nfs_subs.c revision 1.199.6.5 1 /* $NetBSD: nfs_subs.c,v 1.199.6.5 2008/10/05 20:11:33 mjf Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.199.6.5 2008/10/05 20:11:33 mjf Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/kmem.h>
91 #include <sys/mount.h>
92 #include <sys/vnode.h>
93 #include <sys/namei.h>
94 #include <sys/mbuf.h>
95 #include <sys/socket.h>
96 #include <sys/stat.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 #include <sys/once.h>
101 #include <sys/kauth.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include <nfs/rpcv2.h>
106 #include <nfs/nfsproto.h>
107 #include <nfs/nfsnode.h>
108 #include <nfs/nfs.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114
115 #include <miscfs/specfs/specdev.h>
116
117 #include <netinet/in.h>
118 #ifdef ISO
119 #include <netiso/iso.h>
120 #endif
121
122 /*
123 * Data items converted to xdr at startup, since they are constant
124 * This is kinda hokey, but may save a little time doing byte swaps
125 */
126 u_int32_t nfs_xdrneg1;
127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
128 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
129 rpc_auth_kerb;
130 u_int32_t nfs_prog, nfs_true, nfs_false;
131
132 /* And other global data */
133 const nfstype nfsv2_type[9] =
134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142 int nfs_commitsize;
143
144 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
145
146 /* NFS client/server stats. */
147 struct nfsstats nfsstats;
148
149 /*
150 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
151 */
152 const int nfsv3_procid[NFS_NPROCS] = {
153 NFSPROC_NULL,
154 NFSPROC_GETATTR,
155 NFSPROC_SETATTR,
156 NFSPROC_NOOP,
157 NFSPROC_LOOKUP,
158 NFSPROC_READLINK,
159 NFSPROC_READ,
160 NFSPROC_NOOP,
161 NFSPROC_WRITE,
162 NFSPROC_CREATE,
163 NFSPROC_REMOVE,
164 NFSPROC_RENAME,
165 NFSPROC_LINK,
166 NFSPROC_SYMLINK,
167 NFSPROC_MKDIR,
168 NFSPROC_RMDIR,
169 NFSPROC_READDIR,
170 NFSPROC_FSSTAT,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP
176 };
177
178 /*
179 * and the reverse mapping from generic to Version 2 procedure numbers
180 */
181 const int nfsv2_procid[NFS_NPROCS] = {
182 NFSV2PROC_NULL,
183 NFSV2PROC_GETATTR,
184 NFSV2PROC_SETATTR,
185 NFSV2PROC_LOOKUP,
186 NFSV2PROC_NOOP,
187 NFSV2PROC_READLINK,
188 NFSV2PROC_READ,
189 NFSV2PROC_WRITE,
190 NFSV2PROC_CREATE,
191 NFSV2PROC_MKDIR,
192 NFSV2PROC_SYMLINK,
193 NFSV2PROC_CREATE,
194 NFSV2PROC_REMOVE,
195 NFSV2PROC_RMDIR,
196 NFSV2PROC_RENAME,
197 NFSV2PROC_LINK,
198 NFSV2PROC_READDIR,
199 NFSV2PROC_NOOP,
200 NFSV2PROC_STATFS,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 };
206
207 /*
208 * Maps errno values to nfs error numbers.
209 * Use NFSERR_IO as the catch all for ones not specifically defined in
210 * RFC 1094.
211 */
212 static const u_char nfsrv_v2errmap[ELAST] = {
213 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
214 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
215 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
216 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
217 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
226 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO,
230 };
231
232 /*
233 * Maps errno values to nfs error numbers.
234 * Although it is not obvious whether or not NFS clients really care if
235 * a returned error value is in the specified list for the procedure, the
236 * safest thing to do is filter them appropriately. For Version 2, the
237 * X/Open XNFS document is the only specification that defines error values
238 * for each RPC (The RFC simply lists all possible error values for all RPCs),
239 * so I have decided to not do this for Version 2.
240 * The first entry is the default error return and the rest are the valid
241 * errors for that RPC in increasing numeric order.
242 */
243 static const short nfsv3err_null[] = {
244 0,
245 0,
246 };
247
248 static const short nfsv3err_getattr[] = {
249 NFSERR_IO,
250 NFSERR_IO,
251 NFSERR_STALE,
252 NFSERR_BADHANDLE,
253 NFSERR_SERVERFAULT,
254 0,
255 };
256
257 static const short nfsv3err_setattr[] = {
258 NFSERR_IO,
259 NFSERR_PERM,
260 NFSERR_IO,
261 NFSERR_ACCES,
262 NFSERR_INVAL,
263 NFSERR_NOSPC,
264 NFSERR_ROFS,
265 NFSERR_DQUOT,
266 NFSERR_STALE,
267 NFSERR_BADHANDLE,
268 NFSERR_NOT_SYNC,
269 NFSERR_SERVERFAULT,
270 0,
271 };
272
273 static const short nfsv3err_lookup[] = {
274 NFSERR_IO,
275 NFSERR_NOENT,
276 NFSERR_IO,
277 NFSERR_ACCES,
278 NFSERR_NOTDIR,
279 NFSERR_NAMETOL,
280 NFSERR_STALE,
281 NFSERR_BADHANDLE,
282 NFSERR_SERVERFAULT,
283 0,
284 };
285
286 static const short nfsv3err_access[] = {
287 NFSERR_IO,
288 NFSERR_IO,
289 NFSERR_STALE,
290 NFSERR_BADHANDLE,
291 NFSERR_SERVERFAULT,
292 0,
293 };
294
295 static const short nfsv3err_readlink[] = {
296 NFSERR_IO,
297 NFSERR_IO,
298 NFSERR_ACCES,
299 NFSERR_INVAL,
300 NFSERR_STALE,
301 NFSERR_BADHANDLE,
302 NFSERR_NOTSUPP,
303 NFSERR_SERVERFAULT,
304 0,
305 };
306
307 static const short nfsv3err_read[] = {
308 NFSERR_IO,
309 NFSERR_IO,
310 NFSERR_NXIO,
311 NFSERR_ACCES,
312 NFSERR_INVAL,
313 NFSERR_STALE,
314 NFSERR_BADHANDLE,
315 NFSERR_SERVERFAULT,
316 NFSERR_JUKEBOX,
317 0,
318 };
319
320 static const short nfsv3err_write[] = {
321 NFSERR_IO,
322 NFSERR_IO,
323 NFSERR_ACCES,
324 NFSERR_INVAL,
325 NFSERR_FBIG,
326 NFSERR_NOSPC,
327 NFSERR_ROFS,
328 NFSERR_DQUOT,
329 NFSERR_STALE,
330 NFSERR_BADHANDLE,
331 NFSERR_SERVERFAULT,
332 NFSERR_JUKEBOX,
333 0,
334 };
335
336 static const short nfsv3err_create[] = {
337 NFSERR_IO,
338 NFSERR_IO,
339 NFSERR_ACCES,
340 NFSERR_EXIST,
341 NFSERR_NOTDIR,
342 NFSERR_NOSPC,
343 NFSERR_ROFS,
344 NFSERR_NAMETOL,
345 NFSERR_DQUOT,
346 NFSERR_STALE,
347 NFSERR_BADHANDLE,
348 NFSERR_NOTSUPP,
349 NFSERR_SERVERFAULT,
350 0,
351 };
352
353 static const short nfsv3err_mkdir[] = {
354 NFSERR_IO,
355 NFSERR_IO,
356 NFSERR_ACCES,
357 NFSERR_EXIST,
358 NFSERR_NOTDIR,
359 NFSERR_NOSPC,
360 NFSERR_ROFS,
361 NFSERR_NAMETOL,
362 NFSERR_DQUOT,
363 NFSERR_STALE,
364 NFSERR_BADHANDLE,
365 NFSERR_NOTSUPP,
366 NFSERR_SERVERFAULT,
367 0,
368 };
369
370 static const short nfsv3err_symlink[] = {
371 NFSERR_IO,
372 NFSERR_IO,
373 NFSERR_ACCES,
374 NFSERR_EXIST,
375 NFSERR_NOTDIR,
376 NFSERR_NOSPC,
377 NFSERR_ROFS,
378 NFSERR_NAMETOL,
379 NFSERR_DQUOT,
380 NFSERR_STALE,
381 NFSERR_BADHANDLE,
382 NFSERR_NOTSUPP,
383 NFSERR_SERVERFAULT,
384 0,
385 };
386
387 static const short nfsv3err_mknod[] = {
388 NFSERR_IO,
389 NFSERR_IO,
390 NFSERR_ACCES,
391 NFSERR_EXIST,
392 NFSERR_NOTDIR,
393 NFSERR_NOSPC,
394 NFSERR_ROFS,
395 NFSERR_NAMETOL,
396 NFSERR_DQUOT,
397 NFSERR_STALE,
398 NFSERR_BADHANDLE,
399 NFSERR_NOTSUPP,
400 NFSERR_SERVERFAULT,
401 NFSERR_BADTYPE,
402 0,
403 };
404
405 static const short nfsv3err_remove[] = {
406 NFSERR_IO,
407 NFSERR_NOENT,
408 NFSERR_IO,
409 NFSERR_ACCES,
410 NFSERR_NOTDIR,
411 NFSERR_ROFS,
412 NFSERR_NAMETOL,
413 NFSERR_STALE,
414 NFSERR_BADHANDLE,
415 NFSERR_SERVERFAULT,
416 0,
417 };
418
419 static const short nfsv3err_rmdir[] = {
420 NFSERR_IO,
421 NFSERR_NOENT,
422 NFSERR_IO,
423 NFSERR_ACCES,
424 NFSERR_EXIST,
425 NFSERR_NOTDIR,
426 NFSERR_INVAL,
427 NFSERR_ROFS,
428 NFSERR_NAMETOL,
429 NFSERR_NOTEMPTY,
430 NFSERR_STALE,
431 NFSERR_BADHANDLE,
432 NFSERR_NOTSUPP,
433 NFSERR_SERVERFAULT,
434 0,
435 };
436
437 static const short nfsv3err_rename[] = {
438 NFSERR_IO,
439 NFSERR_NOENT,
440 NFSERR_IO,
441 NFSERR_ACCES,
442 NFSERR_EXIST,
443 NFSERR_XDEV,
444 NFSERR_NOTDIR,
445 NFSERR_ISDIR,
446 NFSERR_INVAL,
447 NFSERR_NOSPC,
448 NFSERR_ROFS,
449 NFSERR_MLINK,
450 NFSERR_NAMETOL,
451 NFSERR_NOTEMPTY,
452 NFSERR_DQUOT,
453 NFSERR_STALE,
454 NFSERR_BADHANDLE,
455 NFSERR_NOTSUPP,
456 NFSERR_SERVERFAULT,
457 0,
458 };
459
460 static const short nfsv3err_link[] = {
461 NFSERR_IO,
462 NFSERR_IO,
463 NFSERR_ACCES,
464 NFSERR_EXIST,
465 NFSERR_XDEV,
466 NFSERR_NOTDIR,
467 NFSERR_INVAL,
468 NFSERR_NOSPC,
469 NFSERR_ROFS,
470 NFSERR_MLINK,
471 NFSERR_NAMETOL,
472 NFSERR_DQUOT,
473 NFSERR_STALE,
474 NFSERR_BADHANDLE,
475 NFSERR_NOTSUPP,
