359 NFSERR_NOTDIR,
360 NFSERR_NOSPC,
361 NFSERR_ROFS,
362 NFSERR_NAMETOL,
363 NFSERR_DQUOT,
364 NFSERR_STALE,
365 NFSERR_BADHANDLE,
366 NFSERR_NOTSUPP,
367 NFSERR_SERVERFAULT,
368 0,
369 };
370
371 static const short nfsv3err_symlink[] = {
372 NFSERR_IO,
373 NFSERR_IO,
374 NFSERR_ACCES,
375 NFSERR_EXIST,
376 NFSERR_NOTDIR,
377 NFSERR_NOSPC,
378 NFSERR_ROFS,
379 NFSERR_NAMETOL,
380 NFSERR_DQUOT,
381 NFSERR_STALE,
382 NFSERR_BADHANDLE,
383 NFSERR_NOTSUPP,
384 NFSERR_SERVERFAULT,
385 0,
386 };
387
388 static const short nfsv3err_mknod[] = {
389 NFSERR_IO,
390 NFSERR_IO,
391 NFSERR_ACCES,
392 NFSERR_EXIST,
393 NFSERR_NOTDIR,
394 NFSERR_NOSPC,
395 NFSERR_ROFS,
396 NFSERR_NAMETOL,
397 NFSERR_DQUOT,
398 NFSERR_STALE,
399 NFSERR_BADHANDLE,
400 NFSERR_NOTSUPP,
401 NFSERR_SERVERFAULT,
402 NFSERR_BADTYPE,
403 0,
404 };
405
406 static const short nfsv3err_remove[] = {
407 NFSERR_IO,
408 NFSERR_NOENT,
409 NFSERR_IO,
410 NFSERR_ACCES,
411 NFSERR_NOTDIR,
412 NFSERR_ROFS,
413 NFSERR_NAMETOL,
414 NFSERR_STALE,
415 NFSERR_BADHANDLE,
416 NFSERR_SERVERFAULT,
417 0,
418 };
419
420 static const short nfsv3err_rmdir[] = {
421 NFSERR_IO,
422 NFSERR_NOENT,
423 NFSERR_IO,
424 NFSERR_ACCES,
425 NFSERR_EXIST,
426 NFSERR_NOTDIR,
427 NFSERR_INVAL,
428 NFSERR_ROFS,
429 NFSERR_NAMETOL,
430 NFSERR_NOTEMPTY,
431 NFSERR_STALE,
432 NFSERR_BADHANDLE,
433 NFSERR_NOTSUPP,
434 NFSERR_SERVERFAULT,
435 0,
436 };
437
438 static const short nfsv3err_rename[] = {
439 NFSERR_IO,
440 NFSERR_NOENT,
441 NFSERR_IO,
442 NFSERR_ACCES,
443 NFSERR_EXIST,
444 NFSERR_XDEV,
445 NFSERR_NOTDIR,
446 NFSERR_ISDIR,
447 NFSERR_INVAL,
448 NFSERR_NOSPC,
449 NFSERR_ROFS,
450 NFSERR_MLINK,
451 NFSERR_NAMETOL,
452 NFSERR_NOTEMPTY,
453 NFSERR_DQUOT,
454 NFSERR_STALE,
455 NFSERR_BADHANDLE,
456 NFSERR_NOTSUPP,
457 NFSERR_SERVERFAULT,
458 0,
459 };
460
461 static const short nfsv3err_link[] = {
462 NFSERR_IO,
463 NFSERR_IO,
464 NFSERR_ACCES,
465 NFSERR_EXIST,
466 NFSERR_XDEV,
467 NFSERR_NOTDIR,
468 NFSERR_INVAL,
469 NFSERR_NOSPC,
470 NFSERR_ROFS,
471 NFSERR_MLINK,
472 NFSERR_NAMETOL,
473 NFSERR_DQUOT,
474 NFSERR_STALE,
475 NFSERR_BADHANDLE,
476 NFSERR_NOTSUPP,
477 NFSERR_SERVERFAULT,
478 0,
479 };
480
481 static const short nfsv3err_readdir[] = {
482 NFSERR_IO,
483 NFSERR_IO,
484 NFSERR_ACCES,
485 NFSERR_NOTDIR,
486 NFSERR_STALE,
487 NFSERR_BADHANDLE,
488 NFSERR_BAD_COOKIE,
489 NFSERR_TOOSMALL,
490 NFSERR_SERVERFAULT,
491 0,
492 };
493
494 static const short nfsv3err_readdirplus[] = {
495 NFSERR_IO,
496 NFSERR_IO,
497 NFSERR_ACCES,
498 NFSERR_NOTDIR,
499 NFSERR_STALE,
500 NFSERR_BADHANDLE,
501 NFSERR_BAD_COOKIE,
502 NFSERR_NOTSUPP,
503 NFSERR_TOOSMALL,
504 NFSERR_SERVERFAULT,
505 0,
506 };
507
508 static const short nfsv3err_fsstat[] = {
509 NFSERR_IO,
510 NFSERR_IO,
511 NFSERR_STALE,
512 NFSERR_BADHANDLE,
513 NFSERR_SERVERFAULT,
514 0,
515 };
516
517 static const short nfsv3err_fsinfo[] = {
518 NFSERR_STALE,
519 NFSERR_STALE,
520 NFSERR_BADHANDLE,
521 NFSERR_SERVERFAULT,
522 0,
523 };
524
525 static const short nfsv3err_pathconf[] = {
526 NFSERR_STALE,
527 NFSERR_STALE,
528 NFSERR_BADHANDLE,
529 NFSERR_SERVERFAULT,
530 0,
531 };
532
533 static const short nfsv3err_commit[] = {
534 NFSERR_IO,
535 NFSERR_IO,
536 NFSERR_STALE,
537 NFSERR_BADHANDLE,
538 NFSERR_SERVERFAULT,
539 0,
540 };
541
542 static const short * const nfsrv_v3errmap[] = {
543 nfsv3err_null,
544 nfsv3err_getattr,
545 nfsv3err_setattr,
546 nfsv3err_lookup,
547 nfsv3err_access,
548 nfsv3err_readlink,
549 nfsv3err_read,
550 nfsv3err_write,
551 nfsv3err_create,
552 nfsv3err_mkdir,
553 nfsv3err_symlink,
554 nfsv3err_mknod,
555 nfsv3err_remove,
556 nfsv3err_rmdir,
557 nfsv3err_rename,
558 nfsv3err_link,
559 nfsv3err_readdir,
560 nfsv3err_readdirplus,
561 nfsv3err_fsstat,
562 nfsv3err_fsinfo,
563 nfsv3err_pathconf,
564 nfsv3err_commit,
565 };
566
567 extern struct nfsrtt nfsrtt;
568 extern struct nfsnodehashhead *nfsnodehashtbl;
569 extern u_long nfsnodehash;
570
571 u_long nfsdirhashmask;
572
573 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
574
575 /*
576 * Create the header for an rpc request packet
577 * The hsiz is the size of the rest of the nfs request header.
578 * (just used to decide if a cluster is a good idea)
579 */
580 struct mbuf *
581 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
582 {
583 struct mbuf *mb;
584 char *bpos;
585
586 mb = m_get(M_WAIT, MT_DATA);
587 MCLAIM(mb, &nfs_mowner);
588 if (hsiz >= MINCLSIZE)
589 m_clget(mb, M_WAIT);
590 mb->m_len = 0;
591 bpos = mtod(mb, void *);
592
593 /* Finally, return values */
594 *bposp = bpos;
595 return (mb);
596 }
597
598 /*
599 * Build the RPC header and fill in the authorization info.
600 * The authorization string argument is only used when the credentials
601 * come from outside of the kernel.
602 * Returns the head of the mbuf list.
603 */
604 struct mbuf *
605 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
606 verf_str, mrest, mrest_len, mbp, xidp)
607 kauth_cred_t cr;
608 int nmflag;
609 int procid;
610 int auth_type;
611 int auth_len;
612 char *auth_str;
613 int verf_len;
614 char *verf_str;
615 struct mbuf *mrest;
616 int mrest_len;
617 struct mbuf **mbp;
618 u_int32_t *xidp;
619 {
620 struct mbuf *mb;
621 u_int32_t *tl;
622 char *bpos;
623 int i;
624 struct mbuf *mreq;
625 int siz, grpsiz, authsiz;
626
627 authsiz = nfsm_rndup(auth_len);
628 mb = m_gethdr(M_WAIT, MT_DATA);
629 MCLAIM(mb, &nfs_mowner);
630 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
631 m_clget(mb, M_WAIT);
632 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
633 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
634 } else {
635 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
636 }
637 mb->m_len = 0;
638 mreq = mb;
639 bpos = mtod(mb, void *);
640
641 /*
642 * First the RPC header.
643 */
644 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
645
646 *tl++ = *xidp = nfs_getxid();
647 *tl++ = rpc_call;
648 *tl++ = rpc_vers;
649 *tl++ = txdr_unsigned(NFS_PROG);
650 if (nmflag & NFSMNT_NFSV3)
651 *tl++ = txdr_unsigned(NFS_VER3);
652 else
653 *tl++ = txdr_unsigned(NFS_VER2);
654 if (nmflag & NFSMNT_NFSV3)
655 *tl++ = txdr_unsigned(procid);
656 else
657 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
658
659 /*
660 * And then the authorization cred.
