nfs_subs.c revision 1.202 1 /* $NetBSD: nfs_subs.c,v 1.202 2008/05/05 17:11:17 ad Exp $ */
2
3 /*
4 * Copyright (c) 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Rick Macklem at The University of Guelph.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)nfs_subs.c 8.8 (Berkeley) 5/22/95
35 */
36
37 /*
38 * Copyright 2000 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Frank van der Linden for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: nfs_subs.c,v 1.202 2008/05/05 17:11:17 ad Exp $");
74
75 #include "fs_nfs.h"
76 #include "opt_nfs.h"
77 #include "opt_nfsserver.h"
78 #include "opt_iso.h"
79 #include "opt_inet.h"
80
81 /*
82 * These functions support the macros and help fiddle mbuf chains for
83 * the nfs op functions. They do things like create the rpc header and
84 * copy data between mbuf chains and uio lists.
85 */
86 #include <sys/param.h>
87 #include <sys/proc.h>
88 #include <sys/systm.h>
89 #include <sys/kernel.h>
90 #include <sys/kmem.h>
91 #include <sys/mount.h>
92 #include <sys/vnode.h>
93 #include <sys/namei.h>
94 #include <sys/mbuf.h>
95 #include <sys/socket.h>
96 #include <sys/stat.h>
97 #include <sys/filedesc.h>
98 #include <sys/time.h>
99 #include <sys/dirent.h>
100 #include <sys/once.h>
101 #include <sys/kauth.h>
102
103 #include <uvm/uvm_extern.h>
104
105 #include <nfs/rpcv2.h>
106 #include <nfs/nfsproto.h>
107 #include <nfs/nfsnode.h>
108 #include <nfs/nfs.h>
109 #include <nfs/xdr_subs.h>
110 #include <nfs/nfsm_subs.h>
111 #include <nfs/nfsmount.h>
112 #include <nfs/nfsrtt.h>
113 #include <nfs/nfs_var.h>
114
115 #include <miscfs/specfs/specdev.h>
116
117 #include <netinet/in.h>
118 #ifdef ISO
119 #include <netiso/iso.h>
120 #endif
121
122 /*
123 * Data items converted to xdr at startup, since they are constant
124 * This is kinda hokey, but may save a little time doing byte swaps
125 */
126 u_int32_t nfs_xdrneg1;
127 u_int32_t rpc_call, rpc_vers, rpc_reply, rpc_msgdenied, rpc_autherr,
128 rpc_mismatch, rpc_auth_unix, rpc_msgaccepted,
129 rpc_auth_kerb;
130 u_int32_t nfs_prog, nfs_true, nfs_false;
131
132 /* And other global data */
133 const nfstype nfsv2_type[9] =
134 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFNON, NFCHR, NFNON };
135 const nfstype nfsv3_type[9] =
136 { NFNON, NFREG, NFDIR, NFBLK, NFCHR, NFLNK, NFSOCK, NFFIFO, NFNON };
137 const enum vtype nv2tov_type[8] =
138 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VNON, VNON };
139 const enum vtype nv3tov_type[8] =
140 { VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO };
141 int nfs_ticks;
142 int nfs_commitsize;
143
144 MALLOC_DEFINE(M_NFSDIROFF, "NFS diroff", "NFS directory cookies");
145
146 /* NFS client/server stats. */
147 struct nfsstats nfsstats;
148
149 /*
150 * Mapping of old NFS Version 2 RPC numbers to generic numbers.
151 */
152 const int nfsv3_procid[NFS_NPROCS] = {
153 NFSPROC_NULL,
154 NFSPROC_GETATTR,
155 NFSPROC_SETATTR,
156 NFSPROC_NOOP,
157 NFSPROC_LOOKUP,
158 NFSPROC_READLINK,
159 NFSPROC_READ,
160 NFSPROC_NOOP,
161 NFSPROC_WRITE,
162 NFSPROC_CREATE,
163 NFSPROC_REMOVE,
164 NFSPROC_RENAME,
165 NFSPROC_LINK,
166 NFSPROC_SYMLINK,
167 NFSPROC_MKDIR,
168 NFSPROC_RMDIR,
169 NFSPROC_READDIR,
170 NFSPROC_FSSTAT,
171 NFSPROC_NOOP,
172 NFSPROC_NOOP,
173 NFSPROC_NOOP,
174 NFSPROC_NOOP,
175 NFSPROC_NOOP
176 };
177
178 /*
179 * and the reverse mapping from generic to Version 2 procedure numbers
180 */
181 const int nfsv2_procid[NFS_NPROCS] = {
182 NFSV2PROC_NULL,
183 NFSV2PROC_GETATTR,
184 NFSV2PROC_SETATTR,
185 NFSV2PROC_LOOKUP,
186 NFSV2PROC_NOOP,
187 NFSV2PROC_READLINK,
188 NFSV2PROC_READ,
189 NFSV2PROC_WRITE,
190 NFSV2PROC_CREATE,
191 NFSV2PROC_MKDIR,
192 NFSV2PROC_SYMLINK,
193 NFSV2PROC_CREATE,
194 NFSV2PROC_REMOVE,
195 NFSV2PROC_RMDIR,
196 NFSV2PROC_RENAME,
197 NFSV2PROC_LINK,
198 NFSV2PROC_READDIR,
199 NFSV2PROC_NOOP,
200 NFSV2PROC_STATFS,
201 NFSV2PROC_NOOP,
202 NFSV2PROC_NOOP,
203 NFSV2PROC_NOOP,
204 NFSV2PROC_NOOP,
205 };
206
207 /*
208 * Maps errno values to nfs error numbers.
209 * Use NFSERR_IO as the catch all for ones not specifically defined in
210 * RFC 1094.
211 */
212 static const u_char nfsrv_v2errmap[ELAST] = {
213 NFSERR_PERM, NFSERR_NOENT, NFSERR_IO, NFSERR_IO, NFSERR_IO,
214 NFSERR_NXIO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
215 NFSERR_IO, NFSERR_IO, NFSERR_ACCES, NFSERR_IO, NFSERR_IO,
216 NFSERR_IO, NFSERR_EXIST, NFSERR_IO, NFSERR_NODEV, NFSERR_NOTDIR,
217 NFSERR_ISDIR, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
218 NFSERR_IO, NFSERR_FBIG, NFSERR_NOSPC, NFSERR_IO, NFSERR_ROFS,
219 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
220 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
221 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
222 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
223 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
224 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
225 NFSERR_IO, NFSERR_IO, NFSERR_NAMETOL, NFSERR_IO, NFSERR_IO,
226 NFSERR_NOTEMPTY, NFSERR_IO, NFSERR_IO, NFSERR_DQUOT, NFSERR_STALE,
227 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
228 NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO, NFSERR_IO,
229 NFSERR_IO, NFSERR_IO,
230 };
231
232 /*
233 * Maps errno values to nfs error numbers.
234 * Although it is not obvious whether or not NFS clients really care if
235 * a returned error value is in the specified list for the procedure, the
236 * safest thing to do is filter them appropriately. For Version 2, the
237 * X/Open XNFS document is the only specification that defines error values
238 * for each RPC (The RFC simply lists all possible error values for all RPCs),
239 * so I have decided to not do this for Version 2.
240 * The first entry is the default error return and the rest are the valid
241 * errors for that RPC in increasing numeric order.
242 */
243 static const short nfsv3err_null[] = {
244 0,
245 0,
246 };
247
248 static const short nfsv3err_getattr[] = {
249 NFSERR_IO,
250 NFSERR_IO,
251 NFSERR_STALE,
252 NFSERR_BADHANDLE,
253 NFSERR_SERVERFAULT,
254 0,
255 };
256
257 static const short nfsv3err_setattr[] = {
258 NFSERR_IO,
259 NFSERR_PERM,
260 NFSERR_IO,
261 NFSERR_ACCES,
262 NFSERR_INVAL,
263 NFSERR_NOSPC,
264 NFSERR_ROFS,
265 NFSERR_DQUOT,
266 NFSERR_STALE,
267 NFSERR_BADHANDLE,
268 NFSERR_NOT_SYNC,
269 NFSERR_SERVERFAULT,
270 0,
271 };
272
273 static const short nfsv3err_lookup[] = {
274 NFSERR_IO,
275 NFSERR_NOENT,
276 NFSERR_IO,
277 NFSERR_ACCES,
278 NFSERR_NOTDIR,
279 NFSERR_NAMETOL,
280 NFSERR_STALE,
281 NFSERR_BADHANDLE,
282 NFSERR_SERVERFAULT,
283 0,
284 };
285
286 static const short nfsv3err_access[] = {
287 NFSERR_IO,
288 NFSERR_IO,
289 NFSERR_STALE,
290 NFSERR_BADHANDLE,
291 NFSERR_SERVERFAULT,
292 0,
293 };
294
295 static const short nfsv3err_readlink[] = {
296 NFSERR_IO,
297 NFSERR_IO,
298 NFSERR_ACCES,
299 NFSERR_INVAL,
300 NFSERR_STALE,
301 NFSERR_BADHANDLE,
302 NFSERR_NOTSUPP,
303 NFSERR_SERVERFAULT,
304 0,
305 };
306
307 static const short nfsv3err_read[] = {
308 NFSERR_IO,
309 NFSERR_IO,
310 NFSERR_NXIO,
311 NFSERR_ACCES,
312 NFSERR_INVAL,
313 NFSERR_STALE,
314 NFSERR_BADHANDLE,
315 NFSERR_SERVERFAULT,
316 NFSERR_JUKEBOX,
317 0,
318 };
319
320 static const short nfsv3err_write[] = {
321 NFSERR_IO,
322 NFSERR_IO,
323 NFSERR_ACCES,
324 NFSERR_INVAL,
325 NFSERR_FBIG,
326 NFSERR_NOSPC,
327 NFSERR_ROFS,
328 NFSERR_DQUOT,
329 NFSERR_STALE,
330 NFSERR_BADHANDLE,
331 NFSERR_SERVERFAULT,
332 NFSERR_JUKEBOX,
333 0,
334 };
335
336 static const short nfsv3err_create[] = {
337 NFSERR_IO,
338 NFSERR_IO,
339 NFSERR_ACCES,
340 NFSERR_EXIST,
341 NFSERR_NOTDIR,
342 NFSERR_NOSPC,
343 NFSERR_ROFS,
344 NFSERR_NAMETOL,
345 NFSERR_DQUOT,
346 NFSERR_STALE,
347 NFSERR_BADHANDLE,
348 NFSERR_NOTSUPP,
349 NFSERR_SERVERFAULT,
350 0,
351 };
352
353 static const short nfsv3err_mkdir[] = {
354 NFSERR_IO,
355 NFSERR_IO,
356 NFSERR_ACCES,
357 NFSERR_EXIST,
358 NFSERR_NOTDIR,
359 NFSERR_NOSPC,
360 NFSERR_ROFS,
361 NFSERR_NAMETOL,
362 NFSERR_DQUOT,
363 NFSERR_STALE,
364 NFSERR_BADHANDLE,
365 NFSERR_NOTSUPP,
366 NFSERR_SERVERFAULT,
367 0,
368 };
369
370 static const short nfsv3err_symlink[] = {
371 NFSERR_IO,
372 NFSERR_IO,
373 NFSERR_ACCES,
374 NFSERR_EXIST,
375 NFSERR_NOTDIR,
376 NFSERR_NOSPC,
377 NFSERR_ROFS,
378 NFSERR_NAMETOL,
379 NFSERR_DQUOT,
380 NFSERR_STALE,
381 NFSERR_BADHANDLE,
382 NFSERR_NOTSUPP,
383 NFSERR_SERVERFAULT,
384 0,
385 };
386
387 static const short nfsv3err_mknod[] = {
388 NFSERR_IO,
389 NFSERR_IO,
390 NFSERR_ACCES,
391 NFSERR_EXIST,
392 NFSERR_NOTDIR,
393 NFSERR_NOSPC,
394 NFSERR_ROFS,
395 NFSERR_NAMETOL,
396 NFSERR_DQUOT,
397 NFSERR_STALE,
398 NFSERR_BADHANDLE,
399 NFSERR_NOTSUPP,
400 NFSERR_SERVERFAULT,
401 NFSERR_BADTYPE,
402 0,
403 };
404
405 static const short nfsv3err_remove[] = {
406 NFSERR_IO,
407 NFSERR_NOENT,
408 NFSERR_IO,
409 NFSERR_ACCES,
410 NFSERR_NOTDIR,
411 NFSERR_ROFS,
412 NFSERR_NAMETOL,
413 NFSERR_STALE,
414 NFSERR_BADHANDLE,
415 NFSERR_SERVERFAULT,
416 0,
417 };
418
419 static const short nfsv3err_rmdir[] = {