476 NFSERR_SERVERFAULT,
477 0,
478 };
479
480 static const short nfsv3err_readdir[] = {
481 NFSERR_IO,
482 NFSERR_IO,
483 NFSERR_ACCES,
484 NFSERR_NOTDIR,
485 NFSERR_STALE,
486 NFSERR_BADHANDLE,
487 NFSERR_BAD_COOKIE,
488 NFSERR_TOOSMALL,
489 NFSERR_SERVERFAULT,
490 0,
491 };
492
493 static const short nfsv3err_readdirplus[] = {
494 NFSERR_IO,
495 NFSERR_IO,
496 NFSERR_ACCES,
497 NFSERR_NOTDIR,
498 NFSERR_STALE,
499 NFSERR_BADHANDLE,
500 NFSERR_BAD_COOKIE,
501 NFSERR_NOTSUPP,
502 NFSERR_TOOSMALL,
503 NFSERR_SERVERFAULT,
504 0,
505 };
506
507 static const short nfsv3err_fsstat[] = {
508 NFSERR_IO,
509 NFSERR_IO,
510 NFSERR_STALE,
511 NFSERR_BADHANDLE,
512 NFSERR_SERVERFAULT,
513 0,
514 };
515
516 static const short nfsv3err_fsinfo[] = {
517 NFSERR_STALE,
518 NFSERR_STALE,
519 NFSERR_BADHANDLE,
520 NFSERR_SERVERFAULT,
521 0,
522 };
523
524 static const short nfsv3err_pathconf[] = {
525 NFSERR_STALE,
526 NFSERR_STALE,
527 NFSERR_BADHANDLE,
528 NFSERR_SERVERFAULT,
529 0,
530 };
531
532 static const short nfsv3err_commit[] = {
533 NFSERR_IO,
534 NFSERR_IO,
535 NFSERR_STALE,
536 NFSERR_BADHANDLE,
537 NFSERR_SERVERFAULT,
538 0,
539 };
540
541 static const short * const nfsrv_v3errmap[] = {
542 nfsv3err_null,
543 nfsv3err_getattr,
544 nfsv3err_setattr,
545 nfsv3err_lookup,
546 nfsv3err_access,
547 nfsv3err_readlink,
548 nfsv3err_read,
549 nfsv3err_write,
550 nfsv3err_create,
551 nfsv3err_mkdir,
552 nfsv3err_symlink,
553 nfsv3err_mknod,
554 nfsv3err_remove,
555 nfsv3err_rmdir,
556 nfsv3err_rename,
557 nfsv3err_link,
558 nfsv3err_readdir,
559 nfsv3err_readdirplus,
560 nfsv3err_fsstat,
561 nfsv3err_fsinfo,
562 nfsv3err_pathconf,
563 nfsv3err_commit,
564 };
565
566 extern struct vfs_hooks nfs_export_hooks;
567 extern struct nfsrtt nfsrtt;
568 extern struct nfsnodehashhead *nfsnodehashtbl;
569 extern u_long nfsnodehash;
570
571 u_long nfsdirhashmask;
572
573 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
574
575 /*
576 * Create the header for an rpc request packet
577 * The hsiz is the size of the rest of the nfs request header.
578 * (just used to decide if a cluster is a good idea)
579 */
580 struct mbuf *
581 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
582 {
583 struct mbuf *mb;
584 char *bpos;
585
586 mb = m_get(M_WAIT, MT_DATA);
587 MCLAIM(mb, &nfs_mowner);
588 if (hsiz >= MINCLSIZE)
589 m_clget(mb, M_WAIT);
590 mb->m_len = 0;
591 bpos = mtod(mb, void *);
592
593 /* Finally, return values */
594 *bposp = bpos;
595 return (mb);
596 }
597
598 /*
599 * Build the RPC header and fill in the authorization info.
600 * The authorization string argument is only used when the credentials
601 * come from outside of the kernel.
602 * Returns the head of the mbuf list.
603 */
604 struct mbuf *
605 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
606 verf_str, mrest, mrest_len, mbp, xidp)
607 kauth_cred_t cr;
608 int nmflag;
609 int procid;
610 int auth_type;
611 int auth_len;
612 char *auth_str;
613 int verf_len;
614 char *verf_str;
615 struct mbuf *mrest;
616 int mrest_len;
617 struct mbuf **mbp;
618 u_int32_t *xidp;
619 {
620 struct mbuf *mb;
621 u_int32_t *tl;
622 char *bpos;
623 int i;
624 struct mbuf *mreq;
625 int siz, grpsiz, authsiz;
626
627 authsiz = nfsm_rndup(auth_len);
628 mb = m_gethdr(M_WAIT, MT_DATA);
629 MCLAIM(mb, &nfs_mowner);
630 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
631 m_clget(mb, M_WAIT);
632 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
633 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
634 } else {
635 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
636 }
637 mb->m_len = 0;
638 mreq = mb;
639 bpos = mtod(mb, void *);
640
641 /*
642 * First the RPC header.
643 */
644 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
645
646 *tl++ = *xidp = nfs_getxid();
647 *tl++ = rpc_call;
648 *tl++ = rpc_vers;
649 *tl++ = txdr_unsigned(NFS_PROG);
650 if (nmflag & NFSMNT_NFSV3)
651 *tl++ = txdr_unsigned(NFS_VER3);
652 else
653 *tl++ = txdr_unsigned(NFS_VER2);
654 if (nmflag & NFSMNT_NFSV3)
655 *tl++ = txdr_unsigned(procid);
656 else
657 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
658
659 /*
660 * And then the authorization cred.
661 */
662 *tl++ = txdr_unsigned(auth_type);
663 *tl = txdr_unsigned(authsiz);
664 switch (auth_type) {
665 case RPCAUTH_UNIX:
666 nfsm_build(tl, u_int32_t *, auth_len);
667 *tl++ = 0; /* stamp ?? */
668 *tl++ = 0; /* NULL hostname */
669 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
670 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
671 grpsiz = (auth_len >> 2) - 5;
672 *tl++ = txdr_unsigned(grpsiz);
673 for (i = 0; i < grpsiz; i++)
674 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
675 break;
676 case RPCAUTH_KERB4:
677 siz = auth_len;
678 while (siz > 0) {
679 if (M_TRAILINGSPACE(mb) == 0) {
680 struct mbuf *mb2;
681 mb2 = m_get(M_WAIT, MT_DATA);
682 MCLAIM(mb2, &nfs_mowner);
683 if (siz >= MINCLSIZE)
684 m_clget(mb2, M_WAIT);
685 mb->m_next = mb2;
686 mb = mb2;
687 mb->m_len = 0;
688 bpos = mtod(mb, void *);
689 }
690 i = min(siz, M_TRAILINGSPACE(mb));
691 memcpy(bpos, auth_str, i);
692 mb->m_len += i;
693 auth_str += i;
694 bpos += i;
695 siz -= i;
696 }
697 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
698 for (i = 0; i < siz; i++)
699 *bpos++ = '\0';
700 mb->m_len += siz;
701 }
702 break;
703 };
704
705 /*
706 * And the verifier...
707 */
708 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
709 if (verf_str) {
710 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
711 *tl = txdr_unsigned(verf_len);
712 siz = verf_len;
713 while (siz > 0) {
714 if (M_TRAILINGSPACE(mb) == 0) {
715 struct mbuf *mb2;
716 mb2 = m_get(M_WAIT, MT_DATA);
717 MCLAIM(mb2, &nfs_mowner);
718 if (siz >= MINCLSIZE)
719 m_clget(mb2, M_WAIT);
720 mb->m_next = mb2;
721 mb = mb2;
722 mb->m_len = 0;
723 bpos = mtod(mb, void *);
724 }
725 i = min(siz, M_TRAILINGSPACE(mb));
726 memcpy(bpos, verf_str, i);
727 mb->m_len += i;
728 verf_str += i;
729 bpos += i;
730 siz -= i;
731 }
732 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
733 for (i = 0; i < siz; i++)
734 *bpos++ = '\0';
735 mb->m_len += siz;
736 }
737 } else {
738 *tl++ = txdr_unsigned(RPCAUTH_NULL);
739 *tl = 0;
740 }
741 mb->m_next = mrest;
742 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
743 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
744 *mbp = mb;
745 return (mreq);
746 }
747
748 /*
749 * copies mbuf chain to the uio scatter/gather list
750 */
751 int
752 nfsm_mbuftouio(mrep, uiop, siz, dpos)
753 struct mbuf **mrep;
754 struct uio *uiop;
755 int siz;
756 char **dpos;
757 {
758 char *mbufcp, *uiocp;
759 int xfer, left, len;
760 struct mbuf *mp;
761 long uiosiz, rem;
762 int error = 0;
763
764 mp = *mrep;
765 mbufcp = *dpos;
766 len = mtod(mp, char *) + mp->m_len - mbufcp;
767 rem = nfsm_rndup(siz)-siz;
768 while (siz > 0) {
769 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
770 return (EFBIG);
771 left = uiop->uio_iov->iov_len;
772 uiocp = uiop->uio_iov->iov_base;
773 if (left > siz)
774 left = siz;
775 uiosiz = left;
776 while (left > 0) {
777 while (len == 0) {
778 mp = mp->m_next;
779 if (mp == NULL)
780 return (EBADRPC);
781 mbufcp = mtod(mp, void *);
782 len = mp->m_len;
783 }
784 xfer = (left > len) ? len : left;
785 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
786 uiocp, xfer);
787 if (error) {
788 return error;
789 }
790 left -= xfer;
791 len -= xfer;
792 mbufcp += xfer;
793 uiocp += xfer;
794 uiop->uio_offset += xfer;
795 uiop->uio_resid -= xfer;
796 }
797 if (uiop->uio_iov->iov_len <= siz) {
798 uiop->uio_iovcnt--;
799 uiop->uio_iov++;
800 } else {
801 uiop->uio_iov->iov_base =
802 (char *)uiop->uio_iov->iov_base + uiosiz;
803 uiop->uio_iov->iov_len -= uiosiz;
804 }
805 siz -= uiosiz;
806 }
807 *dpos = mbufcp;
808 *mrep = mp;
809 if (rem > 0) {
810 if (len < rem)
811 error = nfs_adv(mrep, dpos, rem, len);
812 else
813 *dpos += rem;
814 }
815 return (error);
816 }
817
818 /*
819 * copies a uio scatter/gather list to an mbuf chain.