661 */
662 *tl++ = txdr_unsigned(auth_type);
663 *tl = txdr_unsigned(authsiz);
664 switch (auth_type) {
665 case RPCAUTH_UNIX:
666 nfsm_build(tl, u_int32_t *, auth_len);
667 *tl++ = 0; /* stamp ?? */
668 *tl++ = 0; /* NULL hostname */
669 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
670 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
671 grpsiz = (auth_len >> 2) - 5;
672 *tl++ = txdr_unsigned(grpsiz);
673 for (i = 0; i < grpsiz; i++)
674 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
675 break;
676 case RPCAUTH_KERB4:
677 siz = auth_len;
678 while (siz > 0) {
679 if (M_TRAILINGSPACE(mb) == 0) {
680 struct mbuf *mb2;
681 mb2 = m_get(M_WAIT, MT_DATA);
682 MCLAIM(mb2, &nfs_mowner);
683 if (siz >= MINCLSIZE)
684 m_clget(mb2, M_WAIT);
685 mb->m_next = mb2;
686 mb = mb2;
687 mb->m_len = 0;
688 bpos = mtod(mb, void *);
689 }
690 i = min(siz, M_TRAILINGSPACE(mb));
691 memcpy(bpos, auth_str, i);
692 mb->m_len += i;
693 auth_str += i;
694 bpos += i;
695 siz -= i;
696 }
697 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
698 for (i = 0; i < siz; i++)
699 *bpos++ = '\0';
700 mb->m_len += siz;
701 }
702 break;
703 };
704
705 /*
706 * And the verifier...
707 */
708 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
709 if (verf_str) {
710 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
711 *tl = txdr_unsigned(verf_len);
712 siz = verf_len;
713 while (siz > 0) {
714 if (M_TRAILINGSPACE(mb) == 0) {
715 struct mbuf *mb2;
716 mb2 = m_get(M_WAIT, MT_DATA);
717 MCLAIM(mb2, &nfs_mowner);
718 if (siz >= MINCLSIZE)
719 m_clget(mb2, M_WAIT);
720 mb->m_next = mb2;
721 mb = mb2;
722 mb->m_len = 0;
723 bpos = mtod(mb, void *);
724 }
725 i = min(siz, M_TRAILINGSPACE(mb));
726 memcpy(bpos, verf_str, i);
727 mb->m_len += i;
728 verf_str += i;
729 bpos += i;
730 siz -= i;
731 }
732 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
733 for (i = 0; i < siz; i++)
734 *bpos++ = '\0';
735 mb->m_len += siz;
736 }
737 } else {
738 *tl++ = txdr_unsigned(RPCAUTH_NULL);
739 *tl = 0;
740 }
741 mb->m_next = mrest;
742 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
743 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
744 *mbp = mb;
745 return (mreq);
746 }
747
748 /*
749 * copies mbuf chain to the uio scatter/gather list
750 */
751 int
752 nfsm_mbuftouio(mrep, uiop, siz, dpos)
753 struct mbuf **mrep;
754 struct uio *uiop;
755 int siz;
756 char **dpos;
757 {
758 char *mbufcp, *uiocp;
759 int xfer, left, len;
760 struct mbuf *mp;
761 long uiosiz, rem;
762 int error = 0;
763
764 mp = *mrep;
765 mbufcp = *dpos;
766 len = mtod(mp, char *) + mp->m_len - mbufcp;
767 rem = nfsm_rndup(siz)-siz;
768 while (siz > 0) {
769 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
770 return (EFBIG);
771 left = uiop->uio_iov->iov_len;
772 uiocp = uiop->uio_iov->iov_base;
773 if (left > siz)
774 left = siz;
775 uiosiz = left;
776 while (left > 0) {
777 while (len == 0) {
778 mp = mp->m_next;
779 if (mp == NULL)
780 return (EBADRPC);
781 mbufcp = mtod(mp, void *);
782 len = mp->m_len;
783 }
784 xfer = (left > len) ? len : left;
785 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
786 uiocp, xfer);
787 if (error) {
788 return error;
789 }
790 left -= xfer;
791 len -= xfer;
792 mbufcp += xfer;
793 uiocp += xfer;
794 uiop->uio_offset += xfer;
795 uiop->uio_resid -= xfer;
796 }
797 if (uiop->uio_iov->iov_len <= siz) {
798 uiop->uio_iovcnt--;
799 uiop->uio_iov++;
800 } else {
801 uiop->uio_iov->iov_base =
802 (char *)uiop->uio_iov->iov_base + uiosiz;
803 uiop->uio_iov->iov_len -= uiosiz;
804 }
805 siz -= uiosiz;
806 }
807 *dpos = mbufcp;
808 *mrep = mp;
809 if (rem > 0) {
810 if (len < rem)
811 error = nfs_adv(mrep, dpos, rem, len);
812 else
813 *dpos += rem;
814 }
815 return (error);
816 }
817
818 /*
819 * copies a uio scatter/gather list to an mbuf chain.
820 * NOTE: can ony handle iovcnt == 1
821 */
822 int
823 nfsm_uiotombuf(uiop, mq, siz, bpos)
824 struct uio *uiop;
825 struct mbuf **mq;
826 int siz;
827 char **bpos;
828 {
829 char *uiocp;
830 struct mbuf *mp, *mp2;
831 int xfer, left, mlen;
832 int uiosiz, clflg, rem;
833 char *cp;
834 int error;
835
836 #ifdef DIAGNOSTIC
837 if (uiop->uio_iovcnt != 1)
838 panic("nfsm_uiotombuf: iovcnt != 1");
839 #endif
840
841 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
842 clflg = 1;
843 else
844 clflg = 0;
845 rem = nfsm_rndup(siz)-siz;
846 mp = mp2 = *mq;
847 while (siz > 0) {
848 left = uiop->uio_iov->iov_len;
849 uiocp = uiop->uio_iov->iov_base;
850 if (left > siz)
851 left = siz;
852 uiosiz = left;
853 while (left > 0) {
854 mlen = M_TRAILINGSPACE(mp);
855 if (mlen == 0) {
856 mp = m_get(M_WAIT, MT_DATA);
857 MCLAIM(mp, &nfs_mowner);
858 if (clflg)
859 m_clget(mp, M_WAIT);
860 mp->m_len = 0;
861 mp2->m_next = mp;
862 mp2 = mp;
863 mlen = M_TRAILINGSPACE(mp);
864 }
865 xfer = (left > mlen) ? mlen : left;
866 cp = mtod(mp, char *) + mp->m_len;
867 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
868 xfer);
869 if (error) {
870 /* XXX */
871 }
872 mp->m_len += xfer;
873 left -= xfer;
874 uiocp += xfer;
875 uiop->uio_offset += xfer;
876 uiop->uio_resid -= xfer;
877 }
878 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
879 uiosiz;
880 uiop->uio_iov->iov_len -= uiosiz;
881 siz -= uiosiz;
882 }
883 if (rem > 0) {
884 if (rem > M_TRAILINGSPACE(mp)) {
885 mp = m_get(M_WAIT, MT_DATA);
886 MCLAIM(mp, &nfs_mowner);
887 mp->m_len = 0;
888 mp2->m_next = mp;
889 }
890 cp = mtod(mp, char *) + mp->m_len;
891 for (left = 0; left < rem; left++)
892 *cp++ = '\0';
893 mp->m_len += rem;
894 *bpos = cp;
895 } else
896 *bpos = mtod(mp, char *) + mp->m_len;
897 *mq = mp;
898 return (0);
899 }
900
901 /*
902 * Get at least "siz" bytes of correctly aligned data.
903 * When called the mbuf pointers are not necessarily correct,
904 * dsosp points to what ought to be in m_data and left contains
905 * what ought to be in m_len.
906 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
907 * cases. (The macros use the vars. dpos and dpos2)
908 */
909 int
910 nfsm_disct(mdp, dposp, siz, left, cp2)
911 struct mbuf **mdp;
912 char **dposp;
913 int siz;
914 int left;
915 char **cp2;
916 {
917 struct mbuf *m1, *m2;
918 struct mbuf *havebuf = NULL;
919 char *src = *dposp;
920 char *dst;
921 int len;
922
923 #ifdef DEBUG
924 if (left < 0)
925 panic("nfsm_disct: left < 0");
926 #endif
927 m1 = *mdp;
928 /*
929 * Skip through the mbuf chain looking for an mbuf with
930 * some data. If the first mbuf found has enough data
931 * and it is correctly aligned return it.
932 */
933 while (left == 0) {
934 havebuf = m1;
935 *mdp = m1 = m1->m_next;
936 if (m1 == NULL)
937 return (EBADRPC);
938 src = mtod(m1, void *);
939 left = m1->m_len;
940 /*
941 * If we start a new mbuf and it is big enough
942 * and correctly aligned just return it, don't
943 * do any pull up.
944 */
945 if (left >= siz && nfsm_aligned(src)) {
946 *cp2 = src;
947 *dposp = src + siz;
948 return (0);
949 }
950 }
951 if (m1->m_flags & M_EXT) {
952 if (havebuf) {
953 /* If the first mbuf with data has external data
954 * and there is a previous empty mbuf use it
955 * to move the data into.
956 */
957 m2 = m1;
958 *mdp = m1 = havebuf;
959 if (m1->m_flags & M_EXT) {
960 MEXTREMOVE(m1);
961 }
962 } else {
963 /*
964 * If the first mbuf has a external data
965 * and there is no previous empty mbuf
966 * allocate a new mbuf and move the external
967 * data to the new mbuf. Also make the first
968 * mbuf look empty.
969 */
970 m2 = m_get(M_WAIT, MT_DATA);
971 m2->m_ext = m1->m_ext;
972 m2->m_data = src;
973 m2->m_len = left;
974 MCLADDREFERENCE(m1, m2);
975 MEXTREMOVE(m1);
976 m2->m_next = m1->m_next;
977 m1->m_next = m2;
978 }
979 m1->m_len = 0;
980 if (m1->m_flags & M_PKTHDR)
981 dst = m1->m_pktdat;
982 else
983 dst = m1->m_dat;
984 m1->m_data = dst;
985 } else {
986 /*
987 * If the first mbuf has no external data
988 * move the data to the front of the mbuf.
989 */
990 if (m1->m_flags & M_PKTHDR)
991 dst = m1->m_pktdat;
992 else
993 dst = m1->m_dat;
994 m1->m_data = dst;
995 if (dst != src)
996 memmove(dst, src, left);
997 dst += left;
998 m1->m_len = left;
999 m2 = m1->m_next;
1000 }
1001 *cp2 = m1->m_data;
1002 *dposp = mtod(m1, char *) + siz;
1003 /*
1004 * Loop through mbufs pulling data up into first mbuf until
1005 * the first mbuf is full or there is no more data to
1006 * pullup.