420 NFSERR_IO,
421 NFSERR_NOENT,
422 NFSERR_IO,
423 NFSERR_ACCES,
424 NFSERR_EXIST,
425 NFSERR_NOTDIR,
426 NFSERR_INVAL,
427 NFSERR_ROFS,
428 NFSERR_NAMETOL,
429 NFSERR_NOTEMPTY,
430 NFSERR_STALE,
431 NFSERR_BADHANDLE,
432 NFSERR_NOTSUPP,
433 NFSERR_SERVERFAULT,
434 0,
435 };
436
437 static const short nfsv3err_rename[] = {
438 NFSERR_IO,
439 NFSERR_NOENT,
440 NFSERR_IO,
441 NFSERR_ACCES,
442 NFSERR_EXIST,
443 NFSERR_XDEV,
444 NFSERR_NOTDIR,
445 NFSERR_ISDIR,
446 NFSERR_INVAL,
447 NFSERR_NOSPC,
448 NFSERR_ROFS,
449 NFSERR_MLINK,
450 NFSERR_NAMETOL,
451 NFSERR_NOTEMPTY,
452 NFSERR_DQUOT,
453 NFSERR_STALE,
454 NFSERR_BADHANDLE,
455 NFSERR_NOTSUPP,
456 NFSERR_SERVERFAULT,
457 0,
458 };
459
460 static const short nfsv3err_link[] = {
461 NFSERR_IO,
462 NFSERR_IO,
463 NFSERR_ACCES,
464 NFSERR_EXIST,
465 NFSERR_XDEV,
466 NFSERR_NOTDIR,
467 NFSERR_INVAL,
468 NFSERR_NOSPC,
469 NFSERR_ROFS,
470 NFSERR_MLINK,
471 NFSERR_NAMETOL,
472 NFSERR_DQUOT,
473 NFSERR_STALE,
474 NFSERR_BADHANDLE,
475 NFSERR_NOTSUPP,
476 NFSERR_SERVERFAULT,
477 0,
478 };
479
480 static const short nfsv3err_readdir[] = {
481 NFSERR_IO,
482 NFSERR_IO,
483 NFSERR_ACCES,
484 NFSERR_NOTDIR,
485 NFSERR_STALE,
486 NFSERR_BADHANDLE,
487 NFSERR_BAD_COOKIE,
488 NFSERR_TOOSMALL,
489 NFSERR_SERVERFAULT,
490 0,
491 };
492
493 static const short nfsv3err_readdirplus[] = {
494 NFSERR_IO,
495 NFSERR_IO,
496 NFSERR_ACCES,
497 NFSERR_NOTDIR,
498 NFSERR_STALE,
499 NFSERR_BADHANDLE,
500 NFSERR_BAD_COOKIE,
501 NFSERR_NOTSUPP,
502 NFSERR_TOOSMALL,
503 NFSERR_SERVERFAULT,
504 0,
505 };
506
507 static const short nfsv3err_fsstat[] = {
508 NFSERR_IO,
509 NFSERR_IO,
510 NFSERR_STALE,
511 NFSERR_BADHANDLE,
512 NFSERR_SERVERFAULT,
513 0,
514 };
515
516 static const short nfsv3err_fsinfo[] = {
517 NFSERR_STALE,
518 NFSERR_STALE,
519 NFSERR_BADHANDLE,
520 NFSERR_SERVERFAULT,
521 0,
522 };
523
524 static const short nfsv3err_pathconf[] = {
525 NFSERR_STALE,
526 NFSERR_STALE,
527 NFSERR_BADHANDLE,
528 NFSERR_SERVERFAULT,
529 0,
530 };
531
532 static const short nfsv3err_commit[] = {
533 NFSERR_IO,
534 NFSERR_IO,
535 NFSERR_STALE,
536 NFSERR_BADHANDLE,
537 NFSERR_SERVERFAULT,
538 0,
539 };
540
541 static const short * const nfsrv_v3errmap[] = {
542 nfsv3err_null,
543 nfsv3err_getattr,
544 nfsv3err_setattr,
545 nfsv3err_lookup,
546 nfsv3err_access,
547 nfsv3err_readlink,
548 nfsv3err_read,
549 nfsv3err_write,
550 nfsv3err_create,
551 nfsv3err_mkdir,
552 nfsv3err_symlink,
553 nfsv3err_mknod,
554 nfsv3err_remove,
555 nfsv3err_rmdir,
556 nfsv3err_rename,
557 nfsv3err_link,
558 nfsv3err_readdir,
559 nfsv3err_readdirplus,
560 nfsv3err_fsstat,
561 nfsv3err_fsinfo,
562 nfsv3err_pathconf,
563 nfsv3err_commit,
564 };
565
566 extern struct nfsrtt nfsrtt;
567 extern struct nfsnodehashhead *nfsnodehashtbl;
568 extern u_long nfsnodehash;
569
570 u_long nfsdirhashmask;
571
572 int nfs_webnamei __P((struct nameidata *, struct vnode *, struct proc *));
573
574 /*
575 * Create the header for an rpc request packet
576 * The hsiz is the size of the rest of the nfs request header.
577 * (just used to decide if a cluster is a good idea)
578 */
579 struct mbuf *
580 nfsm_reqh(struct nfsnode *np, u_long procid, int hsiz, char **bposp)
581 {
582 struct mbuf *mb;
583 char *bpos;
584
585 mb = m_get(M_WAIT, MT_DATA);
586 MCLAIM(mb, &nfs_mowner);
587 if (hsiz >= MINCLSIZE)
588 m_clget(mb, M_WAIT);
589 mb->m_len = 0;
590 bpos = mtod(mb, void *);
591
592 /* Finally, return values */
593 *bposp = bpos;
594 return (mb);
595 }
596
597 /*
598 * Build the RPC header and fill in the authorization info.
599 * The authorization string argument is only used when the credentials
600 * come from outside of the kernel.
601 * Returns the head of the mbuf list.
602 */
603 struct mbuf *
604 nfsm_rpchead(cr, nmflag, procid, auth_type, auth_len, auth_str, verf_len,
605 verf_str, mrest, mrest_len, mbp, xidp)
606 kauth_cred_t cr;
607 int nmflag;
608 int procid;
609 int auth_type;
610 int auth_len;
611 char *auth_str;
612 int verf_len;
613 char *verf_str;
614 struct mbuf *mrest;
615 int mrest_len;
616 struct mbuf **mbp;
617 u_int32_t *xidp;
618 {
619 struct mbuf *mb;
620 u_int32_t *tl;
621 char *bpos;
622 int i;
623 struct mbuf *mreq;
624 int siz, grpsiz, authsiz;
625
626 authsiz = nfsm_rndup(auth_len);
627 mb = m_gethdr(M_WAIT, MT_DATA);
628 MCLAIM(mb, &nfs_mowner);
629 if ((authsiz + 10 * NFSX_UNSIGNED) >= MINCLSIZE) {
630 m_clget(mb, M_WAIT);
631 } else if ((authsiz + 10 * NFSX_UNSIGNED) < MHLEN) {
632 MH_ALIGN(mb, authsiz + 10 * NFSX_UNSIGNED);
633 } else {
634 MH_ALIGN(mb, 8 * NFSX_UNSIGNED);
635 }
636 mb->m_len = 0;
637 mreq = mb;
638 bpos = mtod(mb, void *);
639
640 /*
641 * First the RPC header.
642 */
643 nfsm_build(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
644
645 *tl++ = *xidp = nfs_getxid();
646 *tl++ = rpc_call;
647 *tl++ = rpc_vers;
648 *tl++ = txdr_unsigned(NFS_PROG);
649 if (nmflag & NFSMNT_NFSV3)
650 *tl++ = txdr_unsigned(NFS_VER3);
651 else
652 *tl++ = txdr_unsigned(NFS_VER2);
653 if (nmflag & NFSMNT_NFSV3)
654 *tl++ = txdr_unsigned(procid);
655 else
656 *tl++ = txdr_unsigned(nfsv2_procid[procid]);
657
658 /*
659 * And then the authorization cred.
660 */
661 *tl++ = txdr_unsigned(auth_type);
662 *tl = txdr_unsigned(authsiz);
663 switch (auth_type) {
664 case RPCAUTH_UNIX:
665 nfsm_build(tl, u_int32_t *, auth_len);
666 *tl++ = 0; /* stamp ?? */
667 *tl++ = 0; /* NULL hostname */
668 *tl++ = txdr_unsigned(kauth_cred_geteuid(cr));
669 *tl++ = txdr_unsigned(kauth_cred_getegid(cr));
670 grpsiz = (auth_len >> 2) - 5;
671 *tl++ = txdr_unsigned(grpsiz);
672 for (i = 0; i < grpsiz; i++)
673 *tl++ = txdr_unsigned(kauth_cred_group(cr, i)); /* XXX elad review */
674 break;
675 case RPCAUTH_KERB4:
676 siz = auth_len;
677 while (siz > 0) {
678 if (M_TRAILINGSPACE(mb) == 0) {
679 struct mbuf *mb2;
680 mb2 = m_get(M_WAIT, MT_DATA);
681 MCLAIM(mb2, &nfs_mowner);
682 if (siz >= MINCLSIZE)
683 m_clget(mb2, M_WAIT);
684 mb->m_next = mb2;
685 mb = mb2;
686 mb->m_len = 0;
687 bpos = mtod(mb, void *);
688 }
689 i = min(siz, M_TRAILINGSPACE(mb));
690 memcpy(bpos, auth_str, i);
691 mb->m_len += i;
692 auth_str += i;
693 bpos += i;
694 siz -= i;
695 }
696 if ((siz = (nfsm_rndup(auth_len) - auth_len)) > 0) {
697 for (i = 0; i < siz; i++)
698 *bpos++ = '\0';
699 mb->m_len += siz;
700 }
701 break;
702 };
703
704 /*
705 * And the verifier...
706 */
707 nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
708 if (verf_str) {
709 *tl++ = txdr_unsigned(RPCAUTH_KERB4);
710 *tl = txdr_unsigned(verf_len);
711 siz = verf_len;
712 while (siz > 0) {
713 if (M_TRAILINGSPACE(mb) == 0) {
714 struct mbuf *mb2;
715 mb2 = m_get(M_WAIT, MT_DATA);
716 MCLAIM(mb2, &nfs_mowner);
717 if (siz >= MINCLSIZE)
718 m_clget(mb2, M_WAIT);
719 mb->m_next = mb2;
720 mb = mb2;
721 mb->m_len = 0;
722 bpos = mtod(mb, void *);
723 }
724 i = min(siz, M_TRAILINGSPACE(mb));
725 memcpy(bpos, verf_str, i);
726 mb->m_len += i;
727 verf_str += i;
728 bpos += i;
729 siz -= i;
730 }
731 if ((siz = (nfsm_rndup(verf_len) - verf_len)) > 0) {
732 for (i = 0; i < siz; i++)
733 *bpos++ = '\0';
734 mb->m_len += siz;
735 }
736 } else {
737 *tl++ = txdr_unsigned(RPCAUTH_NULL);
738 *tl = 0;
739 }
740 mb->m_next = mrest;
741 mreq->m_pkthdr.len = authsiz + 10 * NFSX_UNSIGNED + mrest_len;
742 mreq->m_pkthdr.rcvif = (struct ifnet *)0;
743 *mbp = mb;
744 return (mreq);
745 }
746
747 /*
748 * copies mbuf chain to the uio scatter/gather list
749 */
750 int
751 nfsm_mbuftouio(mrep, uiop, siz, dpos)
752 struct mbuf **mrep;
753 struct uio *uiop;
754 int siz;
755 char **dpos;
756 {
757 char *mbufcp, *uiocp;
758 int xfer, left, len;
759 struct mbuf *mp;
760 long uiosiz, rem;
761 int error = 0;
762
763 mp = *mrep;
764 mbufcp = *dpos;
765 len = mtod(mp, char *) + mp->m_len - mbufcp;
766 rem = nfsm_rndup(siz)-siz;
767 while (siz > 0) {
768 if (uiop->uio_iovcnt <= 0 || uiop->uio_iov == NULL)
769 return (EFBIG);
770 left = uiop->uio_iov->iov_len;
771 uiocp = uiop->uio_iov->iov_base;
772 if (left > siz)
773 left = siz;
774 uiosiz = left;
775 while (left > 0) {
776 while (len == 0) {
777 mp = mp->m_next;
778 if (mp == NULL)
779 return (EBADRPC);
780 mbufcp = mtod(mp, void *);
781 len = mp->m_len;
782 }
783 xfer = (left > len) ? len : left;
784 error = copyout_vmspace(uiop->uio_vmspace, mbufcp,
785 uiocp, xfer);
786 if (error) {
787 return error;
788 }
789 left -= xfer;
790 len -= xfer;
791 mbufcp += xfer;
792 uiocp += xfer;
793 uiop->uio_offset += xfer;
794 uiop->uio_resid -= xfer;
795 }
796 if (uiop->uio_iov->iov_len <= siz) {
797 uiop->uio_iovcnt--;
798 uiop->uio_iov++;
799 } else {
800 uiop->uio_iov->iov_base =
801 (char *)uiop->uio_iov->iov_base + uiosiz;
802 uiop->uio_iov->iov_len -= uiosiz;
803 }
804 siz -= uiosiz;
805 }
806 *dpos = mbufcp;
807 *mrep = mp;
808 if (rem > 0) {
809 if (len < rem)
810 error = nfs_adv(mrep, dpos, rem, len);
811 else
812 *dpos += rem;
813 }
814 return (error);
815 }
816
817 /*
818 * copies a uio scatter/gather list to an mbuf chain.
