nfs_subs.c revision 1.201.4.2 1 /* $NetBSD: nfs_subs.c,v 1.201.4.2 2008/05/16 02:25:49 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.201.4.2 2008/05/16 02:25:49 yamt Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/kmem.h>
91 #include <sys/mount.h>
92 #include <sys/vnode.h>
93 #include <sys/namei.h>
94 #include <sys/mbuf.h>
95 #include <sys/socket.h>
96 #include <sys/stat.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 #include <sys/once.h>
101 #include <sys/kauth.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include <nfs/rpcv2.h>
106 #include <nfs/nfsproto.h>
107 #include <nfs/nfsnode.h>
108 #include <nfs/nfs.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114
115 #include <miscfs/specfs/specdev.h>
116
117 #include <netinet/in.h>
118 #ifdef ISO
119 #include <netiso/iso.h>
120 #endif
121
122 /*
123 * Data items converted to xdr at startup, since they are constant
124 * This is kinda hokey, but may save a little time doing byte swaps
125 */
126 u_int32_t nfs_xdrneg1;
127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
128 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
129 rpc_auth_kerb;
130 u_int32_t nfs_prog, nfs_true, nfs_false;
131
132 /* And other global data */
133 const nfstype nfsv2_type[9] =
134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142 int nfs_commitsize;
143
144 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
145
146 /* NFS client/server stats. */
147 struct nfsstats nfsstats;
148
149 /*
150 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
151 */
152 const int nfsv3_procid[NFS_NPROCS] = {
153 NFSPROC_NULL,
154 NFSPROC_GETATTR,
155 NFSPROC_SETATTR,
156 NFSPROC_NOOP,
157 NFSPROC_LOOKUP,
158 NFSPROC_READLINK,
159 NFSPROC_READ,
160 NFSPROC_NOOP,
161 NFSPROC_WRITE,
162 NFSPROC_CREATE,
163 NFSPROC_REMOVE,
164 NFSPROC_RENAME,
165 NFSPROC_LINK,
166 NFSPROC_SYMLINK,
167 NFSPROC_MKDIR,
168 NFSPROC_RMDIR,
169 NFSPROC_READDIR,
170 NFSPROC_FSSTAT,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP
176 };
177
178 /*
179 * and the reverse mapping from generic to Version 2 procedure numbers
180 */
181 const int nfsv2_procid[NFS_NPROCS] = {
182 NFSV2PROC_NULL,
183 NFSV2PROC_GETATTR,
184 NFSV2PROC_SETATTR,
185 NFSV2PROC_LOOKUP,
186 NFSV2PROC_NOOP,
187 NFSV2PROC_READLINK,
188 NFSV2PROC_READ,
189 NFSV2PROC_WRITE,
190 NFSV2PROC_CREATE,
191 NFSV2PROC_MKDIR,
192 NFSV2PROC_SYMLINK,
193 NFSV2PROC_CREATE,
194 NFSV2PROC_REMOVE,
195 NFSV2PROC_RMDIR,
196 NFSV2PROC_RENAME,
197 NFSV2PROC_LINK,
198 NFSV2PROC_READDIR,
199 NFSV2PROC_NOOP,
200 NFSV2PROC_STATFS,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 };
206
207 /*
208 * Maps errno values to nfs error numbers.
209 * Use NFSERR_IO as the catch all for ones not specifically defined in
210 * RFC 1094.
211 */
212 static const u_char nfsrv_v2errmap[ELAST] = {
213 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
214 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
215 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
216 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
217 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
226 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO,
230 };
231
232 /*
233 * Maps errno values to nfs error numbers.
234 * Although it is not obvious whether or not NFS clients really care if
235 * a returned error value is in the specified list for the procedure, the
236 * safest thing to do is filter them appropriately. For Version 2, the
237 * X/Open XNFS document is the only specification that defines error values
238 * for each RPC (The RFC simply lists all possible error values for all RPCs),
239 * so I have decided to not do this for Version 2.
240 * The first entry is the default error return and the rest are the valid
241 * errors for that RPC in increasing numeric order.
242 */
243 static const short nfsv3err_null[] = {
244 0,
245 0,
246 };
247
248 static const short nfsv3err_getattr[] = {
249 NFSERR_IO,
250 NFSERR_IO,
251 NFSERR_STALE,
252 NFSERR_BADHANDLE,
253 NFSERR_SERVERFAULT,
254 0,
255 };
256
257 static const short nfsv3err_setattr[] = {
258 NFSERR_IO,
259 NFSERR_PERM,
260 NFSERR_IO,
261 NFSERR_ACCES,
262 NFSERR_INVAL,
263 NFSERR_NOSPC,
264 NFSERR_ROFS,
265 NFSERR_DQUOT,
266 NFSERR_STALE,
267 NFSERR_BADHANDLE,
268 NFSERR_NOT_SYNC,
269 NFSERR_SERVERFAULT,
270 0,
271 };
272
273 static const short nfsv3err_lookup[] = {
274 NFSERR_IO,
275 NFSERR_NOENT,
276 NFSERR_IO,
277 NFSERR_ACCES,
278 NFSERR_NOTDIR,
279 NFSERR_NAMETOL,
280 NFSERR_STALE,
281 NFSERR_BADHANDLE,
282 NFSERR_SERVERFAULT,
283 0,
284 };
285
286 static const short nfsv3err_access[] = {
287 NFSERR_IO,
288 NFSERR_IO,
289 NFSERR_STALE,
290 NFSERR_BADHANDLE,
291 NFSERR_SERVERFAULT,
292 0,
293 };
294
295 static const short nfsv3err_readlink[] = {
296 NFSERR_IO,
297 NFSERR_IO,
298 NFSERR_ACCES,
299 NFSERR_INVAL,
300 NFSERR_STALE,
301 NFSERR_BADHANDLE,
302 NFSERR_NOTSUPP,
303 NFSERR_SERVERFAULT,
304 0,
305 };
306
307 static const short nfsv3err_read[] = {
308 NFSERR_IO,
309 NFSERR_IO,
310 NFSERR_NXIO,
311 NFSERR_ACCES,
312 NFSERR_INVAL,
313 NFSERR_STALE,
314 NFSERR_BADHANDLE,
315 NFSERR_SERVERFAULT,
316 NFSERR_JUKEBOX,
317 0,
318 };
319
320 static const short nfsv3err_write[] = {
321 NFSERR_IO,
322 NFSERR_IO,
323 NFSERR_ACCES,
324 NFSERR_INVAL,
325 NFSERR_FBIG,
326 NFSERR_NOSPC,
327 NFSERR_ROFS,
328 NFSERR_DQUOT,
329 NFSERR_STALE,
330 NFSERR_BADHANDLE,
331 NFSERR_SERVERFAULT,
332 NFSERR_JUKEBOX,
333 0,
334 };
335
336 static const short nfsv3err_create[] = {
337 NFSERR_IO,
338 NFSERR_IO,
339 NFSERR_ACCES,
340 NFSERR_EXIST,
341 NFSERR_NOTDIR,
342 NFSERR_NOSPC,
343 NFSERR_ROFS,
344 NFSERR_NAMETOL,
345 NFSERR_DQUOT,
346 NFSERR_STALE,
347 NFSERR_BADHANDLE,
348 NFSERR_NOTSUPP,
349 NFSERR_SERVERFAULT,
350 0,
351 };
352
353 static const short nfsv3err_mkdir[] = {
354 NFSERR_IO,
355 NFSERR_IO,
356 NFSERR_ACCES,
357 NFSERR_EXIST,
358 NFSERR_NOTDIR,
359 NFSERR_NOSPC,
360 NFSERR_ROFS,
361 NFSERR_NAMETOL,
362 NFSERR_DQUOT,
363 NFSERR_STALE,
364 NFSERR_BADHANDLE,
365 NFSERR_NOTSUPP,
366 NFSERR_SERVERFAULT,
367 0,
368 };
369
370 static const short nfsv3err_symlink[] = {
371 NFSERR_IO,
372 NFSERR_IO,
373 NFSERR_ACCES,
374 NFSERR_EXIST,
375 NFSERR_NOTDIR,
376 NFSERR_NOSPC,
377 NFSERR_ROFS,
378 NFSERR_NAMETOL,
379 NFSERR_DQUOT,
380 NFSERR_STALE,
381 NFSERR_BADHANDLE,
382 NFSERR_NOTSUPP,
383 NFSERR_SERVERFAULT,
384 0,
385 };
386
387 static const short nfsv3err_mknod[] = {
388 NFSERR_IO,
389 NFSERR_IO,
390 NFSERR_ACCES,
391 NFSERR_EXIST,
392 NFSERR_NOTDIR,
393 NFSERR_NOSPC,
394 NFSERR_ROFS,
395 NFSERR_NAMETOL,
396 NFSERR_DQUOT,
397 NFSERR_STALE,
398 NFSERR_BADHANDLE,
399 NFSERR_NOTSUPP,
400 NFSERR_SERVERFAULT,
401 NFSERR_BADTYPE,
402 0,
403 };
404
405 static const short nfsv3err_remove[] = {
406 NFSERR_IO,
407 NFSERR_NOENT,
408 NFSERR_IO,
409 NFSERR_ACCES,
410 NFSERR_NOTDIR,
411 NFSERR_ROFS,
412 NFSERR_NAMETOL,
413 NFSERR_STALE,
414 NFSERR_BADHANDLE,
415 NFSERR_SERVERFAULT,
416 0,
417 };
418
419 static const short nfsv3err_rmdir[] = {
420 NFSERR_IO,
421 NFSERR_NOENT,
422 NFSERR_IO,
423 NFSERR_ACCES,
424 NFSERR_EXIST,
425 NFSERR_NOTDIR,
426 NFSERR_INVAL,
427 NFSERR_ROFS,
428 NFSERR_NAMETOL,
429 NFSERR_NOTEMPTY,
430 NFSERR_STALE,
431 NFSERR_BADHANDLE,
432 NFSERR_NOTSUPP,
433 NFSERR_SERVERFAULT,
434 0,
435 };
436
437 static const short nfsv3err_rename[] = {
438 NFSERR_IO,
439 NFSERR_NOENT,
440 NFSERR_IO,
441 NFSERR_ACCES,
442 NFSERR_EXIST,
443 NFSERR_XDEV,
444 NFSERR_NOTDIR,
445 NFSERR_ISDIR,
446 NFSERR_INVAL,
447 NFSERR_NOSPC,
448 NFSERR_ROFS,
449 NFSERR_MLINK,
450 NFSERR_NAMETOL,
451 NFSERR_NOTEMPTY,
452 NFSERR_DQUOT,
453 NFSERR_STALE,
454 NFSERR_BADHANDLE,
455 NFSERR_NOTSUPP,
456 NFSERR_SERVERFAULT,
457 0,
458 };
459
460 static const short nfsv3err_link[] = {
461 NFSERR_IO,
462 NFSERR_IO,
463 NFSERR_ACCES,
464 NFSERR_EXIST,
465 NFSERR_XDEV,
466 NFSERR_NOTDIR,
467 NFSERR_INVAL,
468 NFSERR_NOSPC,
469 NFSERR_ROFS,
470 NFSERR_MLINK,
471 NFSERR_NAMETOL,
472 NFSERR_DQUOT,
473 NFSERR_STALE,
474 NFSERR_BADHANDLE,
475 NFSERR_NOTSUPP,
476 NFSERR_SERVERFAULT,
477 0,
478 };
479
480 static const short nfsv3err_readdir[] = {
481 NFSERR_IO,
482 NFSERR_IO,
483 NFSERR_ACCES,
484 NFSERR_NOTDIR,
485 NFSERR_STALE,
486 NFSERR_BADHANDLE,
487 NFSERR_BAD_COOKIE,
488 NFSERR_TOOSMALL,
489 NFSERR_SERVERFAULT,
490 0,
491 };
492
493 static const short nfsv3err_readdirplus[] = {
494 NFSERR_IO,
495 NFSERR_IO,
496 NFSERR_ACCES,
497 NFSERR_NOTDIR,
498 NFSERR_STALE,
499 NFSERR_BADHANDLE,
500 NFSERR_BAD_COOKIE,
501 NFSERR_NOTSUPP,
502 NFSERR_TOOSMALL,
503 NFSERR_SERVERFAULT,
504 0,
505 };
506
507 static const short nfsv3err_fsstat[] = {
508 NFSERR_IO,
509 NFSERR_IO,
510 NFSERR_STALE,
511 NFSERR_BADHANDLE,
512 NFSERR_SERVERFAULT,
513 0,
514 };
515
516 static const short nfsv3err_fsinfo[] = {
517 NFSERR_STALE,
518 NFSERR_STALE,
519 NFSERR_BADHANDLE,
520 NFSERR_SERVERFAULT,
521 0,
522 };
523
524 static const short nfsv3err_pathconf[] = {
525 NFSERR_STALE,
526 NFSERR_STALE,
527 NFSERR_BADHANDLE,
528 NFSERR_SERVERFAULT,
529 0,
530 };
531
532 static const short nfsv3err_commit[] = {
533 NFSERR_IO,
534 NFSERR_IO,
535 NFSERR_STALE,
536 NFSERR_BADHANDLE,
537 NFSERR_SERVERFAULT,
538 0,
539 };
540
541 static const short * const nfsrv_v3errmap[] = {
542 nfsv3err_null,
543 nfsv3err_getattr,
544 nfsv3err_setattr,
545 nfsv3err_lookup,
546 nfsv3err_access,
547 nfsv3err_readlink,
548 nfsv3err_read,
549 nfsv3err_write,
550 nfsv3err_create,
551 nfsv3err_mkdir,
552 nfsv3err_symlink,
553 nfsv3err_mknod,
554 nfsv3err_remove,
555 nfsv3err_rmdir,
556 nfsv3err_rename,
557 nfsv3err_link,
558 nfsv3err_readdir,
559 nfsv3err_readdirplus,
560 nfsv3err_fsstat,
561 nfsv3err_fsinfo,
562 nfsv3err_pathconf,
563 nfsv3err_commit,
564 };
565
566 extern struct vfs_hooks nfs_export_hooks;
567 extern struct nfsrtt nfsrtt;
568 extern struct nfsnodehashhead *nfsnodehashtbl;
569 extern u_long nfsnodehash;
570
571 u_long nfsdirhashmask;
572
573 static kmutex_t nfs_xidlock;
574
575 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
576
577 /*
578 * Create the header for an rpc request packet
579 * The hsiz is the size of the rest of the nfs request header.