1007 */
1008 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1009 if ((len = min(len, m2->m_len)) != 0)
1010 memcpy(dst, m2->m_data, len);
1011 m1->m_len += len;
1012 dst += len;
1013 m2->m_data += len;
1014 m2->m_len -= len;
1015 m2 = m2->m_next;
1016 }
1017 if (m1->m_len < siz)
1018 return (EBADRPC);
1019 return (0);
1020 }
1021
1022 /*
1023 * Advance the position in the mbuf chain.
1024 */
1025 int
1026 nfs_adv(mdp, dposp, offs, left)
1027 struct mbuf **mdp;
1028 char **dposp;
1029 int offs;
1030 int left;
1031 {
1032 struct mbuf *m;
1033 int s;
1034
1035 m = *mdp;
1036 s = left;
1037 while (s < offs) {
1038 offs -= s;
1039 m = m->m_next;
1040 if (m == NULL)
1041 return (EBADRPC);
1042 s = m->m_len;
1043 }
1044 *mdp = m;
1045 *dposp = mtod(m, char *) + offs;
1046 return (0);
1047 }
1048
1049 /*
1050 * Copy a string into mbufs for the hard cases...
1051 */
1052 int
1053 nfsm_strtmbuf(mb, bpos, cp, siz)
1054 struct mbuf **mb;
1055 char **bpos;
1056 const char *cp;
1057 long siz;
1058 {
1059 struct mbuf *m1 = NULL, *m2;
1060 long left, xfer, len, tlen;
1061 u_int32_t *tl;
1062 int putsize;
1063
1064 putsize = 1;
1065 m2 = *mb;
1066 left = M_TRAILINGSPACE(m2);
1067 if (left > 0) {
1068 tl = ((u_int32_t *)(*bpos));
1069 *tl++ = txdr_unsigned(siz);
1070 putsize = 0;
1071 left -= NFSX_UNSIGNED;
1072 m2->m_len += NFSX_UNSIGNED;
1073 if (left > 0) {
1074 memcpy((void *) tl, cp, left);
1075 siz -= left;
1076 cp += left;
1077 m2->m_len += left;
1078 left = 0;
1079 }
1080 }
1081 /* Loop around adding mbufs */
1082 while (siz > 0) {
1083 m1 = m_get(M_WAIT, MT_DATA);
1084 MCLAIM(m1, &nfs_mowner);
1085 if (siz > MLEN)
1086 m_clget(m1, M_WAIT);
1087 m1->m_len = NFSMSIZ(m1);
1088 m2->m_next = m1;
1089 m2 = m1;
1090 tl = mtod(m1, u_int32_t *);
1091 tlen = 0;
1092 if (putsize) {
1093 *tl++ = txdr_unsigned(siz);
1094 m1->m_len -= NFSX_UNSIGNED;
1095 tlen = NFSX_UNSIGNED;
1096 putsize = 0;
1097 }
1098 if (siz < m1->m_len) {
1099 len = nfsm_rndup(siz);
1100 xfer = siz;
1101 if (xfer < len)
1102 *(tl+(xfer>>2)) = 0;
1103 } else {
1104 xfer = len = m1->m_len;
1105 }
1106 memcpy((void *) tl, cp, xfer);
1107 m1->m_len = len+tlen;
1108 siz -= xfer;
1109 cp += xfer;
1110 }
1111 *mb = m1;
1112 *bpos = mtod(m1, char *) + m1->m_len;
1113 return (0);
1114 }
1115
1116 /*
1117 * Directory caching routines. They work as follows:
1118 * - a cache is maintained per VDIR nfsnode.
1119 * - for each offset cookie that is exported to userspace, and can
1120 * thus be thrown back at us as an offset to VOP_READDIR, store
1121 * information in the cache.
1122 * - cached are:
1123 * - cookie itself
1124 * - blocknumber (essentially just a search key in the buffer cache)
1125 * - entry number in block.
1126 * - offset cookie of block in which this entry is stored
1127 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1128 * - entries are looked up in a hash table
1129 * - also maintained is an LRU list of entries, used to determine
1130 * which ones to delete if the cache grows too large.
1131 * - if 32 <-> 64 translation mode is requested for a filesystem,
1132 * the cache also functions as a translation table
1133 * - in the translation case, invalidating the cache does not mean
1134 * flushing it, but just marking entries as invalid, except for
1135 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1136 * still be able to use the cache as a translation table.
1137 * - 32 bit cookies are uniquely created by combining the hash table
1138 * entry value, and one generation count per hash table entry,
1139 * incremented each time an entry is appended to the chain.
1140 * - the cache is invalidated each time a direcory is modified
1141 * - sanity checks are also done; if an entry in a block turns
1142 * out not to have a matching cookie, the cache is invalidated
1143 * and a new block starting from the wanted offset is fetched from
1144 * the server.
1145 * - directory entries as read from the server are extended to contain
1146 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1147 * the cache and exporting them to userspace through the cookie
1148 * argument to VOP_READDIR.
1149 */
1150
1151 u_long
1152 nfs_dirhash(off)
1153 off_t off;
1154 {
1155 int i;
1156 char *cp = (char *)&off;
1157 u_long sum = 0L;
1158
1159 for (i = 0 ; i < sizeof (off); i++)
1160 sum += *cp++;
1161
1162 return sum;
1163 }
1164
1165 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1166 #define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np))
1167 #define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np))
1168 #define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
1169
1170 void
1171 nfs_initdircache(vp)
1172 struct vnode *vp;
1173 {
1174 struct nfsnode *np = VTONFS(vp);
1175 struct nfsdirhashhead *dircache;
1176
1177 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, M_NFSDIROFF,
1178 M_WAITOK, &nfsdirhashmask);
1179
1180 NFSDC_LOCK(np);
1181 if (np->n_dircache == NULL) {
1182 np->n_dircachesize = 0;
1183 np->n_dircache = dircache;
1184 dircache = NULL;
1185 TAILQ_INIT(&np->n_dirchain);
1186 }
1187 NFSDC_UNLOCK(np);
1188 if (dircache)
1189 hashdone(dircache, M_NFSDIROFF);
1190 }
1191
1192 void
1193 nfs_initdirxlatecookie(vp)
1194 struct vnode *vp;
1195 {
1196 struct nfsnode *np = VTONFS(vp);
1197 unsigned *dirgens;
1198
1199 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1200
1201 dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
1202 NFSDC_LOCK(np);
1203 if (np->n_dirgens == NULL) {
1204 np->n_dirgens = dirgens;
1205 dirgens = NULL;
1206 }
1207 NFSDC_UNLOCK(np);
1208 if (dirgens)
1209 kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
1210 }
1211
1212 static const struct nfsdircache dzero;
1213
1214 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1215 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1216 struct nfsdircache *));
1217
1218 static void
1219 nfs_unlinkdircache(np, ndp)
1220 struct nfsnode *np;
1221 struct nfsdircache *ndp;
1222 {
1223
1224 NFSDC_ASSERT_LOCKED(np);
1225 KASSERT(ndp != &dzero);
1226
1227 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1228 return;
1229
1230 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1231 LIST_REMOVE(ndp, dc_hash);
1232 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1233
1234 nfs_putdircache_unlocked(np, ndp);
1235 }
1236
1237 void
1238 nfs_putdircache(np, ndp)
1239 struct nfsnode *np;
1240 struct nfsdircache *ndp;
1241 {
1242 int ref;
1243
1244 if (ndp == &dzero)
1245 return;
1246
1247 KASSERT(ndp->dc_refcnt > 0);
1248 NFSDC_LOCK(np);
1249 ref = --ndp->dc_refcnt;
1250 NFSDC_UNLOCK(np);
1251
1252 if (ref == 0)
1253 kmem_free(ndp, sizeof(*ndp));
1254 }
1255
1256 static void
1257 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1258 {
1259 int ref;
1260
1261 NFSDC_ASSERT_LOCKED(np);
1262
1263 if (ndp == &dzero)
1264 return;
1265
1266 KASSERT(ndp->dc_refcnt > 0);
1267 ref = --ndp->dc_refcnt;
1268 if (ref == 0)
1269 kmem_free(ndp, sizeof(*ndp));
1270 }
1271
1272 struct nfsdircache *
1273 nfs_searchdircache(vp, off, do32, hashent)
1274 struct vnode *vp;
1275 off_t off;
1276 int do32;
1277 int *hashent;
1278 {
1279 struct nfsdirhashhead *ndhp;
1280 struct nfsdircache *ndp = NULL;
1281 struct nfsnode *np = VTONFS(vp);
1282 unsigned ent;
1283
1284 /*
1285 * Zero is always a valid cookie.
1286 */
1287 if (off == 0)
1288 /* XXXUNCONST */
1289 return (struct nfsdircache *)__UNCONST(&dzero);
1290
1291 if (!np->n_dircache)
1292 return NULL;
1293
1294 /*
1295 * We use a 32bit cookie as search key, directly reconstruct
1296 * the hashentry. Else use the hashfunction.
1297 */
1298 if (do32) {
1299 ent = (u_int32_t)off >> 24;
1300 if (ent >= NFS_DIRHASHSIZ)
1301 return NULL;
1302 ndhp = &np->n_dircache[ent];
1303 } else {
1304 ndhp = NFSDIRHASH(np, off);
1305 }
1306
1307 if (hashent)
1308 *hashent = (int)(ndhp - np->n_dircache);
1309
1310 NFSDC_LOCK(np);
1311 if (do32) {
1312 LIST_FOREACH(ndp, ndhp, dc_hash) {
1313 if (ndp->dc_cookie32 == (u_int32_t)off) {
1314 /*
1315 * An invalidated entry will become the
1316 * start of a new block fetched from
1317 * the server.