819 * NOTE: can ony handle iovcnt == 1
820 */
821 int
822 nfsm_uiotombuf(uiop, mq, siz, bpos)
823 struct uio *uiop;
824 struct mbuf **mq;
825 int siz;
826 char **bpos;
827 {
828 char *uiocp;
829 struct mbuf *mp, *mp2;
830 int xfer, left, mlen;
831 int uiosiz, clflg, rem;
832 char *cp;
833 int error;
834
835 #ifdef DIAGNOSTIC
836 if (uiop->uio_iovcnt != 1)
837 panic("nfsm_uiotombuf: iovcnt != 1");
838 #endif
839
840 if (siz > MLEN) /* or should it >= MCLBYTES ?? */
841 clflg = 1;
842 else
843 clflg = 0;
844 rem = nfsm_rndup(siz)-siz;
845 mp = mp2 = *mq;
846 while (siz > 0) {
847 left = uiop->uio_iov->iov_len;
848 uiocp = uiop->uio_iov->iov_base;
849 if (left > siz)
850 left = siz;
851 uiosiz = left;
852 while (left > 0) {
853 mlen = M_TRAILINGSPACE(mp);
854 if (mlen == 0) {
855 mp = m_get(M_WAIT, MT_DATA);
856 MCLAIM(mp, &nfs_mowner);
857 if (clflg)
858 m_clget(mp, M_WAIT);
859 mp->m_len = 0;
860 mp2->m_next = mp;
861 mp2 = mp;
862 mlen = M_TRAILINGSPACE(mp);
863 }
864 xfer = (left > mlen) ? mlen : left;
865 cp = mtod(mp, char *) + mp->m_len;
866 error = copyin_vmspace(uiop->uio_vmspace, uiocp, cp,
867 xfer);
868 if (error) {
869 /* XXX */
870 }
871 mp->m_len += xfer;
872 left -= xfer;
873 uiocp += xfer;
874 uiop->uio_offset += xfer;
875 uiop->uio_resid -= xfer;
876 }
877 uiop->uio_iov->iov_base = (char *)uiop->uio_iov->iov_base +
878 uiosiz;
879 uiop->uio_iov->iov_len -= uiosiz;
880 siz -= uiosiz;
881 }
882 if (rem > 0) {
883 if (rem > M_TRAILINGSPACE(mp)) {
884 mp = m_get(M_WAIT, MT_DATA);
885 MCLAIM(mp, &nfs_mowner);
886 mp->m_len = 0;
887 mp2->m_next = mp;
888 }
889 cp = mtod(mp, char *) + mp->m_len;
890 for (left = 0; left < rem; left++)
891 *cp++ = '\0';
892 mp->m_len += rem;
893 *bpos = cp;
894 } else
895 *bpos = mtod(mp, char *) + mp->m_len;
896 *mq = mp;
897 return (0);
898 }
899
900 /*
901 * Get at least "siz" bytes of correctly aligned data.
902 * When called the mbuf pointers are not necessarily correct,
903 * dsosp points to what ought to be in m_data and left contains
904 * what ought to be in m_len.
905 * This is used by the macros nfsm_dissect and nfsm_dissecton for tough
906 * cases. (The macros use the vars. dpos and dpos2)
907 */
908 int
909 nfsm_disct(mdp, dposp, siz, left, cp2)
910 struct mbuf **mdp;
911 char **dposp;
912 int siz;
913 int left;
914 char **cp2;
915 {
916 struct mbuf *m1, *m2;
917 struct mbuf *havebuf = NULL;
918 char *src = *dposp;
919 char *dst;
920 int len;
921
922 #ifdef DEBUG
923 if (left < 0)
924 panic("nfsm_disct: left < 0");
925 #endif
926 m1 = *mdp;
927 /*
928 * Skip through the mbuf chain looking for an mbuf with
929 * some data. If the first mbuf found has enough data
930 * and it is correctly aligned return it.
931 */
932 while (left == 0) {
933 havebuf = m1;
934 *mdp = m1 = m1->m_next;
935 if (m1 == NULL)
936 return (EBADRPC);
937 src = mtod(m1, void *);
938 left = m1->m_len;
939 /*
940 * If we start a new mbuf and it is big enough
941 * and correctly aligned just return it, don't
942 * do any pull up.
943 */
944 if (left >= siz && nfsm_aligned(src)) {
945 *cp2 = src;
946 *dposp = src + siz;
947 return (0);
948 }
949 }
950 if ((m1->m_flags & M_EXT) != 0) {
951 if (havebuf && M_TRAILINGSPACE(havebuf) >= siz &&
952 nfsm_aligned(mtod(havebuf, char *) + havebuf->m_len)) {
953 /*
954 * If the first mbuf with data has external data
955 * and there is a previous mbuf with some trailing
956 * space, use it to move the data into.
957 */
958 m2 = m1;
959 *mdp = m1 = havebuf;
960 *cp2 = mtod(m1, char *) + m1->m_len;
961 } else if (havebuf) {
962 /*
963 * If the first mbuf has a external data
964 * and there is no previous empty mbuf
965 * allocate a new mbuf and move the external
966 * data to the new mbuf. Also make the first
967 * mbuf look empty.
968 */
969 m2 = m1;
970 *mdp = m1 = m_get(M_WAIT, MT_DATA);
971 MCLAIM(m1, m2->m_owner);
972 if ((m2->m_flags & M_PKTHDR) != 0) {
973 /* XXX MOVE */
974 M_COPY_PKTHDR(m1, m2);
975 m_tag_delete_chain(m2, NULL);
976 m2->m_flags &= ~M_PKTHDR;
977 }
978 if (havebuf) {
979 havebuf->m_next = m1;
980 }
981 m1->m_next = m2;
982 MRESETDATA(m1);
983 m1->m_len = 0;
984 m2->m_data = src;
985 m2->m_len = left;
986 *cp2 = mtod(m1, char *);
987 } else {
988 struct mbuf **nextp = &m1->m_next;
989
990 m1->m_len -= left;
991 do {
992 m2 = m_get(M_WAIT, MT_DATA);
993 MCLAIM(m2, m1->m_owner);
994 if (left >= MINCLSIZE) {
995 MCLGET(m2, M_WAIT);
996 }
997 m2->m_next = *nextp;
998 *nextp = m2;
999 nextp = &m2->m_next;
1000 len = (m2->m_flags & M_EXT) != 0 ?
1001 MCLBYTES : MLEN;
1002 if (len > left) {
1003 len = left;
1004 }
1005 memcpy(mtod(m2, char *), src, len);
1006 m2->m_len = len;
1007 src += len;
1008 left -= len;
1009 } while (left > 0);
1010 *mdp = m1 = m1->m_next;
1011 m2 = m1->m_next;
1012 *cp2 = mtod(m1, char *);
1013 }
1014 } else {
1015 /*
1016 * If the first mbuf has no external data
1017 * move the data to the front of the mbuf.
1018 */
1019 MRESETDATA(m1);
1020 dst = mtod(m1, char *);
1021 if (dst != src) {
1022 memmove(dst, src, left);
1023 }
1024 m1->m_len = left;
1025 m2 = m1->m_next;
1026 *cp2 = m1->m_data;
1027 }
1028 *dposp = *cp2 + siz;
1029 /*
1030 * Loop through mbufs pulling data up into first mbuf until
1031 * the first mbuf is full or there is no more data to
1032 * pullup.
1033 */
1034 dst = mtod(m1, char *) + m1->m_len;
1035 while ((len = M_TRAILINGSPACE(m1)) != 0 && m2) {
1036 if ((len = min(len, m2->m_len)) != 0) {
1037 memcpy(dst, mtod(m2, char *), len);
1038 }
1039 m1->m_len += len;
1040 dst += len;
1041 m2->m_data += len;
1042 m2->m_len -= len;
1043 m2 = m2->m_next;
1044 }
1045 if (m1->m_len < siz)
1046 return (EBADRPC);
1047 return (0);
1048 }
1049
1050 /*
1051 * Advance the position in the mbuf chain.
1052 */
1053 int
1054 nfs_adv(mdp, dposp, offs, left)
1055 struct mbuf **mdp;
1056 char **dposp;
1057 int offs;
1058 int left;
1059 {
1060 struct mbuf *m;
1061 int s;
1062
1063 m = *mdp;
1064 s = left;
1065 while (s < offs) {
1066 offs -= s;
1067 m = m->m_next;
1068 if (m == NULL)
1069 return (EBADRPC);
1070 s = m->m_len;
1071 }
1072 *mdp = m;
1073 *dposp = mtod(m, char *) + offs;
1074 return (0);
1075 }
1076
1077 /*
1078 * Copy a string into mbufs for the hard cases...
1079 */
1080 int
1081 nfsm_strtmbuf(mb, bpos, cp, siz)
1082 struct mbuf **mb;
1083 char **bpos;
1084 const char *cp;
1085 long siz;
1086 {
1087 struct mbuf *m1 = NULL, *m2;
1088 long left, xfer, len, tlen;
1089 u_int32_t *tl;
1090 int putsize;
1091
1092 putsize = 1;
1093 m2 = *mb;
1094 left = M_TRAILINGSPACE(m2);
1095 if (left > 0) {
1096 tl = ((u_int32_t *)(*bpos));
1097 *tl++ = txdr_unsigned(siz);
1098 putsize = 0;
1099 left -= NFSX_UNSIGNED;
1100 m2->m_len += NFSX_UNSIGNED;
1101 if (left > 0) {
1102 memcpy((void *) tl, cp, left);
1103 siz -= left;
1104 cp += left;
1105 m2->m_len += left;
1106 left = 0;
1107 }
1108 }
1109 /* Loop around adding mbufs */
1110 while (siz > 0) {
1111 m1 = m_get(M_WAIT, MT_DATA);
1112 MCLAIM(m1, &nfs_mowner);
1113 if (siz > MLEN)
1114 m_clget(m1, M_WAIT);
1115 m1->m_len = NFSMSIZ(m1);
1116 m2->m_next = m1;
1117 m2 = m1;
1118 tl = mtod(m1, u_int32_t *);
1119 tlen = 0;
1120 if (putsize) {
1121 *tl++ = txdr_unsigned(siz);
1122 m1->m_len -= NFSX_UNSIGNED;
1123 tlen = NFSX_UNSIGNED;
1124 putsize = 0;
1125 }
1126 if (siz < m1->m_len) {
1127 len = nfsm_rndup(siz);
1128 xfer = siz;
1129 if (xfer < len)
1130 *(tl+(xfer>>2)) = 0;
1131 } else {
1132 xfer = len = m1->m_len;
1133 }
1134 memcpy((void *) tl, cp, xfer);
1135 m1->m_len = len+tlen;
1136 siz -= xfer;
1137 cp += xfer;
1138 }
1139 *mb = m1;
1140 *bpos = mtod(m1, char *) + m1->m_len;
1141 return (0);
1142 }
1143
1144 /*
1145 * Directory caching routines. They work as follows:
1146 * - a cache is maintained per VDIR nfsnode.
1147 * - for each offset cookie that is exported to userspace, and can
1148 * thus be thrown back at us as an offset to VOP_READDIR, store
1149 * information in the cache.
1150 * - cached are:
1151 * - cookie itself
1152 * - blocknumber (essentially just a search key in the buffer cache)
1153 * - entry number in block.
1154 * - offset cookie of block in which this entry is stored
1155 * - 32 bit cookie if NFSMNT_XLATECOOKIE is used.
1156 * - entries are looked up in a hash table
1157 * - also maintained is an LRU list of entries, used to determine
1158 * which ones to delete if the cache grows too large.
1159 * - if 32 <-> 64 translation mode is requested for a filesystem,
1160 * the cache also functions as a translation table
1161 * - in the translation case, invalidating the cache does not mean
1162 * flushing it, but just marking entries as invalid, except for
1163 * the <64bit cookie, 32bitcookie> pair which is still valid, to
1164 * still be able to use the cache as a translation table.
1165 * - 32 bit cookies are uniquely created by combining the hash table
1166 * entry value, and one generation count per hash table entry,
1167 * incremented each time an entry is appended to the chain.
1168 * - the cache is invalidated each time a direcory is modified
1169 * - sanity checks are also done; if an entry in a block turns
1170 * out not to have a matching cookie, the cache is invalidated
1171 * and a new block starting from the wanted offset is fetched from
1172 * the server.
1173 * - directory entries as read from the server are extended to contain
1174 * the 64bit and, optionally, the 32bit cookies, for sanity checking
1175 * the cache and exporting them to userspace through the cookie
1176 * argument to VOP_READDIR.