820 * NOTE: can ony handle iovcnt == 1
821 */
822 int
823 nfsm_uiotombuf(uiop, mq, siz, bpos)
824 struct uio *uiop;
825 struct mbuf **mq;
826 int siz;
827 char **bpos;
828 {
829 char *uiocp;
830 struct mbuf *mp, *mp2;
831 int xfer, left, mlen;
832 int uiosiz, clflg, rem;
833 char *cp;
834 int error;
835
836 #ifdef DIAGNOSTIC
837 if (uiop->uio_iovcnt != 1)
838 panic("nfsm_uiotombuf: iovcnt != 1");
839 #endif
840
841 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
842 clflg = 1;
843 else
844 clflg = 0;
845 rem = nfsm_rndup(siz)-siz;
846 mp = mp2 = *mq;
847 while (siz > 0) {
848 left = uiop->uio_iov->iov_len;
849 uiocp = uiop->uio_iov->iov_base;
850 if (left > siz)
851 left = siz;
852 uiosiz = left;
853 while (left > 0) {
854 mlen = M_TRAILINGSPACE(mp);
855 if (mlen == 0) {
856 mp = m_get(M_WAIT, MT_DATA);
857 MCLAIM(mp, &nfs_mowner);
858 if (clflg)
859 m_clget(mp, M_WAIT);
860 mp->m_len = 0;
861 mp2->m_next = mp;
862 mp2 = mp;
863 mlen = M_TRAILINGSPACE(mp);
864 }
865 xfer = (left > mlen) ? mlen : left;
866 cp = mtod(mp, char *) + mp->m_len;
867 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
868 xfer);
869 if (error) {
870 /* XXX */
871 }
872 mp->m_len += xfer;
873 left -= xfer;
874 uiocp += xfer;
875 uiop->uio_offset += xfer;
876 uiop->uio_resid -= xfer;
877 }
878 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
879 uiosiz;
880 uiop->uio_iov->iov_len -= uiosiz;
881 siz -= uiosiz;
882 }
883 if (rem > 0) {
884 if (rem > M_TRAILINGSPACE(mp)) {
885 mp = m_get(M_WAIT, MT_DATA);
886 MCLAIM(mp, &nfs_mowner);
887 mp->m_len = 0;
888 mp2->m_next = mp;
889 }
890 cp = mtod(mp, char *) + mp->m_len;
891 for (left = 0; left < rem; left++)
892 *cp++ = '\0';
893 mp->m_len += rem;
894 *bpos = cp;
895 } else
896 *bpos = mtod(mp, char *) + mp->m_len;
897 *mq = mp;
898 return (0);
899 }
900
901 /*
902 * Get at least "siz" bytes of correctly aligned data.
903 * When called the mbuf pointers are not necessarily correct,
904 * dsosp points to what ought to be in m_data and left contains
905 * what ought to be in m_len.
906 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
907 * cases. (The macros use the vars. dpos and dpos2)
908 */
909 int
910 nfsm_disct(mdp, dposp, siz, left, cp2)
911 struct mbuf **mdp;
912 char **dposp;
913 int siz;
914 int left;
915 char **cp2;
916 {
917 struct mbuf *m1, *m2;
918 struct mbuf *havebuf = NULL;
919 char *src = *dposp;
920 char *dst;
921 int len;
922
923 #ifdef DEBUG
924 if (left < 0)
925 panic("nfsm_disct: left < 0");
926 #endif
927 m1 = *mdp;
928 /*
929 * Skip through the mbuf chain looking for an mbuf with
930 * some data. If the first mbuf found has enough data
931 * and it is correctly aligned return it.
932 */
933 while (left == 0) {
934 havebuf = m1;
935 *mdp = m1 = m1->m_next;
936 if (m1 == NULL)
937 return (EBADRPC);
938 src = mtod(m1, void *);
939 left = m1->m_len;
940 /*
941 * If we start a new mbuf and it is big enough
942 * and correctly aligned just return it, don't
943 * do any pull up.
944 */
945 if (left >= siz && nfsm_aligned(src)) {
946 *cp2 = src;
947 *dposp = src + siz;
948 return (0);
949 }
950 }
951 if ((m1->m_flags & M_EXT) != 0) {
952 if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
953 nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
954 /*
955 * If the first mbuf with data has external data
956 * and there is a previous mbuf with some trailing
957 * space, use it to move the data into.
958 */
959 m2 = m1;
960 *mdp = m1 = havebuf;
961 *cp2 = mtod(m1, char *) + m1->m_len;
962 } else if (havebuf) {
963 /*
964 * If the first mbuf has a external data
965 * and there is no previous empty mbuf
966 * allocate a new mbuf and move the external
967 * data to the new mbuf. Also make the first
968 * mbuf look empty.
969 */
970 m2 = m1;
971 *mdp = m1 = m_get(M_WAIT, MT_DATA);
972 MCLAIM(m1, m2->m_owner);
973 if ((m2->m_flags & M_PKTHDR) != 0) {
974 /* XXX MOVE */
975 M_COPY_PKTHDR(m1, m2);
976 m_tag_delete_chain(m2, NULL);
977 m2->m_flags &= ~M_PKTHDR;
978 }
979 if (havebuf) {
980 havebuf->m_next = m1;
981 }
982 m1->m_next = m2;
983 MRESETDATA(m1);
984 m1->m_len = 0;
985 m2->m_data = src;
986 m2->m_len = left;
987 *cp2 = mtod(m1, char *);
988 } else {
989 struct mbuf **nextp = &m1->m_next;
990
991 m1->m_len -= left;
992 do {
993 m2 = m_get(M_WAIT, MT_DATA);
994 MCLAIM(m2, m1->m_owner);
995 if (left >= MINCLSIZE) {
996 MCLGET(m2, M_WAIT);
997 }
998 m2->m_next = *nextp;
999 *nextp = m2;
1000 nextp = &m2->m_next;
1001 len = (m2->m_flags & M_EXT) != 0 ?
1002 MCLBYTES : MLEN;
1003 if (len > left) {
1004 len = left;
1005 }
1006 memcpy(mtod(m2, char *), src, len);
1007 m2->m_len = len;
1008 src += len;
1009 left -= len;
1010 } while (left > 0);
1011 *mdp = m1 = m1->m_next;
1012 m2 = m1->m_next;
1013 *cp2 = mtod(m1, char *);
1014 }
1015 } else {
1016 /*
1017 * If the first mbuf has no external data
1018 * move the data to the front of the mbuf.
1019 */
1020 MRESETDATA(m1);
1021 dst = mtod(m1, char *);
1022 if (dst != src) {
1023 memmove(dst, src, left);
1024 }
1025 m1->m_len = left;
1026 m2 = m1->m_next;
1027 *cp2 = m1->m_data;
1028 }
1029 *dposp = *cp2 + siz;
1030 /*
1031 * Loop through mbufs pulling data up into first mbuf until
1032 * the first mbuf is full or there is no more data to
1033 * pullup.
1034 */
1035 dst = mtod(m1, char *) + m1->m_len;
1036 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1037 if ((len = min(len, m2->m_len)) != 0) {
1038 memcpy(dst, mtod(m2, char *), len);
1039 }
1040 m1->m_len += len;
1041 dst += len;
1042 m2->m_data += len;
1043 m2->m_len -= len;
1044 m2 = m2->m_next;
1045 }
1046 if (m1->m_len < siz)
1047 return (EBADRPC);
1048 return (0);
1049 }
1050
1051 /*
1052 * Advance the position in the mbuf chain.
1053 */
1054 int
1055 nfs_adv(mdp, dposp, offs, left)
1056 struct mbuf **mdp;
1057 char **dposp;
1058 int offs;
1059 int left;
1060 {
1061 struct mbuf *m;
1062 int s;
1063
1064 m = *mdp;
1065 s = left;
1066 while (s < offs) {
1067 offs -= s;
1068 m = m->m_next;
1069 if (m == NULL)
1070 return (EBADRPC);
1071 s = m->m_len;
1072 }
1073 *mdp = m;
1074 *dposp = mtod(m, char *) + offs;
1075 return (0);
1076 }
1077
1078 /*
1079 * Copy a string into mbufs for the hard cases...
1080 */
1081 int
1082 nfsm_strtmbuf(mb, bpos, cp, siz)
1083 struct mbuf **mb;
1084 char **bpos;
1085 const char *cp;
1086 long siz;
1087 {
1088 struct mbuf *m1 = NULL, *m2;
1089 long left, xfer, len, tlen;
1090 u_int32_t *tl;
1091 int putsize;
1092
1093 putsize = 1;
1094 m2 = *mb;
1095 left = M_TRAILINGSPACE(m2);
1096 if (left > 0) {
1097 tl = ((u_int32_t *)(*bpos));
1098 *tl++ = txdr_unsigned(siz);
1099 putsize = 0;
1100 left -= NFSX_UNSIGNED;
1101 m2->m_len += NFSX_UNSIGNED;
1102 if (left > 0) {
1103 memcpy((void *) tl, cp, left);
1104 siz -= left;
1105 cp += left;
1106 m2->m_len += left;
1107 left = 0;
1108 }
1109 }
1110 /* Loop around adding mbufs */
1111 while (siz > 0) {
1112 m1 = m_get(M_WAIT, MT_DATA);
1113 MCLAIM(m1, &nfs_mowner);
1114 if (siz > MLEN)
1115 m_clget(m1, M_WAIT);
1116 m1->m_len = NFSMSIZ(m1);
1117 m2->m_next = m1;
1118 m2 = m1;
1119 tl = mtod(m1, u_int32_t *);
1120 tlen = 0;
1121 if (putsize) {
1122 *tl++ = txdr_unsigned(siz);
1123 m1->m_len -= NFSX_UNSIGNED;
1124 tlen = NFSX_UNSIGNED;
1125 putsize = 0;
1126 }
1127 if (siz < m1->m_len) {
1128 len = nfsm_rndup(siz);
1129 xfer = siz;
1130 if (xfer < len)
1131 *(tl+(xfer>>2)) = 0;
1132 } else {
1133 xfer = len = m1->m_len;
1134 }
1135 memcpy((void *) tl, cp, xfer);
1136 m1->m_len = len+tlen;
1137 siz -= xfer;
1138 cp += xfer;
1139 }
1140 *mb = m1;
1141 *bpos = mtod(m1, char *) + m1->m_len;
1142 return (0);
1143 }
1144
1145 /*
1146 * Directory caching routines. They work as follows:
1147 * - a cache is maintained per VDIR nfsnode.
1148 * - for each offset cookie that is exported to userspace, and can
1149 * thus be thrown back at us as an offset to VOP_READDIR, store
1150 * information in the cache.
1151 * - cached are:
1152 * - cookie itself
1153 * - blocknumber (essentially just a search key in the buffer cache)
1154 * - entry number in block.
1155 * - offset cookie of block in which this entry is stored
1156 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1157 * - entries are looked up in a hash table
1158 * - also maintained is an LRU list of entries, used to determine
1159 * which ones to delete if the cache grows too large.
1160 * - if 32 <-> 64 translation mode is requested for a filesystem,
1161 * the cache also functions as a translation table
1162 * - in the translation case, invalidating the cache does not mean
1163 * flushing it, but just marking entries as invalid, except for
1164 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1165 * still be able to use the cache as a translation table.
1166 * - 32 bit cookies are uniquely created by combining the hash table
1167 * entry value, and one generation count per hash table entry,
1168 * incremented each time an entry is appended to the chain.
1169 * - the cache is invalidated each time a direcory is modified
1170 * - sanity checks are also done; if an entry in a block turns
1171 * out not to have a matching cookie, the cache is invalidated
1172 * and a new block starting from the wanted offset is fetched from
1173 * the server.