580 * (just used to decide if a cluster is a good idea)
581 */
582 struct mbuf *
583 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
584 {
585 struct mbuf *mb;
586 char *bpos;
587
588 mb = m_get(M_WAIT, MT_DATA);
589 MCLAIM(mb, &nfs_mowner);
590 if (hsiz >= MINCLSIZE)
591 m_clget(mb, M_WAIT);
592 mb->m_len = 0;
593 bpos = mtod(mb, void *);
594
595 /* Finally, return values */
596 *bposp = bpos;
597 return (mb);
598 }
599
600 /*
601 * Build the RPC header and fill in the authorization info.
602 * The authorization string argument is only used when the credentials
603 * come from outside of the kernel.
604 * Returns the head of the mbuf list.
605 */
606 struct mbuf *
607 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
608 verf_str, mrest, mrest_len, mbp, xidp)
609 kauth_cred_t cr;
610 int nmflag;
611 int procid;
612 int auth_type;
613 int auth_len;
614 char *auth_str;
615 int verf_len;
616 char *verf_str;
617 struct mbuf *mrest;
618 int mrest_len;
619 struct mbuf **mbp;
620 u_int32_t *xidp;
621 {
622 struct mbuf *mb;
623 u_int32_t *tl;
624 char *bpos;
625 int i;
626 struct mbuf *mreq;
627 int siz, grpsiz, authsiz;
628
629 authsiz = nfsm_rndup(auth_len);
630 mb = m_gethdr(M_WAIT, MT_DATA);
631 MCLAIM(mb, &nfs_mowner);
632 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
633 m_clget(mb, M_WAIT);
634 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
635 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
636 } else {
637 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
638 }
639 mb->m_len = 0;
640 mreq = mb;
641 bpos = mtod(mb, void *);
642
643 /*
644 * First the RPC header.
645 */
646 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
647
648 *tl++ = *xidp = nfs_getxid();
649 *tl++ = rpc_call;
650 *tl++ = rpc_vers;
651 *tl++ = txdr_unsigned(NFS_PROG);
652 if (nmflag & NFSMNT_NFSV3)
653 *tl++ = txdr_unsigned(NFS_VER3);
654 else
655 *tl++ = txdr_unsigned(NFS_VER2);
656 if (nmflag & NFSMNT_NFSV3)
657 *tl++ = txdr_unsigned(procid);
658 else
659 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
660
661 /*
662 * And then the authorization cred.
663 */
664 *tl++ = txdr_unsigned(auth_type);
665 *tl = txdr_unsigned(authsiz);
666 switch (auth_type) {
667 case RPCAUTH_UNIX:
668 nfsm_build(tl, u_int32_t *, auth_len);
669 *tl++ = 0; /* stamp ?? */
670 *tl++ = 0; /* NULL hostname */
671 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
672 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
673 grpsiz = (auth_len >> 2) - 5;
674 *tl++ = txdr_unsigned(grpsiz);
675 for (i = 0; i < grpsiz; i++)
676 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
677 break;
678 case RPCAUTH_KERB4:
679 siz = auth_len;
680 while (siz > 0) {
681 if (M_TRAILINGSPACE(mb) == 0) {
682 struct mbuf *mb2;
683 mb2 = m_get(M_WAIT, MT_DATA);
684 MCLAIM(mb2, &nfs_mowner);
685 if (siz >= MINCLSIZE)
686 m_clget(mb2, M_WAIT);
687 mb->m_next = mb2;
688 mb = mb2;
689 mb->m_len = 0;
690 bpos = mtod(mb, void *);
691 }
692 i = min(siz, M_TRAILINGSPACE(mb));
693 memcpy(bpos, auth_str, i);
694 mb->m_len += i;
695 auth_str += i;
696 bpos += i;
697 siz -= i;
698 }
699 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
700 for (i = 0; i < siz; i++)
701 *bpos++ = '\0';
702 mb->m_len += siz;
703 }
704 break;
705 };
706
707 /*
708 * And the verifier...
709 */
710 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
711 if (verf_str) {
712 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
713 *tl = txdr_unsigned(verf_len);
714 siz = verf_len;
715 while (siz > 0) {
716 if (M_TRAILINGSPACE(mb) == 0) {
717 struct mbuf *mb2;
718 mb2 = m_get(M_WAIT, MT_DATA);
719 MCLAIM(mb2, &nfs_mowner);
720 if (siz >= MINCLSIZE)
721 m_clget(mb2, M_WAIT);
722 mb->m_next = mb2;
723 mb = mb2;
724 mb->m_len = 0;
725 bpos = mtod(mb, void *);
726 }
727 i = min(siz, M_TRAILINGSPACE(mb));
728 memcpy(bpos, verf_str, i);
729 mb->m_len += i;
730 verf_str += i;
731 bpos += i;
732 siz -= i;
733 }
734 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
735 for (i = 0; i < siz; i++)
736 *bpos++ = '\0';
737 mb->m_len += siz;
738 }
739 } else {
740 *tl++ = txdr_unsigned(RPCAUTH_NULL);
741 *tl = 0;
742 }
743 mb->m_next = mrest;
744 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
745 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
746 *mbp = mb;
747 return (mreq);
748 }
749
750 /*
751 * copies mbuf chain to the uio scatter/gather list
752 */
753 int
754 nfsm_mbuftouio(mrep, uiop, siz, dpos)
755 struct mbuf **mrep;
756 struct uio *uiop;
757 int siz;
758 char **dpos;
759 {
760 char *mbufcp, *uiocp;
761 int xfer, left, len;
762 struct mbuf *mp;
763 long uiosiz, rem;
764 int error = 0;
765
766 mp = *mrep;
767 mbufcp = *dpos;
768 len = mtod(mp, char *) + mp->m_len - mbufcp;
769 rem = nfsm_rndup(siz)-siz;
770 while (siz > 0) {
771 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
772 return (EFBIG);
773 left = uiop->uio_iov->iov_len;
774 uiocp = uiop->uio_iov->iov_base;
775 if (left > siz)
776 left = siz;
777 uiosiz = left;
778 while (left > 0) {
779 while (len == 0) {
780 mp = mp->m_next;
781 if (mp == NULL)
782 return (EBADRPC);
783 mbufcp = mtod(mp, void *);
784 len = mp->m_len;
785 }
786 xfer = (left > len) ? len : left;
787 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
788 uiocp, xfer);
789 if (error) {
790 return error;
791 }
792 left -= xfer;
793 len -= xfer;
794 mbufcp += xfer;
795 uiocp += xfer;
796 uiop->uio_offset += xfer;
797 uiop->uio_resid -= xfer;
798 }
799 if (uiop->uio_iov->iov_len <= siz) {
800 uiop->uio_iovcnt--;
801 uiop->uio_iov++;
802 } else {
803 uiop->uio_iov->iov_base =
804 (char *)uiop->uio_iov->iov_base + uiosiz;
805 uiop->uio_iov->iov_len -= uiosiz;
806 }
807 siz -= uiosiz;
808 }
809 *dpos = mbufcp;
810 *mrep = mp;
811 if (rem > 0) {
812 if (len < rem)
813 error = nfs_adv(mrep, dpos, rem, len);
814 else
815 *dpos += rem;
816 }
817 return (error);
818 }
819
820 /*
821 * copies a uio scatter/gather list to an mbuf chain.