1177 */
1178
1179 u_long
1180 nfs_dirhash(off)
1181 off_t off;
1182 {
1183 int i;
1184 char *cp = (char *)&off;
1185 u_long sum = 0L;
1186
1187 for (i = 0 ; i < sizeof (off); i++)
1188 sum += *cp++;
1189
1190 return sum;
1191 }
1192
1193 #define _NFSDC_MTX(np) (&NFSTOV(np)->v_interlock)
1194 #define NFSDC_LOCK(np) mutex_enter(_NFSDC_MTX(np))
1195 #define NFSDC_UNLOCK(np) mutex_exit(_NFSDC_MTX(np))
1196 #define NFSDC_ASSERT_LOCKED(np) KASSERT(mutex_owned(_NFSDC_MTX(np)))
1197
1198 void
1199 nfs_initdircache(vp)
1200 struct vnode *vp;
1201 {
1202 struct nfsnode *np = VTONFS(vp);
1203 struct nfsdirhashhead *dircache;
1204
1205 dircache = hashinit(NFS_DIRHASHSIZ, HASH_LIST, true,
1206 &nfsdirhashmask);
1207
1208 NFSDC_LOCK(np);
1209 if (np->n_dircache == NULL) {
1210 np->n_dircachesize = 0;
1211 np->n_dircache = dircache;
1212 dircache = NULL;
1213 TAILQ_INIT(&np->n_dirchain);
1214 }
1215 NFSDC_UNLOCK(np);
1216 if (dircache)
1217 hashdone(dircache, HASH_LIST, nfsdirhashmask);
1218 }
1219
1220 void
1221 nfs_initdirxlatecookie(vp)
1222 struct vnode *vp;
1223 {
1224 struct nfsnode *np = VTONFS(vp);
1225 unsigned *dirgens;
1226
1227 KASSERT(VFSTONFS(vp->v_mount)->nm_flag & NFSMNT_XLATECOOKIE);
1228
1229 dirgens = kmem_zalloc(NFS_DIRHASHSIZ * sizeof(unsigned), KM_SLEEP);
1230 NFSDC_LOCK(np);
1231 if (np->n_dirgens == NULL) {
1232 np->n_dirgens = dirgens;
1233 dirgens = NULL;
1234 }
1235 NFSDC_UNLOCK(np);
1236 if (dirgens)
1237 kmem_free(dirgens, NFS_DIRHASHSIZ * sizeof(unsigned));
1238 }
1239
1240 static const struct nfsdircache dzero;
1241
1242 static void nfs_unlinkdircache __P((struct nfsnode *np, struct nfsdircache *));
1243 static void nfs_putdircache_unlocked __P((struct nfsnode *,
1244 struct nfsdircache *));
1245
1246 static void
1247 nfs_unlinkdircache(np, ndp)
1248 struct nfsnode *np;
1249 struct nfsdircache *ndp;
1250 {
1251
1252 NFSDC_ASSERT_LOCKED(np);
1253 KASSERT(ndp != &dzero);
1254
1255 if (LIST_NEXT(ndp, dc_hash) == (void *)-1)
1256 return;
1257
1258 TAILQ_REMOVE(&np->n_dirchain, ndp, dc_chain);
1259 LIST_REMOVE(ndp, dc_hash);
1260 LIST_NEXT(ndp, dc_hash) = (void *)-1; /* mark as unlinked */
1261
1262 nfs_putdircache_unlocked(np, ndp);
1263 }
1264
1265 void
1266 nfs_putdircache(np, ndp)
1267 struct nfsnode *np;
1268 struct nfsdircache *ndp;
1269 {
1270 int ref;
1271
1272 if (ndp == &dzero)
1273 return;
1274
1275 KASSERT(ndp->dc_refcnt > 0);
1276 NFSDC_LOCK(np);
1277 ref = --ndp->dc_refcnt;
1278 NFSDC_UNLOCK(np);
1279
1280 if (ref == 0)
1281 kmem_free(ndp, sizeof(*ndp));
1282 }
1283
1284 static void
1285 nfs_putdircache_unlocked(struct nfsnode *np, struct nfsdircache *ndp)
1286 {
1287 int ref;
1288
1289 NFSDC_ASSERT_LOCKED(np);
1290
1291 if (ndp == &dzero)
1292 return;
1293
1294 KASSERT(ndp->dc_refcnt > 0);
1295 ref = --ndp->dc_refcnt;
1296 if (ref == 0)
1297 kmem_free(ndp, sizeof(*ndp));
1298 }
1299
1300 struct nfsdircache *
1301 nfs_searchdircache(vp, off, do32, hashent)
1302 struct vnode *vp;
1303 off_t off;
1304 int do32;
1305 int *hashent;
1306 {
1307 struct nfsdirhashhead *ndhp;
1308 struct nfsdircache *ndp = NULL;
1309 struct nfsnode *np = VTONFS(vp);
1310 unsigned ent;
1311
1312 /*
1313 * Zero is always a valid cookie.
1314 */
1315 if (off == 0)
1316 /* XXXUNCONST */
1317 return (struct nfsdircache *)__UNCONST(&dzero);
1318
1319 if (!np->n_dircache)
1320 return NULL;
1321
1322 /*
1323 * We use a 32bit cookie as search key, directly reconstruct
1324 * the hashentry. Else use the hashfunction.
1325 */
1326 if (do32) {
1327 ent = (u_int32_t)off >> 24;
1328 if (ent >= NFS_DIRHASHSIZ)
1329 return NULL;
1330 ndhp = &np->n_dircache[ent];
1331 } else {
1332 ndhp = NFSDIRHASH(np, off);
1333 }
1334
1335 if (hashent)
1336 *hashent = (int)(ndhp - np->n_dircache);
1337
1338 NFSDC_LOCK(np);
1339 if (do32) {
1340 LIST_FOREACH(ndp, ndhp, dc_hash) {
1341 if (ndp->dc_cookie32 == (u_int32_t)off) {
1342 /*
1343 * An invalidated entry will become the
1344 * start of a new block fetched from
1345 * the server.
1346 */
1347 if (ndp->dc_flags & NFSDC_INVALID) {
1348 ndp->dc_blkcookie = ndp->dc_cookie;
1349 ndp->dc_entry = 0;
1350 ndp->dc_flags &= ~NFSDC_INVALID;
1351 }
1352 break;
1353 }
1354 }
1355 } else {
1356 LIST_FOREACH(ndp, ndhp, dc_hash) {
1357 if (ndp->dc_cookie == off)
1358 break;
1359 }
1360 }
1361 if (ndp != NULL)
1362 ndp->dc_refcnt++;
1363 NFSDC_UNLOCK(np);
1364 return ndp;
1365 }
1366
1367
1368 struct nfsdircache *
1369 nfs_enterdircache(struct vnode *vp, off_t off, off_t blkoff, int en,
1370 daddr_t blkno)
1371 {
1372 struct nfsnode *np = VTONFS(vp);
1373 struct nfsdirhashhead *ndhp;
1374 struct nfsdircache *ndp = NULL;
1375 struct nfsdircache *newndp = NULL;
1376 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1377 int hashent = 0, gen, overwrite; /* XXX: GCC */
1378
1379 /*
1380 * XXX refuse entries for offset 0. amd(8) erroneously sets
1381 * cookie 0 for the '.' entry, making this necessary. This
1382 * isn't so bad, as 0 is a special case anyway.
1383 */
1384 if (off == 0)
1385 /* XXXUNCONST */
1386 return (struct nfsdircache *)__UNCONST(&dzero);
1387
1388 if (!np->n_dircache)
1389 /*
1390 * XXX would like to do this in nfs_nget but vtype
1391 * isn't known at that time.
1392 */
1393 nfs_initdircache(vp);
1394
1395 if ((nmp->nm_flag & NFSMNT_XLATECOOKIE) && !np->n_dirgens)
1396 nfs_initdirxlatecookie(vp);
1397
1398 retry:
1399 ndp = nfs_searchdircache(vp, off, 0, &hashent);
1400
1401 NFSDC_LOCK(np);
1402 if (ndp && (ndp->dc_flags & NFSDC_INVALID) == 0) {
1403 /*
1404 * Overwriting an old entry. Check if it's the same.
1405 * If so, just return. If not, remove the old entry.
1406 */
1407 if (ndp->dc_blkcookie == blkoff && ndp->dc_entry == en)
1408 goto done;
1409 nfs_unlinkdircache(np, ndp);
1410 nfs_putdircache_unlocked(np, ndp);
1411 ndp = NULL;
1412 }
1413
1414 ndhp = &np->n_dircache[hashent];
1415
1416 if (!ndp) {
1417 if (newndp == NULL) {
1418 NFSDC_UNLOCK(np);
1419 newndp = kmem_alloc(sizeof(*newndp), KM_SLEEP);
1420 newndp->dc_refcnt = 1;
1421 LIST_NEXT(newndp, dc_hash) = (void *)-1;
1422 goto retry;
1423 }
1424 ndp = newndp;
1425 newndp = NULL;
1426 overwrite = 0;
1427 if (nmp->nm_flag & NFSMNT_XLATECOOKIE) {
1428 /*
1429 * We're allocating a new entry, so bump the
1430 * generation number.
1431 */
1432 KASSERT(np->n_dirgens);
1433 gen = ++np->n_dirgens[hashent];
1434 if (gen == 0) {
1435 np->n_dirgens[hashent]++;
1436 gen++;
1437 }
1438 ndp->dc_cookie32 = (hashent << 24) | (gen & 0xffffff);
1439 }
1440 } else
1441 overwrite = 1;
1442
1443 ndp->dc_cookie = off;
1444 ndp->dc_blkcookie = blkoff;
1445 ndp->dc_entry = en;
1446 ndp->dc_flags = 0;
1447
1448 if (overwrite)
1449 goto done;
1450
1451 /*
1452 * If the maximum directory cookie cache size has been reached
1453 * for this node, take one off the front. The idea is that
1454 * directories are typically read front-to-back once, so that
1455 * the oldest entries can be thrown away without much performance
1456 * loss.
1457 */
1458 if (np->n_dircachesize == NFS_MAXDIRCACHE) {
1459 nfs_unlinkdircache(np, TAILQ_FIRST(&np->n_dirchain));
1460 } else
1461 np->n_dircachesize++;
1462
1463 KASSERT(ndp->dc_refcnt == 1);
1464 LIST_INSERT_HEAD(ndhp, ndp, dc_hash);
1465 TAILQ_INSERT_TAIL(&np->n_dirchain, ndp, dc_chain);
1466 ndp->dc_refcnt++;
1467 done:
1468 KASSERT(ndp->dc_refcnt > 0);
1469 NFSDC_UNLOCK(np);
1470 if (newndp)
1471 nfs_putdircache(np, newndp);
1472 return ndp;
1473 }
1474
1475 void
1476 nfs_invaldircache(vp, flags)
1477 struct vnode *vp;
1478 int flags;
1479 {
1480 struct nfsnode *np = VTONFS(vp);
1481 struct nfsdircache *ndp = NULL;
1482 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1483 const bool forcefree = flags & NFS_INVALDIRCACHE_FORCE;
1484
1485 #ifdef DIAGNOSTIC
1486 if (vp->v_type != VDIR)
1487 panic("nfs: invaldircache: not dir");
1488 #endif
1489
1490 if ((flags & NFS_INVALDIRCACHE_KEEPEOF) == 0)
1491 np->n_flag &= ~NEOFVALID;
1492
1493 if (!np->n_dircache)
1494 return;
1495
1496 NFSDC_LOCK(np);
1497 if (!(nmp->nm_flag & NFSMNT_XLATECOOKIE) || forcefree) {
1498 while ((ndp = TAILQ_FIRST(&np->n_dirchain)) != NULL) {
1499 KASSERT(!forcefree || ndp->dc_refcnt == 1);
1500 nfs_unlinkdircache(np, ndp);
1501 }
1502 np->n_dircachesize = 0;
1503 if (forcefree && np->n_dirgens) {
1504 kmem_free(np->n_dirgens,
1505 NFS_DIRHASHSIZ * sizeof(unsigned));
1506 np->n_dirgens = NULL;
1507 }
1508 } else {
1509 TAILQ_FOREACH(ndp, &np->n_dirchain, dc_chain)
1510 ndp->dc_flags |= NFSDC_INVALID;
1511 }
1512
1513 NFSDC_UNLOCK(np);
1514 }
1515
1516 /*
1517 * Called once before VFS init to initialize shared and
1518 * server-specific data structures.
1519 */
1520 static int
1521 nfs_init0(void)
1522 {
1523
1524 nfsrtt.pos = 0;
1525 rpc_vers = txdr_unsigned(RPC_VER2);
1526 rpc_call = txdr_unsigned(RPC_CALL);
1527 rpc_reply = txdr_unsigned(RPC_REPLY);
1528 rpc_msgdenied = txdr_unsigned(RPC_MSGDENIED);
1529 rpc_msgaccepted = txdr_unsigned(RPC_MSGACCEPTED);
1530 rpc_mismatch = txdr_unsigned(RPC_MISMATCH);
1531 rpc_autherr = txdr_unsigned(RPC_AUTHERR);
1532 rpc_auth_unix = txdr_unsigned(RPCAUTH_UNIX);
1533 rpc_auth_kerb = txdr_unsigned(RPCAUTH_KERB4);
1534 nfs_prog = txdr_unsigned(NFS_PROG);
1535 nfs_true = txdr_unsigned(true);
1536 nfs_false = txdr_unsigned(false);
1537 nfs_xdrneg1 = txdr_unsigned(-1);
1538 nfs_ticks = (hz * NFS_TICKINTVL + 500) / 1000;
1539 if (nfs_ticks < 1)
1540 nfs_ticks = 1;
1541 #ifdef NFSSERVER
1542 nfsrv_init(0); /* Init server data structures */
1543 nfsrv_initcache(); /* Init the server request cache */
1544 {
1545 extern krwlock_t netexport_lock; /* XXX */
1546 rw_init(&netexport_lock);
1547 }
1548 #endif /* NFSSERVER */
1549
1550 #if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
1551 nfsdreq_init();
1552 #endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */
1553
1554 /*
1555 * Initialize reply list and start timer
1556 */
1557 TAILQ_INIT(&nfs_reqq);
1558 nfs_timer_init();
1559 MOWNER_ATTACH(&nfs_mowner);
1560
1561 #ifdef NFS
1562 /* Initialize the kqueue structures */
1563 nfs_kqinit();
1564 /* Initialize the iod structures */
1565 nfs_iodinit();
1566 #endif
1567 return 0;
1568 }
1569
1570 void
1571 nfs_init(void)
1572 {
1573 static ONCE_DECL(nfs_init_once);
1574
1575 RUN_ONCE(&nfs_init_once, nfs_init0);
1576 }
1577
1578 #ifdef NFS
1579 /*
1580 * Called once at VFS init to initialize client-specific data structures.