1174 * - directory entries as read from the server are extended to contain
1175 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1176 * the cache and exporting them to userspace through the cookie
1177 * argument to VOP_READDIR.
1178 */
1179
1180 u_long
1181 nfs_dirhash(off)
1182 off_t off;
1183 {
1184 int i;
1185 char *cp = (char *)&off;
1186 u_long sum = 0L;
1187
1188 for (i = 0 ; i < sizeof (off); i++)
1189 sum += *cp++;
1190
1191 return sum;
1192 }
1193
1194 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1195 #define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np))
1196 #define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np))
1197 #define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
1198
1199 void
1200 nfs_initdircache(vp)
1201 struct vnode *vp;
1202 {
1203 struct nfsnode *np = VTONFS(vp);
1204 struct nfsdirhashhead *dircache;
1205
1206 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true,
1207 &nfsdirhashmask);
1208
1209 NFSDC_LOCK(np);
1210 if (np->n_dircache == NULL) {
1211 np->n_dircachesize = 0;
1212 np->n_dircache = dircache;
1213 dircache = NULL;
1214 TAILQ_INIT(&np->n_dirchain);
1215 }
1216 NFSDC_UNLOCK(np);
1217 if (dircache)
1218 hashdone(dircache, HASH_LIST, nfsdirhashmask);
1219 }
1220
1221 void
1222 nfs_initdirxlatecookie(vp)
1223 struct vnode *vp;
1224 {
1225 struct nfsnode *np = VTONFS(vp);
1226 unsigned *dirgens;
1227
1228 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1229
1230 dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
1231 NFSDC_LOCK(np);
1232 if (np->n_dirgens == NULL) {
1233 np->n_dirgens = dirgens;
1234 dirgens = NULL;
1235 }
1236 NFSDC_UNLOCK(np);
1237 if (dirgens)
1238 kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
1239 }
1240
1241 static const struct nfsdircache dzero;
1242
1243 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1244 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1245 struct nfsdircache *));
1246
1247 static void
1248 nfs_unlinkdircache(np, ndp)
1249 struct nfsnode *np;
1250 struct nfsdircache *ndp;
1251 {
1252
1253 NFSDC_ASSERT_LOCKED(np);
1254 KASSERT(ndp != &dzero);
1255
1256 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1257 return;
1258
1259 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1260 LIST_REMOVE(ndp, dc_hash);
1261 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1262
1263 nfs_putdircache_unlocked(np, ndp);
1264 }
1265
1266 void
1267 nfs_putdircache(np, ndp)
1268 struct nfsnode *np;
1269 struct nfsdircache *ndp;
1270 {
1271 int ref;
1272
1273 if (ndp == &dzero)
1274 return;
1275
1276 KASSERT(ndp->dc_refcnt > 0);
1277 NFSDC_LOCK(np);
1278 ref = --ndp->dc_refcnt;
1279 NFSDC_UNLOCK(np);
1280
1281 if (ref == 0)
1282 kmem_free(ndp, sizeof(*ndp));
1283 }
1284
1285 static void
1286 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1287 {
1288 int ref;
1289
1290 NFSDC_ASSERT_LOCKED(np);
1291
1292 if (ndp == &dzero)
1293 return;
1294
1295 KASSERT(ndp->dc_refcnt > 0);
1296 ref = --ndp->dc_refcnt;
1297 if (ref == 0)
1298 kmem_free(ndp, sizeof(*ndp));
1299 }
1300
1301 struct nfsdircache *
1302 nfs_searchdircache(vp, off, do32, hashent)
1303 struct vnode *vp;
1304 off_t off;
1305 int do32;
1306 int *hashent;
1307 {
1308 struct nfsdirhashhead *ndhp;
1309 struct nfsdircache *ndp = NULL;
1310 struct nfsnode *np = VTONFS(vp);
1311 unsigned ent;
1312
1313 /*
1314 * Zero is always a valid cookie.
1315 */
1316 if (off == 0)
1317 /* XXXUNCONST */
1318 return (struct nfsdircache *)__UNCONST(&dzero);
1319
1320 if (!np->n_dircache)
1321 return NULL;
1322
1323 /*
1324 * We use a 32bit cookie as search key, directly reconstruct
1325 * the hashentry. Else use the hashfunction.
1326 */
1327 if (do32) {
1328 ent = (u_int32_t)off >> 24;
1329 if (ent >= NFS_DIRHASHSIZ)
1330 return NULL;
1331 ndhp = &np->n_dircache[ent];
1332 } else {
1333 ndhp = NFSDIRHASH(np, off);
1334 }
1335
1336 if (hashent)
1337 *hashent = (int)(ndhp - np->n_dircache);
1338
1339 NFSDC_LOCK(np);
1340 if (do32) {
1341 LIST_FOREACH(ndp, ndhp, dc_hash) {
1342 if (ndp->dc_cookie32 == (u_int32_t)off) {
1343 /*
1344 * An invalidated entry will become the
1345 * start of a new block fetched from
1346 * the server.
1347 */
1348 if (ndp->dc_flags & NFSDC_INVALID) {
1349 ndp->dc_blkcookie = ndp->dc_cookie;
1350 ndp->dc_entry = 0;
1351 ndp->dc_flags &= ~NFSDC_INVALID;
1352 }
1353 break;
1354 }
1355 }
1356 } else {
1357 LIST_FOREACH(ndp, ndhp, dc_hash) {
1358 if (ndp->dc_cookie == off)
1359 break;
1360 }
1361 }
1362 if (ndp != NULL)
1363 ndp->dc_refcnt++;
1364 NFSDC_UNLOCK(np);
1365 return ndp;
1366 }
1367
1368
1369 struct nfsdircache *
1370 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1371 daddr_t blkno)
1372 {
1373 struct nfsnode *np = VTONFS(vp);
1374 struct nfsdirhashhead *ndhp;
1375 struct nfsdircache *ndp = NULL;
1376 struct nfsdircache *newndp = NULL;
1377 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1378 int hashent = 0, gen, overwrite; /* XXX: GCC */
1379
1380 /*
1381 * XXX refuse entries for offset 0. amd(8) erroneously sets
1382 * cookie 0 for the '.' entry, making this necessary. This
1383 * isn't so bad, as 0 is a special case anyway.
1384 */
1385 if (off == 0)
1386 /* XXXUNCONST */
1387 return (struct nfsdircache *)__UNCONST(&dzero);
1388
1389 if (!np->n_dircache)
1390 /*
1391 * XXX would like to do this in nfs_nget but vtype
1392 * isn't known at that time.
1393 */
1394 nfs_initdircache(vp);
1395
1396 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1397 nfs_initdirxlatecookie(vp);
1398
1399 retry:
1400 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1401
1402 NFSDC_LOCK(np);
1403 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1404 /*
1405 * Overwriting an old entry. Check if it's the same.
1406 * If so, just return. If not, remove the old entry.
1407 */
1408 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1409 goto done;
1410 nfs_unlinkdircache(np, ndp);
1411 nfs_putdircache_unlocked(np, ndp);
1412 ndp = NULL;
1413 }
1414
1415 ndhp = &np->n_dircache[hashent];
1416
1417 if (!ndp) {
1418 if (newndp == NULL) {
1419 NFSDC_UNLOCK(np);
1420 newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP);
1421 newndp->dc_refcnt = 1;
1422 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1423 goto retry;
1424 }
1425 ndp = newndp;
1426 newndp = NULL;
1427 overwrite = 0;
1428 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1429 /*
1430 * We're allocating a new entry, so bump the
1431 * generation number.
1432 */
1433 KASSERT(np->n_dirgens);
1434 gen = ++np->n_dirgens[hashent];
1435 if (gen == 0) {
1436 np->n_dirgens[hashent]++;
1437 gen++;
1438 }
1439 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1440 }
1441 } else
1442 overwrite = 1;
1443
1444 ndp->dc_cookie = off;
1445 ndp->dc_blkcookie = blkoff;
1446 ndp->dc_entry = en;
1447 ndp->dc_flags = 0;
1448
1449 if (overwrite)
1450 goto done;
1451
1452 /*
1453 * If the maximum directory cookie cache size has been reached
1454 * for this node, take one off the front. The idea is that
1455 * directories are typically read front-to-back once, so that
1456 * the oldest entries can be thrown away without much performance
1457 * loss.
1458 */
1459 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1460 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1461 } else
1462 np->n_dircachesize++;
1463
1464 KASSERT(ndp->dc_refcnt == 1);
1465 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1466 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1467 ndp->dc_refcnt++;
1468 done:
1469 KASSERT(ndp->dc_refcnt > 0);
1470 NFSDC_UNLOCK(np);
1471 if (newndp)
1472 nfs_putdircache(np, newndp);
1473 return ndp;
1474 }
1475
1476 void
1477 nfs_invaldircache(vp, flags)
1478 struct vnode *vp;
1479 int flags;
1480 {
1481 struct nfsnode *np = VTONFS(vp);
1482 struct nfsdircache *ndp = NULL;
1483 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1484 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1485
1486 #ifdef DIAGNOSTIC
1487 if (vp->v_type != VDIR)
1488 panic("nfs: invaldircache: not dir");
1489 #endif
1490
1491 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1492 np->n_flag &= ~NEOFVALID;
1493
1494 if (!np->n_dircache)
1495 return;
1496
1497 NFSDC_LOCK(np);
1498 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1499 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1500 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1501 nfs_unlinkdircache(np, ndp);
1502 }
1503 np->n_dircachesize = 0;
1504 if (forcefree && np->n_dirgens) {
1505 kmem_free(np->n_dirgens,
1506 NFS_DIRHASHSIZ * sizeof(unsigned));
1507 np->n_dirgens = NULL;
1508 }
1509 } else {
1510 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1511 ndp->dc_flags |= NFSDC_INVALID;
1512 }
1513
1514 NFSDC_UNLOCK(np);
1515 }
1516
1517 /*
1518 * Called once before VFS init to initialize shared and
1519 * server-specific data structures.
1520 */
1521 static int
1522 nfs_init0(void)
1523 {
1524
1525 nfsrtt.pos = 0;
1526 rpc_vers = txdr_unsigned(RPC_VER2);
1527 rpc_call = txdr_unsigned(RPC_CALL);
1528 rpc_reply = txdr_unsigned(RPC_REPLY);
1529 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1530 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1531 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1532 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1533 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1534 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1535 nfs_prog = txdr_unsigned(NFS_PROG);
1536 nfs_true = txdr_unsigned(true);
1537 nfs_false = txdr_unsigned(false);
1538 nfs_xdrneg1 = txdr_unsigned(-1);
1539 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1540 if (nfs_ticks < 1)
1541 nfs_ticks = 1;
1542 #ifdef NFSSERVER
1543 vfs_hooks_attach(&nfs_export_hooks);
1544 nfsrv_init(0); /* Init server data structures */
1545 nfsrv_initcache(); /* Init the server request cache */
1546 {
1547 extern krwlock_t netexport_lock; /* XXX */
1548 rw_init(&netexport_lock);
1549 }
1550 #endif /* NFSSERVER */
1551
1552 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
1553 nfsdreq_init();
1554 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
1555
1556 /*
1557 * Initialize reply list and start timer
1558 */
1559 TAILQ_INIT(&nfs_reqq);
1560 nfs_timer_init();
1561 MOWNER_ATTACH(&nfs_mowner);
1562
1563 #ifdef NFS
1564 /* Initialize the kqueue structures */
1565 nfs_kqinit();
1566 /* Initialize the iod structures */
1567 nfs_iodinit();
1568 #endif
1569
1570 return 0;
1571 }
1572
1573 void
1574 nfs_init(void)
1575 {
1576 static ONCE_DECL(nfs_init_once);
1577
1578 RUN_ONCE(&nfs_init_once, nfs_init0);
1579 }
1580
1581 #ifdef NFS
1582 /*
1583 * Called once at VFS init to initialize client-specific data structures.