1318 */
1319 if (ndp->dc_flags & NFSDC_INVALID) {
1320 ndp->dc_blkcookie = ndp->dc_cookie;
1321 ndp->dc_entry = 0;
1322 ndp->dc_flags &= ~NFSDC_INVALID;
1323 }
1324 break;
1325 }
1326 }
1327 } else {
1328 LIST_FOREACH(ndp, ndhp, dc_hash) {
1329 if (ndp->dc_cookie == off)
1330 break;
1331 }
1332 }
1333 if (ndp != NULL)
1334 ndp->dc_refcnt++;
1335 NFSDC_UNLOCK(np);
1336 return ndp;
1337 }
1338
1339
1340 struct nfsdircache *
1341 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1342 daddr_t blkno)
1343 {
1344 struct nfsnode *np = VTONFS(vp);
1345 struct nfsdirhashhead *ndhp;
1346 struct nfsdircache *ndp = NULL;
1347 struct nfsdircache *newndp = NULL;
1348 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1349 int hashent = 0, gen, overwrite; /* XXX: GCC */
1350
1351 /*
1352 * XXX refuse entries for offset 0. amd(8) erroneously sets
1353 * cookie 0 for the '.' entry, making this necessary. This
1354 * isn't so bad, as 0 is a special case anyway.
1355 */
1356 if (off == 0)
1357 /* XXXUNCONST */
1358 return (struct nfsdircache *)__UNCONST(&dzero);
1359
1360 if (!np->n_dircache)
1361 /*
1362 * XXX would like to do this in nfs_nget but vtype
1363 * isn't known at that time.
1364 */
1365 nfs_initdircache(vp);
1366
1367 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1368 nfs_initdirxlatecookie(vp);
1369
1370 retry:
1371 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1372
1373 NFSDC_LOCK(np);
1374 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1375 /*
1376 * Overwriting an old entry. Check if it's the same.
1377 * If so, just return. If not, remove the old entry.
1378 */
1379 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1380 goto done;
1381 nfs_unlinkdircache(np, ndp);
1382 nfs_putdircache_unlocked(np, ndp);
1383 ndp = NULL;
1384 }
1385
1386 ndhp = &np->n_dircache[hashent];
1387
1388 if (!ndp) {
1389 if (newndp == NULL) {
1390 NFSDC_UNLOCK(np);
1391 newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP);
1392 newndp->dc_refcnt = 1;
1393 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1394 goto retry;
1395 }
1396 ndp = newndp;
1397 newndp = NULL;
1398 overwrite = 0;
1399 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1400 /*
1401 * We're allocating a new entry, so bump the
1402 * generation number.
1403 */
1404 KASSERT(np->n_dirgens);
1405 gen = ++np->n_dirgens[hashent];
1406 if (gen == 0) {
1407 np->n_dirgens[hashent]++;
1408 gen++;
1409 }
1410 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1411 }
1412 } else
1413 overwrite = 1;
1414
1415 ndp->dc_cookie = off;
1416 ndp->dc_blkcookie = blkoff;
1417 ndp->dc_entry = en;
1418 ndp->dc_flags = 0;
1419
1420 if (overwrite)
1421 goto done;
1422
1423 /*
1424 * If the maximum directory cookie cache size has been reached
1425 * for this node, take one off the front. The idea is that
1426 * directories are typically read front-to-back once, so that
1427 * the oldest entries can be thrown away without much performance
1428 * loss.
1429 */
1430 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1431 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1432 } else
1433 np->n_dircachesize++;
1434
1435 KASSERT(ndp->dc_refcnt == 1);
1436 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1437 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1438 ndp->dc_refcnt++;
1439 done:
1440 KASSERT(ndp->dc_refcnt > 0);
1441 NFSDC_UNLOCK(np);
1442 if (newndp)
1443 nfs_putdircache(np, newndp);
1444 return ndp;
1445 }
1446
1447 void
1448 nfs_invaldircache(vp, flags)
1449 struct vnode *vp;
1450 int flags;
1451 {
1452 struct nfsnode *np = VTONFS(vp);
1453 struct nfsdircache *ndp = NULL;
1454 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1455 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1456
1457 #ifdef DIAGNOSTIC
1458 if (vp->v_type != VDIR)
1459 panic("nfs: invaldircache: not dir");
1460 #endif
1461
1462 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1463 np->n_flag &= ~NEOFVALID;
1464
1465 if (!np->n_dircache)
1466 return;
1467
1468 NFSDC_LOCK(np);
1469 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1470 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1471 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1472 nfs_unlinkdircache(np, ndp);
1473 }
1474 np->n_dircachesize = 0;
1475 if (forcefree && np->n_dirgens) {
1476 kmem_free(np->n_dirgens,
1477 NFS_DIRHASHSIZ * sizeof(unsigned));
1478 np->n_dirgens = NULL;
1479 }
1480 } else {
1481 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1482 ndp->dc_flags |= NFSDC_INVALID;
1483 }
1484
1485 NFSDC_UNLOCK(np);
1486 }
1487
1488 /*
1489 * Called once before VFS init to initialize shared and
1490 * server-specific data structures.
1491 */
1492 static int
1493 nfs_init0(void)
1494 {
1495
1496 nfsrtt.pos = 0;
1497 rpc_vers = txdr_unsigned(RPC_VER2);
1498 rpc_call = txdr_unsigned(RPC_CALL);
1499 rpc_reply = txdr_unsigned(RPC_REPLY);
1500 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1501 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1502 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1503 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1504 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1505 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1506 nfs_prog = txdr_unsigned(NFS_PROG);
1507 nfs_true = txdr_unsigned(true);
1508 nfs_false = txdr_unsigned(false);
1509 nfs_xdrneg1 = txdr_unsigned(-1);
1510 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1511 if (nfs_ticks < 1)
1512 nfs_ticks = 1;
1513 #ifdef NFSSERVER
1514 nfsrv_init(0); /* Init server data structures */
1515 nfsrv_initcache(); /* Init the server request cache */
1516 {
1517 extern krwlock_t netexport_lock; /* XXX */
1518 rw_init(&netexport_lock);
1519 }
1520 #endif /* NFSSERVER */
1521
1522 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
1523 nfsdreq_init();
1524 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
1525
1526 /*
1527 * Initialize reply list and start timer
1528 */
1529 TAILQ_INIT(&nfs_reqq);
1530 nfs_timer_init();
1531 MOWNER_ATTACH(&nfs_mowner);
1532
1533 #ifdef NFS
1534 /* Initialize the kqueue structures */
1535 nfs_kqinit();
1536 /* Initialize the iod structures */
1537 nfs_iodinit();
1538 #endif
1539 return 0;
1540 }
1541
1542 void
1543 nfs_init(void)
1544 {
1545 static ONCE_DECL(nfs_init_once);
1546
1547 RUN_ONCE(&nfs_init_once, nfs_init0);
1548 }
1549
1550 #ifdef NFS
1551 /*
1552 * Called once at VFS init to initialize client-specific data structures.
1553 */
1554 void
1555 nfs_vfs_init()
1556 {
1557 /* Initialize NFS server / client shared data. */
1558 nfs_init();
1559
1560 nfs_nhinit(); /* Init the nfsnode table */
1561 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1562 }
1563
1564 void
1565 nfs_vfs_reinit()
1566 {
1567 nfs_nhreinit();
1568 }
1569
1570 void
1571 nfs_vfs_done()
1572 {
1573 nfs_nhdone();
1574 }
1575
1576 /*
1577 * Attribute cache routines.
1578 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1579 * that are on the mbuf list
1580 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1581 * error otherwise
1582 */
1583
1584 /*
1585 * Load the attribute cache (that lives in the nfsnode entry) with
1586 * the values on the mbuf list and
1587 * Iff vap not NULL
1588 * copy the attributes to *vaper
1589 */
1590 int
1591 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1592 struct vnode **vpp;
1593 struct mbuf **mdp;
1594 char **dposp;
1595 struct vattr *vaper;
1596 int flags;
1597 {
1598 int32_t t1;
1599 char *cp2;
1600 int error = 0;
1601 struct mbuf *md;
1602 int v3 = NFS_ISV3(*vpp);
1603
1604 md = *mdp;
1605 t1 = (mtod(md, char *) + md->m_len) - *dposp;
1606 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1607 if (error)
1608 return (error);
1609 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1610 }
1611
1612 int
1613 nfs_loadattrcache(vpp, fp, vaper, flags)
1614 struct vnode **vpp;
1615 struct nfs_fattr *fp;
1616 struct vattr *vaper;
1617 int flags;
1618 {
1619 struct vnode *vp = *vpp;
1620 struct vattr *vap;
1621 int v3 = NFS_ISV3(vp);
1622 enum vtype vtyp;
1623 u_short vmode;
1624 struct timespec mtime;
1625 struct timespec ctime;
1626 int32_t rdev;
1627 struct nfsnode *np;
1628 extern int (**spec_nfsv2nodeop_p) __P((void *));
1629 uid_t uid;
1630 gid_t gid;
1631
1632 if (v3) {
1633 vtyp = nfsv3tov_type(fp->fa_type);
1634 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1635 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1636 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1637 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1638 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1639 } else {
1640 vtyp = nfsv2tov_type(fp->fa_type);
1641 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1642 if (vtyp == VNON || vtyp == VREG)
1643 vtyp = IFTOVT(vmode);
1644 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1645 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1646 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1647 fp->fa2_ctime.nfsv2_sec);
1648 ctime.tv_nsec = 0;
1649
1650 /*
1651 * Really ugly NFSv2 kludge.
1652 */
1653 if (vtyp == VCHR && rdev == 0xffffffff)
1654 vtyp = VFIFO;
1655 }
1656
1657 vmode &= ALLPERMS;
1658
1659 /*
1660 * If v_type == VNON it is a new node, so fill in the v_type,
1661 * n_mtime fields. Check to see if it represents a special
1662 * device, and if so, check for a possible alias. Once the
1663 * correct vnode has been obtained, fill in the rest of the
1664 * information.