1581 */
1582 void
1583 nfs_vfs_init()
1584 {
1585 /* Initialize NFS server / client shared data. */
1586 nfs_init();
1587
1588 nfs_nhinit(); /* Init the nfsnode table */
1589 nfs_commitsize = uvmexp.npages << (PAGE_SHIFT - 4);
1590 }
1591
1592 void
1593 nfs_vfs_reinit()
1594 {
1595 nfs_nhreinit();
1596 }
1597
1598 void
1599 nfs_vfs_done()
1600 {
1601 nfs_nhdone();
1602 }
1603
1604 /*
1605 * Attribute cache routines.
1606 * nfs_loadattrcache() - loads or updates the cache contents from attributes
1607 * that are on the mbuf list
1608 * nfs_getattrcache() - returns valid attributes if found in cache, returns
1609 * error otherwise
1610 */
1611
1612 /*
1613 * Load the attribute cache (that lives in the nfsnode entry) with
1614 * the values on the mbuf list and
1615 * Iff vap not NULL
1616 * copy the attributes to *vaper
1617 */
1618 int
1619 nfsm_loadattrcache(vpp, mdp, dposp, vaper, flags)
1620 struct vnode **vpp;
1621 struct mbuf **mdp;
1622 char **dposp;
1623 struct vattr *vaper;
1624 int flags;
1625 {
1626 int32_t t1;
1627 char *cp2;
1628 int error = 0;
1629 struct mbuf *md;
1630 int v3 = NFS_ISV3(*vpp);
1631
1632 md = *mdp;
1633 t1 = (mtod(md, char *) + md->m_len) - *dposp;
1634 error = nfsm_disct(mdp, dposp, NFSX_FATTR(v3), t1, &cp2);
1635 if (error)
1636 return (error);
1637 return nfs_loadattrcache(vpp, (struct nfs_fattr *)cp2, vaper, flags);
1638 }
1639
1640 int
1641 nfs_loadattrcache(vpp, fp, vaper, flags)
1642 struct vnode **vpp;
1643 struct nfs_fattr *fp;
1644 struct vattr *vaper;
1645 int flags;
1646 {
1647 struct vnode *vp = *vpp;
1648 struct vattr *vap;
1649 int v3 = NFS_ISV3(vp);
1650 enum vtype vtyp;
1651 u_short vmode;
1652 struct timespec mtime;
1653 struct timespec ctime;
1654 int32_t rdev;
1655 struct nfsnode *np;
1656 extern int (**spec_nfsv2nodeop_p) __P((void *));
1657 uid_t uid;
1658 gid_t gid;
1659
1660 if (v3) {
1661 vtyp = nfsv3tov_type(fp->fa_type);
1662 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1663 rdev = makedev(fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata1),
1664 fxdr_unsigned(u_int32_t, fp->fa3_rdev.specdata2));
1665 fxdr_nfsv3time(&fp->fa3_mtime, &mtime);
1666 fxdr_nfsv3time(&fp->fa3_ctime, &ctime);
1667 } else {
1668 vtyp = nfsv2tov_type(fp->fa_type);
1669 vmode = fxdr_unsigned(u_short, fp->fa_mode);
1670 if (vtyp == VNON || vtyp == VREG)
1671 vtyp = IFTOVT(vmode);
1672 rdev = fxdr_unsigned(int32_t, fp->fa2_rdev);
1673 fxdr_nfsv2time(&fp->fa2_mtime, &mtime);
1674 ctime.tv_sec = fxdr_unsigned(u_int32_t,
1675 fp->fa2_ctime.nfsv2_sec);
1676 ctime.tv_nsec = 0;
1677
1678 /*
1679 * Really ugly NFSv2 kludge.
1680 */
1681 if (vtyp == VCHR && rdev == 0xffffffff)
1682 vtyp = VFIFO;
1683 }
1684
1685 vmode &= ALLPERMS;
1686
1687 /*
1688 * If v_type == VNON it is a new node, so fill in the v_type,
1689 * n_mtime fields. Check to see if it represents a special
1690 * device, and if so, check for a possible alias. Once the
1691 * correct vnode has been obtained, fill in the rest of the
1692 * information.
1693 */
1694 np = VTONFS(vp);
1695 if (vp->v_type == VNON) {
1696 vp->v_type = vtyp;
1697 if (vp->v_type == VFIFO) {
1698 extern int (**fifo_nfsv2nodeop_p) __P((void *));
1699 vp->v_op = fifo_nfsv2nodeop_p;
1700 } else if (vp->v_type == VREG) {
1701 mutex_init(&np->n_commitlock, MUTEX_DEFAULT, IPL_NONE);
1702 } else if (vp->v_type == VCHR || vp->v_type == VBLK) {
1703 vp->v_op = spec_nfsv2nodeop_p;
1704 spec_node_init(vp, (dev_t)rdev);
1705 }
1706 np->n_mtime = mtime;
1707 }
1708 uid = fxdr_unsigned(uid_t, fp->fa_uid);
1709 gid = fxdr_unsigned(gid_t, fp->fa_gid);
1710 vap = np->n_vattr;
1711
1712 /*
1713 * Invalidate access cache if uid, gid, mode or ctime changed.
1714 */
1715 if (np->n_accstamp != -1 &&
1716 (gid != vap->va_gid || uid != vap->va_uid || vmode != vap->va_mode
1717 || timespeccmp(&ctime, &vap->va_ctime, !=)))
1718 np->n_accstamp = -1;
1719
1720 vap->va_type = vtyp;
1721 vap->va_mode = vmode;
1722 vap->va_rdev = (dev_t)rdev;
1723 vap->va_mtime = mtime;
1724 vap->va_ctime = ctime;
1725 vap->va_fsid = vp->v_mount->mnt_stat.f_fsidx.__fsid_val[0];
1726 switch (vtyp) {
1727 case VDIR:
1728 vap->va_blocksize = NFS_DIRFRAGSIZ;
1729 break;
1730 case VBLK:
1731 vap->va_blocksize = BLKDEV_IOSIZE;
1732 break;
1733 case VCHR:
1734 vap->va_blocksize = MAXBSIZE;
1735 break;
1736 default:
1737 vap->va_blocksize = v3 ? vp->v_mount->mnt_stat.f_iosize :
1738 fxdr_unsigned(int32_t, fp->fa2_blocksize);
1739 break;
1740 }
1741 if (v3) {
1742 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1743 vap->va_uid = uid;
1744 vap->va_gid = gid;
1745 vap->va_size = fxdr_hyper(&fp->fa3_size);
1746 vap->va_bytes = fxdr_hyper(&fp->fa3_used);
1747 vap->va_fileid = fxdr_hyper(&fp->fa3_fileid);
1748 fxdr_nfsv3time(&fp->fa3_atime, &vap->va_atime);
1749 vap->va_flags = 0;
1750 vap->va_filerev = 0;
1751 } else {
1752 vap->va_nlink = fxdr_unsigned(u_short, fp->fa_nlink);
1753 vap->va_uid = uid;
1754 vap->va_gid = gid;
1755 vap->va_size = fxdr_unsigned(u_int32_t, fp->fa2_size);
1756 vap->va_bytes = fxdr_unsigned(int32_t, fp->fa2_blocks)
1757 * NFS_FABLKSIZE;
1758 vap->va_fileid = fxdr_unsigned(int32_t, fp->fa2_fileid);
1759 fxdr_nfsv2time(&fp->fa2_atime, &vap->va_atime);
1760 vap->va_flags = 0;
1761 vap->va_gen = fxdr_unsigned(u_int32_t,fp->fa2_ctime.nfsv2_usec);
1762 vap->va_filerev = 0;
1763 }
1764 if (vap->va_size > VFSTONFS(vp->v_mount)->nm_maxfilesize) {
1765 return EFBIG;
1766 }
1767 if (vap->va_size != np->n_size) {
1768 if ((np->n_flag & NMODIFIED) && vap->va_size < np->n_size) {
1769 vap->va_size = np->n_size;
1770 } else {
1771 np->n_size = vap->va_size;
1772 if (vap->va_type == VREG) {
1773 /*
1774 * we can't free pages if NAC_NOTRUNC because
1775 * the pages can be owned by ourselves.
1776 */
1777 if (flags & NAC_NOTRUNC) {
1778 np->n_flag |= NTRUNCDELAYED;
1779 } else {
1780 genfs_node_wrlock(vp);
1781 mutex_enter(&vp->v_interlock);
1782 (void)VOP_PUTPAGES(vp, 0,
1783 0, PGO_SYNCIO | PGO_CLEANIT |
1784 PGO_FREE | PGO_ALLPAGES);
1785 uvm_vnp_setsize(vp, np->n_size);
1786 genfs_node_unlock(vp);
1787 }
1788 }
1789 }
1790 }
1791 np->n_attrstamp = time_second;
1792 if (vaper != NULL) {
1793 memcpy((void *)vaper, (void *)vap, sizeof(*vap));
1794 if (np->n_flag & NCHG) {
1795 if (np->n_flag & NACC)
1796 vaper->va_atime = np->n_atim;
1797 if (np->n_flag & NUPD)
1798 vaper->va_mtime = np->n_mtim;
1799 }
1800 }
1801 return (0);
1802 }
1803
1804 /*
1805 * Check the time stamp
1806 * If the cache is valid, copy contents to *vap and return 0
1807 * otherwise return an error
1808 */
1809 int
1810 nfs_getattrcache(vp, vaper)
1811 struct vnode *vp;
1812 struct vattr *vaper;
1813 {
1814 struct nfsnode *np = VTONFS(vp);
1815 struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1816 struct vattr *vap;
1817
1818 if (np->n_attrstamp == 0 ||
1819 (time_second - np->n_attrstamp) >= nfs_attrtimeo(nmp, np)) {
1820 nfsstats.attrcache_misses++;
1821 return (ENOENT);
1822 }
1823 nfsstats.attrcache_hits++;
1824 vap = np->n_vattr;
1825 if (vap->va_size != np->n_size) {
1826 if (vap->va_type == VREG) {
1827 if ((np->n_flag & NMODIFIED) != 0 &&
1828 vap->va_size < np->n_size) {
1829 vap->va_size = np->n_size;
1830 } else {
1831 np->n_size = vap->va_size;
1832 }
1833 genfs_node_wrlock(vp);
1834 uvm_vnp_setsize(vp, np->n_size);
1835 genfs_node_unlock(vp);
1836 } else
1837 np->n_size = vap->va_size;
1838 }
1839 memcpy((void *)vaper, (void *)vap, sizeof(struct vattr));
1840 if (np->n_flag & NCHG) {
1841 if (np->n_flag & NACC)
1842 vaper->va_atime = np->n_atim;
1843 if (np->n_flag & NUPD)
1844 vaper->va_mtime = np->n_mtim;
1845 }
1846 return (0);
1847 }
1848
1849 void
1850 nfs_delayedtruncate(vp)
1851 struct vnode *vp;
1852 {
1853 struct nfsnode *np = VTONFS(vp);
1854
1855 if (np->n_flag & NTRUNCDELAYED) {
1856 np->n_flag &= ~NTRUNCDELAYED;
1857 genfs_node_wrlock(vp);
1858 mutex_enter(&vp->v_interlock);
1859 (void)VOP_PUTPAGES(vp, 0,
1860 0, PGO_SYNCIO | PGO_CLEANIT | PGO_FREE | PGO_ALLPAGES);
1861 uvm_vnp_setsize(vp, np->n_size);
1862 genfs_node_unlock(vp);
1863 }
1864 }
1865
1866 #define NFS_WCCKLUDGE_TIMEOUT (24 * 60 * 60) /* 1 day */
1867 #define NFS_WCCKLUDGE(nmp, now) \
1868 (((nmp)->nm_iflag & NFSMNT_WCCKLUDGE) && \
1869 ((now) - (nmp)->nm_wcckludgetime - NFS_WCCKLUDGE_TIMEOUT) < 0)
1870
1871 /*
1872 * nfs_check_wccdata: check inaccurate wcc_data
1873 *
1874 * => return non-zero if we shouldn't trust the wcc_data.
1875 * => NFS_WCCKLUDGE_TIMEOUT is for the case that the server is "fixed".
1876 */
1877
1878 int
1879 nfs_check_wccdata(struct nfsnode *np, const struct timespec *ctime,
1880 struct timespec *mtime, bool docheck)
1881 {
1882 int error = 0;
1883
1884 #if !defined(NFS_V2_ONLY)
1885
1886 if (docheck) {
1887 struct vnode *vp = NFSTOV(np);
1888 struct nfsmount *nmp;
1889 long now = time_second;
1890 const struct timespec *omtime = &np->n_vattr->va_mtime;
1891 const struct timespec *octime = &np->n_vattr->va_ctime;
1892 const char *reason = NULL; /* XXX: gcc */
1893
1894 if (timespeccmp(omtime, mtime, <=)) {
1895 reason = "mtime";
1896 error = EINVAL;
1897 }
1898
1899 if (vp->v_type == VDIR && timespeccmp(octime, ctime, <=)) {
1900 reason = "ctime";
1901 error = EINVAL;
1902 }
1903
1904 nmp = VFSTONFS(vp->v_mount);
1905 if (error) {
1906
1907 /*
1908 * despite of the fact that we've updated the file,
1909 * timestamps of the file were not updated as we
1910 * expected.
1911 * it means that the server has incompatible
1912 * semantics of timestamps or (more likely)
1913 * the server time is not precise enough to
1914 * track each modifications.
1915 * in that case, we disable wcc processing.
1916 *
1917 * yes, strictly speaking, we should disable all
1918 * caching. it's a compromise.