822 * NOTE: can ony handle iovcnt == 1
823 */
824 int
825 nfsm_uiotombuf(uiop, mq, siz, bpos)
826 struct uio *uiop;
827 struct mbuf **mq;
828 int siz;
829 char **bpos;
830 {
831 char *uiocp;
832 struct mbuf *mp, *mp2;
833 int xfer, left, mlen;
834 int uiosiz, clflg, rem;
835 char *cp;
836 int error;
837
838 #ifdef DIAGNOSTIC
839 if (uiop->uio_iovcnt != 1)
840 panic("nfsm_uiotombuf: iovcnt != 1");
841 #endif
842
843 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
844 clflg = 1;
845 else
846 clflg = 0;
847 rem = nfsm_rndup(siz)-siz;
848 mp = mp2 = *mq;
849 while (siz > 0) {
850 left = uiop->uio_iov->iov_len;
851 uiocp = uiop->uio_iov->iov_base;
852 if (left > siz)
853 left = siz;
854 uiosiz = left;
855 while (left > 0) {
856 mlen = M_TRAILINGSPACE(mp);
857 if (mlen == 0) {
858 mp = m_get(M_WAIT, MT_DATA);
859 MCLAIM(mp, &nfs_mowner);
860 if (clflg)
861 m_clget(mp, M_WAIT);
862 mp->m_len = 0;
863 mp2->m_next = mp;
864 mp2 = mp;
865 mlen = M_TRAILINGSPACE(mp);
866 }
867 xfer = (left > mlen) ? mlen : left;
868 cp = mtod(mp, char *) + mp->m_len;
869 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
870 xfer);
871 if (error) {
872 /* XXX */
873 }
874 mp->m_len += xfer;
875 left -= xfer;
876 uiocp += xfer;
877 uiop->uio_offset += xfer;
878 uiop->uio_resid -= xfer;
879 }
880 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
881 uiosiz;
882 uiop->uio_iov->iov_len -= uiosiz;
883 siz -= uiosiz;
884 }
885 if (rem > 0) {
886 if (rem > M_TRAILINGSPACE(mp)) {
887 mp = m_get(M_WAIT, MT_DATA);
888 MCLAIM(mp, &nfs_mowner);
889 mp->m_len = 0;
890 mp2->m_next = mp;
891 }
892 cp = mtod(mp, char *) + mp->m_len;
893 for (left = 0; left < rem; left++)
894 *cp++ = '\0';
895 mp->m_len += rem;
896 *bpos = cp;
897 } else
898 *bpos = mtod(mp, char *) + mp->m_len;
899 *mq = mp;
900 return (0);
901 }
902
903 /*
904 * Get at least "siz" bytes of correctly aligned data.
905 * When called the mbuf pointers are not necessarily correct,
906 * dsosp points to what ought to be in m_data and left contains
907 * what ought to be in m_len.
908 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
909 * cases. (The macros use the vars. dpos and dpos2)
910 */
911 int
912 nfsm_disct(mdp, dposp, siz, left, cp2)
913 struct mbuf **mdp;
914 char **dposp;
915 int siz;
916 int left;
917 char **cp2;
918 {
919 struct mbuf *m1, *m2;
920 struct mbuf *havebuf = NULL;
921 char *src = *dposp;
922 char *dst;
923 int len;
924
925 #ifdef DEBUG
926 if (left < 0)
927 panic("nfsm_disct: left < 0");
928 #endif
929 m1 = *mdp;
930 /*
931 * Skip through the mbuf chain looking for an mbuf with
932 * some data. If the first mbuf found has enough data
933 * and it is correctly aligned return it.
934 */
935 while (left == 0) {
936 havebuf = m1;
937 *mdp = m1 = m1->m_next;
938 if (m1 == NULL)
939 return (EBADRPC);
940 src = mtod(m1, void *);
941 left = m1->m_len;
942 /*
943 * If we start a new mbuf and it is big enough
944 * and correctly aligned just return it, don't
945 * do any pull up.
946 */
947 if (left >= siz && nfsm_aligned(src)) {
948 *cp2 = src;
949 *dposp = src + siz;
950 return (0);
951 }
952 }
953 if ((m1->m_flags & M_EXT) != 0) {
954 if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
955 nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
956 /*
957 * If the first mbuf with data has external data
958 * and there is a previous mbuf with some trailing
959 * space, use it to move the data into.
960 */
961 m2 = m1;
962 *mdp = m1 = havebuf;
963 *cp2 = mtod(m1, char *) + m1->m_len;
964 } else if (havebuf) {
965 /*
966 * If the first mbuf has a external data
967 * and there is no previous empty mbuf
968 * allocate a new mbuf and move the external
969 * data to the new mbuf. Also make the first
970 * mbuf look empty.
971 */
972 m2 = m1;
973 *mdp = m1 = m_get(M_WAIT, MT_DATA);
974 MCLAIM(m1, m2->m_owner);
975 if ((m2->m_flags & M_PKTHDR) != 0) {
976 /* XXX MOVE */
977 M_COPY_PKTHDR(m1, m2);
978 m_tag_delete_chain(m2, NULL);
979 m2->m_flags &= ~M_PKTHDR;
980 }
981 if (havebuf) {
982 havebuf->m_next = m1;
983 }
984 m1->m_next = m2;
985 MRESETDATA(m1);
986 m1->m_len = 0;
987 m2->m_data = src;
988 m2->m_len = left;
989 *cp2 = mtod(m1, char *);
990 } else {
991 struct mbuf **nextp = &m1->m_next;
992
993 m1->m_len -= left;
994 do {
995 m2 = m_get(M_WAIT, MT_DATA);
996 MCLAIM(m2, m1->m_owner);
997 if (left >= MINCLSIZE) {
998 MCLGET(m2, M_WAIT);
999 }
1000 m2->m_next = *nextp;
1001 *nextp = m2;
1002 nextp = &m2->m_next;
1003 len = (m2->m_flags & M_EXT) != 0 ?
1004 MCLBYTES : MLEN;
1005 if (len > left) {
1006 len = left;
1007 }
1008 memcpy(mtod(m2, char *), src, len);
1009 m2->m_len = len;
1010 src += len;
1011 left -= len;
1012 } while (left > 0);
1013 *mdp = m1 = m1->m_next;
1014 m2 = m1->m_next;
1015 *cp2 = mtod(m1, char *);
1016 }
1017 } else {
1018 /*
1019 * If the first mbuf has no external data
1020 * move the data to the front of the mbuf.
1021 */
1022 MRESETDATA(m1);
1023 dst = mtod(m1, char *);
1024 if (dst != src) {
1025 memmove(dst, src, left);
1026 }
1027 m1->m_len = left;
1028 m2 = m1->m_next;
1029 *cp2 = m1->m_data;
1030 }
1031 *dposp = *cp2 + siz;
1032 /*
1033 * Loop through mbufs pulling data up into first mbuf until
1034 * the first mbuf is full or there is no more data to
1035 * pullup.
1036 */
1037 dst = mtod(m1, char *) + m1->m_len;
1038 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1039 if ((len = min(len, m2->m_len)) != 0) {
1040 memcpy(dst, mtod(m2, char *), len);
1041 }
1042 m1->m_len += len;
1043 dst += len;
1044 m2->m_data += len;
1045 m2->m_len -= len;
1046 m2 = m2->m_next;
1047 }
1048 if (m1->m_len < siz)
1049 return (EBADRPC);
1050 return (0);
1051 }
1052
1053 /*
1054 * Advance the position in the mbuf chain.
1055 */
1056 int
1057 nfs_adv(mdp, dposp, offs, left)
1058 struct mbuf **mdp;
1059 char **dposp;
1060 int offs;
1061 int left;
1062 {
1063 struct mbuf *m;
1064 int s;
1065
1066 m = *mdp;
1067 s = left;
1068 while (s < offs) {
1069 offs -= s;
1070 m = m->m_next;
1071 if (m == NULL)
1072 return (EBADRPC);
1073 s = m->m_len;
1074 }
1075 *mdp = m;
1076 *dposp = mtod(m, char *) + offs;
1077 return (0);
1078 }
1079
1080 /*
1081 * Copy a string into mbufs for the hard cases...
1082 */
1083 int
1084 nfsm_strtmbuf(mb, bpos, cp, siz)
1085 struct mbuf **mb;
1086 char **bpos;
1087 const char *cp;
1088 long siz;
1089 {
1090 struct mbuf *m1 = NULL, *m2;
1091 long left, xfer, len, tlen;
1092 u_int32_t *tl;
1093 int putsize;
1094
1095 putsize = 1;
1096 m2 = *mb;
1097 left = M_TRAILINGSPACE(m2);
1098 if (left > 0) {
1099 tl = ((u_int32_t *)(*bpos));
1100 *tl++ = txdr_unsigned(siz);
1101 putsize = 0;
1102 left -= NFSX_UNSIGNED;
1103 m2->m_len += NFSX_UNSIGNED;
1104 if (left > 0) {
1105 memcpy((void *) tl, cp, left);
1106 siz -= left;
1107 cp += left;
1108 m2->m_len += left;
1109 left = 0;
1110 }
1111 }
1112 /* Loop around adding mbufs */
1113 while (siz > 0) {
1114 m1 = m_get(M_WAIT, MT_DATA);
1115 MCLAIM(m1, &nfs_mowner);
1116 if (siz > MLEN)
1117 m_clget(m1, M_WAIT);
1118 m1->m_len = NFSMSIZ(m1);
1119 m2->m_next = m1;
1120 m2 = m1;
1121 tl = mtod(m1, u_int32_t *);
1122 tlen = 0;
1123 if (putsize) {
1124 *tl++ = txdr_unsigned(siz);
1125 m1->m_len -= NFSX_UNSIGNED;
1126 tlen = NFSX_UNSIGNED;
1127 putsize = 0;
1128 }
1129 if (siz < m1->m_len) {
1130 len = nfsm_rndup(siz);
1131 xfer = siz;
1132 if (xfer < len)
1133 *(tl+(xfer>>2)) = 0;
1134 } else {
1135 xfer = len = m1->m_len;
1136 }
1137 memcpy((void *) tl, cp, xfer);
1138 m1->m_len = len+tlen;
1139 siz -= xfer;
1140 cp += xfer;
1141 }
1142 *mb = m1;
1143 *bpos = mtod(m1, char *) + m1->m_len;
1144 return (0);
1145 }
1146
1147 /*
1148 * Directory caching routines. They work as follows:
1149 * - a cache is maintained per VDIR nfsnode.
1150 * - for each offset cookie that is exported to userspace, and can
1151 * thus be thrown back at us as an offset to VOP_READDIR, store
1152 * information in the cache.
1153 * - cached are:
1154 * - cookie itself
1155 * - blocknumber (essentially just a search key in the buffer cache)
1156 * - entry number in block.
1157 * - offset cookie of block in which this entry is stored
1158 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1159 * - entries are looked up in a hash table
1160 * - also maintained is an LRU list of entries, used to determine
1161 * which ones to delete if the cache grows too large.
1162 * - if 32 <-> 64 translation mode is requested for a filesystem,
1163 * the cache also functions as a translation table
1164 * - in the translation case, invalidating the cache does not mean
1165 * flushing it, but just marking entries as invalid, except for
1166 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1167 * still be able to use the cache as a translation table.
1168 * - 32 bit cookies are uniquely created by combining the hash table
1169 * entry value, and one generation count per hash table entry,
1170 * incremented each time an entry is appended to the chain.
1171 * - the cache is invalidated each time a direcory is modified
1172 * - sanity checks are also done; if an entry in a block turns
1173 * out not to have a matching cookie, the cache is invalidated
1174 * and a new block starting from the wanted offset is fetched from
1175 * the server.
1176 * - directory entries as read from the server are extended to contain
1177 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1178 * the cache and exporting them to userspace through the cookie
1179 * argument to VOP_READDIR.