1665 */
1666 np = VTONFS(vp);
1667 if (vp->v_type == VNON) {
1668 vp->v_type = vtyp;
1669 if (vp->v_type == VFIFO) {
1670 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1671 vp->v_op = fifo_nfsv2nodeop_p;
1672 } else if (vp->v_type == VREG) {
1673 mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
1674 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1675 vp->v_op = spec_nfsv2nodeop_p;
1676 spec_node_init(vp, (dev_t)rdev);
1677 }
1678 np->n_mtime = mtime;
1679 }
1680 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1681 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1682 vap = np->n_vattr;
1683
1684 /*
1685 * Invalidate access cache if uid, gid, mode or ctime changed.
1686 */
1687 if (np->n_accstamp != -1 &&
1688 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1689 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1690 np->n_accstamp = -1;
1691
1692 vap->va_type = vtyp;
1693 vap->va_mode = vmode;
1694 vap->va_rdev = (dev_t)rdev;
1695 vap->va_mtime = mtime;
1696 vap->va_ctime = ctime;
1697 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1698 switch (vtyp) {
1699 case VDIR:
1700 vap->va_blocksize = NFS_DIRFRAGSIZ;
1701 break;
1702 case VBLK:
1703 vap->va_blocksize = BLKDEV_IOSIZE;
1704 break;
1705 case VCHR:
1706 vap->va_blocksize = MAXBSIZE;
1707 break;
1708 default:
1709 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1710 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1711 break;
1712 }
1713 if (v3) {
1714 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1715 vap->va_uid = uid;
1716 vap->va_gid = gid;
1717 vap->va_size = fxdr_hyper(&fp->fa3_size);
1718 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1719 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1720 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1721 vap->va_flags = 0;
1722 vap->va_filerev = 0;
1723 } else {
1724 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1725 vap->va_uid = uid;
1726 vap->va_gid = gid;
1727 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1728 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1729 * NFS_FABLKSIZE;
1730 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1731 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1732 vap->va_flags = 0;
1733 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1734 vap->va_filerev = 0;
1735 }
1736 if (vap->va_size != np->n_size) {
1737 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1738 vap->va_size = np->n_size;
1739 } else {
1740 np->n_size = vap->va_size;
1741 if (vap->va_type == VREG) {
1742 /*
1743 * we can't free pages if NAC_NOTRUNC because
1744 * the pages can be owned by ourselves.
1745 */
1746 if (flags & NAC_NOTRUNC) {
1747 np->n_flag |= NTRUNCDELAYED;
1748 } else {
1749 genfs_node_wrlock(vp);
1750 mutex_enter(&vp->v_interlock);
1751 (void)VOP_PUTPAGES(vp, 0,
1752 0, PGO_SYNCIO | PGO_CLEANIT |
1753 PGO_FREE | PGO_ALLPAGES);
1754 uvm_vnp_setsize(vp, np->n_size);
1755 genfs_node_unlock(vp);
1756 }
1757 }
1758 }
1759 }
1760 np->n_attrstamp = time_second;
1761 if (vaper != NULL) {
1762 memcpy((void *)vaper, (void *)vap, sizeof(*vap));
1763 if (np->n_flag & NCHG) {
1764 if (np->n_flag & NACC)
1765 vaper->va_atime = np->n_atim;
1766 if (np->n_flag & NUPD)
1767 vaper->va_mtime = np->n_mtim;
1768 }
1769 }
1770 return (0);
1771 }
1772
1773 /*
1774 * Check the time stamp
1775 * If the cache is valid, copy contents to *vap and return 0
1776 * otherwise return an error
1777 */
1778 int
1779 nfs_getattrcache(vp, vaper)
1780 struct vnode *vp;
1781 struct vattr *vaper;
1782 {
1783 struct nfsnode *np = VTONFS(vp);
1784 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1785 struct vattr *vap;
1786
1787 if (np->n_attrstamp == 0 ||
1788 (time_second - np->n_attrstamp) >= nfs_attrtimeo(nmp, np)) {
1789 nfsstats.attrcache_misses++;
1790 return (ENOENT);
1791 }
1792 nfsstats.attrcache_hits++;
1793 vap = np->n_vattr;
1794 if (vap->va_size != np->n_size) {
1795 if (vap->va_type == VREG) {
1796 if ((np->n_flag & NMODIFIED) != 0 &&
1797 vap->va_size < np->n_size) {
1798 vap->va_size = np->n_size;
1799 } else {
1800 np->n_size = vap->va_size;
1801 }
1802 genfs_node_wrlock(vp);
1803 uvm_vnp_setsize(vp, np->n_size);
1804 genfs_node_unlock(vp);
1805 } else
1806 np->n_size = vap->va_size;
1807 }
1808 memcpy((void *)vaper, (void *)vap, sizeof(struct vattr));
1809 if (np->n_flag & NCHG) {
1810 if (np->n_flag & NACC)
1811 vaper->va_atime = np->n_atim;
1812 if (np->n_flag & NUPD)
1813 vaper->va_mtime = np->n_mtim;
1814 }
1815 return (0);
1816 }
1817
1818 void
1819 nfs_delayedtruncate(vp)
1820 struct vnode *vp;
1821 {
1822 struct nfsnode *np = VTONFS(vp);
1823
1824 if (np->n_flag & NTRUNCDELAYED) {
1825 np->n_flag &= ~NTRUNCDELAYED;
1826 genfs_node_wrlock(vp);
1827 mutex_enter(&vp->v_interlock);
1828 (void)VOP_PUTPAGES(vp, 0,
1829 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1830 uvm_vnp_setsize(vp, np->n_size);
1831 genfs_node_unlock(vp);
1832 }
1833 }
1834
1835 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1836 #define NFS_WCCKLUDGE(nmp, now) \
1837 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1838 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1839
1840 /*
1841 * nfs_check_wccdata: check inaccurate wcc_data
1842 *
1843 * => return non-zero if we shouldn't trust the wcc_data.
1844 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1845 */
1846
1847 int
1848 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1849 struct timespec *mtime, bool docheck)
1850 {
1851 int error = 0;
1852
1853 #if !defined(NFS_V2_ONLY)
1854
1855 if (docheck) {
1856 struct vnode *vp = NFSTOV(np);
1857 struct nfsmount *nmp;
1858 long now = time_second;
1859 const struct timespec *omtime = &np->n_vattr->va_mtime;
1860 const struct timespec *octime = &np->n_vattr->va_ctime;
1861 const char *reason = NULL; /* XXX: gcc */
1862
1863 if (timespeccmp(omtime, mtime, <=)) {
1864 reason = "mtime";
1865 error = EINVAL;
1866 }
1867
1868 if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
1869 reason = "ctime";
1870 error = EINVAL;
1871 }
1872
1873 nmp = VFSTONFS(vp->v_mount);
1874 if (error) {
1875
1876 /*
1877 * despite of the fact that we've updated the file,
1878 * timestamps of the file were not updated as we
1879 * expected.
1880 * it means that the server has incompatible
1881 * semantics of timestamps or (more likely)
1882 * the server time is not precise enough to
1883 * track each modifications.
1884 * in that case, we disable wcc processing.
1885 *
1886 * yes, strictly speaking, we should disable all
1887 * caching. it's a compromise.
1888 */
1889
1890 mutex_enter(&nmp->nm_lock);
1891 if (!NFS_WCCKLUDGE(nmp, now)) {
1892 printf("%s: inaccurate wcc data (%s) detected,"
1893 " disabling wcc"
1894 " (ctime %u.%09u %u.%09u,"
1895 " mtime %u.%09u %u.%09u)\n",
1896 vp->v_mount->mnt_stat.f_mntfromname,
1897 reason,
1898 (unsigned int)octime->tv_sec,
1899 (unsigned int)octime->tv_nsec,
1900 (unsigned int)ctime->tv_sec,
1901 (unsigned int)ctime->tv_nsec,
1902 (unsigned int)omtime->tv_sec,
1903 (unsigned int)omtime->tv_nsec,
1904 (unsigned int)mtime->tv_sec,
1905 (unsigned int)mtime->tv_nsec);
1906 }
1907 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1908 nmp->nm_wcckludgetime = now;
1909 mutex_exit(&nmp->nm_lock);
1910 } else if (NFS_WCCKLUDGE(nmp, now)) {
1911 error = EPERM; /* XXX */
1912 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1913 mutex_enter(&nmp->nm_lock);
1914 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1915 printf("%s: re-enabling wcc\n",
1916 vp->v_mount->mnt_stat.f_mntfromname);
1917 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1918 }
1919 mutex_exit(&nmp->nm_lock);
1920 }
1921 }
1922
1923 #endif /* !defined(NFS_V2_ONLY) */
1924
1925 return error;
1926 }
1927
1928 /*
1929 * Heuristic to see if the server XDR encodes directory cookies or not.
1930 * it is not supposed to, but a lot of servers may do this. Also, since
1931 * most/all servers will implement V2 as well, it is expected that they
1932 * may return just 32 bits worth of cookie information, so we need to
1933 * find out in which 32 bits this information is available. We do this
1934 * to avoid trouble with emulated binaries that can't handle 64 bit
1935 * directory offsets.
1936 */
1937
1938 void
1939 nfs_cookieheuristic(vp, flagp, l, cred)
1940 struct vnode *vp;
1941 int *flagp;
1942 struct lwp *l;
1943 kauth_cred_t cred;
1944 {
1945 struct uio auio;
1946 struct iovec aiov;
1947 char *tbuf, *cp;
1948 struct dirent *dp;
1949 off_t *cookies = NULL, *cop;
1950 int error, eof, nc, len;
1951
1952 MALLOC(tbuf, void *, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1953
1954 aiov.iov_base = tbuf;
1955 aiov.iov_len = NFS_DIRFRAGSIZ;
1956 auio.uio_iov = &aiov;
1957 auio.uio_iovcnt = 1;
1958 auio.uio_rw = UIO_READ;
1959 auio.uio_resid = NFS_DIRFRAGSIZ;
1960 auio.uio_offset = 0;
1961 UIO_SETUP_SYSSPACE(&auio);
1962
1963 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1964
1965 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1966 if (error || len == 0) {
1967 FREE(tbuf, M_TEMP);
1968 if (cookies)
1969 free(cookies, M_TEMP);
1970 return;
1971 }
1972
1973 /*
1974 * Find the first valid entry and look at its offset cookie.