1584 */
1585 void
1586 nfs_vfs_init()
1587 {
1588
1589 /* Initialize NFS server / client shared data. */
1590 nfs_init();
1591
1592 nfs_node_init();
1593 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1594 }
1595
1596 void
1597 nfs_vfs_reinit()
1598 {
1599
1600 nfs_node_reinit();
1601 }
1602
1603 void
1604 nfs_vfs_done()
1605 {
1606
1607 nfs_node_done();
1608 }
1609
1610 /*
1611 * Attribute cache routines.
1612 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1613 * that are on the mbuf list
1614 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1615 * error otherwise
1616 */
1617
1618 /*
1619 * Load the attribute cache (that lives in the nfsnode entry) with
1620 * the values on the mbuf list and
1621 * Iff vap not NULL
1622 * copy the attributes to *vaper
1623 */
1624 int
1625 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1626 struct vnode **vpp;
1627 struct mbuf **mdp;
1628 char **dposp;
1629 struct vattr *vaper;
1630 int flags;
1631 {
1632 int32_t t1;
1633 char *cp2;
1634 int error = 0;
1635 struct mbuf *md;
1636 int v3 = NFS_ISV3(*vpp);
1637
1638 md = *mdp;
1639 t1 = (mtod(md, char *) + md->m_len) - *dposp;
1640 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1641 if (error)
1642 return (error);
1643 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1644 }
1645
1646 int
1647 nfs_loadattrcache(vpp, fp, vaper, flags)
1648 struct vnode **vpp;
1649 struct nfs_fattr *fp;
1650 struct vattr *vaper;
1651 int flags;
1652 {
1653 struct vnode *vp = *vpp;
1654 struct vattr *vap;
1655 int v3 = NFS_ISV3(vp);
1656 enum vtype vtyp;
1657 u_short vmode;
1658 struct timespec mtime;
1659 struct timespec ctime;
1660 int32_t rdev;
1661 struct nfsnode *np;
1662 extern int (**spec_nfsv2nodeop_p) __P((void *));
1663 uid_t uid;
1664 gid_t gid;
1665
1666 if (v3) {
1667 vtyp = nfsv3tov_type(fp->fa_type);
1668 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1669 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1670 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1671 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1672 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1673 } else {
1674 vtyp = nfsv2tov_type(fp->fa_type);
1675 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1676 if (vtyp == VNON || vtyp == VREG)
1677 vtyp = IFTOVT(vmode);
1678 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1679 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1680 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1681 fp->fa2_ctime.nfsv2_sec);
1682 ctime.tv_nsec = 0;
1683
1684 /*
1685 * Really ugly NFSv2 kludge.
1686 */
1687 if (vtyp == VCHR && rdev == 0xffffffff)
1688 vtyp = VFIFO;
1689 }
1690
1691 vmode &= ALLPERMS;
1692
1693 /*
1694 * If v_type == VNON it is a new node, so fill in the v_type,
1695 * n_mtime fields. Check to see if it represents a special
1696 * device, and if so, check for a possible alias. Once the
1697 * correct vnode has been obtained, fill in the rest of the
1698 * information.
1699 */
1700 np = VTONFS(vp);
1701 if (vp->v_type == VNON) {
1702 vp->v_type = vtyp;
1703 if (vp->v_type == VFIFO) {
1704 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1705 vp->v_op = fifo_nfsv2nodeop_p;
1706 } else if (vp->v_type == VREG) {
1707 mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
1708 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1709 vp->v_op = spec_nfsv2nodeop_p;
1710 spec_node_init(vp, (dev_t)rdev);
1711 }
1712 np->n_mtime = mtime;
1713 }
1714 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1715 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1716 vap = np->n_vattr;
1717
1718 /*
1719 * Invalidate access cache if uid, gid, mode or ctime changed.
1720 */
1721 if (np->n_accstamp != -1 &&
1722 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1723 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1724 np->n_accstamp = -1;
1725
1726 vap->va_type = vtyp;
1727 vap->va_mode = vmode;
1728 vap->va_rdev = (dev_t)rdev;
1729 vap->va_mtime = mtime;
1730 vap->va_ctime = ctime;
1731 vap->va_birthtime.tv_sec = VNOVAL;
1732 vap->va_birthtime.tv_nsec = VNOVAL;
1733 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1734 switch (vtyp) {
1735 case VDIR:
1736 vap->va_blocksize = NFS_DIRFRAGSIZ;
1737 break;
1738 case VBLK:
1739 vap->va_blocksize = BLKDEV_IOSIZE;
1740 break;
1741 case VCHR:
1742 vap->va_blocksize = MAXBSIZE;
1743 break;
1744 default:
1745 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1746 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1747 break;
1748 }
1749 if (v3) {
1750 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1751 vap->va_uid = uid;
1752 vap->va_gid = gid;
1753 vap->va_size = fxdr_hyper(&fp->fa3_size);
1754 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1755 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1756 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1757 vap->va_flags = 0;
1758 vap->va_filerev = 0;
1759 } else {
1760 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1761 vap->va_uid = uid;
1762 vap->va_gid = gid;
1763 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1764 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1765 * NFS_FABLKSIZE;
1766 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1767 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1768 vap->va_flags = 0;
1769 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1770 vap->va_filerev = 0;
1771 }
1772 if (vap->va_size > VFSTONFS(vp->v_mount)->nm_maxfilesize) {
1773 return EFBIG;
1774 }
1775 if (vap->va_size != np->n_size) {
1776 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1777 vap->va_size = np->n_size;
1778 } else {
1779 np->n_size = vap->va_size;
1780 if (vap->va_type == VREG) {
1781 /*
1782 * we can't free pages if NAC_NOTRUNC because
1783 * the pages can be owned by ourselves.
1784 */
1785 if (flags & NAC_NOTRUNC) {
1786 np->n_flag |= NTRUNCDELAYED;
1787 } else {
1788 genfs_node_wrlock(vp);
1789 mutex_enter(&vp->v_interlock);
1790 (void)VOP_PUTPAGES(vp, 0,
1791 0, PGO_SYNCIO | PGO_CLEANIT |
1792 PGO_FREE | PGO_ALLPAGES);
1793 uvm_vnp_setsize(vp, np->n_size);
1794 genfs_node_unlock(vp);
1795 }
1796 }
1797 }
1798 }
1799 np->n_attrstamp = time_second;
1800 if (vaper != NULL) {
1801 memcpy((void *)vaper, (void *)vap, sizeof(*vap));
1802 if (np->n_flag & NCHG) {
1803 if (np->n_flag & NACC)
1804 vaper->va_atime = np->n_atim;
1805 if (np->n_flag & NUPD)
1806 vaper->va_mtime = np->n_mtim;
1807 }
1808 }
1809 return (0);
1810 }
1811
1812 /*
1813 * Check the time stamp
1814 * If the cache is valid, copy contents to *vap and return 0
1815 * otherwise return an error
1816 */
1817 int
1818 nfs_getattrcache(vp, vaper)
1819 struct vnode *vp;
1820 struct vattr *vaper;
1821 {
1822 struct nfsnode *np = VTONFS(vp);
1823 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1824 struct vattr *vap;
1825
1826 if (np->n_attrstamp == 0 ||
1827 (time_second - np->n_attrstamp) >= nfs_attrtimeo(nmp, np)) {
1828 nfsstats.attrcache_misses++;
1829 return (ENOENT);
1830 }
1831 nfsstats.attrcache_hits++;
1832 vap = np->n_vattr;
1833 if (vap->va_size != np->n_size) {
1834 if (vap->va_type == VREG) {
1835 if ((np->n_flag & NMODIFIED) != 0 &&
1836 vap->va_size < np->n_size) {
1837 vap->va_size = np->n_size;
1838 } else {
1839 np->n_size = vap->va_size;
1840 }
1841 genfs_node_wrlock(vp);
1842 uvm_vnp_setsize(vp, np->n_size);
1843 genfs_node_unlock(vp);
1844 } else
1845 np->n_size = vap->va_size;
1846 }
1847 memcpy((void *)vaper, (void *)vap, sizeof(struct vattr));
1848 if (np->n_flag & NCHG) {
1849 if (np->n_flag & NACC)
1850 vaper->va_atime = np->n_atim;
1851 if (np->n_flag & NUPD)
1852 vaper->va_mtime = np->n_mtim;
1853 }
1854 return (0);
1855 }
1856
1857 void
1858 nfs_delayedtruncate(vp)
1859 struct vnode *vp;
1860 {
1861 struct nfsnode *np = VTONFS(vp);
1862
1863 if (np->n_flag & NTRUNCDELAYED) {
1864 np->n_flag &= ~NTRUNCDELAYED;
1865 genfs_node_wrlock(vp);
1866 mutex_enter(&vp->v_interlock);
1867 (void)VOP_PUTPAGES(vp, 0,
1868 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1869 uvm_vnp_setsize(vp, np->n_size);
1870 genfs_node_unlock(vp);
1871 }
1872 }
1873
1874 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1875 #define NFS_WCCKLUDGE(nmp, now) \
1876 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1877 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1878
1879 /*
1880 * nfs_check_wccdata: check inaccurate wcc_data
1881 *
1882 * => return non-zero if we shouldn't trust the wcc_data.
1883 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1884 */
1885
1886 int
1887 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1888 struct timespec *mtime, bool docheck)
1889 {
1890 int error = 0;
1891
1892 #if !defined(NFS_V2_ONLY)
1893
1894 if (docheck) {
1895 struct vnode *vp = NFSTOV(np);
1896 struct nfsmount *nmp;
1897 long now = time_second;
1898 const struct timespec *omtime = &np->n_vattr->va_mtime;
1899 const struct timespec *octime = &np->n_vattr->va_ctime;
1900 const char *reason = NULL; /* XXX: gcc */
1901
1902 if (timespeccmp(omtime, mtime, <=)) {
1903 reason = "mtime";
1904 error = EINVAL;
1905 }
1906
1907 if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
1908 reason = "ctime";
1909 error = EINVAL;
1910 }
1911
1912 nmp = VFSTONFS(vp->v_mount);
1913 if (error) {
1914
1915 /*
1916 * despite of the fact that we've updated the file,
1917 * timestamps of the file were not updated as we
1918 * expected.
1919 * it means that the server has incompatible
1920 * semantics of timestamps or (more likely)
1921 * the server time is not precise enough to
1922 * track each modifications.