1919 */
1920
1921 mutex_enter(&nmp->nm_lock);
1922 if (!NFS_WCCKLUDGE(nmp, now)) {
1923 printf("%s: inaccurate wcc data (%s) detected,"
1924 " disabling wcc"
1925 " (ctime %u.%09u %u.%09u,"
1926 " mtime %u.%09u %u.%09u)\n",
1927 vp->v_mount->mnt_stat.f_mntfromname,
1928 reason,
1929 (unsigned int)octime->tv_sec,
1930 (unsigned int)octime->tv_nsec,
1931 (unsigned int)ctime->tv_sec,
1932 (unsigned int)ctime->tv_nsec,
1933 (unsigned int)omtime->tv_sec,
1934 (unsigned int)omtime->tv_nsec,
1935 (unsigned int)mtime->tv_sec,
1936 (unsigned int)mtime->tv_nsec);
1937 }
1938 nmp->nm_iflag |= NFSMNT_WCCKLUDGE;
1939 nmp->nm_wcckludgetime = now;
1940 mutex_exit(&nmp->nm_lock);
1941 } else if (NFS_WCCKLUDGE(nmp, now)) {
1942 error = EPERM; /* XXX */
1943 } else if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1944 mutex_enter(&nmp->nm_lock);
1945 if (nmp->nm_iflag & NFSMNT_WCCKLUDGE) {
1946 printf("%s: re-enabling wcc\n",
1947 vp->v_mount->mnt_stat.f_mntfromname);
1948 nmp->nm_iflag &= ~NFSMNT_WCCKLUDGE;
1949 }
1950 mutex_exit(&nmp->nm_lock);
1951 }
1952 }
1953
1954 #endif /* !defined(NFS_V2_ONLY) */
1955
1956 return error;
1957 }
1958
1959 /*
1960 * Heuristic to see if the server XDR encodes directory cookies or not.
1961 * it is not supposed to, but a lot of servers may do this. Also, since
1962 * most/all servers will implement V2 as well, it is expected that they
1963 * may return just 32 bits worth of cookie information, so we need to
1964 * find out in which 32 bits this information is available. We do this
1965 * to avoid trouble with emulated binaries that can't handle 64 bit
1966 * directory offsets.
1967 */
1968
1969 void
1970 nfs_cookieheuristic(vp, flagp, l, cred)
1971 struct vnode *vp;
1972 int *flagp;
1973 struct lwp *l;
1974 kauth_cred_t cred;
1975 {
1976 struct uio auio;
1977 struct iovec aiov;
1978 char *tbuf, *cp;
1979 struct dirent *dp;
1980 off_t *cookies = NULL, *cop;
1981 int error, eof, nc, len;
1982
1983 MALLOC(tbuf, void *, NFS_DIRFRAGSIZ, M_TEMP, M_WAITOK);
1984
1985 aiov.iov_base = tbuf;
1986 aiov.iov_len = NFS_DIRFRAGSIZ;
1987 auio.uio_iov = &aiov;
1988 auio.uio_iovcnt = 1;
1989 auio.uio_rw = UIO_READ;
1990 auio.uio_resid = NFS_DIRFRAGSIZ;
1991 auio.uio_offset = 0;
1992 UIO_SETUP_SYSSPACE(&auio);
1993
1994 error = VOP_READDIR(vp, &auio, cred, &eof, &cookies, &nc);
1995
1996 len = NFS_DIRFRAGSIZ - auio.uio_resid;
1997 if (error || len == 0) {
1998 FREE(tbuf, M_TEMP);
1999 if (cookies)
2000 free(cookies, M_TEMP);
2001 return;
2002 }
2003
2004 /*
2005 * Find the first valid entry and look at its offset cookie.
2006 */
2007
2008 cp = tbuf;
2009 for (cop = cookies; len > 0; len -= dp->d_reclen) {
2010 dp = (struct dirent *)cp;
2011 if (dp->d_fileno != 0 && len >= dp->d_reclen) {
2012 if ((*cop >> 32) != 0 && (*cop & 0xffffffffLL) == 0) {
2013 *flagp |= NFSMNT_SWAPCOOKIE;
2014 nfs_invaldircache(vp, 0);
2015 nfs_vinvalbuf(vp, 0, cred, l, 1);
2016 }
2017 break;
2018 }
2019 cop++;
2020 cp += dp->d_reclen;
2021 }
2022
2023 FREE(tbuf, M_TEMP);
2024 free(cookies, M_TEMP);
2025 }
2026 #endif /* NFS */
2027
2028 #ifdef NFSSERVER
2029 /*
2030 * Set up nameidata for a lookup() call and do it.
2031 *
2032 * If pubflag is set, this call is done for a lookup operation on the
2033 * public filehandle. In that case we allow crossing mountpoints and
2034 * absolute pathnames. However, the caller is expected to check that
2035 * the lookup result is within the public fs, and deny access if
2036 * it is not.
2037 */
2038 int
2039 nfs_namei(ndp, nsfh, len, slp, nam, mdp, dposp, retdirp, l, kerbflag, pubflag)
2040 struct nameidata *ndp;
2041 nfsrvfh_t *nsfh;
2042 uint32_t len;
2043 struct nfssvc_sock *slp;
2044 struct mbuf *nam;
2045 struct mbuf **mdp;
2046 char **dposp;
2047 struct vnode **retdirp;
2048 struct lwp *l;
2049 int kerbflag, pubflag;
2050 {
2051 int i, rem;
2052 struct mbuf *md;
2053 char *fromcp, *tocp, *cp;
2054 struct iovec aiov;
2055 struct uio auio;
2056 struct vnode *dp;
2057 int error, rdonly, linklen;
2058 struct componentname *cnp = &ndp->ni_cnd;
2059
2060 *retdirp = NULL;
2061
2062 if ((len + 1) > MAXPATHLEN)
2063 return (ENAMETOOLONG);
2064 if (len == 0)
2065 return (EACCES);
2066 cnp->cn_pnbuf = PNBUF_GET();
2067
2068 /*
2069 * Copy the name from the mbuf list to ndp->ni_pnbuf
2070 * and set the various ndp fields appropriately.
2071 */
2072 fromcp = *dposp;
2073 tocp = cnp->cn_pnbuf;
2074 md = *mdp;
2075 rem = mtod(md, char *) + md->m_len - fromcp;
2076 for (i = 0; i < len; i++) {
2077 while (rem == 0) {
2078 md = md->m_next;
2079 if (md == NULL) {
2080 error = EBADRPC;
2081 goto out;
2082 }
2083 fromcp = mtod(md, void *);
2084 rem = md->m_len;
2085 }
2086 if (*fromcp == '\0' || (!pubflag && *fromcp == '/')) {
2087 error = EACCES;
2088 goto out;
2089 }
2090 *tocp++ = *fromcp++;
2091 rem--;
2092 }
2093 *tocp = '\0';
2094 *mdp = md;
2095 *dposp = fromcp;
2096 len = nfsm_rndup(len)-len;
2097 if (len > 0) {
2098 if (rem >= len)
2099 *dposp += len;
2100 else if ((error = nfs_adv(mdp, dposp, len, rem)) != 0)
2101 goto out;
2102 }
2103
2104 /*
2105 * Extract and set starting directory.
2106 */
2107 error = nfsrv_fhtovp(nsfh, false, &dp, ndp->ni_cnd.cn_cred, slp,
2108 nam, &rdonly, kerbflag, pubflag);
2109 if (error)
2110 goto out;
2111 if (dp->v_type != VDIR) {
2112 vrele(dp);
2113 error = ENOTDIR;
2114 goto out;
2115 }
2116
2117 if (rdonly)
2118 cnp->cn_flags |= RDONLY;
2119
2120 *retdirp = dp;
2121
2122 if (pubflag) {
2123 /*
2124 * Oh joy. For WebNFS, handle those pesky '%' escapes,
2125 * and the 'native path' indicator.
2126 */
2127 cp = PNBUF_GET();
2128 fromcp = cnp->cn_pnbuf;
2129 tocp = cp;
2130 if ((unsigned char)*fromcp >= WEBNFS_SPECCHAR_START) {
2131 switch ((unsigned char)*fromcp) {
2132 case WEBNFS_NATIVE_CHAR:
2133 /*
2134 * 'Native' path for us is the same
2135 * as a path according to the NFS spec,
2136 * just skip the escape char.
2137 */
2138 fromcp++;
2139 break;
2140 /*
2141 * More may be added in the future, range 0x80-0xff
2142 */
2143 default:
2144 error = EIO;
2145 vrele(dp);
2146 PNBUF_PUT(cp);
2147 goto out;
2148 }
2149 }
2150 /*
2151 * Translate the '%' escapes, URL-style.
2152 */
2153 while (*fromcp != '\0') {
2154 if (*fromcp == WEBNFS_ESC_CHAR) {
2155 if (fromcp[1] != '\0' && fromcp[2] != '\0') {
2156 fromcp++;
2157 *tocp++ = HEXSTRTOI(fromcp);
2158 fromcp += 2;
2159 continue;
2160 } else {
2161 error = ENOENT;
2162 vrele(dp);
2163 PNBUF_PUT(cp);
2164 goto out;
2165 }
2166 } else
2167 *tocp++ = *fromcp++;
2168 }
2169 *tocp = '\0';
2170 PNBUF_PUT(cnp->cn_pnbuf);
2171 cnp->cn_pnbuf = cp;
2172 }
2173
2174 ndp->ni_pathlen = (tocp - cnp->cn_pnbuf) + 1;
2175 ndp->ni_segflg = UIO_SYSSPACE;
2176 ndp->ni_rootdir = rootvnode;
2177 ndp->ni_erootdir = NULL;
2178
2179 if (pubflag) {
2180 ndp->ni_loopcnt = 0;
2181 if (cnp->cn_pnbuf[0] == '/')
2182 dp = rootvnode;
2183 } else {
2184 cnp->cn_flags |= NOCROSSMOUNT;
2185 }
2186
2187 VREF(dp);
2188 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2189
2190 for (;;) {
2191 cnp->cn_nameptr = cnp->cn_pnbuf;
2192 ndp->ni_startdir = dp;
2193
2194 /*
2195 * And call lookup() to do the real work
2196 */
2197 error = lookup(ndp);
2198 if (error) {
2199 if (ndp->ni_dvp) {
2200 vput(ndp->ni_dvp);
2201 }
2202 PNBUF_PUT(cnp->cn_pnbuf);
2203 return (error);
2204 }
2205
2206 /*
2207 * Check for encountering a symbolic link
2208 */
2209 if ((cnp->cn_flags & ISSYMLINK) == 0) {
2210 if ((cnp->cn_flags & LOCKPARENT) == 0 && ndp->ni_dvp) {
2211 if (ndp->ni_dvp == ndp->ni_vp) {
2212 vrele(ndp->ni_dvp);
2213 } else {
2214 vput(ndp->ni_dvp);
2215 }
2216 }
2217 if (cnp->cn_flags & (SAVENAME | SAVESTART))
2218 cnp->cn_flags |= HASBUF;
2219 else
2220 PNBUF_PUT(cnp->cn_pnbuf);
2221 return (0);
2222 } else {
2223 if (!pubflag) {
2224 error = EINVAL;
2225 break;
2226 }
2227 if (ndp->ni_loopcnt++ >= MAXSYMLINKS) {
2228 error = ELOOP;
2229 break;
2230 }
2231 if (ndp->ni_vp->v_mount->mnt_flag & MNT_SYMPERM) {
2232 error = VOP_ACCESS(ndp->ni_vp, VEXEC, cnp->cn_cred);
2233 if (error != 0)
2234 break;
2235 }
2236 if (ndp->ni_pathlen > 1)
2237 cp = PNBUF_GET();
2238 else
2239 cp = cnp->cn_pnbuf;
2240 aiov.iov_base = cp;
2241 aiov.iov_len = MAXPATHLEN;
2242 auio.uio_iov = &aiov;
2243 auio.uio_iovcnt = 1;
2244 auio.uio_offset = 0;
2245 auio.uio_rw = UIO_READ;
2246 auio.uio_resid = MAXPATHLEN;
2247 UIO_SETUP_SYSSPACE(&auio);
2248 error = VOP_READLINK(ndp->ni_vp, &auio, cnp->cn_cred);
2249 if (error) {
2250 badlink:
2251 if (ndp->ni_pathlen > 1)
2252 PNBUF_PUT(cp);
2253 break;
2254 }
2255 linklen = MAXPATHLEN - auio.uio_resid;
2256 if (linklen == 0) {
2257 error = ENOENT;
2258 goto badlink;
2259 }
2260 if (linklen + ndp->ni_pathlen >= MAXPATHLEN) {
2261 error = ENAMETOOLONG;
2262 goto badlink;
2263 }
2264 if (ndp->ni_pathlen > 1) {
2265 memcpy(cp + linklen, ndp->ni_next, ndp->ni_pathlen);
2266 PNBUF_PUT(cnp->cn_pnbuf);
2267 cnp->cn_pnbuf = cp;
2268 } else
2269 cnp->cn_pnbuf[linklen] = '\0';
2270 ndp->ni_pathlen += linklen;
2271 vput(ndp->ni_vp);
2272 dp = ndp->ni_dvp;
2273
2274 /*
2275 * Check if root directory should replace current directory.