1975 */
1976
1977 cp = tbuf;
1978 for (cop = cookies; len > 0; len -= dp->d_reclen) {
1979 dp = (struct dirent *)cp;
1980 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
1981 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
1982 *flagp |= NFSMNT_SWAPCOOKIE;
1983 nfs_invaldircache(vp, 0);
1984 nfs_vinvalbuf(vp, 0, cred, l, 1);
1985 }
1986 break;
1987 }
1988 cop++;
1989 cp += dp->d_reclen;
1990 }
1991
1992 FREE(tbuf, M_TEMP);
1993 free(cookies, M_TEMP);
1994 }
1995 #endif /* NFS */
1996
1997 #ifdef NFSSERVER
1998 /*
1999 * Set up nameidata for a lookup() call and do it.
2000 *
2001 * If pubflag is set, this call is done for a lookup operation on the
2002 * public filehandle. In that case we allow crossing mountpoints and
2003 * absolute pathnames. However, the caller is expected to check that
2004 * the lookup result is within the public fs, and deny access if
2005 * it is not.
2006 */
2007 int
2008 nfs_namei(ndp, nsfh, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2009 struct nameidata *ndp;
2010 nfsrvfh_t *nsfh;
2011 uint32_t len;
2012 struct nfssvc_sock *slp;
2013 struct mbuf *nam;
2014 struct mbuf **mdp;
2015 char **dposp;
2016 struct vnode **retdirp;
2017 struct lwp *l;
2018 int kerbflag, pubflag;
2019 {
2020 int i, rem;
2021 struct mbuf *md;
2022 char *fromcp, *tocp, *cp;
2023 struct iovec aiov;
2024 struct uio auio;
2025 struct vnode *dp;
2026 int error, rdonly, linklen;
2027 struct componentname *cnp = &ndp->ni_cnd;
2028
2029 *retdirp = NULL;
2030
2031 if ((len + 1) > MAXPATHLEN)
2032 return (ENAMETOOLONG);
2033 if (len == 0)
2034 return (EACCES);
2035 cnp->cn_pnbuf = PNBUF_GET();
2036
2037 /*
2038 * Copy the name from the mbuf list to ndp->ni_pnbuf
2039 * and set the various ndp fields appropriately.
2040 */
2041 fromcp = *dposp;
2042 tocp = cnp->cn_pnbuf;
2043 md = *mdp;
2044 rem = mtod(md, char *) + md->m_len - fromcp;
2045 for (i = 0; i < len; i++) {
2046 while (rem == 0) {
2047 md = md->m_next;
2048 if (md == NULL) {
2049 error = EBADRPC;
2050 goto out;
2051 }
2052 fromcp = mtod(md, void *);
2053 rem = md->m_len;
2054 }
2055 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2056 error = EACCES;
2057 goto out;
2058 }
2059 *tocp++ = *fromcp++;
2060 rem--;
2061 }
2062 *tocp = '\0';
2063 *mdp = md;
2064 *dposp = fromcp;
2065 len = nfsm_rndup(len)-len;
2066 if (len > 0) {
2067 if (rem >= len)
2068 *dposp += len;
2069 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2070 goto out;
2071 }
2072
2073 /*
2074 * Extract and set starting directory.
2075 */
2076 error = nfsrv_fhtovp(nsfh, false, &dp, ndp->ni_cnd.cn_cred, slp,
2077 nam, &rdonly, kerbflag, pubflag);
2078 if (error)
2079 goto out;
2080 if (dp->v_type != VDIR) {
2081 vrele(dp);
2082 error = ENOTDIR;
2083 goto out;
2084 }
2085
2086 if (rdonly)
2087 cnp->cn_flags |= RDONLY;
2088
2089 *retdirp = dp;
2090
2091 if (pubflag) {
2092 /*
2093 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2094 * and the 'native path' indicator.
2095 */
2096 cp = PNBUF_GET();
2097 fromcp = cnp->cn_pnbuf;
2098 tocp = cp;
2099 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2100 switch ((unsigned char)*fromcp) {
2101 case WEBNFS_NATIVE_CHAR:
2102 /*
2103 * 'Native' path for us is the same
2104 * as a path according to the NFS spec,
2105 * just skip the escape char.
2106 */
2107 fromcp++;
2108 break;
2109 /*
2110 * More may be added in the future, range 0x80-0xff
2111 */
2112 default:
2113 error = EIO;
2114 vrele(dp);
2115 PNBUF_PUT(cp);
2116 goto out;
2117 }
2118 }
2119 /*
2120 * Translate the '%' escapes, URL-style.
2121 */
2122 while (*fromcp != '\0') {
2123 if (*fromcp == WEBNFS_ESC_CHAR) {
2124 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2125 fromcp++;
2126 *tocp++ = HEXSTRTOI(fromcp);
2127 fromcp += 2;
2128 continue;
2129 } else {
2130 error = ENOENT;
2131 vrele(dp);
2132 PNBUF_PUT(cp);
2133 goto out;
2134 }
2135 } else
2136 *tocp++ = *fromcp++;
2137 }
2138 *tocp = '\0';
2139 PNBUF_PUT(cnp->cn_pnbuf);
2140 cnp->cn_pnbuf = cp;
2141 }
2142
2143 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2144 ndp->ni_segflg = UIO_SYSSPACE;
2145 ndp->ni_rootdir = rootvnode;
2146 ndp->ni_erootdir = NULL;
2147
2148 if (pubflag) {
2149 ndp->ni_loopcnt = 0;
2150 if (cnp->cn_pnbuf[0] == '/')
2151 dp = rootvnode;
2152 } else {
2153 cnp->cn_flags |= NOCROSSMOUNT;
2154 }
2155
2156 VREF(dp);
2157 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2158
2159 for (;;) {
2160 cnp->cn_nameptr = cnp->cn_pnbuf;
2161 ndp->ni_startdir = dp;
2162
2163 /*
2164 * And call lookup() to do the real work
2165 */
2166 error = lookup(ndp);
2167 if (error) {
2168 if (ndp->ni_dvp) {
2169 vput(ndp->ni_dvp);
2170 }
2171 PNBUF_PUT(cnp->cn_pnbuf);
2172 return (error);
2173 }
2174
2175 /*
2176 * Check for encountering a symbolic link
2177 */
2178 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2179 if ((cnp->cn_flags & LOCKPARENT) == 0 && ndp->ni_dvp) {
2180 if (ndp->ni_dvp == ndp->ni_vp) {
2181 vrele(ndp->ni_dvp);
2182 } else {
2183 vput(ndp->ni_dvp);
2184 }
2185 }
2186 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2187 cnp->cn_flags |= HASBUF;
2188 else
2189 PNBUF_PUT(cnp->cn_pnbuf);
2190 return (0);
2191 } else {
2192 if (!pubflag) {
2193 error = EINVAL;
2194 break;
2195 }
2196 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2197 error = ELOOP;
2198 break;
2199 }
2200 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2201 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred);
2202 if (error != 0)
2203 break;
2204 }
2205 if (ndp->ni_pathlen > 1)
2206 cp = PNBUF_GET();
2207 else
2208 cp = cnp->cn_pnbuf;
2209 aiov.iov_base = cp;
2210 aiov.iov_len = MAXPATHLEN;
2211 auio.uio_iov = &aiov;
2212 auio.uio_iovcnt = 1;
2213 auio.uio_offset = 0;
2214 auio.uio_rw = UIO_READ;
2215 auio.uio_resid = MAXPATHLEN;
2216 UIO_SETUP_SYSSPACE(&auio);
2217 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2218 if (error) {
2219 badlink:
2220 if (ndp->ni_pathlen > 1)
2221 PNBUF_PUT(cp);
2222 break;
2223 }
2224 linklen = MAXPATHLEN - auio.uio_resid;
2225 if (linklen == 0) {
2226 error = ENOENT;
2227 goto badlink;
2228 }
2229 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2230 error = ENAMETOOLONG;
2231 goto badlink;
2232 }
2233 if (ndp->ni_pathlen > 1) {
2234 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2235 PNBUF_PUT(cnp->cn_pnbuf);
2236 cnp->cn_pnbuf = cp;
2237 } else
2238 cnp->cn_pnbuf[linklen] = '\0';
2239 ndp->ni_pathlen += linklen;
2240 vput(ndp->ni_vp);
2241 dp = ndp->ni_dvp;
2242
2243 /*
2244 * Check if root directory should replace current directory.
2245 */
2246 if (cnp->cn_pnbuf[0] == '/') {
2247 vput(dp);
2248 dp = ndp->ni_rootdir;
2249 VREF(dp);
2250 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2251 }
2252 }
2253 }
2254 vput(ndp->ni_dvp);
2255 vput(ndp->ni_vp);
2256 ndp->ni_vp = NULL;
2257 out:
2258 PNBUF_PUT(cnp->cn_pnbuf);
2259 return (error);
2260 }
2261 #endif /* NFSSERVER */
2262
2263 /*
2264 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2265 * boundary and only trims off the back end
2266 *
2267 * 1. trim off 'len' bytes as m_adj(mp, -len).
2268 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2269 */
2270 void
2271 nfs_zeropad(mp, len, nul)
2272 struct mbuf *mp;
2273 int len;
2274 int nul;
2275 {
2276 struct mbuf *m;
2277 int count;
2278
2279 /*
2280 * Trim from tail. Scan the mbuf chain,
2281 * calculating its length and finding the last mbuf.
2282 * If the adjustment only affects this mbuf, then just
2283 * adjust and return. Otherwise, rescan and truncate
2284 * after the remaining size.