1180 */
1181
1182 u_long
1183 nfs_dirhash(off)
1184 off_t off;
1185 {
1186 int i;
1187 char *cp = (char *)&off;
1188 u_long sum = 0L;
1189
1190 for (i = 0 ; i < sizeof (off); i++)
1191 sum += *cp++;
1192
1193 return sum;
1194 }
1195
1196 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1197 #define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np))
1198 #define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np))
1199 #define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
1200
1201 void
1202 nfs_initdircache(vp)
1203 struct vnode *vp;
1204 {
1205 struct nfsnode *np = VTONFS(vp);
1206 struct nfsdirhashhead *dircache;
1207
1208 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true,
1209 &nfsdirhashmask);
1210
1211 NFSDC_LOCK(np);
1212 if (np->n_dircache == NULL) {
1213 np->n_dircachesize = 0;
1214 np->n_dircache = dircache;
1215 dircache = NULL;
1216 TAILQ_INIT(&np->n_dirchain);
1217 }
1218 NFSDC_UNLOCK(np);
1219 if (dircache)
1220 hashdone(dircache, HASH_LIST, nfsdirhashmask);
1221 }
1222
1223 void
1224 nfs_initdirxlatecookie(vp)
1225 struct vnode *vp;
1226 {
1227 struct nfsnode *np = VTONFS(vp);
1228 unsigned *dirgens;
1229
1230 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1231
1232 dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
1233 NFSDC_LOCK(np);
1234 if (np->n_dirgens == NULL) {
1235 np->n_dirgens = dirgens;
1236 dirgens = NULL;
1237 }
1238 NFSDC_UNLOCK(np);
1239 if (dirgens)
1240 kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
1241 }
1242
1243 static const struct nfsdircache dzero;
1244
1245 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1246 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1247 struct nfsdircache *));
1248
1249 static void
1250 nfs_unlinkdircache(np, ndp)
1251 struct nfsnode *np;
1252 struct nfsdircache *ndp;
1253 {
1254
1255 NFSDC_ASSERT_LOCKED(np);
1256 KASSERT(ndp != &dzero);
1257
1258 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1259 return;
1260
1261 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1262 LIST_REMOVE(ndp, dc_hash);
1263 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1264
1265 nfs_putdircache_unlocked(np, ndp);
1266 }
1267
1268 void
1269 nfs_putdircache(np, ndp)
1270 struct nfsnode *np;
1271 struct nfsdircache *ndp;
1272 {
1273 int ref;
1274
1275 if (ndp == &dzero)
1276 return;
1277
1278 KASSERT(ndp->dc_refcnt > 0);
1279 NFSDC_LOCK(np);
1280 ref = --ndp->dc_refcnt;
1281 NFSDC_UNLOCK(np);
1282
1283 if (ref == 0)
1284 kmem_free(ndp, sizeof(*ndp));
1285 }
1286
1287 static void
1288 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1289 {
1290 int ref;
1291
1292 NFSDC_ASSERT_LOCKED(np);
1293
1294 if (ndp == &dzero)
1295 return;
1296
1297 KASSERT(ndp->dc_refcnt > 0);
1298 ref = --ndp->dc_refcnt;
1299 if (ref == 0)
1300 kmem_free(ndp, sizeof(*ndp));
1301 }
1302
1303 struct nfsdircache *
1304 nfs_searchdircache(vp, off, do32, hashent)
1305 struct vnode *vp;
1306 off_t off;
1307 int do32;
1308 int *hashent;
1309 {
1310 struct nfsdirhashhead *ndhp;
1311 struct nfsdircache *ndp = NULL;
1312 struct nfsnode *np = VTONFS(vp);
1313 unsigned ent;
1314
1315 /*
1316 * Zero is always a valid cookie.
1317 */
1318 if (off == 0)
1319 /* XXXUNCONST */
1320 return (struct nfsdircache *)__UNCONST(&dzero);
1321
1322 if (!np->n_dircache)
1323 return NULL;
1324
1325 /*
1326 * We use a 32bit cookie as search key, directly reconstruct
1327 * the hashentry. Else use the hashfunction.
1328 */
1329 if (do32) {
1330 ent = (u_int32_t)off >> 24;
1331 if (ent >= NFS_DIRHASHSIZ)
1332 return NULL;
1333 ndhp = &np->n_dircache[ent];
1334 } else {
1335 ndhp = NFSDIRHASH(np, off);
1336 }
1337
1338 if (hashent)
1339 *hashent = (int)(ndhp - np->n_dircache);
1340
1341 NFSDC_LOCK(np);
1342 if (do32) {
1343 LIST_FOREACH(ndp, ndhp, dc_hash) {
1344 if (ndp->dc_cookie32 == (u_int32_t)off) {
1345 /*
1346 * An invalidated entry will become the
1347 * start of a new block fetched from
1348 * the server.
1349 */
1350 if (ndp->dc_flags & NFSDC_INVALID) {
1351 ndp->dc_blkcookie = ndp->dc_cookie;
1352 ndp->dc_entry = 0;
1353 ndp->dc_flags &= ~NFSDC_INVALID;
1354 }
1355 break;
1356 }
1357 }
1358 } else {
1359 LIST_FOREACH(ndp, ndhp, dc_hash) {
1360 if (ndp->dc_cookie == off)
1361 break;
1362 }
1363 }
1364 if (ndp != NULL)
1365 ndp->dc_refcnt++;
1366 NFSDC_UNLOCK(np);
1367 return ndp;
1368 }
1369
1370
1371 struct nfsdircache *
1372 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1373 daddr_t blkno)
1374 {
1375 struct nfsnode *np = VTONFS(vp);
1376 struct nfsdirhashhead *ndhp;
1377 struct nfsdircache *ndp = NULL;
1378 struct nfsdircache *newndp = NULL;
1379 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1380 int hashent = 0, gen, overwrite; /* XXX: GCC */
1381
1382 /*
1383 * XXX refuse entries for offset 0. amd(8) erroneously sets
1384 * cookie 0 for the '.' entry, making this necessary. This
1385 * isn't so bad, as 0 is a special case anyway.
1386 */
1387 if (off == 0)
1388 /* XXXUNCONST */
1389 return (struct nfsdircache *)__UNCONST(&dzero);
1390
1391 if (!np->n_dircache)
1392 /*
1393 * XXX would like to do this in nfs_nget but vtype
1394 * isn't known at that time.
1395 */
1396 nfs_initdircache(vp);
1397
1398 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1399 nfs_initdirxlatecookie(vp);
1400
1401 retry:
1402 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1403
1404 NFSDC_LOCK(np);
1405 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1406 /*
1407 * Overwriting an old entry. Check if it's the same.
1408 * If so, just return. If not, remove the old entry.
1409 */
1410 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1411 goto done;
1412 nfs_unlinkdircache(np, ndp);
1413 nfs_putdircache_unlocked(np, ndp);
1414 ndp = NULL;
1415 }
1416
1417 ndhp = &np->n_dircache[hashent];
1418
1419 if (!ndp) {
1420 if (newndp == NULL) {
1421 NFSDC_UNLOCK(np);
1422 newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP);
1423 newndp->dc_refcnt = 1;
1424 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1425 goto retry;
1426 }
1427 ndp = newndp;
1428 newndp = NULL;
1429 overwrite = 0;
1430 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1431 /*
1432 * We're allocating a new entry, so bump the
1433 * generation number.
1434 */
1435 KASSERT(np->n_dirgens);
1436 gen = ++np->n_dirgens[hashent];
1437 if (gen == 0) {
1438 np->n_dirgens[hashent]++;
1439 gen++;
1440 }
1441 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1442 }
1443 } else
1444 overwrite = 1;
1445
1446 ndp->dc_cookie = off;
1447 ndp->dc_blkcookie = blkoff;
1448 ndp->dc_entry = en;
1449 ndp->dc_flags = 0;
1450
1451 if (overwrite)
1452 goto done;
1453
1454 /*
1455 * If the maximum directory cookie cache size has been reached
1456 * for this node, take one off the front. The idea is that
1457 * directories are typically read front-to-back once, so that
1458 * the oldest entries can be thrown away without much performance
1459 * loss.
1460 */
1461 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1462 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1463 } else
1464 np->n_dircachesize++;
1465
1466 KASSERT(ndp->dc_refcnt == 1);
1467 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1468 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1469 ndp->dc_refcnt++;
1470 done:
1471 KASSERT(ndp->dc_refcnt > 0);
1472 NFSDC_UNLOCK(np);
1473 if (newndp)
1474 nfs_putdircache(np, newndp);
1475 return ndp;
1476 }
1477
1478 void
1479 nfs_invaldircache(vp, flags)
1480 struct vnode *vp;
1481 int flags;
1482 {
1483 struct nfsnode *np = VTONFS(vp);
1484 struct nfsdircache *ndp = NULL;
1485 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1486 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1487
1488 #ifdef DIAGNOSTIC
1489 if (vp->v_type != VDIR)
1490 panic("nfs: invaldircache: not dir");
1491 #endif
1492
1493 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1494 np->n_flag &= ~NEOFVALID;
1495
1496 if (!np->n_dircache)
1497 return;
1498
1499 NFSDC_LOCK(np);
1500 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1501 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1502 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1503 nfs_unlinkdircache(np, ndp);
1504 }
1505 np->n_dircachesize = 0;
1506 if (forcefree && np->n_dirgens) {
1507 kmem_free(np->n_dirgens,
1508 NFS_DIRHASHSIZ * sizeof(unsigned));
1509 np->n_dirgens = NULL;
1510 }
1511 } else {
1512 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1513 ndp->dc_flags |= NFSDC_INVALID;
1514 }
1515
1516 NFSDC_UNLOCK(np);
1517 }
1518
1519 /*
1520 * Called once before VFS init to initialize shared and
1521 * server-specific data structures.
1522 */
1523 static int
1524 nfs_init0(void)
1525 {
1526
1527 nfsrtt.pos = 0;
1528 rpc_vers = txdr_unsigned(RPC_VER2);
1529 rpc_call = txdr_unsigned(RPC_CALL);
1530 rpc_reply = txdr_unsigned(RPC_REPLY);
1531 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1532 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1533 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1534 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1535 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1536 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1537 nfs_prog = txdr_unsigned(NFS_PROG);
1538 nfs_true = txdr_unsigned(true);
1539 nfs_false = txdr_unsigned(false);
1540 nfs_xdrneg1 = txdr_unsigned(-1);
1541 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1542 if (nfs_ticks < 1)
1543 nfs_ticks = 1;
1544 #ifdef NFSSERVER
1545 vfs_hooks_attach(&nfs_export_hooks);
1546 nfsrv_init(0); /* Init server data structures */
1547 nfsrv_initcache(); /* Init the server request cache */
1548 {
1549 extern krwlock_t netexport_lock; /* XXX */
1550 rw_init(&netexport_lock);
1551 }
1552 #endif /* NFSSERVER */
1553
1554 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
1555 nfsdreq_init();
1556 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
1557
1558 /*
1559 * Initialize reply list and start timer
1560 */
1561 mutex_init(&nfs_reqq_lock, MUTEX_DEFAULT, IPL_SOFTCLOCK);
1562 mutex_init(&nfs_xidlock, MUTEX_DEFAULT, IPL_NONE);
1563 TAILQ_INIT(&nfs_reqq);
1564 nfs_timer_init();
1565 MOWNER_ATTACH(&nfs_mowner);
1566
1567 #ifdef NFS
1568 /* Initialize the kqueue structures */
1569 nfs_kqinit();
1570 /* Initialize the iod structures */
1571 nfs_iodinit();
1572 #endif
1573 return 0;
1574 }
1575
1576 void
1577 nfs_init(void)
1578 {
1579 static ONCE_DECL(nfs_init_once);
1580
1581 RUN_ONCE(&nfs_init_once, nfs_init0);
1582 }
1583
1584 #ifdef NFS
1585 /*
1586 * Called once at VFS init to initialize client-specific data structures.