2276 */
2277 if (cnp->cn_pnbuf[0] == '/') {
2278 vput(dp);
2279 dp = ndp->ni_rootdir;
2280 VREF(dp);
2281 vn_lock(dp, LK_EXCLUSIVE | LK_RETRY);
2282 }
2283 }
2284 }
2285 vput(ndp->ni_dvp);
2286 vput(ndp->ni_vp);
2287 ndp->ni_vp = NULL;
2288 out:
2289 PNBUF_PUT(cnp->cn_pnbuf);
2290 return (error);
2291 }
2292 #endif /* NFSSERVER */
2293
2294 /*
2295 * A fiddled version of m_adj() that ensures null fill to a 32-bit
2296 * boundary and only trims off the back end
2297 *
2298 * 1. trim off 'len' bytes as m_adj(mp, -len).
2299 * 2. add zero-padding 'nul' bytes at the end of the mbuf chain.
2300 */
2301 void
2302 nfs_zeropad(mp, len, nul)
2303 struct mbuf *mp;
2304 int len;
2305 int nul;
2306 {
2307 struct mbuf *m;
2308 int count;
2309
2310 /*
2311 * Trim from tail. Scan the mbuf chain,
2312 * calculating its length and finding the last mbuf.
2313 * If the adjustment only affects this mbuf, then just
2314 * adjust and return. Otherwise, rescan and truncate
2315 * after the remaining size.
2316 */
2317 count = 0;
2318 m = mp;
2319 for (;;) {
2320 count += m->m_len;
2321 if (m->m_next == NULL)
2322 break;
2323 m = m->m_next;
2324 }
2325
2326 KDASSERT(count >= len);
2327
2328 if (m->m_len >= len) {
2329 m->m_len -= len;
2330 } else {
2331 count -= len;
2332 /*
2333 * Correct length for chain is "count".
2334 * Find the mbuf with last data, adjust its length,
2335 * and toss data from remaining mbufs on chain.
2336 */
2337 for (m = mp; m; m = m->m_next) {
2338 if (m->m_len >= count) {
2339 m->m_len = count;
2340 break;
2341 }
2342 count -= m->m_len;
2343 }
2344 KASSERT(m && m->m_next);
2345 m_freem(m->m_next);
2346 m->m_next = NULL;
2347 }
2348
2349 KDASSERT(m->m_next == NULL);
2350
2351 /*
2352 * zero-padding.
2353 */
2354 if (nul > 0) {
2355 char *cp;
2356 int i;
2357
2358 if (M_ROMAP(m) || M_TRAILINGSPACE(m) < nul) {
2359 struct mbuf *n;
2360
2361 KDASSERT(MLEN >= nul);
2362 n = m_get(M_WAIT, MT_DATA);
2363 MCLAIM(n, &nfs_mowner);
2364 n->m_len = nul;
2365 n->m_next = NULL;
2366 m->m_next = n;
2367 cp = mtod(n, void *);
2368 } else {
2369 cp = mtod(m, char *) + m->m_len;
2370 m->m_len += nul;
2371 }
2372 for (i = 0; i < nul; i++)
2373 *cp++ = '\0';
2374 }
2375 return;
2376 }
2377
2378 /*
2379 * Make these functions instead of macros, so that the kernel text size
2380 * doesn't get too big...
2381 */
2382 void
2383 nfsm_srvwcc(nfsd, before_ret, before_vap, after_ret, after_vap, mbp, bposp)
2384 struct nfsrv_descript *nfsd;
2385 int before_ret;
2386 struct vattr *before_vap;
2387 int after_ret;
2388 struct vattr *after_vap;
2389 struct mbuf **mbp;
2390 char **bposp;
2391 {
2392 struct mbuf *mb = *mbp;
2393 char *bpos = *bposp;
2394 u_int32_t *tl;
2395
2396 if (before_ret) {
2397 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2398 *tl = nfs_false;
2399 } else {
2400 nfsm_build(tl, u_int32_t *, 7 * NFSX_UNSIGNED);
2401 *tl++ = nfs_true;
2402 txdr_hyper(before_vap->va_size, tl);
2403 tl += 2;
2404 txdr_nfsv3time(&(before_vap->va_mtime), tl);
2405 tl += 2;
2406 txdr_nfsv3time(&(before_vap->va_ctime), tl);
2407 }
2408 *bposp = bpos;
2409 *mbp = mb;
2410 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp);
2411 }
2412
2413 void
2414 nfsm_srvpostopattr(nfsd, after_ret, after_vap, mbp, bposp)
2415 struct nfsrv_descript *nfsd;
2416 int after_ret;
2417 struct vattr *after_vap;
2418 struct mbuf **mbp;
2419 char **bposp;
2420 {
2421 struct mbuf *mb = *mbp;
2422 char *bpos = *bposp;
2423 u_int32_t *tl;
2424 struct nfs_fattr *fp;
2425
2426 if (after_ret) {
2427 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
2428 *tl = nfs_false;
2429 } else {
2430 nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED + NFSX_V3FATTR);
2431 *tl++ = nfs_true;
2432 fp = (struct nfs_fattr *)tl;
2433 nfsm_srvfattr(nfsd, after_vap, fp);
2434 }
2435 *mbp = mb;
2436 *bposp = bpos;
2437 }
2438
2439 void
2440 nfsm_srvfattr(nfsd, vap, fp)
2441 struct nfsrv_descript *nfsd;
2442 struct vattr *vap;
2443 struct nfs_fattr *fp;
2444 {
2445
2446 fp->fa_nlink = txdr_unsigned(vap->va_nlink);
2447 fp->fa_uid = txdr_unsigned(vap->va_uid);
2448 fp->fa_gid = txdr_unsigned(vap->va_gid);
2449 if (nfsd->nd_flag & ND_NFSV3) {
2450 fp->fa_type = vtonfsv3_type(vap->va_type);
2451 fp->fa_mode = vtonfsv3_mode(vap->va_mode);
2452 txdr_hyper(vap->va_size, &fp->fa3_size);
2453 txdr_hyper(vap->va_bytes, &fp->fa3_used);
2454 fp->fa3_rdev.specdata1 = txdr_unsigned(major(vap->va_rdev));
2455 fp->fa3_rdev.specdata2 = txdr_unsigned(minor(vap->va_rdev));
2456 fp->fa3_fsid.nfsuquad[0] = 0;
2457 fp->fa3_fsid.nfsuquad[1] = txdr_unsigned(vap->va_fsid);
2458 txdr_hyper(vap->va_fileid, &fp->fa3_fileid);
2459 txdr_nfsv3time(&vap->va_atime, &fp->fa3_atime);
2460 txdr_nfsv3time(&vap->va_mtime, &fp->fa3_mtime);
2461 txdr_nfsv3time(&vap->va_ctime, &fp->fa3_ctime);
2462 } else {
2463 fp->fa_type = vtonfsv2_type(vap->va_type);
2464 fp->fa_mode = vtonfsv2_mode(vap->va_type, vap->va_mode);
2465 fp->fa2_size = txdr_unsigned(vap->va_size);
2466 fp->fa2_blocksize = txdr_unsigned(vap->va_blocksize);
2467 if (vap->va_type == VFIFO)
2468 fp->fa2_rdev = 0xffffffff;
2469 else
2470 fp->fa2_rdev = txdr_unsigned(vap->va_rdev);
2471 fp->fa2_blocks = txdr_unsigned(vap->va_bytes / NFS_FABLKSIZE);
2472 fp->fa2_fsid = txdr_unsigned(vap->va_fsid);
2473 fp->fa2_fileid = txdr_unsigned(vap->va_fileid);
2474 txdr_nfsv2time(&vap->va_atime, &fp->fa2_atime);
2475 txdr_nfsv2time(&vap->va_mtime, &fp->fa2_mtime);
2476 txdr_nfsv2time(&vap->va_ctime, &fp->fa2_ctime);
2477 }
2478 }
2479
2480 #ifdef NFSSERVER
2481 /*
2482 * nfsrv_fhtovp() - convert a fh to a vnode ptr (optionally locked)
2483 * - look up fsid in mount list (if not found ret error)
2484 * - get vp and export rights by calling VFS_FHTOVP()
2485 * - if cred->cr_uid == 0 or MNT_EXPORTANON set it to credanon
2486 * - if not lockflag unlock it with VOP_UNLOCK()
2487 */
2488 int
2489 nfsrv_fhtovp(nfsrvfh_t *nsfh, int lockflag, struct vnode **vpp,
2490 kauth_cred_t cred, struct nfssvc_sock *slp, struct mbuf *nam, int *rdonlyp,
2491 int kerbflag, int pubflag)
2492 {
2493 struct mount *mp;
2494 kauth_cred_t credanon;
2495 int error, exflags;
2496 struct sockaddr_in *saddr;
2497 fhandle_t *fhp;
2498
2499 fhp = NFSRVFH_FHANDLE(nsfh);
2500 *vpp = (struct vnode *)0;
2501
2502 if (nfs_ispublicfh(nsfh)) {
2503 if (!pubflag || !nfs_pub.np_valid)
2504 return (ESTALE);
2505 fhp = nfs_pub.np_handle;
2506 }
2507
2508 error = netexport_check(&fhp->fh_fsid, nam, &mp, &exflags, &credanon);
2509 if (error) {
2510 return error;
2511 }
2512
2513 error = VFS_FHTOVP(mp, &fhp->fh_fid, vpp);
2514 if (error)
2515 return (error);
2516
2517 if (!(exflags & (MNT_EXNORESPORT|MNT_EXPUBLIC))) {
2518 saddr = mtod(nam, struct sockaddr_in *);
2519 if ((saddr->sin_family == AF_INET) &&
2520 ntohs(saddr->sin_port) >= IPPORT_RESERVED) {
2521 vput(*vpp);
2522 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2523 }
2524 #ifdef INET6
2525 if ((saddr->sin_family == AF_INET6) &&
2526 ntohs(saddr->sin_port) >= IPV6PORT_RESERVED) {
2527 vput(*vpp);
2528 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2529 }
2530 #endif
2531 }
2532 /*
2533 * Check/setup credentials.
2534 */
2535 if (exflags & MNT_EXKERB) {
2536 if (!kerbflag) {
2537 vput(*vpp);
2538 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2539 }
2540 } else if (kerbflag) {
2541 vput(*vpp);
2542 return (NFSERR_AUTHERR | AUTH_TOOWEAK);
2543 } else if (kauth_cred_geteuid(cred) == 0 || /* NFS maproot, see below */
2544 (exflags & MNT_EXPORTANON)) {
2545 /*
2546 * This is used by the NFS maproot option. While we can change
2547 * the secmodel on our own host, we can't change it on the
2548 * clients. As means of least surprise, we're doing the
2549 * traditional thing here.
2550 * Should look into adding a "mapprivileged" or similar where
2551 * the users can be explicitly specified...
2552 * [elad, yamt 2008-03-05]
2553 */
2554 kauth_cred_clone(credanon, cred);
2555 }
2556 if (exflags & MNT_EXRDONLY)
2557 *rdonlyp = 1;
2558 else
2559 *rdonlyp = 0;
2560 if (!lockflag)
2561 VOP_UNLOCK(*vpp, 0);
2562 return (0);
2563 }
2564
2565 /*
2566 * WebNFS: check if a filehandle is a public filehandle. For v3, this
2567 * means a length of 0, for v2 it means all zeroes.
2568 */
2569 int
2570 nfs_ispublicfh(const nfsrvfh_t *nsfh)
2571 {
2572 const char *cp = (const void *)(NFSRVFH_DATA(nsfh));
2573 int i;
2574
2575 if (NFSRVFH_SIZE(nsfh) == 0) {
2576 return true;
2577 }
2578 if (NFSRVFH_SIZE(nsfh) != NFSX_V2FH) {
2579 return false;
2580 }
2581 for (i = 0; i < NFSX_V2FH; i++)
2582 if (*cp++ != 0)
2583 return false;
2584 return true;
2585 }
2586 #endif /* NFSSERVER */
2587
2588 /*
2589 * This function compares two net addresses by family and returns true
2590 * if they are the same host.
2591 * If there is any doubt, return false.
2592 * The AF_INET family is handled as a special case so that address mbufs
2593 * don't need to be saved to store "struct in_addr", which is only 4 bytes.
2594 */
2595 int
2596 netaddr_match(family, haddr, nam)
2597 int family;
2598 union nethostaddr *haddr;
2599 struct mbuf *nam;
2600 {
2601 struct sockaddr_in *inetaddr;
2602
2603 switch (family) {
2604 case AF_INET:
2605 inetaddr = mtod(nam, struct sockaddr_in *);
2606 if (inetaddr->sin_family == AF_INET &&
2607 inetaddr->sin_addr.s_addr == haddr->had_inetaddr)
2608 return (1);
2609 break;
2610 #ifdef INET6
2611 case AF_INET6:
2612 {
2613 struct sockaddr_in6 *sin6_1, *sin6_2;
2614
2615 sin6_1 = mtod(nam, struct sockaddr_in6 *);
2616 sin6_2 = mtod(haddr->had_nam, struct sockaddr_in6 *);
2617 if (sin6_1->sin6_family == AF_INET6 &&
2618 IN6_ARE_ADDR_EQUAL(&sin6_1->sin6_addr, &sin6_2->sin6_addr))
2619 return 1;
2620 }
2621 #endif
2622 #ifdef ISO
2623 case AF_ISO:
2624 {
2625 struct sockaddr_iso *isoaddr1, *isoaddr2;
2626
2627 isoaddr1 = mtod(nam, struct sockaddr_iso *);
2628 isoaddr2 = mtod(haddr->had_nam, struct sockaddr_iso *);
2629 if (isoaddr1->siso_family == AF_ISO &&
2630 isoaddr1->siso_nlen > 0 &&
2631 isoaddr1->siso_nlen == isoaddr2->siso_nlen &&
2632 SAME_ISOADDR(isoaddr1, isoaddr2))
2633 return (1);
2634 break;
2635 }
2636 #endif /* ISO */
2637 default:
2638 break;
2639 };
2640 return (0);
2641 }
2642
2643 /*
2644 * The write verifier has changed (probably due to a server reboot), so all
2645 * PG_NEEDCOMMIT pages will have to be written again. Since they are marked
2646 * as dirty or are being written out just now, all this takes is clearing
2647 * the PG_NEEDCOMMIT flag. Once done the new write verifier can be set for
2648 * the mount point.