2285 */
2286 count = 0;
2287 m = mp;
2288 for (;;) {
2289 count += m->m_len;
2290 if (m->m_next == NULL)
2291 break;
2292 m = m->m_next;
2293 }
2294
2295 KDASSERT(count >= len);
2296
2297 if (m->m_len >= len) {
2298 m->m_len -= len;
2299 } else {
2300 count -= len;
2301 /*
2302 * Correct length for chain is "count".
2303 * Find the mbuf with last data, adjust its length,
2304 * and toss data from remaining mbufs on chain.
2305 */
2306 for (m = mp; m; m = m->m_next) {
2307 if (m->m_len >= count) {
2308 m->m_len = count;
2309 break;
2310 }
2311 count -= m->m_len;
2312 }
2313 KASSERT(m && m->m_next);
2314 m_freem(m->m_next);
2315 m->m_next = NULL;
2316 }
2317
2318 KDASSERT(m->m_next == NULL);
2319
2320 /*
2321 * zero-padding.
2322 */
2323 if (nul > 0) {
2324 char *cp;
2325 int i;
2326
2327 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2328 struct mbuf *n;
2329
2330 KDASSERT(MLEN >= nul);
2331 n = m_get(M_WAIT, MT_DATA);
2332 MCLAIM(n, &nfs_mowner);
2333 n->m_len = nul;
2334 n->m_next = NULL;
2335 m->m_next = n;
2336 cp = mtod(n, void *);
2337 } else {
2338 cp = mtod(m, char *) + m->m_len;
2339 m->m_len += nul;
2340 }
2341 for (i = 0; i < nul; i++)
2342 *cp++ = '\0';
2343 }
2344 return;
2345 }
2346
2347 /*
2348 * Make these functions instead of macros, so that the kernel text size
2349 * doesn't get too big...
2350 */
2351 void
2352 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2353 struct nfsrv_descript *nfsd;
2354 int before_ret;
2355 struct vattr *before_vap;
2356 int after_ret;
2357 struct vattr *after_vap;
2358 struct mbuf **mbp;
2359 char **bposp;
2360 {
2361 struct mbuf *mb = *mbp;
2362 char *bpos = *bposp;
2363 u_int32_t *tl;
2364
2365 if (before_ret) {
2366 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2367 *tl = nfs_false;
2368 } else {
2369 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2370 *tl++ = nfs_true;
2371 txdr_hyper(before_vap->va_size, tl);
2372 tl += 2;
2373 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2374 tl += 2;
2375 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2376 }
2377 *bposp = bpos;
2378 *mbp = mb;
2379 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2380 }
2381
2382 void
2383 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2384 struct nfsrv_descript *nfsd;
2385 int after_ret;
2386 struct vattr *after_vap;
2387 struct mbuf **mbp;
2388 char **bposp;
2389 {
2390 struct mbuf *mb = *mbp;
2391 char *bpos = *bposp;
2392 u_int32_t *tl;
2393 struct nfs_fattr *fp;
2394
2395 if (after_ret) {
2396 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2397 *tl = nfs_false;
2398 } else {
2399 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2400 *tl++ = nfs_true;
2401 fp = (struct nfs_fattr *)tl;
2402 nfsm_srvfattr(nfsd, after_vap, fp);
2403 }
2404 *mbp = mb;
2405 *bposp = bpos;
2406 }
2407
2408 void
2409 nfsm_srvfattr(nfsd, vap, fp)
2410 struct nfsrv_descript *nfsd;
2411 struct vattr *vap;
2412 struct nfs_fattr *fp;
2413 {
2414
2415 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2416 fp->fa_uid = txdr_unsigned(vap->va_uid);
2417 fp->fa_gid = txdr_unsigned(vap->va_gid);
2418 if (nfsd->nd_flag & ND_NFSV3) {
2419 fp->fa_type = vtonfsv3_type(vap->va_type);
2420 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2421 txdr_hyper(vap->va_size, &fp->fa3_size);
2422 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2423 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2424 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2425 fp->fa3_fsid.nfsuquad[0] = 0;
2426 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2427 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2428 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2429 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2430 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2431 } else {
2432 fp->fa_type = vtonfsv2_type(vap->va_type);
2433 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2434 fp->fa2_size = txdr_unsigned(vap->va_size);
2435 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2436 if (vap->va_type == VFIFO)
2437 fp->fa2_rdev = 0xffffffff;
2438 else
2439 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2440 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2441 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2442 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2443 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2444 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2445 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2446 }
2447 }
2448
2449 #ifdef NFSSERVER
2450 /*
2451 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2452 * - look up fsid in mount list (if not found ret error)
2453 * - get vp and export rights by calling VFS_FHTOVP()
2454 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2455 * - if not lockflag unlock it with VOP_UNLOCK()
2456 */
2457 int
2458 nfsrv_fhtovp(nfsrvfh_t *nsfh, int lockflag, struct vnode **vpp,
2459 kauth_cred_t cred, struct nfssvc_sock *slp, struct mbuf *nam, int *rdonlyp,
2460 int kerbflag, int pubflag)
2461 {
2462 struct mount *mp;
2463 kauth_cred_t credanon;
2464 int error, exflags;
2465 struct sockaddr_in *saddr;
2466 fhandle_t *fhp;
2467
2468 fhp = NFSRVFH_FHANDLE(nsfh);
2469 *vpp = (struct vnode *)0;
2470
2471 if (nfs_ispublicfh(nsfh)) {
2472 if (!pubflag || !nfs_pub.np_valid)
2473 return (ESTALE);
2474 fhp = nfs_pub.np_handle;
2475 }
2476
2477 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2478 if (error) {
2479 return error;
2480 }
2481
2482 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2483 if (error)
2484 return (error);
2485
2486 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2487 saddr = mtod(nam, struct sockaddr_in *);
2488 if ((saddr->sin_family == AF_INET) &&
2489 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2490 vput(*vpp);
2491 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2492 }
2493 #ifdef INET6
2494 if ((saddr->sin_family == AF_INET6) &&
2495 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2496 vput(*vpp);
2497 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2498 }
2499 #endif
2500 }
2501 /*
2502 * Check/setup credentials.
2503 */
2504 if (exflags & MNT_EXKERB) {
2505 if (!kerbflag) {
2506 vput(*vpp);
2507 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2508 }
2509 } else if (kerbflag) {
2510 vput(*vpp);
2511 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2512 } else if (kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER,
2513 NULL) == 0 || (exflags & MNT_EXPORTANON)) {
2514 kauth_cred_clone(credanon, cred);
2515 }
2516 if (exflags & MNT_EXRDONLY)
2517 *rdonlyp = 1;
2518 else
2519 *rdonlyp = 0;
2520 if (!lockflag)
2521 VOP_UNLOCK(*vpp, 0);
2522 return (0);
2523 }
2524
2525 /*
2526 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2527 * means a length of 0, for v2 it means all zeroes.
2528 */
2529 int
2530 nfs_ispublicfh(const nfsrvfh_t *nsfh)
2531 {
2532 const char *cp = (const void *)(NFSRVFH_DATA(nsfh));
2533 int i;
2534
2535 if (NFSRVFH_SIZE(nsfh) == 0) {
2536 return true;
2537 }
2538 if (NFSRVFH_SIZE(nsfh) != NFSX_V2FH) {
2539 return false;
2540 }
2541 for (i = 0; i < NFSX_V2FH; i++)
2542 if (*cp++ != 0)
2543 return false;
2544 return true;
2545 }
2546 #endif /* NFSSERVER */
2547
2548 /*
2549 * This function compares two net addresses by family and returns true
2550 * if they are the same host.
2551 * If there is any doubt, return false.
2552 * The AF_INET family is handled as a special case so that address mbufs
2553 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2554 */
2555 int
2556 netaddr_match(family, haddr, nam)
2557 int family;
2558 union nethostaddr *haddr;
2559 struct mbuf *nam;
2560 {
2561 struct sockaddr_in *inetaddr;
2562
2563 switch (family) {
2564 case AF_INET:
2565 inetaddr = mtod(nam, struct sockaddr_in *);
2566 if (inetaddr->sin_family == AF_INET &&
2567 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2568 return (1);
2569 break;
2570 #ifdef INET6
2571 case AF_INET6:
2572 {
2573 struct sockaddr_in6 *sin6_1, *sin6_2;
2574
2575 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2576 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2577 if (sin6_1->sin6_family == AF_INET6 &&
2578 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2579 return 1;
2580 }
2581 #endif
2582 #ifdef ISO
2583 case AF_ISO:
2584 {
2585 struct sockaddr_iso *isoaddr1, *isoaddr2;
2586
2587 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2588 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2589 if (isoaddr1->siso_family == AF_ISO &&
2590 isoaddr1->siso_nlen > 0 &&
2591 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2592 SAME_ISOADDR(isoaddr1, isoaddr2))
2593 return (1);
2594 break;
2595 }
2596 #endif /* ISO */
2597 default:
2598 break;
2599 };
2600 return (0);
2601 }
2602
2603 /*
2604 * The write verifier has changed (probably due to a server reboot), so all
2605 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2606 * as dirty or are being written out just now, all this takes is clearing
2607 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2608 * the mount point.