1587 */
1588 void
1589 nfs_vfs_init()
1590 {
1591 /* Initialize NFS server / client shared data. */
1592 nfs_init();
1593
1594 nfs_nhinit(); /* Init the nfsnode table */
1595 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1596 }
1597
1598 void
1599 nfs_vfs_reinit()
1600 {
1601 nfs_nhreinit();
1602 }
1603
1604 void
1605 nfs_vfs_done()
1606 {
1607 nfs_nhdone();
1608 }
1609
1610 /*
1611 * Attribute cache routines.
1612 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1613 * that are on the mbuf list
1614 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1615 * error otherwise
1616 */
1617
1618 /*
1619 * Load the attribute cache (that lives in the nfsnode entry) with
1620 * the values on the mbuf list and
1621 * Iff vap not NULL
1622 * copy the attributes to *vaper
1623 */
1624 int
1625 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1626 struct vnode **vpp;
1627 struct mbuf **mdp;
1628 char **dposp;
1629 struct vattr *vaper;
1630 int flags;
1631 {
1632 int32_t t1;
1633 char *cp2;
1634 int error = 0;
1635 struct mbuf *md;
1636 int v3 = NFS_ISV3(*vpp);
1637
1638 md = *mdp;
1639 t1 = (mtod(md, char *) + md->m_len) - *dposp;
1640 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1641 if (error)
1642 return (error);
1643 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1644 }
1645
1646 int
1647 nfs_loadattrcache(vpp, fp, vaper, flags)
1648 struct vnode **vpp;
1649 struct nfs_fattr *fp;
1650 struct vattr *vaper;
1651 int flags;
1652 {
1653 struct vnode *vp = *vpp;
1654 struct vattr *vap;
1655 int v3 = NFS_ISV3(vp);
1656 enum vtype vtyp;
1657 u_short vmode;
1658 struct timespec mtime;
1659 struct timespec ctime;
1660 int32_t rdev;
1661 struct nfsnode *np;
1662 extern int (**spec_nfsv2nodeop_p) __P((void *));
1663 uid_t uid;
1664 gid_t gid;
1665
1666 if (v3) {
1667 vtyp = nfsv3tov_type(fp->fa_type);
1668 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1669 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1670 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1671 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1672 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1673 } else {
1674 vtyp = nfsv2tov_type(fp->fa_type);
1675 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1676 if (vtyp == VNON || vtyp == VREG)
1677 vtyp = IFTOVT(vmode);
1678 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1679 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1680 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1681 fp->fa2_ctime.nfsv2_sec);
1682 ctime.tv_nsec = 0;
1683
1684 /*
1685 * Really ugly NFSv2 kludge.
1686 */
1687 if (vtyp == VCHR && rdev == 0xffffffff)
1688 vtyp = VFIFO;
1689 }
1690
1691 vmode &= ALLPERMS;
1692
1693 /*
1694 * If v_type == VNON it is a new node, so fill in the v_type,
1695 * n_mtime fields. Check to see if it represents a special
1696 * device, and if so, check for a possible alias. Once the
1697 * correct vnode has been obtained, fill in the rest of the
1698 * information.
1699 */
1700 np = VTONFS(vp);
1701 if (vp->v_type == VNON) {
1702 vp->v_type = vtyp;
1703 if (vp->v_type == VFIFO) {
1704 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1705 vp->v_op = fifo_nfsv2nodeop_p;
1706 } else if (vp->v_type == VREG) {
1707 mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
1708 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1709 vp->v_op = spec_nfsv2nodeop_p;
1710 spec_node_init(vp, (dev_t)rdev);
1711 }
1712 np->n_mtime = mtime;
1713 }
1714 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1715 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1716 vap = np->n_vattr;
1717
1718 mutex_enter(&np->n_attrlock);
1719 /*
1720 * Invalidate access cache if uid, gid, mode or ctime changed.
1721 */
1722 if (np->n_accstamp != -1 &&
1723 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1724 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1725 np->n_accstamp = -1;
1726
1727 vap->va_type = vtyp;
1728 vap->va_mode = vmode;
1729 vap->va_rdev = (dev_t)rdev;
1730 vap->va_mtime = mtime;
1731 vap->va_ctime = ctime;
1732 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1733 switch (vtyp) {
1734 case VDIR:
1735 vap->va_blocksize = NFS_DIRFRAGSIZ;
1736 break;
1737 case VBLK:
1738 vap->va_blocksize = BLKDEV_IOSIZE;
1739 break;
1740 case VCHR:
1741 vap->va_blocksize = MAXBSIZE;
1742 break;
1743 default:
1744 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1745 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1746 break;
1747 }
1748 if (v3) {
1749 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1750 vap->va_uid = uid;
1751 vap->va_gid = gid;
1752 vap->va_size = fxdr_hyper(&fp->fa3_size);
1753 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1754 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1755 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1756 vap->va_flags = 0;
1757 vap->va_filerev = 0;
1758 } else {
1759 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1760 vap->va_uid = uid;
1761 vap->va_gid = gid;
1762 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1763 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1764 * NFS_FABLKSIZE;
1765 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1766 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1767 vap->va_flags = 0;
1768 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1769 vap->va_filerev = 0;
1770 }
1771 if (vap->va_size > VFSTONFS(vp->v_mount)->nm_maxfilesize) {
1772 mutex_exit(&np->n_attrlock);
1773 return EFBIG;
1774 }
1775 if (vap->va_size != np->n_size) {
1776 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1777 vap->va_size = np->n_size;
1778 } else {
1779 np->n_size = vap->va_size;
1780 if (vap->va_type == VREG) {
1781 /*
1782 * we can't free pages if NAC_NOTRUNC because
1783 * the pages can be owned by ourselves.
1784 */
1785 if (flags & NAC_NOTRUNC) {
1786 np->n_flag |= NTRUNCDELAYED;
1787 } else {
1788 mutex_exit(&np->n_attrlock); /* XXX */
1789 genfs_node_wrlock(vp);
1790 mutex_enter(&vp->v_interlock);
1791 (void)VOP_PUTPAGES(vp, 0,
1792 0, PGO_SYNCIO | PGO_CLEANIT |
1793 PGO_FREE | PGO_ALLPAGES);
1794 uvm_vnp_setsize(vp, np->n_size);
1795 genfs_node_unlock(vp);
1796 mutex_enter(&np->n_attrlock);
1797 }
1798 }
1799 }
1800 }
1801 np->n_attrstamp = time_second;
1802 if (vaper != NULL) {
1803 memcpy((void *)vaper, (void *)vap, sizeof(*vap));
1804 if (np->n_flag & NCHG) {
1805 if (np->n_flag & NACC)
1806 vaper->va_atime = np->n_atim;
1807 if (np->n_flag & NUPD)
1808 vaper->va_mtime = np->n_mtim;
1809 }
1810 }
1811 mutex_exit(&np->n_attrlock);
1812 return (0);
1813 }
1814
1815 /*
1816 * Check the time stamp
1817 * If the cache is valid, copy contents to *vap and return 0
1818 * otherwise return an error
1819 */
1820 int
1821 nfs_getattrcache(vp, vaper)
1822 struct vnode *vp;
1823 struct vattr *vaper;
1824 {
1825 struct nfsnode *np = VTONFS(vp);
1826 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1827 struct vattr *vap;
1828
1829 mutex_enter(&np->n_attrlock);
1830 if (np->n_attrstamp == 0 ||
1831 (time_second - np->n_attrstamp) >= nfs_attrtimeo(nmp, np)) {
1832 mutex_exit(&np->n_attrlock);
1833 nfsstats.attrcache_misses++;
1834 return (ENOENT);
1835 }
1836 nfsstats.attrcache_hits++;
1837
1838 vap = np->n_vattr;
1839 if (vap->va_size != np->n_size) {
1840 if (vap->va_type == VREG) {
1841 voff_t size;
1842
1843 if ((np->n_flag & NMODIFIED) != 0 &&
1844 vap->va_size < np->n_size) {
1845 vap->va_size = np->n_size;
1846 } else {
1847 np->n_size = vap->va_size;
1848 }
1849 size = np->n_size;
1850 mutex_exit(&np->n_attrlock); /* XXX */
1851 genfs_node_wrlock(vp);
1852 uvm_vnp_setsize(vp, size);
1853 genfs_node_unlock(vp);
1854 mutex_enter(&np->n_attrlock);
1855 } else
1856 np->n_size = vap->va_size;
1857 }
1858 memcpy(vaper, vap, sizeof(struct vattr));
1859 if (np->n_flag & NCHG) {
1860 if (np->n_flag & NACC)
1861 vaper->va_atime = np->n_atim;
1862 if (np->n_flag & NUPD)
1863 vaper->va_mtime = np->n_mtim;
1864 }
1865 mutex_exit(&np->n_attrlock);
1866 return (0);
1867 }
1868
1869 void
1870 nfs_delayedtruncate(vp)
1871 struct vnode *vp;
1872 {
1873 struct nfsnode *np = VTONFS(vp);
1874
1875 if (np->n_flag & NTRUNCDELAYED) {
1876 np->n_flag &= ~NTRUNCDELAYED;
1877 genfs_node_wrlock(vp);
1878 mutex_enter(&vp->v_interlock);
1879 (void)VOP_PUTPAGES(vp, 0,
1880 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1881 uvm_vnp_setsize(vp, np->n_size);
1882 genfs_node_unlock(vp);
1883 }
1884 }
1885
1886 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1887 #define NFS_WCCKLUDGE(nmp, now) \
1888 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1889 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1890
1891 /*
1892 * nfs_check_wccdata: check inaccurate wcc_data
1893 *
1894 * => return non-zero if we shouldn't trust the wcc_data.
1895 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1896 */
1897
1898 int
1899 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1900 struct timespec *mtime, bool docheck)
1901 {
1902 int error = 0;
1903
1904 #if !defined(NFS_V2_ONLY)
1905
1906 if (docheck) {
1907 struct vnode *vp = NFSTOV(np);
1908 struct nfsmount *nmp;
1909 long now = time_second;
1910 const struct timespec *omtime = &np->n_vattr->va_mtime;
1911 const struct timespec *octime = &np->n_vattr->va_ctime;
1912 const char *reason = NULL; /* XXX: gcc */
1913
1914 if (timespeccmp(omtime, mtime, <=)) {
1915 reason = "mtime";
1916 error = EINVAL;
1917 }
1918
1919 if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
1920 reason = "ctime";
1921 error = EINVAL;
1922 }
1923
1924 nmp = VFSTONFS(vp->v_mount);
1925 if (error) {
1926
1927 /*
1928 * despite of the fact that we've updated the file,
1929 * timestamps of the file were not updated as we
1930 * expected.