1923 * in that case, we disable wcc processing.
1924 *
1925 * yes, strictly speaking, we should disable all
1926 * caching. it's a compromise.
1927 */
1928
1929 mutex_enter(&nmp->nm_lock);
1930 if (!NFS_WCCKLUDGE(nmp, now)) {
1931 printf("%s: inaccurate wcc data (%s) detected,"
1932 " disabling wcc"
1933 " (ctime %u.%09u %u.%09u,"
1934 " mtime %u.%09u %u.%09u)\n",
1935 vp->v_mount->mnt_stat.f_mntfromname,
1936 reason,
1937 (unsigned int)octime->tv_sec,
1938 (unsigned int)octime->tv_nsec,
1939 (unsigned int)ctime->tv_sec,
1940 (unsigned int)ctime->tv_nsec,
1941 (unsigned int)omtime->tv_sec,
1942 (unsigned int)omtime->tv_nsec,
1943 (unsigned int)mtime->tv_sec,
1944 (unsigned int)mtime->tv_nsec);
1945 }
1946 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1947 nmp->nm_wcckludgetime = now;
1948 mutex_exit(&nmp->nm_lock);
1949 } else if (NFS_WCCKLUDGE(nmp, now)) {
1950 error = EPERM; /* XXX */
1951 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1952 mutex_enter(&nmp->nm_lock);
1953 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1954 printf("%s: re-enabling wcc\n",
1955 vp->v_mount->mnt_stat.f_mntfromname);
1956 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1957 }
1958 mutex_exit(&nmp->nm_lock);
1959 }
1960 }
1961
1962 #endif /* !defined(NFS_V2_ONLY) */
1963
1964 return error;
1965 }
1966
1967 /*
1968 * Heuristic to see if the server XDR encodes directory cookies or not.
1969 * it is not supposed to, but a lot of servers may do this. Also, since
1970 * most/all servers will implement V2 as well, it is expected that they
1971 * may return just 32 bits worth of cookie information, so we need to
1972 * find out in which 32 bits this information is available. We do this
1973 * to avoid trouble with emulated binaries that can't handle 64 bit
1974 * directory offsets.
1975 */
1976
1977 void
1978 nfs_cookieheuristic(vp, flagp, l, cred)
1979 struct vnode *vp;
1980 int *flagp;
1981 struct lwp *l;
1982 kauth_cred_t cred;
1983 {
1984 struct uio auio;
1985 struct iovec aiov;
1986 char *tbuf, *cp;
1987 struct dirent *dp;
1988 off_t *cookies = NULL, *cop;
1989 int error, eof, nc, len;
1990
1991 MALLOC(tbuf, void *, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1992
1993 aiov.iov_base = tbuf;
1994 aiov.iov_len = NFS_DIRFRAGSIZ;
1995 auio.uio_iov = &aiov;
1996 auio.uio_iovcnt = 1;
1997 auio.uio_rw = UIO_READ;
1998 auio.uio_resid = NFS_DIRFRAGSIZ;
1999 auio.uio_offset = 0;
2000 UIO_SETUP_SYSSPACE(&auio);
2001
2002 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
2003
2004 len = NFS_DIRFRAGSIZ - auio.uio_resid;
2005 if (error || len == 0) {
2006 FREE(tbuf, M_TEMP);
2007 if (cookies)
2008 free(cookies, M_TEMP);
2009 return;
2010 }
2011
2012 /*
2013 * Find the first valid entry and look at its offset cookie.
2014 */
2015
2016 cp = tbuf;
2017 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2018 dp = (struct dirent *)cp;
2019 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2020 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2021 *flagp |= NFSMNT_SWAPCOOKIE;
2022 nfs_invaldircache(vp, 0);
2023 nfs_vinvalbuf(vp, 0, cred, l, 1);
2024 }
2025 break;
2026 }
2027 cop++;
2028 cp += dp->d_reclen;
2029 }
2030
2031 FREE(tbuf, M_TEMP);
2032 free(cookies, M_TEMP);
2033 }
2034 #endif /* NFS */
2035
2036 #ifdef NFSSERVER
2037 /*
2038 * Set up nameidata for a lookup() call and do it.
2039 *
2040 * If pubflag is set, this call is done for a lookup operation on the
2041 * public filehandle. In that case we allow crossing mountpoints and
2042 * absolute pathnames. However, the caller is expected to check that
2043 * the lookup result is within the public fs, and deny access if
2044 * it is not.
2045 */
2046 int
2047 nfs_namei(ndp, nsfh, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2048 struct nameidata *ndp;
2049 nfsrvfh_t *nsfh;
2050 uint32_t len;
2051 struct nfssvc_sock *slp;
2052 struct mbuf *nam;
2053 struct mbuf **mdp;
2054 char **dposp;
2055 struct vnode **retdirp;
2056 struct lwp *l;
2057 int kerbflag, pubflag;
2058 {
2059 int i, rem;
2060 struct mbuf *md;
2061 char *fromcp, *tocp, *cp;
2062 struct iovec aiov;
2063 struct uio auio;
2064 struct vnode *dp;
2065 int error, rdonly, linklen;
2066 struct componentname *cnp = &ndp->ni_cnd;
2067
2068 *retdirp = NULL;
2069
2070 if ((len + 1) > MAXPATHLEN)
2071 return (ENAMETOOLONG);
2072 if (len == 0)
2073 return (EACCES);
2074 cnp->cn_pnbuf = PNBUF_GET();
2075
2076 /*
2077 * Copy the name from the mbuf list to ndp->ni_pnbuf
2078 * and set the various ndp fields appropriately.
2079 */
2080 fromcp = *dposp;
2081 tocp = cnp->cn_pnbuf;
2082 md = *mdp;
2083 rem = mtod(md, char *) + md->m_len - fromcp;
2084 for (i = 0; i < len; i++) {
2085 while (rem == 0) {
2086 md = md->m_next;
2087 if (md == NULL) {
2088 error = EBADRPC;
2089 goto out;
2090 }
2091 fromcp = mtod(md, void *);
2092 rem = md->m_len;
2093 }
2094 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2095 error = EACCES;
2096 goto out;
2097 }
2098 *tocp++ = *fromcp++;
2099 rem--;
2100 }
2101 *tocp = '\0';
2102 *mdp = md;
2103 *dposp = fromcp;
2104 len = nfsm_rndup(len)-len;
2105 if (len > 0) {
2106 if (rem >= len)
2107 *dposp += len;
2108 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2109 goto out;
2110 }
2111
2112 /*
2113 * Extract and set starting directory.
2114 */
2115 error = nfsrv_fhtovp(nsfh, false, &dp, ndp->ni_cnd.cn_cred, slp,
2116 nam, &rdonly, kerbflag, pubflag);
2117 if (error)
2118 goto out;
2119 if (dp->v_type != VDIR) {
2120 vrele(dp);
2121 error = ENOTDIR;
2122 goto out;
2123 }
2124
2125 if (rdonly)
2126 cnp->cn_flags |= RDONLY;
2127
2128 *retdirp = dp;
2129
2130 if (pubflag) {
2131 /*
2132 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2133 * and the 'native path' indicator.
2134 */
2135 cp = PNBUF_GET();
2136 fromcp = cnp->cn_pnbuf;
2137 tocp = cp;
2138 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2139 switch ((unsigned char)*fromcp) {
2140 case WEBNFS_NATIVE_CHAR:
2141 /*
2142 * 'Native' path for us is the same
2143 * as a path according to the NFS spec,
2144 * just skip the escape char.
2145 */
2146 fromcp++;
2147 break;
2148 /*
2149 * More may be added in the future, range 0x80-0xff
2150 */
2151 default:
2152 error = EIO;
2153 vrele(dp);
2154 PNBUF_PUT(cp);
2155 goto out;
2156 }
2157 }
2158 /*
2159 * Translate the '%' escapes, URL-style.
2160 */
2161 while (*fromcp != '\0') {
2162 if (*fromcp == WEBNFS_ESC_CHAR) {
2163 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2164 fromcp++;
2165 *tocp++ = HEXSTRTOI(fromcp);
2166 fromcp += 2;
2167 continue;
2168 } else {
2169 error = ENOENT;
2170 vrele(dp);
2171 PNBUF_PUT(cp);
2172 goto out;
2173 }
2174 } else
2175 *tocp++ = *fromcp++;
2176 }
2177 *tocp = '\0';
2178 PNBUF_PUT(cnp->cn_pnbuf);
2179 cnp->cn_pnbuf = cp;
2180 }
2181
2182 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2183 ndp->ni_segflg = UIO_SYSSPACE;
2184 ndp->ni_rootdir = rootvnode;
2185 ndp->ni_erootdir = NULL;
2186
2187 if (pubflag) {
2188 ndp->ni_loopcnt = 0;
2189 if (cnp->cn_pnbuf[0] == '/')
2190 dp = rootvnode;
2191 } else {
2192 cnp->cn_flags |= NOCROSSMOUNT;
2193 }
2194
2195 VREF(dp);
2196 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2197
2198 for (;;) {
2199 cnp->cn_nameptr = cnp->cn_pnbuf;
2200 ndp->ni_startdir = dp;
2201
2202 /*
2203 * And call lookup() to do the real work
2204 */
2205 error = lookup(ndp);
2206 if (error) {
2207 if (ndp->ni_dvp) {
2208 vput(ndp->ni_dvp);
2209 }
2210 PNBUF_PUT(cnp->cn_pnbuf);
2211 return (error);
2212 }
2213
2214 /*
2215 * Check for encountering a symbolic link
2216 */
2217 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2218 if ((cnp->cn_flags & LOCKPARENT) == 0 && ndp->ni_dvp) {
2219 if (ndp->ni_dvp == ndp->ni_vp) {
2220 vrele(ndp->ni_dvp);
2221 } else {
2222 vput(ndp->ni_dvp);
2223 }
2224 }
2225 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2226 cnp->cn_flags |= HASBUF;
2227 else
2228 PNBUF_PUT(cnp->cn_pnbuf);
2229 return (0);
2230 } else {
2231 if (!pubflag) {
2232 error = EINVAL;
2233 break;
2234 }
2235 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2236 error = ELOOP;
2237 break;
2238 }
2239 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2240 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred);
2241 if (error != 0)
2242 break;
2243 }
2244 if (ndp->ni_pathlen > 1)
2245 cp = PNBUF_GET();
2246 else
2247 cp = cnp->cn_pnbuf;
2248 aiov.iov_base = cp;
2249 aiov.iov_len = MAXPATHLEN;
2250 auio.uio_iov = &aiov;
2251 auio.uio_iovcnt = 1;
2252 auio.uio_offset = 0;
2253 auio.uio_rw = UIO_READ;
2254 auio.uio_resid = MAXPATHLEN;
2255 UIO_SETUP_SYSSPACE(&auio);
2256 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2257 if (error) {
2258 badlink:
2259 if (ndp->ni_pathlen > 1)
2260 PNBUF_PUT(cp);
2261 break;
2262 }
2263 linklen = MAXPATHLEN - auio.uio_resid;
2264 if (linklen == 0) {
2265 error = ENOENT;
2266 goto badlink;
2267 }
2268 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2269 error = ENAMETOOLONG;
2270 goto badlink;
2271 }
2272 if (ndp->ni_pathlen > 1) {
2273 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2274 PNBUF_PUT(cnp->cn_pnbuf);
2275 cnp->cn_pnbuf = cp;
2276 } else
2277 cnp->cn_pnbuf[linklen] = '\0';
2278 ndp->ni_pathlen += linklen;
2279 vput(ndp->ni_vp);
2280 dp = ndp->ni_dvp;
2281
2282 /*
2283 * Check if root directory should replace current directory.