2609 */
2610 void
2611 nfs_clearcommit(mp)
2612 struct mount *mp;
2613 {
2614 struct vnode *vp;
2615 struct nfsnode *np;
2616 struct vm_page *pg;
2617 struct nfsmount *nmp = VFSTONFS(mp);
2618
2619 rw_enter(&nmp->nm_writeverflock, RW_WRITER);
2620 mutex_enter(&mntvnode_lock);
2621 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2622 KASSERT(vp->v_mount == mp);
2623 if (vp->v_type != VREG)
2624 continue;
2625 np = VTONFS(vp);
2626 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2627 np->n_pushedhi = 0;
2628 np->n_commitflags &=
2629 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2630 mutex_enter(&vp->v_uobj.vmobjlock);
2631 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2632 pg->flags &= ~PG_NEEDCOMMIT;
2633 }
2634 mutex_exit(&vp->v_uobj.vmobjlock);
2635 }
2636 mutex_exit(&mntvnode_lock);
2637 mutex_enter(&nmp->nm_lock);
2638 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2639 mutex_exit(&nmp->nm_lock);
2640 rw_exit(&nmp->nm_writeverflock);
2641 }
2642
2643 void
2644 nfs_merge_commit_ranges(vp)
2645 struct vnode *vp;
2646 {
2647 struct nfsnode *np = VTONFS(vp);
2648
2649 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2650
2651 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2652 np->n_pushedlo = np->n_pushlo;
2653 np->n_pushedhi = np->n_pushhi;
2654 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2655 } else {
2656 if (np->n_pushlo < np->n_pushedlo)
2657 np->n_pushedlo = np->n_pushlo;
2658 if (np->n_pushhi > np->n_pushedhi)
2659 np->n_pushedhi = np->n_pushhi;
2660 }
2661
2662 np->n_pushlo = np->n_pushhi = 0;
2663 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2664
2665 #ifdef NFS_DEBUG_COMMIT
2666 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2667 (unsigned)np->n_pushedhi);
2668 #endif
2669 }
2670
2671 int
2672 nfs_in_committed_range(vp, off, len)
2673 struct vnode *vp;
2674 off_t off, len;
2675 {
2676 struct nfsnode *np = VTONFS(vp);
2677 off_t lo, hi;
2678
2679 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2680 return 0;
2681 lo = off;
2682 hi = lo + len;
2683
2684 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2685 }
2686
2687 int
2688 nfs_in_tobecommitted_range(vp, off, len)
2689 struct vnode *vp;
2690 off_t off, len;
2691 {
2692 struct nfsnode *np = VTONFS(vp);
2693 off_t lo, hi;
2694
2695 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2696 return 0;
2697 lo = off;
2698 hi = lo + len;
2699
2700 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2701 }
2702
2703 void
2704 nfs_add_committed_range(vp, off, len)
2705 struct vnode *vp;
2706 off_t off, len;
2707 {
2708 struct nfsnode *np = VTONFS(vp);
2709 off_t lo, hi;
2710
2711 lo = off;
2712 hi = lo + len;
2713
2714 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2715 np->n_pushedlo = lo;
2716 np->n_pushedhi = hi;
2717 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2718 } else {
2719 if (hi > np->n_pushedhi)
2720 np->n_pushedhi = hi;
2721 if (lo < np->n_pushedlo)
2722 np->n_pushedlo = lo;
2723 }
2724 #ifdef NFS_DEBUG_COMMIT
2725 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2726 (unsigned)np->n_pushedhi);
2727 #endif
2728 }
2729
2730 void
2731 nfs_del_committed_range(vp, off, len)
2732 struct vnode *vp;
2733 off_t off, len;
2734 {
2735 struct nfsnode *np = VTONFS(vp);
2736 off_t lo, hi;
2737
2738 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2739 return;
2740
2741 lo = off;
2742 hi = lo + len;
2743
2744 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2745 return;
2746 if (lo <= np->n_pushedlo)
2747 np->n_pushedlo = hi;
2748 else if (hi >= np->n_pushedhi)
2749 np->n_pushedhi = lo;
2750 else {
2751 /*
2752 * XXX There's only one range. If the deleted range
2753 * is in the middle, pick the largest of the
2754 * contiguous ranges that it leaves.
2755 */
2756 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2757 np->n_pushedhi = lo;
2758 else
2759 np->n_pushedlo = hi;
2760 }
2761 #ifdef NFS_DEBUG_COMMIT
2762 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2763 (unsigned)np->n_pushedhi);
2764 #endif
2765 }
2766
2767 void
2768 nfs_add_tobecommitted_range(vp, off, len)
2769 struct vnode *vp;
2770 off_t off, len;
2771 {
2772 struct nfsnode *np = VTONFS(vp);
2773 off_t lo, hi;
2774
2775 lo = off;
2776 hi = lo + len;
2777
2778 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2779 np->n_pushlo = lo;
2780 np->n_pushhi = hi;
2781 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2782 } else {
2783 if (lo < np->n_pushlo)
2784 np->n_pushlo = lo;
2785 if (hi > np->n_pushhi)
2786 np->n_pushhi = hi;
2787 }
2788 #ifdef NFS_DEBUG_COMMIT
2789 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2790 (unsigned)np->n_pushhi);
2791 #endif
2792 }
2793
2794 void
2795 nfs_del_tobecommitted_range(vp, off, len)
2796 struct vnode *vp;
2797 off_t off, len;
2798 {
2799 struct nfsnode *np = VTONFS(vp);
2800 off_t lo, hi;
2801
2802 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2803 return;
2804
2805 lo = off;
2806 hi = lo + len;
2807
2808 if (lo > np->n_pushhi || hi < np->n_pushlo)
2809 return;
2810
2811 if (lo <= np->n_pushlo)
2812 np->n_pushlo = hi;
2813 else if (hi >= np->n_pushhi)
2814 np->n_pushhi = lo;
2815 else {
2816 /*
2817 * XXX There's only one range. If the deleted range
2818 * is in the middle, pick the largest of the
2819 * contiguous ranges that it leaves.
2820 */
2821 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2822 np->n_pushhi = lo;
2823 else
2824 np->n_pushlo = hi;
2825 }
2826 #ifdef NFS_DEBUG_COMMIT
2827 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2828 (unsigned)np->n_pushhi);
2829 #endif
2830 }
2831
2832 /*
2833 * Map errnos to NFS error numbers. For Version 3 also filter out error
2834 * numbers not specified for the associated procedure.
2835 */
2836 int
2837 nfsrv_errmap(nd, err)
2838 struct nfsrv_descript *nd;
2839 int err;
2840 {
2841 const short *defaulterrp, *errp;
2842
2843 if (nd->nd_flag & ND_NFSV3) {
2844 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2845 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2846 while (*++errp) {
2847 if (*errp == err)
2848 return (err);
2849 else if (*errp > err)
2850 break;
2851 }
2852 return ((int)*defaulterrp);
2853 } else
2854 return (err & 0xffff);
2855 }
2856 if (err <= ELAST)
2857 return ((int)nfsrv_v2errmap[err - 1]);
2858 return (NFSERR_IO);
2859 }
2860
2861 u_int32_t
2862 nfs_getxid()
2863 {
2864 static u_int32_t base;
2865 static u_int32_t nfs_xid = 0;
2866 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2867 u_int32_t newxid;
2868
2869 simple_lock(&nfs_xidlock);
2870 /*
2871 * derive initial xid from system time
2872 * XXX time is invalid if root not yet mounted
2873 */
2874 if (__predict_false(!base && (rootvp))) {
2875 struct timeval tv;
2876
2877 microtime(&tv);
2878 base = tv.tv_sec << 12;
2879 nfs_xid = base;
2880 }
2881
2882 /*
2883 * Skip zero xid if it should ever happen.
2884 */
2885 if (__predict_false(++nfs_xid == 0))
2886 nfs_xid++;
2887 newxid = nfs_xid;
2888 simple_unlock(&nfs_xidlock);
2889
2890 return txdr_unsigned(newxid);
2891 }
2892
2893 /*
2894 * assign a new xid for existing request.
2895 * used for NFSERR_JUKEBOX handling.
2896 */
2897 void
2898 nfs_renewxid(struct nfsreq *req)
2899 {
2900 u_int32_t xid;
2901 int off;
2902
2903 xid = nfs_getxid();
2904 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2905 off = sizeof(u_int32_t); /* RPC record mark */
2906 else
2907 off = 0;
2908
2909 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2910 req->r_xid = xid;
2911 }
2912
2913 #if defined(NFSSERVER)
2914 int
2915 nfsrv_composefh(struct vnode *vp, nfsrvfh_t *nsfh, bool v3)
2916 {
2917 int error;
2918 size_t fhsize;
2919
2920 fhsize = NFSD_MAXFHSIZE;
2921 error = vfs_composefh(vp, (void *)NFSRVFH_DATA(nsfh), &fhsize);
2922 if (NFSX_FHTOOBIG_P(fhsize, v3)) {
2923 error = EOPNOTSUPP;
2924 }
2925 if (error != 0) {
2926 return error;
2927 }
2928 if (!v3 && fhsize < NFSX_V2FH) {
2929 memset((char *)NFSRVFH_DATA(nsfh) + fhsize, 0,
2930 NFSX_V2FH - fhsize);
2931 fhsize = NFSX_V2FH;
2932 }
2933 if ((fhsize % NFSX_UNSIGNED) != 0) {
2934 return EOPNOTSUPP;
2935 }
2936 nsfh->nsfh_size = fhsize;
2937 return 0;
2938 }
2939
2940 int
2941 nfsrv_comparefh(const nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2942 {
2943
2944 if (NFSRVFH_SIZE(fh1) != NFSRVFH_SIZE(fh2)) {
2945 return NFSRVFH_SIZE(fh2) - NFSRVFH_SIZE(fh1);
2946 }
2947 return memcmp(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), NFSRVFH_SIZE(fh1));
2948 }
2949
2950 void
2951 nfsrv_copyfh(nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2952 {
2953 size_t size;
2954
2955 fh1->nsfh_size = size = NFSRVFH_SIZE(fh2);
2956 memcpy(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), size);
2957 }
2958 #endif /* defined(NFSSERVER) */
2959
2960 #if defined(NFS)
2961 /*
2962 * Set the attribute timeout based on how recently the file has been modified.
2963 */
2964
2965 time_t
2966 nfs_attrtimeo(struct nfsmount *nmp, struct nfsnode *np)
2967 {
2968 time_t timeo;
2969
2970 if ((nmp->nm_flag & NFSMNT_NOAC) != 0)
2971 return 0;
2972
2973 if (((np)->n_flag & NMODIFIED) != 0)
2974 return NFS_MINATTRTIMO;
2975
2976 timeo = (time_second - np->n_mtime.tv_sec) / 10;
2977 timeo = max(timeo, NFS_MINATTRTIMO);
2978 timeo = min(timeo, NFS_MAXATTRTIMO);
2979 return timeo;
2980 }
2981 #endif /* defined(NFS) */
2982