1931 * it means that the server has incompatible
1932 * semantics of timestamps or (more likely)
1933 * the server time is not precise enough to
1934 * track each modifications.
1935 * in that case, we disable wcc processing.
1936 *
1937 * yes, strictly speaking, we should disable all
1938 * caching. it's a compromise.
1939 */
1940
1941 mutex_enter(&nmp->nm_lock);
1942 if (!NFS_WCCKLUDGE(nmp, now)) {
1943 printf("%s: inaccurate wcc data (%s) detected,"
1944 " disabling wcc"
1945 " (ctime %u.%09u %u.%09u,"
1946 " mtime %u.%09u %u.%09u)\n",
1947 vp->v_mount->mnt_stat.f_mntfromname,
1948 reason,
1949 (unsigned int)octime->tv_sec,
1950 (unsigned int)octime->tv_nsec,
1951 (unsigned int)ctime->tv_sec,
1952 (unsigned int)ctime->tv_nsec,
1953 (unsigned int)omtime->tv_sec,
1954 (unsigned int)omtime->tv_nsec,
1955 (unsigned int)mtime->tv_sec,
1956 (unsigned int)mtime->tv_nsec);
1957 }
1958 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1959 nmp->nm_wcckludgetime = now;
1960 mutex_exit(&nmp->nm_lock);
1961 } else if (NFS_WCCKLUDGE(nmp, now)) {
1962 error = EPERM; /* XXX */
1963 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1964 mutex_enter(&nmp->nm_lock);
1965 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1966 printf("%s: re-enabling wcc\n",
1967 vp->v_mount->mnt_stat.f_mntfromname);
1968 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1969 }
1970 mutex_exit(&nmp->nm_lock);
1971 }
1972 }
1973
1974 #endif /* !defined(NFS_V2_ONLY) */
1975
1976 return error;
1977 }
1978
1979 /*
1980 * Heuristic to see if the server XDR encodes directory cookies or not.
1981 * it is not supposed to, but a lot of servers may do this. Also, since
1982 * most/all servers will implement V2 as well, it is expected that they
1983 * may return just 32 bits worth of cookie information, so we need to
1984 * find out in which 32 bits this information is available. We do this
1985 * to avoid trouble with emulated binaries that can't handle 64 bit
1986 * directory offsets.
1987 */
1988
1989 void
1990 nfs_cookieheuristic(vp, flagp, l, cred)
1991 struct vnode *vp;
1992 int *flagp;
1993 struct lwp *l;
1994 kauth_cred_t cred;
1995 {
1996 struct uio auio;
1997 struct iovec aiov;
1998 char *tbuf, *cp;
1999 struct dirent *dp;
2000 off_t *cookies = NULL, *cop;
2001 int error, eof, nc, len;
2002
2003 MALLOC(tbuf, void *, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
2004
2005 aiov.iov_base = tbuf;
2006 aiov.iov_len = NFS_DIRFRAGSIZ;
2007 auio.uio_iov = &aiov;
2008 auio.uio_iovcnt = 1;
2009 auio.uio_rw = UIO_READ;
2010 auio.uio_resid = NFS_DIRFRAGSIZ;
2011 auio.uio_offset = 0;
2012 UIO_SETUP_SYSSPACE(&auio);
2013
2014 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
2015
2016 len = NFS_DIRFRAGSIZ - auio.uio_resid;
2017 if (error || len == 0) {
2018 FREE(tbuf, M_TEMP);
2019 if (cookies)
2020 free(cookies, M_TEMP);
2021 return;
2022 }
2023
2024 /*
2025 * Find the first valid entry and look at its offset cookie.
2026 */
2027
2028 cp = tbuf;
2029 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2030 dp = (struct dirent *)cp;
2031 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2032 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2033 *flagp |= NFSMNT_SWAPCOOKIE;
2034 nfs_invaldircache(vp, 0);
2035 nfs_vinvalbuf(vp, 0, cred, l, 1);
2036 }
2037 break;
2038 }
2039 cop++;
2040 cp += dp->d_reclen;
2041 }
2042
2043 FREE(tbuf, M_TEMP);
2044 free(cookies, M_TEMP);
2045 }
2046 #endif /* NFS */
2047
2048 #ifdef NFSSERVER
2049 /*
2050 * Set up nameidata for a lookup() call and do it.
2051 *
2052 * If pubflag is set, this call is done for a lookup operation on the
2053 * public filehandle. In that case we allow crossing mountpoints and
2054 * absolute pathnames. However, the caller is expected to check that
2055 * the lookup result is within the public fs, and deny access if
2056 * it is not.
2057 */
2058 int
2059 nfs_namei(ndp, nsfh, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2060 struct nameidata *ndp;
2061 nfsrvfh_t *nsfh;
2062 uint32_t len;
2063 struct nfssvc_sock *slp;
2064 struct mbuf *nam;
2065 struct mbuf **mdp;
2066 char **dposp;
2067 struct vnode **retdirp;
2068 struct lwp *l;
2069 int kerbflag, pubflag;
2070 {
2071 int i, rem;
2072 struct mbuf *md;
2073 char *fromcp, *tocp, *cp;
2074 struct iovec aiov;
2075 struct uio auio;
2076 struct vnode *dp;
2077 int error, rdonly, linklen;
2078 struct componentname *cnp = &ndp->ni_cnd;
2079
2080 *retdirp = NULL;
2081
2082 if ((len + 1) > MAXPATHLEN)
2083 return (ENAMETOOLONG);
2084 if (len == 0)
2085 return (EACCES);
2086 cnp->cn_pnbuf = PNBUF_GET();
2087
2088 /*
2089 * Copy the name from the mbuf list to ndp->ni_pnbuf
2090 * and set the various ndp fields appropriately.
2091 */
2092 fromcp = *dposp;
2093 tocp = cnp->cn_pnbuf;
2094 md = *mdp;
2095 rem = mtod(md, char *) + md->m_len - fromcp;
2096 for (i = 0; i < len; i++) {
2097 while (rem == 0) {
2098 md = md->m_next;
2099 if (md == NULL) {
2100 error = EBADRPC;
2101 goto out;
2102 }
2103 fromcp = mtod(md, void *);
2104 rem = md->m_len;
2105 }
2106 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2107 error = EACCES;
2108 goto out;
2109 }
2110 *tocp++ = *fromcp++;
2111 rem--;
2112 }
2113 *tocp = '\0';
2114 *mdp = md;
2115 *dposp = fromcp;
2116 len = nfsm_rndup(len)-len;
2117 if (len > 0) {
2118 if (rem >= len)
2119 *dposp += len;
2120 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2121 goto out;
2122 }
2123
2124 /*
2125 * Extract and set starting directory.
2126 */
2127 error = nfsrv_fhtovp(nsfh, false, &dp, ndp->ni_cnd.cn_cred, slp,
2128 nam, &rdonly, kerbflag, pubflag);
2129 if (error)
2130 goto out;
2131 if (dp->v_type != VDIR) {
2132 vrele(dp);
2133 error = ENOTDIR;
2134 goto out;
2135 }
2136
2137 if (rdonly)
2138 cnp->cn_flags |= RDONLY;
2139
2140 *retdirp = dp;
2141
2142 if (pubflag) {
2143 /*
2144 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2145 * and the 'native path' indicator.
2146 */
2147 cp = PNBUF_GET();
2148 fromcp = cnp->cn_pnbuf;
2149 tocp = cp;
2150 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2151 switch ((unsigned char)*fromcp) {
2152 case WEBNFS_NATIVE_CHAR:
2153 /*
2154 * 'Native' path for us is the same
2155 * as a path according to the NFS spec,
2156 * just skip the escape char.
2157 */
2158 fromcp++;
2159 break;
2160 /*
2161 * More may be added in the future, range 0x80-0xff
2162 */
2163 default:
2164 error = EIO;
2165 vrele(dp);
2166 PNBUF_PUT(cp);
2167 goto out;
2168 }
2169 }
2170 /*
2171 * Translate the '%' escapes, URL-style.
2172 */
2173 while (*fromcp != '\0') {
2174 if (*fromcp == WEBNFS_ESC_CHAR) {
2175 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2176 fromcp++;
2177 *tocp++ = HEXSTRTOI(fromcp);
2178 fromcp += 2;
2179 continue;
2180 } else {
2181 error = ENOENT;
2182 vrele(dp);
2183 PNBUF_PUT(cp);
2184 goto out;
2185 }
2186 } else
2187 *tocp++ = *fromcp++;
2188 }
2189 *tocp = '\0';
2190 PNBUF_PUT(cnp->cn_pnbuf);
2191 cnp->cn_pnbuf = cp;
2192 }
2193
2194 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2195 ndp->ni_segflg = UIO_SYSSPACE;
2196 ndp->ni_rootdir = rootvnode;
2197 ndp->ni_erootdir = NULL;
2198
2199 if (pubflag) {
2200 ndp->ni_loopcnt = 0;
2201 if (cnp->cn_pnbuf[0] == '/')
2202 dp = rootvnode;
2203 } else {
2204 cnp->cn_flags |= NOCROSSMOUNT;
2205 }
2206
2207 VREF(dp);
2208 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2209
2210 for (;;) {
2211 cnp->cn_nameptr = cnp->cn_pnbuf;
2212 ndp->ni_startdir = dp;
2213
2214 /*
2215 * And call lookup() to do the real work
2216 */
2217 error = lookup(ndp);
2218 if (error) {
2219 if (ndp->ni_dvp) {
2220 vput(ndp->ni_dvp);
2221 }
2222 PNBUF_PUT(cnp->cn_pnbuf);
2223 return (error);
2224 }
2225
2226 /*
2227 * Check for encountering a symbolic link
2228 */
2229 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2230 if ((cnp->cn_flags & LOCKPARENT) == 0 && ndp->ni_dvp) {
2231 if (ndp->ni_dvp == ndp->ni_vp) {
2232 vrele(ndp->ni_dvp);
2233 } else {
2234 vput(ndp->ni_dvp);
2235 }
2236 }
2237 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2238 cnp->cn_flags |= HASBUF;
2239 else
2240 PNBUF_PUT(cnp->cn_pnbuf);
2241 return (0);
2242 } else {
2243 if (!pubflag) {
2244 error = EINVAL;
2245 break;
2246 }
2247 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2248 error = ELOOP;
2249 break;
2250 }
2251 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2252 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred);
2253 if (error != 0)
2254 break;
2255 }
2256 if (ndp->ni_pathlen > 1)
2257 cp = PNBUF_GET();
2258 else
2259 cp = cnp->cn_pnbuf;
2260 aiov.iov_base = cp;
2261 aiov.iov_len = MAXPATHLEN;
2262 auio.uio_iov = &aiov;
2263 auio.uio_iovcnt = 1;
2264 auio.uio_offset = 0;
2265 auio.uio_rw = UIO_READ;
2266 auio.uio_resid = MAXPATHLEN;
2267 UIO_SETUP_SYSSPACE(&auio);
2268 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2269 if (error) {
2270 badlink:
2271 if (ndp->ni_pathlen > 1)
2272 PNBUF_PUT(cp);
2273 break;
2274 }
2275 linklen = MAXPATHLEN - auio.uio_resid;
2276 if (linklen == 0) {
2277 error = ENOENT;
2278 goto badlink;
2279 }
2280 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2281 error = ENAMETOOLONG;
2282 goto badlink;
2283 }
2284 if (ndp->ni_pathlen > 1) {
2285 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2286 PNBUF_PUT(cnp->cn_pnbuf);
2287 cnp->cn_pnbuf = cp;
2288 } else
2289 cnp->cn_pnbuf[linklen] = '\0';
2290 ndp->ni_pathlen += linklen;
2291 vput(ndp->ni_vp);
2292 dp = ndp->ni_dvp;
2293
2294 /*
2295 * Check if root directory should replace current directory.