2284 */
2285 if (cnp->cn_pnbuf[0] == '/') {
2286 vput(dp);
2287 dp = ndp->ni_rootdir;
2288 VREF(dp);
2289 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2290 }
2291 }
2292 }
2293 vput(ndp->ni_dvp);
2294 vput(ndp->ni_vp);
2295 ndp->ni_vp = NULL;
2296 out:
2297 PNBUF_PUT(cnp->cn_pnbuf);
2298 return (error);
2299 }
2300 #endif /* NFSSERVER */
2301
2302 /*
2303 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2304 * boundary and only trims off the back end
2305 *
2306 * 1. trim off 'len' bytes as m_adj(mp, -len).
2307 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2308 */
2309 void
2310 nfs_zeropad(mp, len, nul)
2311 struct mbuf *mp;
2312 int len;
2313 int nul;
2314 {
2315 struct mbuf *m;
2316 int count;
2317
2318 /*
2319 * Trim from tail. Scan the mbuf chain,
2320 * calculating its length and finding the last mbuf.
2321 * If the adjustment only affects this mbuf, then just
2322 * adjust and return. Otherwise, rescan and truncate
2323 * after the remaining size.
2324 */
2325 count = 0;
2326 m = mp;
2327 for (;;) {
2328 count += m->m_len;
2329 if (m->m_next == NULL)
2330 break;
2331 m = m->m_next;
2332 }
2333
2334 KDASSERT(count >= len);
2335
2336 if (m->m_len >= len) {
2337 m->m_len -= len;
2338 } else {
2339 count -= len;
2340 /*
2341 * Correct length for chain is "count".
2342 * Find the mbuf with last data, adjust its length,
2343 * and toss data from remaining mbufs on chain.
2344 */
2345 for (m = mp; m; m = m->m_next) {
2346 if (m->m_len >= count) {
2347 m->m_len = count;
2348 break;
2349 }
2350 count -= m->m_len;
2351 }
2352 KASSERT(m && m->m_next);
2353 m_freem(m->m_next);
2354 m->m_next = NULL;
2355 }
2356
2357 KDASSERT(m->m_next == NULL);
2358
2359 /*
2360 * zero-padding.
2361 */
2362 if (nul > 0) {
2363 char *cp;
2364 int i;
2365
2366 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2367 struct mbuf *n;
2368
2369 KDASSERT(MLEN >= nul);
2370 n = m_get(M_WAIT, MT_DATA);
2371 MCLAIM(n, &nfs_mowner);
2372 n->m_len = nul;
2373 n->m_next = NULL;
2374 m->m_next = n;
2375 cp = mtod(n, void *);
2376 } else {
2377 cp = mtod(m, char *) + m->m_len;
2378 m->m_len += nul;
2379 }
2380 for (i = 0; i < nul; i++)
2381 *cp++ = '\0';
2382 }
2383 return;
2384 }
2385
2386 /*
2387 * Make these functions instead of macros, so that the kernel text size
2388 * doesn't get too big...
2389 */
2390 void
2391 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2392 struct nfsrv_descript *nfsd;
2393 int before_ret;
2394 struct vattr *before_vap;
2395 int after_ret;
2396 struct vattr *after_vap;
2397 struct mbuf **mbp;
2398 char **bposp;
2399 {
2400 struct mbuf *mb = *mbp;
2401 char *bpos = *bposp;
2402 u_int32_t *tl;
2403
2404 if (before_ret) {
2405 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2406 *tl = nfs_false;
2407 } else {
2408 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2409 *tl++ = nfs_true;
2410 txdr_hyper(before_vap->va_size, tl);
2411 tl += 2;
2412 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2413 tl += 2;
2414 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2415 }
2416 *bposp = bpos;
2417 *mbp = mb;
2418 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2419 }
2420
2421 void
2422 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2423 struct nfsrv_descript *nfsd;
2424 int after_ret;
2425 struct vattr *after_vap;
2426 struct mbuf **mbp;
2427 char **bposp;
2428 {
2429 struct mbuf *mb = *mbp;
2430 char *bpos = *bposp;
2431 u_int32_t *tl;
2432 struct nfs_fattr *fp;
2433
2434 if (after_ret) {
2435 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2436 *tl = nfs_false;
2437 } else {
2438 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2439 *tl++ = nfs_true;
2440 fp = (struct nfs_fattr *)tl;
2441 nfsm_srvfattr(nfsd, after_vap, fp);
2442 }
2443 *mbp = mb;
2444 *bposp = bpos;
2445 }
2446
2447 void
2448 nfsm_srvfattr(nfsd, vap, fp)
2449 struct nfsrv_descript *nfsd;
2450 struct vattr *vap;
2451 struct nfs_fattr *fp;
2452 {
2453
2454 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2455 fp->fa_uid = txdr_unsigned(vap->va_uid);
2456 fp->fa_gid = txdr_unsigned(vap->va_gid);
2457 if (nfsd->nd_flag & ND_NFSV3) {
2458 fp->fa_type = vtonfsv3_type(vap->va_type);
2459 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2460 txdr_hyper(vap->va_size, &fp->fa3_size);
2461 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2462 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2463 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2464 fp->fa3_fsid.nfsuquad[0] = 0;
2465 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2466 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2467 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2468 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2469 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2470 } else {
2471 fp->fa_type = vtonfsv2_type(vap->va_type);
2472 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2473 fp->fa2_size = txdr_unsigned(vap->va_size);
2474 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2475 if (vap->va_type == VFIFO)
2476 fp->fa2_rdev = 0xffffffff;
2477 else
2478 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2479 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2480 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2481 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2482 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2483 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2484 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2485 }
2486 }
2487
2488 #ifdef NFSSERVER
2489 /*
2490 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2491 * - look up fsid in mount list (if not found ret error)
2492 * - get vp and export rights by calling VFS_FHTOVP()
2493 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2494 * - if not lockflag unlock it with VOP_UNLOCK()
2495 */
2496 int
2497 nfsrv_fhtovp(nfsrvfh_t *nsfh, int lockflag, struct vnode **vpp,
2498 kauth_cred_t cred, struct nfssvc_sock *slp, struct mbuf *nam, int *rdonlyp,
2499 int kerbflag, int pubflag)
2500 {
2501 struct mount *mp;
2502 kauth_cred_t credanon;
2503 int error, exflags;
2504 struct sockaddr_in *saddr;
2505 fhandle_t *fhp;
2506
2507 fhp = NFSRVFH_FHANDLE(nsfh);
2508 *vpp = (struct vnode *)0;
2509
2510 if (nfs_ispublicfh(nsfh)) {
2511 if (!pubflag || !nfs_pub.np_valid)
2512 return (ESTALE);
2513 fhp = nfs_pub.np_handle;
2514 }
2515
2516 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2517 if (error) {
2518 return error;
2519 }
2520
2521 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2522 if (error)
2523 return (error);
2524
2525 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2526 saddr = mtod(nam, struct sockaddr_in *);
2527 if ((saddr->sin_family == AF_INET) &&
2528 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2529 vput(*vpp);
2530 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2531 }
2532 #ifdef INET6
2533 if ((saddr->sin_family == AF_INET6) &&
2534 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2535 vput(*vpp);
2536 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2537 }
2538 #endif
2539 }
2540 /*
2541 * Check/setup credentials.
2542 */
2543 if (exflags & MNT_EXKERB) {
2544 if (!kerbflag) {
2545 vput(*vpp);
2546 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2547 }
2548 } else if (kerbflag) {
2549 vput(*vpp);
2550 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2551 } else if (kauth_cred_geteuid(cred) == 0 || /* NFS maproot, see below */
2552 (exflags & MNT_EXPORTANON)) {
2553 /*
2554 * This is used by the NFS maproot option. While we can change
2555 * the secmodel on our own host, we can't change it on the
2556 * clients. As means of least surprise, we're doing the
2557 * traditional thing here.
2558 * Should look into adding a "mapprivileged" or similar where
2559 * the users can be explicitly specified...
2560 * [elad, yamt 2008-03-05]
2561 */
2562 kauth_cred_clone(credanon, cred);
2563 }
2564 if (exflags & MNT_EXRDONLY)
2565 *rdonlyp = 1;
2566 else
2567 *rdonlyp = 0;
2568 if (!lockflag)
2569 VOP_UNLOCK(*vpp, 0);
2570 return (0);
2571 }
2572
2573 /*
2574 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2575 * means a length of 0, for v2 it means all zeroes.
2576 */
2577 int
2578 nfs_ispublicfh(const nfsrvfh_t *nsfh)
2579 {
2580 const char *cp = (const void *)(NFSRVFH_DATA(nsfh));
2581 int i;
2582
2583 if (NFSRVFH_SIZE(nsfh) == 0) {
2584 return true;
2585 }
2586 if (NFSRVFH_SIZE(nsfh) != NFSX_V2FH) {
2587 return false;
2588 }
2589 for (i = 0; i < NFSX_V2FH; i++)
2590 if (*cp++ != 0)
2591 return false;
2592 return true;
2593 }
2594 #endif /* NFSSERVER */
2595
2596 /*
2597 * This function compares two net addresses by family and returns true
2598 * if they are the same host.
2599 * If there is any doubt, return false.
2600 * The AF_INET family is handled as a special case so that address mbufs
2601 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2602 */
2603 int
2604 netaddr_match(family, haddr, nam)
2605 int family;
2606 union nethostaddr *haddr;
2607 struct mbuf *nam;
2608 {
2609 struct sockaddr_in *inetaddr;
2610
2611 switch (family) {
2612 case AF_INET:
2613 inetaddr = mtod(nam, struct sockaddr_in *);
2614 if (inetaddr->sin_family == AF_INET &&
2615 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2616 return (1);
2617 break;
2618 #ifdef INET6
2619 case AF_INET6:
2620 {
2621 struct sockaddr_in6 *sin6_1, *sin6_2;
2622
2623 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2624 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2625 if (sin6_1->sin6_family == AF_INET6 &&
2626 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2627 return 1;
2628 }
2629 #endif
2630 #ifdef ISO
2631 case AF_ISO:
2632 {
2633 struct sockaddr_iso *isoaddr1, *isoaddr2;
2634
2635 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2636 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2637 if (isoaddr1->siso_family == AF_ISO &&
2638 isoaddr1->siso_nlen > 0 &&
2639 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2640 SAME_ISOADDR(isoaddr1, isoaddr2))
2641 return (1);
2642 break;
2643 }
2644 #endif /* ISO */
2645 default:
2646 break;
2647 };
2648 return (0);
2649 }
2650
2651 /*
2652 * The write verifier has changed (probably due to a server reboot), so all
2653 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2654 * as dirty or are being written out just now, all this takes is clearing
2655 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2656 * the mount point.