2649 */
2650 void
2651 nfs_clearcommit(mp)
2652 struct mount *mp;
2653 {
2654 struct vnode *vp;
2655 struct nfsnode *np;
2656 struct vm_page *pg;
2657 struct nfsmount *nmp = VFSTONFS(mp);
2658
2659 rw_enter(&nmp->nm_writeverflock, RW_WRITER);
2660 mutex_enter(&mntvnode_lock);
2661 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2662 KASSERT(vp->v_mount == mp);
2663 if (vp->v_type != VREG)
2664 continue;
2665 np = VTONFS(vp);
2666 np->n_pushlo = np->n_pushhi = np->n_pushedlo =
2667 np->n_pushedhi = 0;
2668 np->n_commitflags &=
2669 ~(NFS_COMMIT_PUSH_VALID | NFS_COMMIT_PUSHED_VALID);
2670 mutex_enter(&vp->v_uobj.vmobjlock);
2671 TAILQ_FOREACH(pg, &vp->v_uobj.memq, listq) {
2672 pg->flags &= ~PG_NEEDCOMMIT;
2673 }
2674 mutex_exit(&vp->v_uobj.vmobjlock);
2675 }
2676 mutex_exit(&mntvnode_lock);
2677 mutex_enter(&nmp->nm_lock);
2678 nmp->nm_iflag &= ~NFSMNT_STALEWRITEVERF;
2679 mutex_exit(&nmp->nm_lock);
2680 rw_exit(&nmp->nm_writeverflock);
2681 }
2682
2683 void
2684 nfs_merge_commit_ranges(vp)
2685 struct vnode *vp;
2686 {
2687 struct nfsnode *np = VTONFS(vp);
2688
2689 KASSERT(np->n_commitflags & NFS_COMMIT_PUSH_VALID);
2690
2691 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2692 np->n_pushedlo = np->n_pushlo;
2693 np->n_pushedhi = np->n_pushhi;
2694 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2695 } else {
2696 if (np->n_pushlo < np->n_pushedlo)
2697 np->n_pushedlo = np->n_pushlo;
2698 if (np->n_pushhi > np->n_pushedhi)
2699 np->n_pushedhi = np->n_pushhi;
2700 }
2701
2702 np->n_pushlo = np->n_pushhi = 0;
2703 np->n_commitflags &= ~NFS_COMMIT_PUSH_VALID;
2704
2705 #ifdef NFS_DEBUG_COMMIT
2706 printf("merge: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2707 (unsigned)np->n_pushedhi);
2708 #endif
2709 }
2710
2711 int
2712 nfs_in_committed_range(vp, off, len)
2713 struct vnode *vp;
2714 off_t off, len;
2715 {
2716 struct nfsnode *np = VTONFS(vp);
2717 off_t lo, hi;
2718
2719 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2720 return 0;
2721 lo = off;
2722 hi = lo + len;
2723
2724 return (lo >= np->n_pushedlo && hi <= np->n_pushedhi);
2725 }
2726
2727 int
2728 nfs_in_tobecommitted_range(vp, off, len)
2729 struct vnode *vp;
2730 off_t off, len;
2731 {
2732 struct nfsnode *np = VTONFS(vp);
2733 off_t lo, hi;
2734
2735 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2736 return 0;
2737 lo = off;
2738 hi = lo + len;
2739
2740 return (lo >= np->n_pushlo && hi <= np->n_pushhi);
2741 }
2742
2743 void
2744 nfs_add_committed_range(vp, off, len)
2745 struct vnode *vp;
2746 off_t off, len;
2747 {
2748 struct nfsnode *np = VTONFS(vp);
2749 off_t lo, hi;
2750
2751 lo = off;
2752 hi = lo + len;
2753
2754 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID)) {
2755 np->n_pushedlo = lo;
2756 np->n_pushedhi = hi;
2757 np->n_commitflags |= NFS_COMMIT_PUSHED_VALID;
2758 } else {
2759 if (hi > np->n_pushedhi)
2760 np->n_pushedhi = hi;
2761 if (lo < np->n_pushedlo)
2762 np->n_pushedlo = lo;
2763 }
2764 #ifdef NFS_DEBUG_COMMIT
2765 printf("add: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2766 (unsigned)np->n_pushedhi);
2767 #endif
2768 }
2769
2770 void
2771 nfs_del_committed_range(vp, off, len)
2772 struct vnode *vp;
2773 off_t off, len;
2774 {
2775 struct nfsnode *np = VTONFS(vp);
2776 off_t lo, hi;
2777
2778 if (!(np->n_commitflags & NFS_COMMIT_PUSHED_VALID))
2779 return;
2780
2781 lo = off;
2782 hi = lo + len;
2783
2784 if (lo > np->n_pushedhi || hi < np->n_pushedlo)
2785 return;
2786 if (lo <= np->n_pushedlo)
2787 np->n_pushedlo = hi;
2788 else if (hi >= np->n_pushedhi)
2789 np->n_pushedhi = lo;
2790 else {
2791 /*
2792 * XXX There's only one range. If the deleted range
2793 * is in the middle, pick the largest of the
2794 * contiguous ranges that it leaves.
2795 */
2796 if ((np->n_pushedlo - lo) > (hi - np->n_pushedhi))
2797 np->n_pushedhi = lo;
2798 else
2799 np->n_pushedlo = hi;
2800 }
2801 #ifdef NFS_DEBUG_COMMIT
2802 printf("del: committed: %u - %u\n", (unsigned)np->n_pushedlo,
2803 (unsigned)np->n_pushedhi);
2804 #endif
2805 }
2806
2807 void
2808 nfs_add_tobecommitted_range(vp, off, len)
2809 struct vnode *vp;
2810 off_t off, len;
2811 {
2812 struct nfsnode *np = VTONFS(vp);
2813 off_t lo, hi;
2814
2815 lo = off;
2816 hi = lo + len;
2817
2818 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID)) {
2819 np->n_pushlo = lo;
2820 np->n_pushhi = hi;
2821 np->n_commitflags |= NFS_COMMIT_PUSH_VALID;
2822 } else {
2823 if (lo < np->n_pushlo)
2824 np->n_pushlo = lo;
2825 if (hi > np->n_pushhi)
2826 np->n_pushhi = hi;
2827 }
2828 #ifdef NFS_DEBUG_COMMIT
2829 printf("add: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2830 (unsigned)np->n_pushhi);
2831 #endif
2832 }
2833
2834 void
2835 nfs_del_tobecommitted_range(vp, off, len)
2836 struct vnode *vp;
2837 off_t off, len;
2838 {
2839 struct nfsnode *np = VTONFS(vp);
2840 off_t lo, hi;
2841
2842 if (!(np->n_commitflags & NFS_COMMIT_PUSH_VALID))
2843 return;
2844
2845 lo = off;
2846 hi = lo + len;
2847
2848 if (lo > np->n_pushhi || hi < np->n_pushlo)
2849 return;
2850
2851 if (lo <= np->n_pushlo)
2852 np->n_pushlo = hi;
2853 else if (hi >= np->n_pushhi)
2854 np->n_pushhi = lo;
2855 else {
2856 /*
2857 * XXX There's only one range. If the deleted range
2858 * is in the middle, pick the largest of the
2859 * contiguous ranges that it leaves.
2860 */
2861 if ((np->n_pushlo - lo) > (hi - np->n_pushhi))
2862 np->n_pushhi = lo;
2863 else
2864 np->n_pushlo = hi;
2865 }
2866 #ifdef NFS_DEBUG_COMMIT
2867 printf("del: tobecommitted: %u - %u\n", (unsigned)np->n_pushlo,
2868 (unsigned)np->n_pushhi);
2869 #endif
2870 }
2871
2872 /*
2873 * Map errnos to NFS error numbers. For Version 3 also filter out error
2874 * numbers not specified for the associated procedure.
2875 */
2876 int
2877 nfsrv_errmap(nd, err)
2878 struct nfsrv_descript *nd;
2879 int err;
2880 {
2881 const short *defaulterrp, *errp;
2882
2883 if (nd->nd_flag & ND_NFSV3) {
2884 if (nd->nd_procnum <= NFSPROC_COMMIT) {
2885 errp = defaulterrp = nfsrv_v3errmap[nd->nd_procnum];
2886 while (*++errp) {
2887 if (*errp == err)
2888 return (err);
2889 else if (*errp > err)
2890 break;
2891 }
2892 return ((int)*defaulterrp);
2893 } else
2894 return (err & 0xffff);
2895 }
2896 if (err <= ELAST)
2897 return ((int)nfsrv_v2errmap[err - 1]);
2898 return (NFSERR_IO);
2899 }
2900
2901 u_int32_t
2902 nfs_getxid()
2903 {
2904 static u_int32_t base;
2905 static u_int32_t nfs_xid = 0;
2906 static struct simplelock nfs_xidlock = SIMPLELOCK_INITIALIZER;
2907 u_int32_t newxid;
2908
2909 simple_lock(&nfs_xidlock);
2910 /*
2911 * derive initial xid from system time
2912 * XXX time is invalid if root not yet mounted
2913 */
2914 if (__predict_false(!base && (rootvp))) {
2915 struct timeval tv;
2916
2917 microtime(&tv);
2918 base = tv.tv_sec << 12;
2919 nfs_xid = base;
2920 }
2921
2922 /*
2923 * Skip zero xid if it should ever happen.
2924 */
2925 if (__predict_false(++nfs_xid == 0))
2926 nfs_xid++;
2927 newxid = nfs_xid;
2928 simple_unlock(&nfs_xidlock);
2929
2930 return txdr_unsigned(newxid);
2931 }
2932
2933 /*
2934 * assign a new xid for existing request.
2935 * used for NFSERR_JUKEBOX handling.
2936 */
2937 void
2938 nfs_renewxid(struct nfsreq *req)
2939 {
2940 u_int32_t xid;
2941 int off;
2942
2943 xid = nfs_getxid();
2944 if (req->r_nmp->nm_sotype == SOCK_STREAM)
2945 off = sizeof(u_int32_t); /* RPC record mark */
2946 else
2947 off = 0;
2948
2949 m_copyback(req->r_mreq, off, sizeof(xid), (void *)&xid);
2950 req->r_xid = xid;
2951 }
2952
2953 #if defined(NFSSERVER)
2954 int
2955 nfsrv_composefh(struct vnode *vp, nfsrvfh_t *nsfh, bool v3)
2956 {
2957 int error;
2958 size_t fhsize;
2959
2960 fhsize = NFSD_MAXFHSIZE;
2961 error = vfs_composefh(vp, (void *)NFSRVFH_DATA(nsfh), &fhsize);
2962 if (NFSX_FHTOOBIG_P(fhsize, v3)) {
2963 error = EOPNOTSUPP;
2964 }
2965 if (error != 0) {
2966 return error;
2967 }
2968 if (!v3 && fhsize < NFSX_V2FH) {
2969 memset((char *)NFSRVFH_DATA(nsfh) + fhsize, 0,
2970 NFSX_V2FH - fhsize);
2971 fhsize = NFSX_V2FH;
2972 }
2973 if ((fhsize % NFSX_UNSIGNED) != 0) {
2974 return EOPNOTSUPP;
2975 }
2976 nsfh->nsfh_size = fhsize;
2977 return 0;
2978 }
2979
2980 int
2981 nfsrv_comparefh(const nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2982 {
2983
2984 if (NFSRVFH_SIZE(fh1) != NFSRVFH_SIZE(fh2)) {
2985 return NFSRVFH_SIZE(fh2) - NFSRVFH_SIZE(fh1);
2986 }
2987 return memcmp(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), NFSRVFH_SIZE(fh1));
2988 }
2989
2990 void
2991 nfsrv_copyfh(nfsrvfh_t *fh1, const nfsrvfh_t *fh2)
2992 {
2993 size_t size;
2994
2995 fh1->nsfh_size = size = NFSRVFH_SIZE(fh2);
2996 memcpy(NFSRVFH_DATA(fh1), NFSRVFH_DATA(fh2), size);
2997 }
2998 #endif /* defined(NFSSERVER) */
2999
3000 #if defined(NFS)
3001 /*
3002 * Set the attribute timeout based on how recently the file has been modified.
3003 */
3004
3005 time_t
3006 nfs_attrtimeo(struct nfsmount *nmp, struct nfsnode *np)
3007 {
3008 time_t timeo;
3009
3010 if ((nmp->nm_flag & NFSMNT_NOAC) != 0)
3011 return 0;
3012
3013 if (((np)->n_flag & NMODIFIED) != 0)
3014 return NFS_MINATTRTIMO;
3015
3016 timeo = (time_second - np->n_mtime.tv_sec) / 10;
3017 timeo = max(timeo, NFS_MINATTRTIMO);
3018 timeo = min(timeo, NFS_MAXATTRTIMO);
3019 return timeo;
3020 }
3021 #endif /* defined(NFS) */
3022