2296 */
2297 if (cnp->cn_pnbuf[0] == '/') {
2298 vput(dp);
2299 dp = ndp->ni_rootdir;
2300 VREF(dp);
2301 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2302 }
2303 }
2304 }
2305 vput(ndp->ni_dvp);
2306 vput(ndp->ni_vp);
2307 ndp->ni_vp = NULL;
2308 out:
2309 PNBUF_PUT(cnp->cn_pnbuf);
2310 return (error);
2311 }
2312 #endif /* NFSSERVER */
2313
2314 /*
2315 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2316 * boundary and only trims off the back end
2317 *
2318 * 1. trim off 'len' bytes as m_adj(mp, -len).
2319 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2320 */
2321 void
2322 nfs_zeropad(mp, len, nul)
2323 struct mbuf *mp;
2324 int len;
2325 int nul;
2326 {
2327 struct mbuf *m;
2328 int count;
2329
2330 /*
2331 * Trim from tail. Scan the mbuf chain,
2332 * calculating its length and finding the last mbuf.
2333 * If the adjustment only affects this mbuf, then just
2334 * adjust and return. Otherwise, rescan and truncate
2335 * after the remaining size.
2336 */
2337 count = 0;
2338 m = mp;
2339 for (;;) {
2340 count += m->m_len;
2341 if (m->m_next == NULL)
2342 break;
2343 m = m->m_next;
2344 }
2345
2346 KDASSERT(count >= len);
2347
2348 if (m->m_len >= len) {
2349 m->m_len -= len;
2350 } else {
2351 count -= len;
2352 /*
2353 * Correct length for chain is "count".
2354 * Find the mbuf with last data, adjust its length,
2355 * and toss data from remaining mbufs on chain.
2356 */
2357 for (m = mp; m; m = m->m_next) {
2358 if (m->m_len >= count) {
2359 m->m_len = count;
2360 break;
2361 }
2362 count -= m->m_len;
2363 }
2364 KASSERT(m && m->m_next);
2365 m_freem(m->m_next);
2366 m->m_next = NULL;
2367 }
2368
2369 KDASSERT(m->m_next == NULL);
2370
2371 /*
2372 * zero-padding.
2373 */
2374 if (nul > 0) {
2375 char *cp;
2376 int i;
2377
2378 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2379 struct mbuf *n;
2380
2381 KDASSERT(MLEN >= nul);
2382 n = m_get(M_WAIT, MT_DATA);
2383 MCLAIM(n, &nfs_mowner);
2384 n->m_len = nul;
2385 n->m_next = NULL;
2386 m->m_next = n;
2387 cp = mtod(n, void *);
2388 } else {
2389 cp = mtod(m, char *) + m->m_len;
2390 m->m_len += nul;
2391 }
2392 for (i = 0; i < nul; i++)
2393 *cp++ = '\0';
2394 }
2395 return;
2396 }
2397
2398 /*
2399 * Make these functions instead of macros, so that the kernel text size
2400 * doesn't get too big...
2401 */
2402 void
2403 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2404 struct nfsrv_descript *nfsd;
2405 int before_ret;
2406 struct vattr *before_vap;
2407 int after_ret;
2408 struct vattr *after_vap;
2409 struct mbuf **mbp;
2410 char **bposp;
2411 {
2412 struct mbuf *mb = *mbp;
2413 char *bpos = *bposp;
2414 u_int32_t *tl;
2415
2416 if (before_ret) {
2417 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2418 *tl = nfs_false;
2419 } else {
2420 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2421 *tl++ = nfs_true;
2422 txdr_hyper(before_vap->va_size, tl);
2423 tl += 2;
2424 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2425 tl += 2;
2426 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2427 }
2428 *bposp = bpos;
2429 *mbp = mb;
2430 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2431 }
2432
2433 void
2434 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2435 struct nfsrv_descript *nfsd;
2436 int after_ret;
2437 struct vattr *after_vap;
2438 struct mbuf **mbp;
2439 char **bposp;
2440 {
2441 struct mbuf *mb = *mbp;
2442 char *bpos = *bposp;
2443 u_int32_t *tl;
2444 struct nfs_fattr *fp;
2445
2446 if (after_ret) {
2447 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2448 *tl = nfs_false;
2449 } else {
2450 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2451 *tl++ = nfs_true;
2452 fp = (struct nfs_fattr *)tl;
2453 nfsm_srvfattr(nfsd, after_vap, fp);
2454 }
2455 *mbp = mb;
2456 *bposp = bpos;
2457 }
2458
2459 void
2460 nfsm_srvfattr(nfsd, vap, fp)
2461 struct nfsrv_descript *nfsd;
2462 struct vattr *vap;
2463 struct nfs_fattr *fp;
2464 {
2465
2466 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2467 fp->fa_uid = txdr_unsigned(vap->va_uid);
2468 fp->fa_gid = txdr_unsigned(vap->va_gid);
2469 if (nfsd->nd_flag & ND_NFSV3) {
2470 fp->fa_type = vtonfsv3_type(vap->va_type);
2471 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2472 txdr_hyper(vap->va_size, &fp->fa3_size);
2473 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2474 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2475 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2476 fp->fa3_fsid.nfsuquad[0] = 0;
2477 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2478 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2479 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2480 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2481 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2482 } else {
2483 fp->fa_type = vtonfsv2_type(vap->va_type);
2484 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2485 fp->fa2_size = txdr_unsigned(vap->va_size);
2486 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2487 if (vap->va_type == VFIFO)
2488 fp->fa2_rdev = 0xffffffff;
2489 else
2490 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2491 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2492 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2493 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2494 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2495 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2496 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2497 }
2498 }
2499
2500 #ifdef NFSSERVER
2501 /*
2502 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2503 * - look up fsid in mount list (if not found ret error)
2504 * - get vp and export rights by calling VFS_FHTOVP()
2505 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2506 * - if not lockflag unlock it with VOP_UNLOCK()
2507 */
2508 int
2509 nfsrv_fhtovp(nfsrvfh_t *nsfh, int lockflag, struct vnode **vpp,
2510 kauth_cred_t cred, struct nfssvc_sock *slp, struct mbuf *nam, int *rdonlyp,
2511 int kerbflag, int pubflag)
2512 {
2513 struct mount *mp;
2514 kauth_cred_t credanon;
2515 int error, exflags;
2516 struct sockaddr_in *saddr;
2517 fhandle_t *fhp;
2518
2519 fhp = NFSRVFH_FHANDLE(nsfh);
2520 *vpp = (struct vnode *)0;
2521
2522 if (nfs_ispublicfh(nsfh)) {
2523 if (!pubflag || !nfs_pub.np_valid)
2524 return (ESTALE);
2525 fhp = nfs_pub.np_handle;
2526 }
2527
2528 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2529 if (error) {
2530 return error;
2531 }
2532
2533 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2534 if (error)
2535 return (error);
2536
2537 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2538 saddr = mtod(nam, struct sockaddr_in *);
2539 if ((saddr->sin_family == AF_INET) &&
2540 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2541 vput(*vpp);
2542 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2543 }
2544 #ifdef INET6
2545 if ((saddr->sin_family == AF_INET6) &&
2546 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2547 vput(*vpp);
2548 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2549 }
2550 #endif
2551 }
2552 /*
2553 * Check/setup credentials.
2554 */
2555 if (exflags & MNT_EXKERB) {
2556 if (!kerbflag) {
2557 vput(*vpp);
2558 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2559 }
2560 } else if (kerbflag) {
2561 vput(*vpp);
2562 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2563 } else if (kauth_cred_geteuid(cred) == 0 || /* NFS maproot, see below */
2564 (exflags & MNT_EXPORTANON)) {
2565 /*
2566 * This is used by the NFS maproot option. While we can change
2567 * the secmodel on our own host, we can't change it on the
2568 * clients. As means of least surprise, we're doing the
2569 * traditional thing here.
2570 * Should look into adding a "mapprivileged" or similar where
2571 * the users can be explicitly specified...
2572 * [elad, yamt 2008-03-05]
2573 */
2574 kauth_cred_clone(credanon, cred);
2575 }
2576 if (exflags & MNT_EXRDONLY)
2577 *rdonlyp = 1;
2578 else
2579 *rdonlyp = 0;
2580 if (!lockflag)
2581 VOP_UNLOCK(*vpp, 0);
2582 return (0);
2583 }
2584
2585 /*
2586 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2587 * means a length of 0, for v2 it means all zeroes.
2588 */
2589 int
2590 nfs_ispublicfh(const nfsrvfh_t *nsfh)
2591 {
2592 const char *cp = (const void *)(NFSRVFH_DATA(nsfh));
2593 int i;
2594
2595 if (NFSRVFH_SIZE(nsfh) == 0) {
2596 return true;
2597 }
2598 if (NFSRVFH_SIZE(nsfh) != NFSX_V2FH) {
2599 return false;
2600 }
2601 for (i = 0; i < NFSX_V2FH; i++)
2602 if (*cp++ != 0)
2603 return false;
2604 return true;
2605 }
2606 #endif /* NFSSERVER */
2607
2608 /*
2609 * This function compares two net addresses by family and returns true
2610 * if they are the same host.
2611 * If there is any doubt, return false.
2612 * The AF_INET family is handled as a special case so that address mbufs
2613 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2614 */
2615 int
2616 netaddr_match(family, haddr, nam)
2617 int family;
2618 union nethostaddr *haddr;
2619 struct mbuf *nam;
2620 {
2621 struct sockaddr_in *inetaddr;
2622
2623 switch (family) {
2624 case AF_INET:
2625 inetaddr = mtod(nam, struct sockaddr_in *);
2626 if (inetaddr->sin_family == AF_INET &&
2627 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2628 return (1);
2629 break;
2630 #ifdef INET6
2631 case AF_INET6:
2632 {
2633 struct sockaddr_in6 *sin6_1, *sin6_2;
2634
2635 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2636 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2637 if (sin6_1->sin6_family == AF_INET6 &&
2638 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2639 return 1;
2640 }
2641 #endif
2642 #ifdef ISO
2643 case AF_ISO:
2644 {
2645 struct sockaddr_iso *isoaddr1, *isoaddr2;
2646
2647 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2648 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2649 if (isoaddr1->siso_family == AF_ISO &&
2650 isoaddr1->siso_nlen > 0 &&
2651 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2652 SAME_ISOADDR(isoaddr1, isoaddr2))
2653 return (1);
2654 break;
2655 }
2656 #endif /* ISO */
2657 default:
2658 break;
2659 };
2660 return (0);
2661 }
2662
2663 /*
2664 * The write verifier has changed (probably due to a server reboot), so all
2665 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2666 * as dirty or are being written out just now, all this takes is clearing
2667 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2668 * the mount point.