2657 */
2658 void
2659 nfs_clearcommit(mp)
2660 struct mount *mp;
2661 {
2662 struct vnode *vp;
2663 struct nfsnode *np;
2664 struct vm_page *pg;
2665 struct nfsmount *nmp = VFSTONFS(mp);
2666
2667 rw_enter(&nmp->nm_writeverflock, RW_WRITER);
2668 mutex_enter(&mntvnode_lock);
2669 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2670 KASSERT(vp->v_mount == mp);
2671 if (vp->v_type != VREG)
2672 continue;
2673 np = VTONFS(vp);
2674 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2675 np->n_pushedhi = 0;
2676 np->n_commitflags &=
2677 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2678 mutex_enter(&vp->v_uobj.vmobjlock);
2679 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq.queue) {
2680 pg->flags &= ~PG_NEEDCOMMIT;
2681 }
2682 mutex_exit(&vp->v_uobj.vmobjlock);
2683 }
2684 mutex_exit(&mntvnode_lock);
2685 mutex_enter(&nmp->nm_lock);
2686 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2687 mutex_exit(&nmp->nm_lock);
2688 rw_exit(&nmp->nm_writeverflock);
2689 }
2690
2691 void
2692 nfs_merge_commit_ranges(vp)
2693 struct vnode *vp;
2694 {
2695 struct nfsnode *np = VTONFS(vp);
2696
2697 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2698
2699 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2700 np->n_pushedlo = np->n_pushlo;
2701 np->n_pushedhi = np->n_pushhi;
2702 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2703 } else {
2704 if (np->n_pushlo < np->n_pushedlo)
2705 np->n_pushedlo = np->n_pushlo;
2706 if (np->n_pushhi > np->n_pushedhi)
2707 np->n_pushedhi = np->n_pushhi;
2708 }
2709
2710 np->n_pushlo = np->n_pushhi = 0;
2711 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2712
2713 #ifdef NFS_DEBUG_COMMIT
2714 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2715 (unsigned)np->n_pushedhi);
2716 #endif
2717 }
2718
2719 int
2720 nfs_in_committed_range(vp, off, len)
2721 struct vnode *vp;
2722 off_t off, len;
2723 {
2724 struct nfsnode *np = VTONFS(vp);
2725 off_t lo, hi;
2726
2727 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2728 return 0;
2729 lo = off;
2730 hi = lo + len;
2731
2732 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2733 }
2734
2735 int
2736 nfs_in_tobecommitted_range(vp, off, len)
2737 struct vnode *vp;
2738 off_t off, len;
2739 {
2740 struct nfsnode *np = VTONFS(vp);
2741 off_t lo, hi;
2742
2743 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2744 return 0;
2745 lo = off;
2746 hi = lo + len;
2747
2748 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2749 }
2750
2751 void
2752 nfs_add_committed_range(vp, off, len)
2753 struct vnode *vp;
2754 off_t off, len;
2755 {
2756 struct nfsnode *np = VTONFS(vp);
2757 off_t lo, hi;
2758
2759 lo = off;
2760 hi = lo + len;
2761
2762 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2763 np->n_pushedlo = lo;
2764 np->n_pushedhi = hi;
2765 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2766 } else {
2767 if (hi > np->n_pushedhi)
2768 np->n_pushedhi = hi;
2769 if (lo < np->n_pushedlo)
2770 np->n_pushedlo = lo;
2771 }
2772 #ifdef NFS_DEBUG_COMMIT
2773 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2774 (unsigned)np->n_pushedhi);
2775 #endif
2776 }
2777
2778 void
2779 nfs_del_committed_range(vp, off, len)
2780 struct vnode *vp;
2781 off_t off, len;
2782 {
2783 struct nfsnode *np = VTONFS(vp);
2784 off_t lo, hi;
2785
2786 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2787 return;
2788
2789 lo = off;
2790 hi = lo + len;
2791
2792 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2793 return;
2794 if (lo <= np->n_pushedlo)
2795 np->n_pushedlo = hi;
2796 else if (hi >= np->n_pushedhi)
2797 np->n_pushedhi = lo;
2798 else {
2799 /*
2800 * XXX There's only one range. If the deleted range
2801 * is in the middle, pick the largest of the
2802 * contiguous ranges that it leaves.
2803 */
2804 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2805 np->n_pushedhi = lo;
2806 else
2807 np->n_pushedlo = hi;
2808 }
2809 #ifdef NFS_DEBUG_COMMIT
2810 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2811 (unsigned)np->n_pushedhi);
2812 #endif
2813 }
2814
2815 void
2816 nfs_add_tobecommitted_range(vp, off, len)
2817 struct vnode *vp;
2818 off_t off, len;
2819 {
2820 struct nfsnode *np = VTONFS(vp);
2821 off_t lo, hi;
2822
2823 lo = off;
2824 hi = lo + len;
2825
2826 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2827 np->n_pushlo = lo;
2828 np->n_pushhi = hi;
2829 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2830 } else {
2831 if (lo < np->n_pushlo)
2832 np->n_pushlo = lo;
2833 if (hi > np->n_pushhi)
2834 np->n_pushhi = hi;
2835 }
2836 #ifdef NFS_DEBUG_COMMIT
2837 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2838 (unsigned)np->n_pushhi);
2839 #endif
2840 }
2841
2842 void
2843 nfs_del_tobecommitted_range(vp, off, len)
2844 struct vnode *vp;
2845 off_t off, len;
2846 {
2847 struct nfsnode *np = VTONFS(vp);
2848 off_t lo, hi;
2849
2850 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2851 return;
2852
2853 lo = off;
2854 hi = lo + len;
2855
2856 if (lo > np->n_pushhi || hi < np->n_pushlo)
2857 return;
2858
2859 if (lo <= np->n_pushlo)
2860 np->n_pushlo = hi;
2861 else if (hi >= np->n_pushhi)
2862 np->n_pushhi = lo;
2863 else {
2864 /*
2865 * XXX There's only one range. If the deleted range
2866 * is in the middle, pick the largest of the
2867 * contiguous ranges that it leaves.
2868 */
2869 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2870 np->n_pushhi = lo;
2871 else
2872 np->n_pushlo = hi;
2873 }
2874 #ifdef NFS_DEBUG_COMMIT
2875 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2876 (unsigned)np->n_pushhi);
2877 #endif
2878 }
2879
2880 /*
2881 * Map errnos to NFS error numbers. For Version 3 also filter out error
2882 * numbers not specified for the associated procedure.
2883 */
2884 int
2885 nfsrv_errmap(nd, err)
2886 struct nfsrv_descript *nd;
2887 int err;
2888 {
2889 const short *defaulterrp, *errp;
2890
2891 if (nd->nd_flag & ND_NFSV3) {
2892 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2893 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2894 while (*++errp) {
2895 if (*errp == err)
2896 return (err);
2897 else if (*errp > err)
2898 break;
2899 }
2900 return ((int)*defaulterrp);
2901 } else
2902 return (err & 0xffff);
2903 }
2904 if (err <= ELAST)
2905 return ((int)nfsrv_v2errmap[err - 1]);
2906 return (NFSERR_IO);
2907 }
2908
2909 u_int32_t
2910 nfs_getxid()
2911 {
2912 static u_int32_t base;
2913 static u_int32_t nfs_xid = 0;
2914 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2915 u_int32_t newxid;
2916
2917 simple_lock(&nfs_xidlock);
2918 /*
2919 * derive initial xid from system time
2920 * XXX time is invalid if root not yet mounted
2921 */
2922 if (__predict_false(!base && (rootvp))) {
2923 struct timeval tv;
2924
2925 microtime(&tv);
2926 base = tv.tv_sec << 12;
2927 nfs_xid = base;
2928 }
2929
2930 /*
2931 * Skip zero xid if it should ever happen.
2932 */
2933 if (__predict_false(++nfs_xid == 0))
2934 nfs_xid++;
2935 newxid = nfs_xid;
2936 simple_unlock(&nfs_xidlock);
2937
2938 return txdr_unsigned(newxid);
2939 }
2940
2941 /*
2942 * assign a new xid for existing request.
2943 * used for NFSERR_JUKEBOX handling.
2944 */
2945 void
2946 nfs_renewxid(struct nfsreq *req)
2947 {
2948 u_int32_t xid;
2949 int off;
2950
2951 xid = nfs_getxid();
2952 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2953 off = sizeof(u_int32_t); /* RPC record mark */
2954 else
2955 off = 0;
2956
2957 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2958 req->r_xid = xid;
2959 }
2960
2961 #if defined(NFSSERVER)
2962 int
2963 nfsrv_composefh(struct vnode *vp, nfsrvfh_t *nsfh, bool v3)
2964 {
2965 int error;
2966 size_t fhsize;
2967
2968 fhsize = NFSD_MAXFHSIZE;
2969 error = vfs_composefh(vp, (void *)NFSRVFH_DATA(nsfh), &fhsize);
2970 if (NFSX_FHTOOBIG_P(fhsize, v3)) {
2971 error = EOPNOTSUPP;
2972 }
2973 if (error != 0) {
2974 return error;
2975 }
2976 if (!v3 && fhsize < NFSX_V2FH) {
2977 memset((char *)NFSRVFH_DATA(nsfh) + fhsize, 0,
2978 NFSX_V2FH - fhsize);
2979 fhsize = NFSX_V2FH;
2980 }
2981 if ((fhsize % NFSX_UNSIGNED) != 0) {
2982 return EOPNOTSUPP;
2983 }
2984 nsfh->nsfh_size = fhsize;
2985 return 0;
2986 }
2987
2988 int
2989 nfsrv_comparefh(const nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2990 {
2991
2992 if (NFSRVFH_SIZE(fh1) != NFSRVFH_SIZE(fh2)) {
2993 return NFSRVFH_SIZE(fh2) - NFSRVFH_SIZE(fh1);
2994 }
2995 return memcmp(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), NFSRVFH_SIZE(fh1));
2996 }
2997
2998 void
2999 nfsrv_copyfh(nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
3000 {
3001 size_t size;
3002
3003 fh1->nsfh_size = size = NFSRVFH_SIZE(fh2);
3004 memcpy(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), size);
3005 }
3006 #endif /* defined(NFSSERVER) */
3007
3008 #if defined(NFS)
3009 /*
3010 * Set the attribute timeout based on how recently the file has been modified.
3011 */
3012
3013 time_t
3014 nfs_attrtimeo(struct nfsmount *nmp, struct nfsnode *np)
3015 {
3016 time_t timeo;
3017
3018 if ((nmp->nm_flag & NFSMNT_NOAC) != 0)
3019 return 0;
3020
3021 if (((np)->n_flag & NMODIFIED) != 0)
3022 return NFS_MINATTRTIMO;
3023
3024 timeo = (time_second - np->n_mtime.tv_sec) / 10;
3025 timeo = max(timeo, NFS_MINATTRTIMO);
3026 timeo = min(timeo, NFS_MAXATTRTIMO);
3027 return timeo;
3028 }
3029 #endif /* defined(NFS) */
3030