2669 */
2670 void
2671 nfs_clearcommit(mp)
2672 struct mount *mp;
2673 {
2674 struct vnode *vp;
2675 struct nfsnode *np;
2676 struct vm_page *pg;
2677 struct nfsmount *nmp = VFSTONFS(mp);
2678
2679 rw_enter(&nmp->nm_writeverflock, RW_WRITER);
2680 mutex_enter(&mntvnode_lock);
2681 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2682 KASSERT(vp->v_mount == mp);
2683 if (vp->v_type != VREG)
2684 continue;
2685 np = VTONFS(vp);
2686 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2687 np->n_pushedhi = 0;
2688 np->n_commitflags &=
2689 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2690 mutex_enter(&vp->v_uobj.vmobjlock);
2691 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2692 pg->flags &= ~PG_NEEDCOMMIT;
2693 }
2694 mutex_exit(&vp->v_uobj.vmobjlock);
2695 }
2696 mutex_exit(&mntvnode_lock);
2697 mutex_enter(&nmp->nm_lock);
2698 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2699 mutex_exit(&nmp->nm_lock);
2700 rw_exit(&nmp->nm_writeverflock);
2701 }
2702
2703 void
2704 nfs_merge_commit_ranges(vp)
2705 struct vnode *vp;
2706 {
2707 struct nfsnode *np = VTONFS(vp);
2708
2709 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2710
2711 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2712 np->n_pushedlo = np->n_pushlo;
2713 np->n_pushedhi = np->n_pushhi;
2714 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2715 } else {
2716 if (np->n_pushlo < np->n_pushedlo)
2717 np->n_pushedlo = np->n_pushlo;
2718 if (np->n_pushhi > np->n_pushedhi)
2719 np->n_pushedhi = np->n_pushhi;
2720 }
2721
2722 np->n_pushlo = np->n_pushhi = 0;
2723 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2724
2725 #ifdef NFS_DEBUG_COMMIT
2726 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2727 (unsigned)np->n_pushedhi);
2728 #endif
2729 }
2730
2731 int
2732 nfs_in_committed_range(vp, off, len)
2733 struct vnode *vp;
2734 off_t off, len;
2735 {
2736 struct nfsnode *np = VTONFS(vp);
2737 off_t lo, hi;
2738
2739 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2740 return 0;
2741 lo = off;
2742 hi = lo + len;
2743
2744 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2745 }
2746
2747 int
2748 nfs_in_tobecommitted_range(vp, off, len)
2749 struct vnode *vp;
2750 off_t off, len;
2751 {
2752 struct nfsnode *np = VTONFS(vp);
2753 off_t lo, hi;
2754
2755 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2756 return 0;
2757 lo = off;
2758 hi = lo + len;
2759
2760 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2761 }
2762
2763 void
2764 nfs_add_committed_range(vp, off, len)
2765 struct vnode *vp;
2766 off_t off, len;
2767 {
2768 struct nfsnode *np = VTONFS(vp);
2769 off_t lo, hi;
2770
2771 lo = off;
2772 hi = lo + len;
2773
2774 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2775 np->n_pushedlo = lo;
2776 np->n_pushedhi = hi;
2777 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2778 } else {
2779 if (hi > np->n_pushedhi)
2780 np->n_pushedhi = hi;
2781 if (lo < np->n_pushedlo)
2782 np->n_pushedlo = lo;
2783 }
2784 #ifdef NFS_DEBUG_COMMIT
2785 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2786 (unsigned)np->n_pushedhi);
2787 #endif
2788 }
2789
2790 void
2791 nfs_del_committed_range(vp, off, len)
2792 struct vnode *vp;
2793 off_t off, len;
2794 {
2795 struct nfsnode *np = VTONFS(vp);
2796 off_t lo, hi;
2797
2798 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2799 return;
2800
2801 lo = off;
2802 hi = lo + len;
2803
2804 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2805 return;
2806 if (lo <= np->n_pushedlo)
2807 np->n_pushedlo = hi;
2808 else if (hi >= np->n_pushedhi)
2809 np->n_pushedhi = lo;
2810 else {
2811 /*
2812 * XXX There's only one range. If the deleted range
2813 * is in the middle, pick the largest of the
2814 * contiguous ranges that it leaves.
2815 */
2816 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2817 np->n_pushedhi = lo;
2818 else
2819 np->n_pushedlo = hi;
2820 }
2821 #ifdef NFS_DEBUG_COMMIT
2822 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2823 (unsigned)np->n_pushedhi);
2824 #endif
2825 }
2826
2827 void
2828 nfs_add_tobecommitted_range(vp, off, len)
2829 struct vnode *vp;
2830 off_t off, len;
2831 {
2832 struct nfsnode *np = VTONFS(vp);
2833 off_t lo, hi;
2834
2835 lo = off;
2836 hi = lo + len;
2837
2838 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2839 np->n_pushlo = lo;
2840 np->n_pushhi = hi;
2841 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2842 } else {
2843 if (lo < np->n_pushlo)
2844 np->n_pushlo = lo;
2845 if (hi > np->n_pushhi)
2846 np->n_pushhi = hi;
2847 }
2848 #ifdef NFS_DEBUG_COMMIT
2849 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2850 (unsigned)np->n_pushhi);
2851 #endif
2852 }
2853
2854 void
2855 nfs_del_tobecommitted_range(vp, off, len)
2856 struct vnode *vp;
2857 off_t off, len;
2858 {
2859 struct nfsnode *np = VTONFS(vp);
2860 off_t lo, hi;
2861
2862 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2863 return;
2864
2865 lo = off;
2866 hi = lo + len;
2867
2868 if (lo > np->n_pushhi || hi < np->n_pushlo)
2869 return;
2870
2871 if (lo <= np->n_pushlo)
2872 np->n_pushlo = hi;
2873 else if (hi >= np->n_pushhi)
2874 np->n_pushhi = lo;
2875 else {
2876 /*
2877 * XXX There's only one range. If the deleted range
2878 * is in the middle, pick the largest of the
2879 * contiguous ranges that it leaves.
2880 */
2881 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2882 np->n_pushhi = lo;
2883 else
2884 np->n_pushlo = hi;
2885 }
2886 #ifdef NFS_DEBUG_COMMIT
2887 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2888 (unsigned)np->n_pushhi);
2889 #endif
2890 }
2891
2892 /*
2893 * Map errnos to NFS error numbers. For Version 3 also filter out error
2894 * numbers not specified for the associated procedure.
2895 */
2896 int
2897 nfsrv_errmap(nd, err)
2898 struct nfsrv_descript *nd;
2899 int err;
2900 {
2901 const short *defaulterrp, *errp;
2902
2903 if (nd->nd_flag & ND_NFSV3) {
2904 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2905 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2906 while (*++errp) {
2907 if (*errp == err)
2908 return (err);
2909 else if (*errp > err)
2910 break;
2911 }
2912 return ((int)*defaulterrp);
2913 } else
2914 return (err & 0xffff);
2915 }
2916 if (err <= ELAST)
2917 return ((int)nfsrv_v2errmap[err - 1]);
2918 return (NFSERR_IO);
2919 }
2920
2921 u_int32_t
2922 nfs_getxid()
2923 {
2924 static u_int32_t base;
2925 static u_int32_t nfs_xid = 0;
2926 u_int32_t newxid;
2927
2928 mutex_enter(&nfs_xidlock);
2929 /*
2930 * derive initial xid from system time
2931 * XXX time is invalid if root not yet mounted
2932 */
2933 if (__predict_false(!base && (rootvp))) {
2934 struct timeval tv;
2935
2936 microtime(&tv);
2937 base = tv.tv_sec << 12;
2938 nfs_xid = base;
2939 }
2940
2941 /*
2942 * Skip zero xid if it should ever happen.
2943 */
2944 if (__predict_false(++nfs_xid == 0))
2945 nfs_xid++;
2946 newxid = nfs_xid;
2947 mutex_exit(&nfs_xidlock);
2948
2949 return txdr_unsigned(newxid);
2950 }
2951
2952 /*
2953 * assign a new xid for existing request.
2954 * used for NFSERR_JUKEBOX handling.
2955 */
2956 void
2957 nfs_renewxid(struct nfsreq *req)
2958 {
2959 u_int32_t xid;
2960 int off;
2961
2962 xid = nfs_getxid();
2963 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2964 off = sizeof(u_int32_t); /* RPC record mark */
2965 else
2966 off = 0;
2967
2968 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2969 req->r_xid = xid;
2970 }
2971
2972 #if defined(NFSSERVER)
2973 int
2974 nfsrv_composefh(struct vnode *vp, nfsrvfh_t *nsfh, bool v3)
2975 {
2976 int error;
2977 size_t fhsize;
2978
2979 fhsize = NFSD_MAXFHSIZE;
2980 error = vfs_composefh(vp, (void *)NFSRVFH_DATA(nsfh), &fhsize);
2981 if (NFSX_FHTOOBIG_P(fhsize, v3)) {
2982 error = EOPNOTSUPP;
2983 }
2984 if (error != 0) {
2985 return error;
2986 }
2987 if (!v3 && fhsize < NFSX_V2FH) {
2988 memset((char *)NFSRVFH_DATA(nsfh) + fhsize, 0,
2989 NFSX_V2FH - fhsize);
2990 fhsize = NFSX_V2FH;
2991 }
2992 if ((fhsize % NFSX_UNSIGNED) != 0) {
2993 return EOPNOTSUPP;
2994 }
2995 nsfh->nsfh_size = fhsize;
2996 return 0;
2997 }
2998
2999 int
3000 nfsrv_comparefh(const nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
3001 {
3002
3003 if (NFSRVFH_SIZE(fh1) != NFSRVFH_SIZE(fh2)) {
3004 return NFSRVFH_SIZE(fh2) - NFSRVFH_SIZE(fh1);
3005 }
3006 return memcmp(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), NFSRVFH_SIZE(fh1));
3007 }
3008
3009 void
3010 nfsrv_copyfh(nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
3011 {
3012 size_t size;
3013
3014 fh1->nsfh_size = size = NFSRVFH_SIZE(fh2);
3015 memcpy(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), size);
3016 }
3017 #endif /* defined(NFSSERVER) */
3018
3019 #if defined(NFS)
3020 /*
3021 * Set the attribute timeout based on how recently the file has been modified.
3022 */
3023
3024 time_t
3025 nfs_attrtimeo(struct nfsmount *nmp, struct nfsnode *np)
3026 {
3027 time_t timeo;
3028
3029 if ((nmp->nm_flag & NFSMNT_NOAC) != 0)
3030 return 0;
3031
3032 if (((np)->n_flag & NMODIFIED) != 0)
3033 return NFS_MINATTRTIMO;
3034
3035 timeo = (time_second - np->n_mtime.tv_sec) / 10;
3036 timeo = max(timeo, NFS_MINATTRTIMO);
3037 timeo = min(timeo, NFS_MAXATTRTIMO);
3038 return timeo;
3039 }
3040 #endif /* defined(NFS) */
3041